llvm-project/clang/lib/Serialization/ASTReaderDecl.cpp

4778 lines
176 KiB
C++

//===- ASTReaderDecl.cpp - Decl Deserialization ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTReader::readDeclRecord method, which is the
// entrypoint for loading a decl.
//
//===----------------------------------------------------------------------===//
#include "ASTCommon.h"
#include "ASTReaderInternals.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/AttrIterator.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/Basic/AttrKinds.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/PragmaKinds.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Sema/IdentifierResolver.h"
#include "clang/Serialization/ASTBitCodes.h"
#include "clang/Serialization/ASTRecordReader.h"
#include "clang/Serialization/ContinuousRangeMap.h"
#include "clang/Serialization/ModuleFile.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Bitstream/BitstreamReader.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SaveAndRestore.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <string>
#include <utility>
using namespace clang;
using namespace serialization;
//===----------------------------------------------------------------------===//
// Declaration deserialization
//===----------------------------------------------------------------------===//
namespace clang {
class ASTDeclReader : public DeclVisitor<ASTDeclReader, void> {
ASTReader &Reader;
ASTRecordReader &Record;
ASTReader::RecordLocation Loc;
const DeclID ThisDeclID;
const SourceLocation ThisDeclLoc;
using RecordData = ASTReader::RecordData;
TypeID DeferredTypeID = 0;
unsigned AnonymousDeclNumber;
GlobalDeclID NamedDeclForTagDecl = 0;
IdentifierInfo *TypedefNameForLinkage = nullptr;
bool HasPendingBody = false;
///A flag to carry the information for a decl from the entity is
/// used. We use it to delay the marking of the canonical decl as used until
/// the entire declaration is deserialized and merged.
bool IsDeclMarkedUsed = false;
uint64_t GetCurrentCursorOffset();
uint64_t ReadLocalOffset() {
uint64_t LocalOffset = Record.readInt();
assert(LocalOffset < Loc.Offset && "offset point after current record");
return LocalOffset ? Loc.Offset - LocalOffset : 0;
}
uint64_t ReadGlobalOffset() {
uint64_t Local = ReadLocalOffset();
return Local ? Record.getGlobalBitOffset(Local) : 0;
}
SourceLocation readSourceLocation() {
return Record.readSourceLocation();
}
SourceRange readSourceRange() {
return Record.readSourceRange();
}
TypeSourceInfo *readTypeSourceInfo() {
return Record.readTypeSourceInfo();
}
serialization::DeclID readDeclID() {
return Record.readDeclID();
}
std::string readString() {
return Record.readString();
}
void readDeclIDList(SmallVectorImpl<DeclID> &IDs) {
for (unsigned I = 0, Size = Record.readInt(); I != Size; ++I)
IDs.push_back(readDeclID());
}
Decl *readDecl() {
return Record.readDecl();
}
template<typename T>
T *readDeclAs() {
return Record.readDeclAs<T>();
}
serialization::SubmoduleID readSubmoduleID() {
if (Record.getIdx() == Record.size())
return 0;
return Record.getGlobalSubmoduleID(Record.readInt());
}
Module *readModule() {
return Record.getSubmodule(readSubmoduleID());
}
void ReadCXXRecordDefinition(CXXRecordDecl *D, bool Update);
void ReadCXXDefinitionData(struct CXXRecordDecl::DefinitionData &Data,
const CXXRecordDecl *D);
void MergeDefinitionData(CXXRecordDecl *D,
struct CXXRecordDecl::DefinitionData &&NewDD);
void ReadObjCDefinitionData(struct ObjCInterfaceDecl::DefinitionData &Data);
void MergeDefinitionData(ObjCInterfaceDecl *D,
struct ObjCInterfaceDecl::DefinitionData &&NewDD);
void ReadObjCDefinitionData(struct ObjCProtocolDecl::DefinitionData &Data);
void MergeDefinitionData(ObjCProtocolDecl *D,
struct ObjCProtocolDecl::DefinitionData &&NewDD);
static DeclContext *getPrimaryDCForAnonymousDecl(DeclContext *LexicalDC);
static NamedDecl *getAnonymousDeclForMerging(ASTReader &Reader,
DeclContext *DC,
unsigned Index);
static void setAnonymousDeclForMerging(ASTReader &Reader, DeclContext *DC,
unsigned Index, NamedDecl *D);
/// Results from loading a RedeclarableDecl.
class RedeclarableResult {
Decl *MergeWith;
GlobalDeclID FirstID;
bool IsKeyDecl;
public:
RedeclarableResult(Decl *MergeWith, GlobalDeclID FirstID, bool IsKeyDecl)
: MergeWith(MergeWith), FirstID(FirstID), IsKeyDecl(IsKeyDecl) {}
/// Retrieve the first ID.
GlobalDeclID getFirstID() const { return FirstID; }
/// Is this declaration a key declaration?
bool isKeyDecl() const { return IsKeyDecl; }
/// Get a known declaration that this should be merged with, if
/// any.
Decl *getKnownMergeTarget() const { return MergeWith; }
};
/// Class used to capture the result of searching for an existing
/// declaration of a specific kind and name, along with the ability
/// to update the place where this result was found (the declaration
/// chain hanging off an identifier or the DeclContext we searched in)
/// if requested.
class FindExistingResult {
ASTReader &Reader;
NamedDecl *New = nullptr;
NamedDecl *Existing = nullptr;
bool AddResult = false;
unsigned AnonymousDeclNumber = 0;
IdentifierInfo *TypedefNameForLinkage = nullptr;
public:
FindExistingResult(ASTReader &Reader) : Reader(Reader) {}
FindExistingResult(ASTReader &Reader, NamedDecl *New, NamedDecl *Existing,
unsigned AnonymousDeclNumber,
IdentifierInfo *TypedefNameForLinkage)
: Reader(Reader), New(New), Existing(Existing), AddResult(true),
AnonymousDeclNumber(AnonymousDeclNumber),
TypedefNameForLinkage(TypedefNameForLinkage) {}
FindExistingResult(FindExistingResult &&Other)
: Reader(Other.Reader), New(Other.New), Existing(Other.Existing),
AddResult(Other.AddResult),
AnonymousDeclNumber(Other.AnonymousDeclNumber),
TypedefNameForLinkage(Other.TypedefNameForLinkage) {
Other.AddResult = false;
}
FindExistingResult &operator=(FindExistingResult &&) = delete;
~FindExistingResult();
/// Suppress the addition of this result into the known set of
/// names.
void suppress() { AddResult = false; }
operator NamedDecl*() const { return Existing; }
template<typename T>
operator T*() const { return dyn_cast_or_null<T>(Existing); }
};
static DeclContext *getPrimaryContextForMerging(ASTReader &Reader,
DeclContext *DC);
FindExistingResult findExisting(NamedDecl *D);
public:
ASTDeclReader(ASTReader &Reader, ASTRecordReader &Record,
ASTReader::RecordLocation Loc,
DeclID thisDeclID, SourceLocation ThisDeclLoc)
: Reader(Reader), Record(Record), Loc(Loc), ThisDeclID(thisDeclID),
ThisDeclLoc(ThisDeclLoc) {}
template <typename T> static
void AddLazySpecializations(T *D,
SmallVectorImpl<serialization::DeclID>& IDs) {
if (IDs.empty())
return;
// FIXME: We should avoid this pattern of getting the ASTContext.
