forked from OSchip/llvm-project
665 lines
24 KiB
C++
665 lines
24 KiB
C++
//===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file defines the implementation for the loop cache analysis.
|
|
/// The implementation is largely based on the following paper:
|
|
///
|
|
/// Compiler Optimizations for Improving Data Locality
|
|
/// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
|
|
/// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
|
|
///
|
|
/// The general approach taken to estimate the number of cache lines used by the
|
|
/// memory references in an inner loop is:
|
|
/// 1. Partition memory references that exhibit temporal or spacial reuse
|
|
/// into reference groups.
|
|
/// 2. For each loop L in the a loop nest LN:
|
|
/// a. Compute the cost of the reference group
|
|
/// b. Compute the loop cost by summing up the reference groups costs
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LoopCacheAnalysis.h"
|
|
#include "llvm/ADT/BreadthFirstIterator.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/DependenceAnalysis.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-cache-cost"
|
|
|
|
static cl::opt<unsigned> DefaultTripCount(
|
|
"default-trip-count", cl::init(100), cl::Hidden,
|
|
cl::desc("Use this to specify the default trip count of a loop"));
|
|
|
|
// In this analysis two array references are considered to exhibit temporal
|
|
// reuse if they access either the same memory location, or a memory location
|
|
// with distance smaller than a configurable threshold.
|
|
static cl::opt<unsigned> TemporalReuseThreshold(
|
|
"temporal-reuse-threshold", cl::init(2), cl::Hidden,
|
|
cl::desc("Use this to specify the max. distance between array elements "
|
|
"accessed in a loop so that the elements are classified to have "
|
|
"temporal reuse"));
|
|
|
|
/// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
|
|
/// nullptr if any loops in the loop vector supplied has more than one sibling.
|
|
/// The loop vector is expected to contain loops collected in breadth-first
|
|
/// order.
|
|
static Loop *getInnerMostLoop(const LoopVectorTy &Loops) {
|
|
assert(!Loops.empty() && "Expecting a non-empy loop vector");
|
|
|
|
Loop *LastLoop = Loops.back();
|
|
Loop *ParentLoop = LastLoop->getParentLoop();
|
|
|
|
if (ParentLoop == nullptr) {
|
|
assert(Loops.size() == 1 && "Expecting a single loop");
|
|
return LastLoop;
|
|
}
|
|
|
|
return (llvm::is_sorted(Loops,
|
|
[](const Loop *L1, const Loop *L2) {
|
|
return L1->getLoopDepth() < L2->getLoopDepth();
|
|
}))
|
|
? LastLoop
|
|
: nullptr;
|
|
}
|
|
|
|
static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize,
|
|
const Loop &L, ScalarEvolution &SE) {
|
|
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn);
|
|
if (!AR || !AR->isAffine())
|
|
return false;
|
|
|
|
assert(AR->getLoop() && "AR should have a loop");
|
|
|
|
// Check that start and increment are not add recurrences.
|
|
const SCEV *Start = AR->getStart();
|
|
const SCEV *Step = AR->getStepRecurrence(SE);
|
|
if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step))
|
|
return false;
|
|
|
|
// Check that start and increment are both invariant in the loop.
|
|
if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
|
|
return false;
|
|
|
|
const SCEV *StepRec = AR->getStepRecurrence(SE);
|
|
if (StepRec && SE.isKnownNegative(StepRec))
|
|
StepRec = SE.getNegativeSCEV(StepRec);
|
|
|
|
return StepRec == &ElemSize;
|
|
}
|
|
|
|
/// Compute the trip count for the given loop \p L. Return the SCEV expression
|
|
/// for the trip count or nullptr if it cannot be computed.
