llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_allocator_combined.h

202 lines
6.4 KiB
C++

//===-- sanitizer_allocator_combined.h --------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif
// This class implements a complete memory allocator by using two
// internal allocators:
// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
// When allocating 2^x bytes it should return 2^x aligned chunk.
// PrimaryAllocator is used via a local AllocatorCache.
// SecondaryAllocator can allocate anything, but is not efficient.
template <class PrimaryAllocator,
class LargeMmapAllocatorPtrArray = DefaultLargeMmapAllocatorPtrArray>
class CombinedAllocator {
public:
using AllocatorCache = typename PrimaryAllocator::AllocatorCache;
using SecondaryAllocator =
LargeMmapAllocator<typename PrimaryAllocator::MapUnmapCallback,
LargeMmapAllocatorPtrArray,
typename PrimaryAllocator::AddressSpaceView>;
void InitLinkerInitialized(s32 release_to_os_interval_ms) {
stats_.InitLinkerInitialized();
primary_.Init(release_to_os_interval_ms);
secondary_.InitLinkerInitialized();
}
void Init(s32 release_to_os_interval_ms, uptr heap_start = 0) {
stats_.Init();
primary_.Init(release_to_os_interval_ms, heap_start);
secondary_.Init();
}
void *Allocate(AllocatorCache *cache, uptr size, uptr alignment) {
// Returning 0 on malloc(0) may break a lot of code.
if (size == 0)
size = 1;
if (size + alignment < size) {
Report("WARNING: %s: CombinedAllocator allocation overflow: "
"0x%zx bytes with 0x%zx alignment requested\n",
SanitizerToolName, size, alignment);
return nullptr;
}
uptr original_size = size;
// If alignment requirements are to be fulfilled by the frontend allocator
// rather than by the primary or secondary, passing an alignment lower than
// or equal to 8 will prevent any further rounding up, as well as the later
// alignment check.
if (alignment > 8)
size = RoundUpTo(size, alignment);
// The primary allocator should return a 2^x aligned allocation when
// requested 2^x bytes, hence using the rounded up 'size' when being
// serviced by the primary (this is no longer true when the primary is
// using a non-fixed base address). The secondary takes care of the
// alignment without such requirement, and allocating 'size' would use
// extraneous memory, so we employ 'original_size'.
void *res;
if (primary_.CanAllocate(size, alignment))
res = cache->Allocate(&primary_, primary_.ClassID(size));
else
res = secondary_.Allocate(&stats_, original_size, alignment);
if (alignment > 8)
CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
return res;
}
s32 ReleaseToOSIntervalMs() const {
return primary_.ReleaseToOSIntervalMs();
}
void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
primary_.SetReleaseToOSIntervalMs(release_to_os_interval_ms);
}
void ForceReleaseToOS() {
primary_.ForceReleaseToOS();
}
void Deallocate(AllocatorCache *cache, void *p) {
if (!p) return;
if (primary_.PointerIsMine(p))
cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
else
secondary_.Deallocate(&stats_, p);
}
void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
uptr alignment) {
if (!p)
return Allocate(cache, new_size, alignment);
if (!new_size) {
Deallocate(cache, p);
return nullptr;
}
CHECK(PointerIsMine(p));
uptr old_size = GetActuallyAllocatedSize(p);
uptr memcpy_size = Min(new_size, old_size);
void *new_p = Allocate(cache, new_size, alignment);
if (new_p)
internal_memcpy(new_p, p, memcpy_size);
Deallocate(cache, p);
return new_p;
}
bool PointerIsMine(void *p) {
if (primary_.PointerIsMine(p))
return true;
return secondary_.PointerIsMine(p);
}
bool FromPrimary(void *p) {
return primary_.PointerIsMine(p);
}
void *GetMetaData(const void *p) {
if (primary_.PointerIsMine(p))
return primary_.GetMetaData(p);
return secondary_.GetMetaData(p);
}
void *GetBlockBegin(const void *p) {
if (primary_.PointerIsMine(p))
return primary_.GetBlockBegin(p);
return secondary_.GetBlockBegin(p);
}
// This function does the same as GetBlockBegin, but is much faster.
// Must be called with the allocator locked.
void *GetBlockBeginFastLocked(void *p) {
if (primary_.PointerIsMine(p))
return primary_.GetBlockBegin(p);
return secondary_.GetBlockBeginFastLocked(p);
}
uptr GetActuallyAllocatedSize(void *p) {
if (primary_.PointerIsMine(p))
return primary_.GetActuallyAllocatedSize(p);
return secondary_.GetActuallyAllocatedSize(p);
}
uptr TotalMemoryUsed() {
return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
}
void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
void InitCache(AllocatorCache *cache) {
cache->Init(&stats_);
}
void DestroyCache(AllocatorCache *cache) {
cache->Destroy(&primary_, &stats_);
}
void SwallowCache(AllocatorCache *cache) {
cache->Drain(&primary_);
}
void GetStats(AllocatorStatCounters s) const {
stats_.Get(s);
}
void PrintStats() {
primary_.PrintStats();
secondary_.PrintStats();
}
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
// introspection API.
void ForceLock() NO_THREAD_SAFETY_ANALYSIS {
primary_.ForceLock();
secondary_.ForceLock();
}
void ForceUnlock() NO_THREAD_SAFETY_ANALYSIS {
secondary_.ForceUnlock();
primary_.ForceUnlock();
}
// Iterate over all existing chunks.
// The allocator must be locked when calling this function.
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
primary_.ForEachChunk(callback, arg);
secondary_.ForEachChunk(callback, arg);
}
private:
PrimaryAllocator primary_;
SecondaryAllocator secondary_;
AllocatorGlobalStats stats_;
};