ASTContext &C = D->getASTContext();
auto *&LazySpecializations = D->getCommonPtr()->LazySpecializations;
if (auto &Old = LazySpecializations) {
IDs.insert(IDs.end(), Old + 1, Old + 1 + Old[0]);
llvm::sort(IDs);
IDs.erase(std::unique(IDs.begin(), IDs.end()), IDs.end());
}
auto *Result = new (C) serialization::DeclID[1 + IDs.size()];
*Result = IDs.size();
std::copy(IDs.begin(), IDs.end(), Result + 1);
LazySpecializations = Result;
}
template <typename DeclT>
static Decl *getMostRecentDeclImpl(Redeclarable<DeclT> *D);
static Decl *getMostRecentDeclImpl(...);
static Decl *getMostRecentDecl(Decl *D);
static void mergeInheritableAttributes(ASTReader &Reader, Decl *D,
Decl *Previous);
template <typename DeclT>
static void attachPreviousDeclImpl(ASTReader &Reader,
Redeclarable<DeclT> *D, Decl *Previous,
Decl *Canon);
static void attachPreviousDeclImpl(ASTReader &Reader, ...);
static void attachPreviousDecl(ASTReader &Reader, Decl *D, Decl *Previous,
Decl *Canon);
template <typename DeclT>
static void attachLatestDeclImpl(Redeclarable<DeclT> *D, Decl *Latest);
static void attachLatestDeclImpl(...);
static void attachLatestDecl(Decl *D, Decl *latest);
template <typename DeclT>
static void markIncompleteDeclChainImpl(Redeclarable<DeclT> *D);
static void markIncompleteDeclChainImpl(...);
/// Determine whether this declaration has a pending body.
bool hasPendingBody() const { return HasPendingBody; }
void ReadFunctionDefinition(FunctionDecl *FD);
void Visit(Decl *D);
void UpdateDecl(Decl *D, SmallVectorImpl<serialization::DeclID> &);
static void setNextObjCCategory(ObjCCategoryDecl *Cat,
ObjCCategoryDecl *Next) {
Cat->NextClassCategory = Next;
}
void VisitDecl(Decl *D);
void VisitPragmaCommentDecl(PragmaCommentDecl *D);
void VisitPragmaDetectMismatchDecl(PragmaDetectMismatchDecl *D);
void VisitTranslationUnitDecl(TranslationUnitDecl *TU);
void VisitNamedDecl(NamedDecl *ND);
void VisitLabelDecl(LabelDecl *LD);
void VisitNamespaceDecl(NamespaceDecl *D);
void VisitUsingDirectiveDecl(UsingDirectiveDecl *D);
void VisitNamespaceAliasDecl(NamespaceAliasDecl *D);
void VisitTypeDecl(TypeDecl *TD);
RedeclarableResult VisitTypedefNameDecl(TypedefNameDecl *TD);
void VisitTypedefDecl(TypedefDecl *TD);
void VisitTypeAliasDecl(TypeAliasDecl *TD);
void VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D);
void VisitUnresolvedUsingIfExistsDecl(UnresolvedUsingIfExistsDecl *D);
RedeclarableResult VisitTagDecl(TagDecl *TD);
void VisitEnumDecl(EnumDecl *ED);
RedeclarableResult VisitRecordDeclImpl(RecordDecl *RD);
void VisitRecordDecl(RecordDecl *RD);
RedeclarableResult VisitCXXRecordDeclImpl(CXXRecordDecl *D);
void VisitCXXRecordDecl(CXXRecordDecl *D) { VisitCXXRecordDeclImpl(D); }
RedeclarableResult VisitClassTemplateSpecializationDeclImpl(
ClassTemplateSpecializationDecl *D);
void VisitClassTemplateSpecializationDecl(
ClassTemplateSpecializationDecl *D) {
VisitClassTemplateSpecializationDeclImpl(D);
}
void VisitClassTemplatePartialSpecializationDecl(
ClassTemplatePartialSpecializationDecl *D);
void VisitClassScopeFunctionSpecializationDecl(
ClassScopeFunctionSpecializationDecl *D);
RedeclarableResult
VisitVarTemplateSpecializationDeclImpl(VarTemplateSpecializationDecl *D);
void VisitVarTemplateSpecializationDecl(VarTemplateSpecializationDecl *D) {
VisitVarTemplateSpecializationDeclImpl(D);
}
void VisitVarTemplatePartialSpecializationDecl(
VarTemplatePartialSpecializationDecl *D);
void VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D);
void VisitValueDecl(ValueDecl *VD);
void VisitEnumConstantDecl(EnumConstantDecl *ECD);
void VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D);
void VisitDeclaratorDecl(DeclaratorDecl *DD);
void VisitFunctionDecl(FunctionDecl *FD);
void VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *GD);
void VisitCXXMethodDecl(CXXMethodDecl *D);
void VisitCXXConstructorDecl(CXXConstructorDecl *D);
void VisitCXXDestructorDecl(CXXDestructorDecl *D);
void VisitCXXConversionDecl(CXXConversionDecl *D);
void VisitFieldDecl(FieldDecl *FD);
void VisitMSPropertyDecl(MSPropertyDecl *FD);
void VisitMSGuidDecl(MSGuidDecl *D);
void VisitTemplateParamObjectDecl(TemplateParamObjectDecl *D);
void VisitIndirectFieldDecl(IndirectFieldDecl *FD);
RedeclarableResult VisitVarDeclImpl(VarDecl *D);
void VisitVarDecl(VarDecl *VD) { VisitVarDeclImpl(VD); }
void VisitImplicitParamDecl(ImplicitParamDecl *PD);
void VisitParmVarDecl(ParmVarDecl *PD);
void VisitDecompositionDecl(DecompositionDecl *DD);
void VisitBindingDecl(BindingDecl *BD);
void VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D);
DeclID VisitTemplateDecl(TemplateDecl *D);
void VisitConceptDecl(ConceptDecl *D);
void VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D);
RedeclarableResult VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D);
void VisitClassTemplateDecl(ClassTemplateDecl *D);
void VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D);
void VisitVarTemplateDecl(VarTemplateDecl *D);
void VisitFunctionTemplateDecl(FunctionTemplateDecl *D);
void VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D);
void VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D);
void VisitUsingDecl(UsingDecl *D);
void VisitUsingEnumDecl(UsingEnumDecl *D);
void VisitUsingPackDecl(UsingPackDecl *D);
void VisitUsingShadowDecl(UsingShadowDecl *D);
void VisitConstructorUsingShadowDecl(ConstructorUsingShadowDecl *D);
void VisitLinkageSpecDecl(LinkageSpecDecl *D);
void VisitExportDecl(ExportDecl *D);
void VisitFileScopeAsmDecl(FileScopeAsmDecl *AD);
void VisitImportDecl(ImportDecl *D);
void VisitAccessSpecDecl(AccessSpecDecl *D);
void VisitFriendDecl(FriendDecl *D);
void VisitFriendTemplateDecl(FriendTemplateDecl *D);
void VisitStaticAssertDecl(StaticAssertDecl *D);
void VisitBlockDecl(BlockDecl *BD);
void VisitCapturedDecl(CapturedDecl *CD);
void VisitEmptyDecl(EmptyDecl *D);
void VisitLifetimeExtendedTemporaryDecl(LifetimeExtendedTemporaryDecl *D);
std::pair<uint64_t, uint64_t> VisitDeclContext(DeclContext *DC);
template<typename T>
RedeclarableResult VisitRedeclarable(Redeclarable<T> *D);
template<typename T>
void mergeRedeclarable(Redeclarable<T> *D, RedeclarableResult &Redecl,
DeclID TemplatePatternID = 0);
template<typename T>
void mergeRedeclarable(Redeclarable<T> *D, T *Existing,
RedeclarableResult &Redecl,
DeclID TemplatePatternID = 0);
template<typename T>
void mergeMergeable(Mergeable<T> *D);
void mergeMergeable(LifetimeExtendedTemporaryDecl *D);
void mergeTemplatePattern(RedeclarableTemplateDecl *D,
RedeclarableTemplateDecl *Existing,
DeclID DsID, bool IsKeyDecl);
ObjCTypeParamList *ReadObjCTypeParamList();
// FIXME: Reorder according to DeclNodes.td?