|
|
static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) {
|
|
const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L);
|
|
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
|
|
!isa<SCEVConstant>(BackedgeTakenCount))
|
|
return nullptr;
|
|
return SE.getTripCountFromExitCount(BackedgeTakenCount);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IndexedReference implementation
|
|
//
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) {
|
|
if (!R.IsValid) {
|
|
OS << R.StoreOrLoadInst;
|
|
OS << ", IsValid=false.";
|
|
return OS;
|
|
}
|
|
|
|
OS << *R.BasePointer;
|
|
for (const SCEV *Subscript : R.Subscripts)
|
|
OS << "[" << *Subscript << "]";
|
|
|
|
OS << ", Sizes: ";
|
|
for (const SCEV *Size : R.Sizes)
|
|
OS << "[" << *Size << "]";
|
|
|
|
return OS;
|
|
}
|
|
|
|
IndexedReference::IndexedReference(Instruction &StoreOrLoadInst,
|
|
const LoopInfo &LI, ScalarEvolution &SE)
|
|
: StoreOrLoadInst(StoreOrLoadInst), SE(SE) {
|
|
assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) &&
|
|
"Expecting a load or store instruction");
|
|
|
|
IsValid = delinearize(LI);
|
|
if (IsValid)
|
|
LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
|
|
<< "\n");
|
|
}
|
|
|
|
Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other,
|
|
unsigned CLS,
|
|
AAResults &AA) const {
|
|
assert(IsValid && "Expecting a valid reference");
|
|
|
|
if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
|
|
LLVM_DEBUG(dbgs().indent(2)
|
|
<< "No spacial reuse: different base pointers\n");
|
|
return false;
|
|
}
|
|
|
|
unsigned NumSubscripts = getNumSubscripts();
|
|
if (NumSubscripts != Other.getNumSubscripts()) {
|
|
LLVM_DEBUG(dbgs().indent(2)
|
|
<< "No spacial reuse: different number of subscripts\n");
|
|
return false;
|
|
}
|
|
|
|
// all subscripts must be equal, except the leftmost one (the last one).
|
|
for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) {
|
|
if (getSubscript(SubNum) != Other.getSubscript(SubNum)) {
|
|
LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
|
|
<< "\n\t" << *getSubscript(SubNum) << "\n\t"
|
|
<< *Other.getSubscript(SubNum) << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// the difference between the last subscripts must be less than the cache line
|
|
// size.
|
|
const SCEV *LastSubscript = getLastSubscript();
|
|
const SCEV *OtherLastSubscript = Other.getLastSubscript();
|
|
const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
|
|
SE.getMinusSCEV(LastSubscript, OtherLastSubscript));
|
|
|
|
if (Diff == nullptr) {
|
|
LLVM_DEBUG(dbgs().indent(2)
|
|
<< "No spacial reuse, difference between subscript:\n\t"
|
|
<< *LastSubscript << "\n\t" << OtherLastSubscript
|
|
<< "\nis not constant.\n");
|
|
return None;
|
|
}
|
|
|
|
bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS);
|
|
|
|
LLVM_DEBUG({
|
|
if (InSameCacheLine)
|
|
dbgs().indent(2) << "Found spacial reuse.\n";
|
|
else
|
|
dbgs().indent(2) << "No spacial reuse.\n";
|
|
});
|
|
|
|
return InSameCacheLine;
|
|
}
|
|
|
|
Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other,
|
|
unsigned MaxDistance,
|
|
const Loop &L,
|
|
DependenceInfo &DI,
|
|
AAResults &AA) const {
|
|
assert(IsValid && "Expecting a valid reference");
|
|
|
|
if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
|
|
LLVM_DEBUG(dbgs().indent(2)
|
|
<< "No temporal reuse: different base pointer\n");
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<Dependence> D =
|
|
DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true);
|
|
|
|
if (D == nullptr) {
|
|
LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
|
|
return false;
|
|
}
|
|
|
|
if (D->isLoopIndependent()) {
|
|
LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
|
|
return true;
|
|
}
|
|
|
|
// Check the dependence distance at every loop level. There is temporal reuse
|
|
// if the distance at the given loop's depth is small (|d| <= MaxDistance) and
|
|
// it is zero at every other loop level.