void VisitObjCMethodDecl(ObjCMethodDecl *D);
void VisitObjCTypeParamDecl(ObjCTypeParamDecl *D);
void VisitObjCContainerDecl(ObjCContainerDecl *D);
void VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
void VisitObjCIvarDecl(ObjCIvarDecl *D);
void VisitObjCProtocolDecl(ObjCProtocolDecl *D);
void VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D);
void VisitObjCCategoryDecl(ObjCCategoryDecl *D);
void VisitObjCImplDecl(ObjCImplDecl *D);
void VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D);
void VisitObjCImplementationDecl(ObjCImplementationDecl *D);
void VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *D);
void VisitObjCPropertyDecl(ObjCPropertyDecl *D);
void VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D);
void VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D);
void VisitOMPAllocateDecl(OMPAllocateDecl *D);
void VisitOMPDeclareReductionDecl(OMPDeclareReductionDecl *D);
void VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D);
void VisitOMPRequiresDecl(OMPRequiresDecl *D);
void VisitOMPCapturedExprDecl(OMPCapturedExprDecl *D);
};
} // namespace clang
namespace {
/// Iterator over the redeclarations of a declaration that have already
/// been merged into the same redeclaration chain.
template<typename DeclT>
class MergedRedeclIterator {
DeclT *Start;
DeclT *Canonical = nullptr;
DeclT *Current = nullptr;
public:
MergedRedeclIterator() = default;
MergedRedeclIterator(DeclT *Start) : Start(Start), Current(Start) {}
DeclT *operator*() { return Current; }
MergedRedeclIterator &operator++() {
if (Current->isFirstDecl()) {
Canonical = Current;
Current = Current->getMostRecentDecl();
} else
Current = Current->getPreviousDecl();
// If we started in the merged portion, we'll reach our start position
// eventually. Otherwise, we'll never reach it, but the second declaration
// we reached was the canonical declaration, so stop when we see that one
// again.
if (Current == Start || Current == Canonical)
Current = nullptr;
return *this;
}
friend bool operator!=(const MergedRedeclIterator &A,
const MergedRedeclIterator &B) {
return A.Current != B.Current;
}
};
} // namespace
template <typename DeclT>
static llvm::iterator_range<MergedRedeclIterator<DeclT>>
merged_redecls(DeclT *D) {
return llvm::make_range(MergedRedeclIterator<DeclT>(D),
MergedRedeclIterator<DeclT>());
}
uint64_t ASTDeclReader::GetCurrentCursorOffset() {
return Loc.F->DeclsCursor.GetCurrentBitNo() + Loc.F->GlobalBitOffset;
}
void ASTDeclReader::ReadFunctionDefinition(FunctionDecl *FD) {
if (Record.readInt()) {
Reader.DefinitionSource[FD] =
Loc.F->Kind == ModuleKind::MK_MainFile ||
Reader.getContext().getLangOpts().BuildingPCHWithObjectFile;
}
if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) {
CD->setNumCtorInitializers(Record.readInt());
if (CD->getNumCtorInitializers())
CD->CtorInitializers = ReadGlobalOffset();
}
// Store the offset of the body so we can lazily load it later.
Reader.PendingBodies[FD] = GetCurrentCursorOffset();
HasPendingBody = true;
}
void ASTDeclReader::Visit(Decl *D) {
DeclVisitor<ASTDeclReader, void>::Visit(D);
// At this point we have deserialized and merged the decl and it is safe to
// update its canonical decl to signal that the entire entity is used.
D->getCanonicalDecl()->Used |= IsDeclMarkedUsed;
IsDeclMarkedUsed = false;
if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
if (auto *TInfo = DD->getTypeSourceInfo())
Record.readTypeLoc(TInfo->getTypeLoc());
}
if (auto *TD = dyn_cast<TypeDecl>(D)) {
// We have a fully initialized TypeDecl. Read its type now.
TD->setTypeForDecl(Reader.GetType(DeferredTypeID).getTypePtrOrNull());
// If this is a tag declaration with a typedef name for linkage, it's safe
// to load that typedef now.
if (NamedDeclForTagDecl)
cast<TagDecl>(D)->TypedefNameDeclOrQualifier =
cast<TypedefNameDecl>(Reader.GetDecl(NamedDeclForTagDecl));
} else if (auto *ID = dyn_cast<ObjCInterfaceDecl>(D)) {
// if we have a fully initialized TypeDecl, we can safely read its type now.
ID->TypeForDecl = Reader.GetType(DeferredTypeID).getTypePtrOrNull();
} else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
// FunctionDecl's body was written last after all other Stmts/Exprs.
// We only read it if FD doesn't already have a body (e.g., from another
// module).
// FIXME: Can we diagnose ODR violations somehow?
if (Record.readInt())
ReadFunctionDefinition(FD);
}
}
void ASTDeclReader::VisitDecl(Decl *D) {
if (D->isTemplateParameter() || D->isTemplateParameterPack() ||
isa<ParmVarDecl>(D) || isa<ObjCTypeParamDecl>(D)) {
// We don't want to deserialize the DeclContext of a template
// parameter or of a parameter of a function template immediately. These
// entities might be used in the formulation of its DeclContext (for
// example, a function parameter can be used in decltype() in trailing
// return type of the function). Use the translation unit DeclContext as a
// placeholder.
GlobalDeclID SemaDCIDForTemplateParmDecl = readDeclID();
GlobalDeclID LexicalDCIDForTemplateParmDecl = readDeclID();
if (!LexicalDCIDForTemplateParmDecl)
LexicalDCIDForTemplateParmDecl = SemaDCIDForTemplateParmDecl;
Reader.addPendingDeclContextInfo(D,
SemaDCIDForTemplateParmDecl,
LexicalDCIDForTemplateParmDecl);
D->setDeclContext(Reader.getContext().getTranslationUnitDecl());
} else {
auto *SemaDC = readDeclAs<DeclContext>();
auto *LexicalDC = readDeclAs<DeclContext>();
if (!LexicalDC)
LexicalDC = SemaDC;
DeclContext *MergedSemaDC = Reader.MergedDeclContexts.lookup(SemaDC);
// Avoid calling setLexicalDeclContext() directly because it uses
// Decl::getASTContext() internally which is unsafe during derialization.
D->setDeclContextsImpl(MergedSemaDC ? MergedSemaDC : SemaDC, LexicalDC,
Reader.getContext());
}
D->setLocation(ThisDeclLoc);
D->InvalidDecl = Record.readInt();
if (Record.readInt()) { // hasAttrs
AttrVec Attrs;
Record.readAttributes(Attrs);
// Avoid calling setAttrs() directly because it uses Decl::getASTContext()
// internally which is unsafe during derialization.
D->setAttrsImpl(Attrs, Reader.getContext());
}
D->setImplicit(Record.readInt());
D->Used = Record.readInt();
IsDeclMarkedUsed |= D->Used;
D->setReferenced(Record.readInt());
D->setTopLevelDeclInObjCContainer(Record.readInt());
D->setAccess((AccessSpecifier)Record.readInt());
D->FromASTFile = true;
bool ModulePrivate = Record.readInt();
// Determine whether this declaration is part of a (sub)module. If so, it
// may not yet be visible.
if (unsigned SubmoduleID = readSubmoduleID()) {
// Store the owning submodule ID in the declaration.
D->setModuleOwnershipKind(
ModulePrivate ? Decl::ModuleOwnershipKind::ModulePrivate
: Decl::ModuleOwnershipKind::VisibleWhenImported);
D->setOwningModuleID(SubmoduleID);
if (ModulePrivate) {
// Module-private declarations are never visible, so there is no work to
// do.
} else if (Reader.getContext().getLangOpts().ModulesLocalVisibility) {
// If local visibility is being tracked, this declaration will become
// hidden and visible as the owning module does.
} else if (Module *Owner = Reader.getSubmodule(SubmoduleID)) {
// Mark the declaration as visible when its owning module becomes visible.
if (Owner->NameVisibility == Module::AllVisible)
D->setVisibleDespiteOwningModule();
else
Reader.HiddenNamesMap[Owner].push_back(D);
}
} else if (ModulePrivate) {
D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
}
}
void ASTDeclReader::VisitPragmaCommentDecl(PragmaCommentDecl *D) {
VisitDecl(D);
D->setLocation(readSourceLocation());
D->CommentKind = (PragmaMSCommentKind)Record.readInt();
std::string Arg = readString();
memcpy(D->getTrailingObjects<char>(), Arg.data(), Arg.size());
D->getTrailingObjects<char>()[Arg.size()] = '\0';
}
void ASTDeclReader::VisitPragmaDetectMismatchDecl(PragmaDetectMismatchDecl *D) {
VisitDecl(D);
D->setLocation(readSourceLocation());
std::string Name = readString();
memcpy(D->getTrailingObjects<char>(), Name.data(), Name.size());
D->getTrailingObjects<char>()[Name.size()] = '\0';
D->ValueStart = Name.size() + 1;
std::string Value = readString();
memcpy(D->getTrailingObjects<char>() + D->ValueStart, Value.data(),
Value.size());
D->getTrailingObjects<char>()[D->ValueStart + Value.size()] = '\0';
}
void ASTDeclReader::VisitTranslationUnitDecl(TranslationUnitDecl *TU) {
llvm_unreachable("Translation units are not serialized");
}
void ASTDeclReader::VisitNamedDecl(NamedDecl *ND) {
VisitDecl(ND);
ND->setDeclName(Record.readDeclarationName());
AnonymousDeclNumber = Record.readInt();
}
void ASTDeclReader::VisitTypeDecl(TypeDecl *TD) {
VisitNamedDecl(TD);
TD->setLocStart(readSourceLocation());
// Delay type reading until after we have fully initialized the decl.
DeferredTypeID = Record.getGlobalTypeID(Record.readInt());
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitTypedefNameDecl(TypedefNameDecl *TD) {
RedeclarableResult Redecl = VisitRedeclarable(TD);
VisitTypeDecl(TD);
TypeSourceInfo *TInfo = readTypeSourceInfo();
if (Record.readInt()) { // isModed
QualType modedT = Record.readType();
TD->setModedTypeSourceInfo(TInfo, modedT);
} else
TD->setTypeSourceInfo(TInfo);
// Read and discard the declaration for which this is a typedef name for
// linkage, if it exists. We cannot rely on our type to pull in this decl,
// because it might have been merged with a type from another module and
// thus might not refer to our version of the declaration.
readDecl();
return Redecl;
}
void ASTDeclReader::VisitTypedefDecl(TypedefDecl *TD) {
RedeclarableResult Redecl = VisitTypedefNameDecl(TD);
mergeRedeclarable(TD, Redecl);
}
void ASTDeclReader::VisitTypeAliasDecl(TypeAliasDecl *TD) {
RedeclarableResult Redecl = VisitTypedefNameDecl(TD);
if (auto *Template = readDeclAs<TypeAliasTemplateDecl>())
// Merged when we merge the template.
TD->setDescribedAliasTemplate(Template);
else
mergeRedeclarable(TD, Redecl);
}
ASTDeclReader::RedeclarableResult ASTDeclReader::VisitTagDecl(TagDecl *TD) {
RedeclarableResult Redecl = VisitRedeclarable(TD);
VisitTypeDecl(TD);
TD->IdentifierNamespace = Record.readInt();
TD->setTagKind((TagDecl::TagKind)Record.readInt());
if (!isa<CXXRecordDecl>(TD))
TD->setCompleteDefinition(Record.readInt());
TD->setEmbeddedInDeclarator(Record.readInt());
TD->setFreeStanding(Record.readInt());
TD->setCompleteDefinitionRequired(Record.readInt());
TD->setBraceRange(readSourceRange());
switch (Record.readInt()) {
case 0:
break;
case 1: { // ExtInfo
auto *Info = new (Reader.getContext()) TagDecl::ExtInfo();
Record.readQualifierInfo(*Info);
TD->TypedefNameDeclOrQualifier = Info;
break;
}
case 2: // TypedefNameForAnonDecl
NamedDeclForTagDecl = readDeclID();
TypedefNameForLinkage = Record.readIdentifier();
break;
default:
llvm_unreachable("unexpected tag info kind");
}
if (!isa<CXXRecordDecl>(TD))
mergeRedeclarable(TD, Redecl);
return Redecl;
}
void ASTDeclReader::VisitEnumDecl(EnumDecl *ED) {
VisitTagDecl(ED);
if (TypeSourceInfo *TI = readTypeSourceInfo())
ED->setIntegerTypeSourceInfo(TI);
else
ED->setIntegerType(Record.readType());
ED->setPromotionType(Record.readType());
ED->setNumPositiveBits(Record.readInt());
ED->setNumNegativeBits(Record.readInt());
ED->setScoped(Record.readInt());
ED->setScopedUsingClassTag(Record.readInt());
ED->setFixed(Record.readInt());
ED->setHasODRHash(true);
ED->ODRHash = Record.readInt();
// If this is a definition subject to the ODR, and we already have a
// definition, merge this one into it.