|
|
int LoopDepth = L.getLoopDepth();
|
|
int Levels = D->getLevels();
|
|
for (int Level = 1; Level <= Levels; ++Level) {
|
|
const SCEV *Distance = D->getDistance(Level);
|
|
const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance);
|
|
|
|
if (SCEVConst == nullptr) {
|
|
LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
|
|
return None;
|
|
}
|
|
|
|
const ConstantInt &CI = *SCEVConst->getValue();
|
|
if (Level != LoopDepth && !CI.isZero()) {
|
|
LLVM_DEBUG(dbgs().indent(2)
|
|
<< "No temporal reuse: distance is not zero at depth=" << Level
|
|
<< "\n");
|
|
return false;
|
|
} else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) {
|
|
LLVM_DEBUG(
|
|
dbgs().indent(2)
|
|
<< "No temporal reuse: distance is greater than MaxDistance at depth="
|
|
<< Level << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
|
|
return true;
|
|
}
|
|
|
|
CacheCostTy IndexedReference::computeRefCost(const Loop &L,
|
|
unsigned CLS) const {
|
|
assert(IsValid && "Expecting a valid reference");
|
|
LLVM_DEBUG({
|
|
dbgs().indent(2) << "Computing cache cost for:\n";
|
|
dbgs().indent(4) << *this << "\n";
|
|
});
|
|
|
|
// If the indexed reference is loop invariant the cost is one.
|
|
if (isLoopInvariant(L)) {
|
|
LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
|
|
return 1;
|
|
}
|
|
|
|
const SCEV *TripCount = computeTripCount(L, SE);
|
|
if (!TripCount) {
|
|
LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName()
|
|
<< " could not be computed, using DefaultTripCount\n");
|
|
const SCEV *ElemSize = Sizes.back();
|
|
TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount);
|
|
}
|
|
LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n");
|
|
|
|
// If the indexed reference is 'consecutive' the cost is
|
|
// (TripCount*Stride)/CLS, otherwise the cost is TripCount.
|
|
const SCEV *RefCost = TripCount;
|
|
|
|
if (isConsecutive(L, CLS)) {
|
|
const SCEV *Coeff = getLastCoefficient();
|
|
const SCEV *ElemSize = Sizes.back();
|
|
const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
|
|
Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType());
|
|
const SCEV *CacheLineSize = SE.getConstant(WiderType, CLS);
|
|
if (SE.isKnownNegative(Stride))
|
|
Stride = SE.getNegativeSCEV(Stride);
|
|
Stride = SE.getNoopOrAnyExtend(Stride, WiderType);
|
|
TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType);
|
|
const SCEV *Numerator = SE.getMulExpr(Stride, TripCount);
|
|
RefCost = SE.getUDivExpr(Numerator, CacheLineSize);
|
|
|
|
LLVM_DEBUG(dbgs().indent(4)
|
|
<< "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
|
|
<< *RefCost << "\n");
|
|
} else
|
|
LLVM_DEBUG(dbgs().indent(4)
|
|
<< "Access is not consecutive: RefCost=TripCount=" << *RefCost
|
|
<< "\n");
|
|
|
|
// Attempt to fold RefCost into a constant.