if (ED->isCompleteDefinition() &&
Reader.getContext().getLangOpts().Modules &&
Reader.getContext().getLangOpts().CPlusPlus) {
EnumDecl *&OldDef = Reader.EnumDefinitions[ED->getCanonicalDecl()];
if (!OldDef) {
// This is the first time we've seen an imported definition. Look for a
// local definition before deciding that we are the first definition.
for (auto *D : merged_redecls(ED->getCanonicalDecl())) {
if (!D->isFromASTFile() && D->isCompleteDefinition()) {
OldDef = D;
break;
}
}
}
if (OldDef) {
Reader.MergedDeclContexts.insert(std::make_pair(ED, OldDef));
ED->setCompleteDefinition(false);
Reader.mergeDefinitionVisibility(OldDef, ED);
if (OldDef->getODRHash() != ED->getODRHash())
Reader.PendingEnumOdrMergeFailures[OldDef].push_back(ED);
} else {
OldDef = ED;
}
}
if (auto *InstED = readDeclAs<EnumDecl>()) {
auto TSK = (TemplateSpecializationKind)Record.readInt();
SourceLocation POI = readSourceLocation();
ED->setInstantiationOfMemberEnum(Reader.getContext(), InstED, TSK);
ED->getMemberSpecializationInfo()->setPointOfInstantiation(POI);
}
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitRecordDeclImpl(RecordDecl *RD) {
RedeclarableResult Redecl = VisitTagDecl(RD);
RD->setHasFlexibleArrayMember(Record.readInt());
RD->setAnonymousStructOrUnion(Record.readInt());
RD->setHasObjectMember(Record.readInt());
RD->setHasVolatileMember(Record.readInt());
RD->setNonTrivialToPrimitiveDefaultInitialize(Record.readInt());
RD->setNonTrivialToPrimitiveCopy(Record.readInt());
RD->setNonTrivialToPrimitiveDestroy(Record.readInt());
RD->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(Record.readInt());
RD->setHasNonTrivialToPrimitiveDestructCUnion(Record.readInt());
RD->setHasNonTrivialToPrimitiveCopyCUnion(Record.readInt());
RD->setParamDestroyedInCallee(Record.readInt());
RD->setArgPassingRestrictions((RecordDecl::ArgPassingKind)Record.readInt());
return Redecl;
}
void ASTDeclReader::VisitRecordDecl(RecordDecl *RD) {
VisitRecordDeclImpl(RD);
// Maintain the invariant of a redeclaration chain containing only
// a single definition.
if (RD->isCompleteDefinition()) {
RecordDecl *Canon = static_cast<RecordDecl *>(RD->getCanonicalDecl());
RecordDecl *&OldDef = Reader.RecordDefinitions[Canon];
if (!OldDef) {
// This is the first time we've seen an imported definition. Look for a
// local definition before deciding that we are the first definition.
for (auto *D : merged_redecls(Canon)) {
if (!D->isFromASTFile() && D->isCompleteDefinition()) {
OldDef = D;
break;
}
}
}
if (OldDef) {
Reader.MergedDeclContexts.insert(std::make_pair(RD, OldDef));
RD->setCompleteDefinition(false);
Reader.mergeDefinitionVisibility(OldDef, RD);
} else {
OldDef = RD;
}
}
}
void ASTDeclReader::VisitValueDecl(ValueDecl *VD) {
VisitNamedDecl(VD);
// For function declarations, defer reading the type in case the function has
// a deduced return type that references an entity declared within the
// function.
if (isa<FunctionDecl>(VD))
DeferredTypeID = Record.getGlobalTypeID(Record.readInt());
else
VD->setType(Record.readType());
}
void ASTDeclReader::VisitEnumConstantDecl(EnumConstantDecl *ECD) {
VisitValueDecl(ECD);
if (Record.readInt())
ECD->setInitExpr(Record.readExpr());
ECD->setInitVal(Record.readAPSInt());
mergeMergeable(ECD);
}
void ASTDeclReader::VisitDeclaratorDecl(DeclaratorDecl *DD) {
VisitValueDecl(DD);
DD->setInnerLocStart(readSourceLocation());
if (Record.readInt()) { // hasExtInfo
auto *Info = new (Reader.getContext()) DeclaratorDecl::ExtInfo();
Record.readQualifierInfo(*Info);
Info->TrailingRequiresClause = Record.readExpr();
DD->DeclInfo = Info;
}
QualType TSIType = Record.readType();
DD->setTypeSourceInfo(
TSIType.isNull() ? nullptr
: Reader.getContext().CreateTypeSourceInfo(TSIType));
}
void ASTDeclReader::VisitFunctionDecl(FunctionDecl *FD) {
RedeclarableResult Redecl = VisitRedeclarable(FD);
VisitDeclaratorDecl(FD);
// Attach a type to this function. Use the real type if possible, but fall
// back to the type as written if it involves a deduced return type.
if (FD->getTypeSourceInfo() &&
FD->getTypeSourceInfo()->getType()->castAs<FunctionType>()
->getReturnType()->getContainedAutoType()) {
// We'll set up the real type in Visit, once we've finished loading the
// function.
FD->setType(FD->getTypeSourceInfo()->getType());
Reader.PendingFunctionTypes.push_back({FD, DeferredTypeID});
} else {
FD->setType(Reader.GetType(DeferredTypeID));
}
DeferredTypeID = 0;
FD->DNLoc = Record.readDeclarationNameLoc(FD->getDeclName());
FD->IdentifierNamespace = Record.readInt();
// FunctionDecl's body is handled last at ASTDeclReader::Visit,
// after everything else is read.
FD->setStorageClass(static_cast<StorageClass>(Record.readInt()));
FD->setInlineSpecified(Record.readInt());
FD->setImplicitlyInline(Record.readInt());
FD->setVirtualAsWritten(Record.readInt());
// We defer calling `FunctionDecl::setPure()` here as for methods of
// `CXXTemplateSpecializationDecl`s, we may not have connected up the
// definition (which is required for `setPure`).
const bool Pure = Record.readInt();
FD->setHasInheritedPrototype(Record.readInt());
FD->setHasWrittenPrototype(Record.readInt());
FD->setDeletedAsWritten(Record.readInt());
FD->setTrivial(Record.readInt());
FD->setTrivialForCall(Record.readInt());
FD->setDefaulted(Record.readInt());
FD->setExplicitlyDefaulted(Record.readInt());
FD->setHasImplicitReturnZero(Record.readInt());
FD->setConstexprKind(static_cast<ConstexprSpecKind>(Record.readInt()));
FD->setUsesSEHTry(Record.readInt());
FD->setHasSkippedBody(Record.readInt());
FD->setIsMultiVersion(Record.readInt());
FD->setLateTemplateParsed(Record.readInt());
FD->setCachedLinkage(static_cast<Linkage>(Record.readInt()));
FD->EndRangeLoc = readSourceLocation();
FD->ODRHash = Record.readInt();
FD->setHasODRHash(true);
if (FD->isDefaulted()) {
if (unsigned NumLookups = Record.readInt()) {
SmallVector<DeclAccessPair, 8> Lookups;
for (unsigned I = 0; I != NumLookups; ++I) {
NamedDecl *ND = Record.readDeclAs<NamedDecl>();
AccessSpecifier AS = (AccessSpecifier)Record.readInt();
Lookups.push_back(DeclAccessPair::make(ND, AS));
}
FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create(
Reader.getContext(), Lookups));
}
}
switch ((FunctionDecl::TemplatedKind)Record.readInt()) {
case FunctionDecl::TK_NonTemplate:
mergeRedeclarable(FD, Redecl);
break;
case FunctionDecl::TK_FunctionTemplate:
// Merged when we merge the template.