|
|
if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost))
|
|
return ConstantCost->getValue()->getSExtValue();
|
|
|
|
LLVM_DEBUG(dbgs().indent(4)
|
|
<< "RefCost is not a constant! Setting to RefCost=InvalidCost "
|
|
"(invalid value).\n");
|
|
|
|
return CacheCost::InvalidCost;
|
|
}
|
|
|
|
bool IndexedReference::delinearize(const LoopInfo &LI) {
|
|
assert(Subscripts.empty() && "Subscripts should be empty");
|
|
assert(Sizes.empty() && "Sizes should be empty");
|
|
assert(!IsValid && "Should be called once from the constructor");
|
|
LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n");
|
|
|
|
const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst);
|
|
const BasicBlock *BB = StoreOrLoadInst.getParent();
|
|
|
|
if (Loop *L = LI.getLoopFor(BB)) {
|
|
const SCEV *AccessFn =
|
|
SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L);
|
|
|
|
BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn));
|
|
if (BasePointer == nullptr) {
|
|
LLVM_DEBUG(
|
|
dbgs().indent(2)
|
|
<< "ERROR: failed to delinearize, can't identify base pointer\n");
|
|
return false;
|
|
}
|
|
|
|
AccessFn = SE.getMinusSCEV(AccessFn, BasePointer);
|
|
|
|
LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
|
|
<< "', AccessFn: " << *AccessFn << "\n");
|
|
|
|
SE.delinearize(AccessFn, Subscripts, Sizes,
|
|
SE.getElementSize(&StoreOrLoadInst));
|
|
|
|
if (Subscripts.empty() || Sizes.empty() ||
|
|
Subscripts.size() != Sizes.size()) {
|
|
// Attempt to determine whether we have a single dimensional array access.
|
|
// before giving up.
|
|
if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) {
|
|
LLVM_DEBUG(dbgs().indent(2)
|
|
<< "ERROR: failed to delinearize reference\n");
|
|
Subscripts.clear();
|
|
Sizes.clear();
|
|
return false;
|
|
}
|
|
|
|
// The array may be accessed in reverse, for example:
|
|
// for (i = N; i > 0; i--)
|
|
// A[i] = 0;
|
|
// In this case, reconstruct the access function using the absolute value
|
|
// of the step recurrence.
|
|
const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn);
|
|
const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr;
|
|
|
|
if (StepRec && SE.isKnownNegative(StepRec))
|
|
AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(),
|
|
SE.getNegativeSCEV(StepRec),
|
|
AccessFnAR->getLoop(),
|
|
AccessFnAR->getNoWrapFlags());
|
|
const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize);
|
|
Subscripts.push_back(Div);
|
|
Sizes.push_back(ElemSize);
|
|
}
|
|
|
|
return all_of(Subscripts, [&](const SCEV *Subscript) {
|
|
return isSimpleAddRecurrence(*Subscript, *L);
|
|
});
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool IndexedReference::isLoopInvariant(const Loop &L) const {
|
|
Value *Addr = getPointerOperand(&StoreOrLoadInst);
|
|
assert(Addr != nullptr && "Expecting either a load or a store instruction");
|
|
assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable");
|
|
|
|
if (SE.isLoopInvariant(SE.getSCEV(Addr), &L))
|
|
return true;
|
|
|
|
// The indexed reference is loop invariant if none of the coefficients use
|
|
// the loop induction variable.
|
|
bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) {
|
|
return isCoeffForLoopZeroOrInvariant(*Subscript, L);
|
|
});
|
|
|
|
return allCoeffForLoopAreZero;
|
|
}
|
|
|
|
bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const {
|
|
// The indexed reference is 'consecutive' if the only coefficient that uses
|
|
// the loop induction variable is the last one...
|
|
const SCEV *LastSubscript = Subscripts.back();
|
|
for (const SCEV *Subscript : Subscripts) {
|
|
if (Subscript == LastSubscript)
|
|
continue;
|
|
if (!isCoeffForLoopZeroOrInvariant(*Subscript, L))
|
|
return false;
|
|
}
|
|
|
|
// ...and the access stride is less than the cache line size.