FD->setDescribedFunctionTemplate(readDeclAs<FunctionTemplateDecl>());
break;
case FunctionDecl::TK_MemberSpecialization: {
auto *InstFD = readDeclAs<FunctionDecl>();
auto TSK = (TemplateSpecializationKind)Record.readInt();
SourceLocation POI = readSourceLocation();
FD->setInstantiationOfMemberFunction(Reader.getContext(), InstFD, TSK);
FD->getMemberSpecializationInfo()->setPointOfInstantiation(POI);
mergeRedeclarable(FD, Redecl);
break;
}
case FunctionDecl::TK_FunctionTemplateSpecialization: {
auto *Template = readDeclAs<FunctionTemplateDecl>();
auto TSK = (TemplateSpecializationKind)Record.readInt();
// Template arguments.
SmallVector<TemplateArgument, 8> TemplArgs;
Record.readTemplateArgumentList(TemplArgs, /*Canonicalize*/ true);
// Template args as written.
SmallVector<TemplateArgumentLoc, 8> TemplArgLocs;
SourceLocation LAngleLoc, RAngleLoc;
bool HasTemplateArgumentsAsWritten = Record.readInt();
if (HasTemplateArgumentsAsWritten) {
unsigned NumTemplateArgLocs = Record.readInt();
TemplArgLocs.reserve(NumTemplateArgLocs);
for (unsigned i = 0; i != NumTemplateArgLocs; ++i)
TemplArgLocs.push_back(Record.readTemplateArgumentLoc());
LAngleLoc = readSourceLocation();
RAngleLoc = readSourceLocation();
}
SourceLocation POI = readSourceLocation();
ASTContext &C = Reader.getContext();
TemplateArgumentList *TemplArgList
= TemplateArgumentList::CreateCopy(C, TemplArgs);
TemplateArgumentListInfo TemplArgsInfo(LAngleLoc, RAngleLoc);
for (unsigned i = 0, e = TemplArgLocs.size(); i != e; ++i)
TemplArgsInfo.addArgument(TemplArgLocs[i]);
MemberSpecializationInfo *MSInfo = nullptr;
if (Record.readInt()) {
auto *FD = readDeclAs<FunctionDecl>();
auto TSK = (TemplateSpecializationKind)Record.readInt();
SourceLocation POI = readSourceLocation();
MSInfo = new (C) MemberSpecializationInfo(FD, TSK);
MSInfo->setPointOfInstantiation(POI);
}
FunctionTemplateSpecializationInfo *FTInfo =
FunctionTemplateSpecializationInfo::Create(
C, FD, Template, TSK, TemplArgList,
HasTemplateArgumentsAsWritten ? &TemplArgsInfo : nullptr, POI,
MSInfo);
FD->TemplateOrSpecialization = FTInfo;
if (FD->isCanonicalDecl()) { // if canonical add to template's set.
// The template that contains the specializations set. It's not safe to
// use getCanonicalDecl on Template since it may still be initializing.
auto *CanonTemplate = readDeclAs<FunctionTemplateDecl>();
// Get the InsertPos by FindNodeOrInsertPos() instead of calling
// InsertNode(FTInfo) directly to avoid the getASTContext() call in
// FunctionTemplateSpecializationInfo's Profile().
// We avoid getASTContext because a decl in the parent hierarchy may
// be initializing.
llvm::FoldingSetNodeID ID;
FunctionTemplateSpecializationInfo::Profile(ID, TemplArgs, C);
void *InsertPos = nullptr;
FunctionTemplateDecl::Common *CommonPtr = CanonTemplate->getCommonPtr();
FunctionTemplateSpecializationInfo *ExistingInfo =
CommonPtr->Specializations.FindNodeOrInsertPos(ID, InsertPos);
if (InsertPos)
CommonPtr->Specializations.InsertNode(FTInfo, InsertPos);
else {
assert(Reader.getContext().getLangOpts().Modules &&
"already deserialized this template specialization");
mergeRedeclarable(FD, ExistingInfo->getFunction(), Redecl);
}
}
break;
}
case FunctionDecl::TK_DependentFunctionTemplateSpecialization: {
// Templates.
UnresolvedSet<8> TemplDecls;
unsigned NumTemplates = Record.readInt();
while (NumTemplates--)
TemplDecls.addDecl(readDeclAs<NamedDecl>());
// Templates args.
TemplateArgumentListInfo TemplArgs;
unsigned NumArgs = Record.readInt();
while (NumArgs--)
TemplArgs.addArgument(Record.readTemplateArgumentLoc());
TemplArgs.setLAngleLoc(readSourceLocation());
TemplArgs.setRAngleLoc(readSourceLocation());
FD->setDependentTemplateSpecialization(Reader.getContext(),
TemplDecls, TemplArgs);
// These are not merged; we don't need to merge redeclarations of dependent
// template friends.
break;
}
}
// Defer calling `setPure` until merging above has guaranteed we've set
// `DefinitionData` (as this will need to access it).
FD->setPure(Pure);
// Read in the parameters.
unsigned NumParams = Record.readInt();
SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(readDeclAs<ParmVarDecl>());
FD->setParams(Reader.getContext(), Params);
}
void ASTDeclReader::VisitObjCMethodDecl(ObjCMethodDecl *MD) {
VisitNamedDecl(MD);
if (Record.readInt()) {
// Load the body on-demand. Most clients won't care, because method
// definitions rarely show up in headers.
Reader.PendingBodies[MD] = GetCurrentCursorOffset();
HasPendingBody = true;
}
MD->setSelfDecl(readDeclAs<ImplicitParamDecl>());
MD->setCmdDecl(readDeclAs<ImplicitParamDecl>());
MD->setInstanceMethod(Record.readInt());
MD->setVariadic(Record.readInt());
MD->setPropertyAccessor(Record.readInt());
MD->setSynthesizedAccessorStub(Record.readInt());
MD->setDefined(Record.readInt());
MD->setOverriding(Record.readInt());
MD->setHasSkippedBody(Record.readInt());
MD->setIsRedeclaration(Record.readInt());
MD->setHasRedeclaration(Record.readInt());
if (MD->hasRedeclaration())
Reader.getContext().setObjCMethodRedeclaration(MD,
readDeclAs<ObjCMethodDecl>());
MD->setDeclImplementation((ObjCMethodDecl::ImplementationControl)Record.readInt());
MD->setObjCDeclQualifier((Decl::ObjCDeclQualifier)Record.readInt());
MD->setRelatedResultType(Record.readInt());
MD->setReturnType(Record.readType());
MD->setReturnTypeSourceInfo(readTypeSourceInfo());
MD->DeclEndLoc = readSourceLocation();
unsigned NumParams = Record.readInt();
SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(readDeclAs<ParmVarDecl>());
MD->setSelLocsKind((SelectorLocationsKind)Record.readInt());
unsigned NumStoredSelLocs = Record.readInt();
SmallVector<SourceLocation, 16> SelLocs;
SelLocs.reserve(NumStoredSelLocs);
for (unsigned i = 0; i != NumStoredSelLocs; ++i)
SelLocs.push_back(readSourceLocation());
MD->setParamsAndSelLocs(Reader.getContext(), Params, SelLocs);
}
void ASTDeclReader::VisitObjCTypeParamDecl(ObjCTypeParamDecl *D) {
VisitTypedefNameDecl(D);
D->Variance = Record.readInt();
D->Index = Record.readInt();
D->VarianceLoc = readSourceLocation();
D->ColonLoc = readSourceLocation();
}
void ASTDeclReader::VisitObjCContainerDecl(ObjCContainerDecl *CD) {
VisitNamedDecl(CD);
CD->setAtStartLoc(readSourceLocation());
CD->setAtEndRange(readSourceRange());
}
ObjCTypeParamList *ASTDeclReader::ReadObjCTypeParamList() {
unsigned numParams = Record.readInt();
if (numParams == 0)
return nullptr;
SmallVector<ObjCTypeParamDecl *, 4> typeParams;
typeParams.reserve(numParams);
for (unsigned i = 0; i != numParams; ++i) {
auto *typeParam = readDeclAs<ObjCTypeParamDecl>();
if (!typeParam)
return nullptr;
typeParams.push_back(typeParam);
}
SourceLocation lAngleLoc = readSourceLocation();
SourceLocation rAngleLoc = readSourceLocation();
return ObjCTypeParamList::create(Reader.getContext(), lAngleLoc,
typeParams, rAngleLoc);
}
void ASTDeclReader::ReadObjCDefinitionData(
struct ObjCInterfaceDecl::DefinitionData &Data) {
// Read the superclass.
Data.SuperClassTInfo = readTypeSourceInfo();
Data.EndLoc = readSourceLocation();
Data.HasDesignatedInitializers = Record.readInt();
// Read the directly referenced protocols and their SourceLocations.
unsigned NumProtocols = Record.readInt();
SmallVector<ObjCProtocolDecl *, 16> Protocols;
Protocols.reserve(NumProtocols);
for (unsigned I = 0; I != NumProtocols; ++I)
Protocols.push_back(readDeclAs<ObjCProtocolDecl>());
SmallVector<SourceLocation, 16> ProtoLocs;
ProtoLocs.reserve(NumProtocols);
for (unsigned I = 0; I != NumProtocols; ++I)
ProtoLocs.push_back(readSourceLocation());
Data.ReferencedProtocols.set(Protocols.data(), NumProtocols, ProtoLocs.data(),
Reader.getContext());
// Read the transitive closure of protocols referenced by this class.
NumProtocols = Record.readInt();
Protocols.clear();
Protocols.reserve(NumProtocols);
for (unsigned I = 0; I != NumProtocols; ++I)
Protocols.push_back(readDeclAs<ObjCProtocolDecl>());
Data.AllReferencedProtocols.set(Protocols.data(), NumProtocols,
Reader.getContext());
}
void ASTDeclReader::MergeDefinitionData(ObjCInterfaceDecl *D,
struct ObjCInterfaceDecl::DefinitionData &&NewDD) {
// FIXME: odr checking?
}
void ASTDeclReader::VisitObjCInterfaceDecl(ObjCInterfaceDecl *ID) {
RedeclarableResult Redecl = VisitRedeclarable(ID);
VisitObjCContainerDecl(ID);
DeferredTypeID = Record.getGlobalTypeID(Record.readInt());
mergeRedeclarable(ID, Redecl);
ID->TypeParamList = ReadObjCTypeParamList();
if (Record.readInt()) {
// Read the definition.
ID->allocateDefinitionData();
ReadObjCDefinitionData(ID->data());
ObjCInterfaceDecl *Canon = ID->getCanonicalDecl();
if (Canon->Data.getPointer()) {
// If we already have a definition, keep the definition invariant and
// merge the data.
MergeDefinitionData(Canon, std::move(ID->data()));
ID->Data = Canon->Data;
} else {
// Set the definition data of the canonical declaration, so other
// redeclarations will see it.
ID->getCanonicalDecl()->Data = ID->Data;
// We will rebuild this list lazily.
ID->setIvarList(nullptr);
}
// Note that we have deserialized a definition.
Reader.PendingDefinitions.insert(ID);
// Note that we've loaded this Objective-C class.
Reader.ObjCClassesLoaded.push_back(ID);
} else {
ID->Data = ID->getCanonicalDecl()->Data;
}
}
void ASTDeclReader::VisitObjCIvarDecl(ObjCIvarDecl *IVD) {
VisitFieldDecl(IVD);
IVD->setAccessControl((ObjCIvarDecl::AccessControl)Record.readInt());
// This field will be built lazily.
IVD->setNextIvar(nullptr);
bool synth = Record.readInt();
IVD->setSynthesize(synth);
}
void ASTDeclReader::ReadObjCDefinitionData(
struct ObjCProtocolDecl::DefinitionData &Data) {
unsigned NumProtoRefs = Record.readInt();
SmallVector<ObjCProtocolDecl *, 16> ProtoRefs;
ProtoRefs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoRefs.push_back(readDeclAs<ObjCProtocolDecl>());
SmallVector<SourceLocation, 16> ProtoLocs;
ProtoLocs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoLocs.push_back(readSourceLocation());
Data.ReferencedProtocols.set(ProtoRefs.data(), NumProtoRefs,
ProtoLocs.data(), Reader.getContext());
}
void ASTDeclReader::MergeDefinitionData(ObjCProtocolDecl *D,
struct ObjCProtocolDecl::DefinitionData &&NewDD) {
// FIXME: odr checking?
}
void ASTDeclReader::VisitObjCProtocolDecl(ObjCProtocolDecl *PD) {
RedeclarableResult Redecl = VisitRedeclarable(PD);
VisitObjCContainerDecl(PD);
mergeRedeclarable(PD, Redecl);
if (Record.readInt()) {
// Read the definition.
PD->allocateDefinitionData();
ReadObjCDefinitionData(PD->data());
ObjCProtocolDecl *Canon = PD->getCanonicalDecl();
if (Canon->Data.getPointer()) {
// If we already have a definition, keep the definition invariant and
// merge the data.
MergeDefinitionData(Canon, std::move(PD->data()));
PD->Data = Canon->Data;
} else {
// Set the definition data of the canonical declaration, so other
// redeclarations will see it.
PD->getCanonicalDecl()->Data = PD->Data;
}
// Note that we have deserialized a definition.