|
|
const SCEV *Coeff = getLastCoefficient();
|
|
const SCEV *ElemSize = Sizes.back();
|
|
const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
|
|
const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
|
|
|
|
Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride;
|
|
return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize);
|
|
}
|
|
|
|
const SCEV *IndexedReference::getLastCoefficient() const {
|
|
const SCEV *LastSubscript = getLastSubscript();
|
|
assert(isa<SCEVAddRecExpr>(LastSubscript) &&
|
|
"Expecting a SCEV add recurrence expression");
|
|
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript);
|
|
return AR->getStepRecurrence(SE);
|
|
}
|
|
|
|
bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript,
|
|
const Loop &L) const {
|
|
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript);
|
|
return (AR != nullptr) ? AR->getLoop() != &L
|
|
: SE.isLoopInvariant(&Subscript, &L);
|
|
}
|
|
|
|
bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript,
|
|
const Loop &L) const {
|
|
if (!isa<SCEVAddRecExpr>(Subscript))
|
|
return false;
|
|
|
|
const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript);
|
|
assert(AR->getLoop() && "AR should have a loop");
|
|
|
|
if (!AR->isAffine())
|
|
return false;
|
|
|
|
const SCEV *Start = AR->getStart();
|
|
const SCEV *Step = AR->getStepRecurrence(SE);
|
|
|
|
if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IndexedReference::isAliased(const IndexedReference &Other,
|
|
AAResults &AA) const {
|
|
const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst);
|
|
const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst);
|
|
return AA.isMustAlias(Loc1, Loc2);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CacheCost implementation
|
|
//
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) {
|
|
for (const auto &LC : CC.LoopCosts) {
|
|
const Loop *L = LC.first;
|
|
OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n";
|
|
}
|
|
return OS;
|
|
}
|
|
|
|
CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI,
|
|
ScalarEvolution &SE, TargetTransformInfo &TTI,
|
|
AAResults &AA, DependenceInfo &DI,
|
|
Optional<unsigned> TRT)
|
|
: Loops(Loops), TripCounts(), LoopCosts(),
|
|
TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT),
|
|
LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) {
|
|
assert(!Loops.empty() && "Expecting a non-empty loop vector.");
|
|
|
|
for (const Loop *L : Loops) {
|
|
unsigned TripCount = SE.getSmallConstantTripCount(L);
|
|
TripCount = (TripCount == 0) ? DefaultTripCount : TripCount;
|
|
TripCounts.push_back({L, TripCount});
|
|
}
|
|
|
|
calculateCacheFootprint();
|
|
}
|
|
|
|
std::unique_ptr<CacheCost>
|
|
CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR,
|
|
DependenceInfo &DI, Optional<unsigned> TRT) {
|
|
if (!Root.isOutermost()) {
|
|
LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
|
|
return nullptr;
|
|
}
|
|
|
|
LoopVectorTy Loops;
|
|
append_range(Loops, breadth_first(&Root));
|
|
|
|
if (!getInnerMostLoop(Loops)) {
|
|
LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
|
|
"than one innermost loop\n");
|
|
return nullptr;
|
|
}
|
|
|
|
return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT);
|
|
}
|
|
|
|
void CacheCost::calculateCacheFootprint() {
|
|
LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
|
|
ReferenceGroupsTy RefGroups;
|
|
if (!populateReferenceGroups(RefGroups))
|
|
return;
|
|
|
|
LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
|
|
for (const Loop *L : Loops) {
|
|
assert((std::find_if(LoopCosts.begin(), LoopCosts.end(),
|
|
[L](const LoopCacheCostTy &LCC) {
|
|
return LCC.first == L;
|
|
}) == LoopCosts.end()) &&
|
|
"Should not add duplicate element");
|
|
CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups);
|
|
LoopCosts.push_back(std::make_pair(L, LoopCost));
|
|
}
|
|
|
|
sortLoopCosts();
|
|
RefGroups.clear();
|
|
}
|
|
|
|
bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const {
|
|
assert(RefGroups.empty() && "Reference groups should be empty");
|
|
|
|
unsigned CLS = TTI.getCacheLineSize();
|
|
Loop *InnerMostLoop = getInnerMostLoop(Loops);
|
|
assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop");
|
|
|
|
for (BasicBlock *BB : InnerMostLoop->getBlocks()) {
|
|
for (Instruction &I : *BB) {
|
|
if (!isa<StoreInst>(I) && !isa<LoadInst>(I))
|
|
continue;
|
|
|
|
std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE));
|
|
if (!R->isValid())
|
|
continue;
|
|
|
|
bool Added = false;
|
|
for (ReferenceGroupTy &RefGroup : RefGroups) {
|
|
const IndexedReference &Representative = *RefGroup.front().get();
|
|
LLVM_DEBUG({
|
|
dbgs() << "References:\n";
|
|
dbgs().indent(2) << *R << "\n";
|
|
dbgs().indent(2) << Representative << "\n";
|
|
});
|
|
|
|
|
|
// FIXME: Both positive and negative access functions will be placed
|
|
// into the same reference group, resulting in a bi-directional array
|
|
// access such as:
|
|
// for (i = N; i > 0; i--)
|
|
// A[i] = A[N - i];
|
|
// having the same cost calculation as a single dimention access pattern
|
|
// for (i = 0; i < N; i++)
|
|
// A[i] = A[i];
|
|
// when in actuality, depending on the array size, the first example
|
|
// should have a cost closer to 2x the second due to the two cache
|
|
// access per iteration from opposite ends of the array
|
|
Optional<bool> HasTemporalReuse =
|
|
R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA);
|
|
Optional<bool> HasSpacialReuse =
|
|
R->hasSpacialReuse(Representative, CLS, AA);
|
|
|
|
if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) ||
|
|
(HasSpacialReuse.hasValue() && *HasSpacialReuse)) {
|
|
RefGroup.push_back(std::move(R));
|
|
Added = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Added) {
|
|
ReferenceGroupTy RG;
|
|
RG.push_back(std::move(R));
|
|
RefGroups.push_back(std::move(RG));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (RefGroups.empty())
|
|
return false;
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
|
|
int n = 1;
|
|
for (const ReferenceGroupTy &RG : RefGroups) {
|
|
dbgs().indent(2) << "RefGroup " << n << ":\n";
|
|
for (const auto &IR : RG)
|
|
dbgs().indent(4) << *IR << "\n";
|
|
n++;
|
|
}
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
return true;
|
|
}
|
|
|
|
CacheCostTy
|
|
CacheCost::computeLoopCacheCost(const Loop &L,
|
|
const ReferenceGroupsTy &RefGroups) const {
|
|
if (!L.isLoopSimplifyForm())
|
|
return InvalidCost;
|
|
|
|
LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName()
|
|
<< "' as innermost loop.\n");
|
|
|
|
// Compute the product of the trip counts of each other loop in the nest.
|
|
CacheCostTy TripCountsProduct = 1;
|
|
for (const auto &TC : TripCounts) {
|
|
if (TC.first == &L)
|
|
continue;
|
|
TripCountsProduct *= TC.second;
|
|
}
|
|
|
|
CacheCostTy LoopCost = 0;
|
|
for (const ReferenceGroupTy &RG : RefGroups) {
|
|
CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L);
|
|
LoopCost += RefGroupCost * TripCountsProduct;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName()
|
|
<< "' has cost=" << LoopCost << "\n");
|
|
|
|
return LoopCost;
|
|
}
|
|
|
|
CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG,
|
|
const Loop &L) const {
|
|
assert(!RG.empty() && "Reference group should have at least one member.");
|
|
|
|
const IndexedReference *Representative = RG.front().get();
|
|
return Representative->computeRefCost(L, TTI.getCacheLineSize());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoopCachePrinterPass implementation
|
|
//
|
|
PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &U) {
|
|
Function *F = L.getHeader()->getParent();
|
|
DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);
|
|
|
|
if (auto CC = CacheCost::getCacheCost(L, AR, DI))
|
|
OS << *CC;
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|