Reader.PendingDefinitions.insert(PD);
} else {
PD->Data = PD->getCanonicalDecl()->Data;
}
}
void ASTDeclReader::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *FD) {
VisitFieldDecl(FD);
}
void ASTDeclReader::VisitObjCCategoryDecl(ObjCCategoryDecl *CD) {
VisitObjCContainerDecl(CD);
CD->setCategoryNameLoc(readSourceLocation());
CD->setIvarLBraceLoc(readSourceLocation());
CD->setIvarRBraceLoc(readSourceLocation());
// Note that this category has been deserialized. We do this before
// deserializing the interface declaration, so that it will consider this
/// category.
Reader.CategoriesDeserialized.insert(CD);
CD->ClassInterface = readDeclAs<ObjCInterfaceDecl>();
CD->TypeParamList = ReadObjCTypeParamList();
unsigned NumProtoRefs = Record.readInt();
SmallVector<ObjCProtocolDecl *, 16> ProtoRefs;
ProtoRefs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoRefs.push_back(readDeclAs<ObjCProtocolDecl>());
SmallVector<SourceLocation, 16> ProtoLocs;
ProtoLocs.reserve(NumProtoRefs);
for (unsigned I = 0; I != NumProtoRefs; ++I)
ProtoLocs.push_back(readSourceLocation());
CD->setProtocolList(ProtoRefs.data(), NumProtoRefs, ProtoLocs.data(),
Reader.getContext());
// Protocols in the class extension belong to the class.
if (NumProtoRefs > 0 && CD->ClassInterface && CD->IsClassExtension())
CD->ClassInterface->mergeClassExtensionProtocolList(
(ObjCProtocolDecl *const *)ProtoRefs.data(), NumProtoRefs,
Reader.getContext());
}
void ASTDeclReader::VisitObjCCompatibleAliasDecl(ObjCCompatibleAliasDecl *CAD) {
VisitNamedDecl(CAD);
CAD->setClassInterface(readDeclAs<ObjCInterfaceDecl>());
}
void ASTDeclReader::VisitObjCPropertyDecl(ObjCPropertyDecl *D) {
VisitNamedDecl(D);
D->setAtLoc(readSourceLocation());
D->setLParenLoc(readSourceLocation());
QualType T = Record.readType();
TypeSourceInfo *TSI = readTypeSourceInfo();
D->setType(T, TSI);
D->setPropertyAttributes((ObjCPropertyAttribute::Kind)Record.readInt());
D->setPropertyAttributesAsWritten(
(ObjCPropertyAttribute::Kind)Record.readInt());
D->setPropertyImplementation(
(ObjCPropertyDecl::PropertyControl)Record.readInt());
DeclarationName GetterName = Record.readDeclarationName();
SourceLocation GetterLoc = readSourceLocation();
D->setGetterName(GetterName.getObjCSelector(), GetterLoc);
DeclarationName SetterName = Record.readDeclarationName();
SourceLocation SetterLoc = readSourceLocation();
D->setSetterName(SetterName.getObjCSelector(), SetterLoc);
D->setGetterMethodDecl(readDeclAs<ObjCMethodDecl>());
D->setSetterMethodDecl(readDeclAs<ObjCMethodDecl>());
D->setPropertyIvarDecl(readDeclAs<ObjCIvarDecl>());
}
void ASTDeclReader::VisitObjCImplDecl(ObjCImplDecl *D) {
VisitObjCContainerDecl(D);
D->setClassInterface(readDeclAs<ObjCInterfaceDecl>());
}
void ASTDeclReader::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
VisitObjCImplDecl(D);
D->CategoryNameLoc = readSourceLocation();
}
void ASTDeclReader::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
VisitObjCImplDecl(D);
D->setSuperClass(readDeclAs<ObjCInterfaceDecl>());
D->SuperLoc = readSourceLocation();
D->setIvarLBraceLoc(readSourceLocation());
D->setIvarRBraceLoc(readSourceLocation());
D->setHasNonZeroConstructors(Record.readInt());
D->setHasDestructors(Record.readInt());
D->NumIvarInitializers = Record.readInt();
if (D->NumIvarInitializers)
D->IvarInitializers = ReadGlobalOffset();
}
void ASTDeclReader::VisitObjCPropertyImplDecl(ObjCPropertyImplDecl *D) {
VisitDecl(D);
D->setAtLoc(readSourceLocation());
D->setPropertyDecl(readDeclAs<ObjCPropertyDecl>());
D->PropertyIvarDecl = readDeclAs<ObjCIvarDecl>();
D->IvarLoc = readSourceLocation();
D->setGetterMethodDecl(readDeclAs<ObjCMethodDecl>());
D->setSetterMethodDecl(readDeclAs<ObjCMethodDecl>());
D->setGetterCXXConstructor(Record.readExpr());
D->setSetterCXXAssignment(Record.readExpr());
}
void ASTDeclReader::VisitFieldDecl(FieldDecl *FD) {
VisitDeclaratorDecl(FD);
FD->Mutable = Record.readInt();
if (auto ISK = static_cast<FieldDecl::InitStorageKind>(Record.readInt())) {
FD->InitStorage.setInt(ISK);
FD->InitStorage.setPointer(ISK == FieldDecl::ISK_CapturedVLAType
? Record.readType().getAsOpaquePtr()
: Record.readExpr());
}
if (auto *BW = Record.readExpr())
FD->setBitWidth(BW);
if (!FD->getDeclName()) {
if (auto *Tmpl = readDeclAs<FieldDecl>())
Reader.getContext().setInstantiatedFromUnnamedFieldDecl(FD, Tmpl);
}
mergeMergeable(FD);
}
void ASTDeclReader::VisitMSPropertyDecl(MSPropertyDecl *PD) {
VisitDeclaratorDecl(PD);
PD->GetterId = Record.readIdentifier();
PD->SetterId = Record.readIdentifier();
}
void ASTDeclReader::VisitMSGuidDecl(MSGuidDecl *D) {
VisitValueDecl(D);
D->PartVal.Part1 = Record.readInt();
D->PartVal.Part2 = Record.readInt();
D->PartVal.Part3 = Record.readInt();
for (auto &C : D->PartVal.Part4And5)
C = Record.readInt();
// Add this GUID to the AST context's lookup structure, and merge if needed.
if (MSGuidDecl *Existing = Reader.getContext().MSGuidDecls.GetOrInsertNode(D))
Reader.getContext().setPrimaryMergedDecl(D, Existing->getCanonicalDecl());
}
void ASTDeclReader::VisitTemplateParamObjectDecl(TemplateParamObjectDecl *D) {
VisitValueDecl(D);
D->Value = Record.readAPValue();
// Add this template parameter object to the AST context's lookup structure,
// and merge if needed.
if (TemplateParamObjectDecl *Existing =
Reader.getContext().TemplateParamObjectDecls.GetOrInsertNode(D))
Reader.getContext().setPrimaryMergedDecl(D, Existing->getCanonicalDecl());
}
void ASTDeclReader::VisitIndirectFieldDecl(IndirectFieldDecl *FD) {
VisitValueDecl(FD);
FD->ChainingSize = Record.readInt();
assert(FD->ChainingSize >= 2 && "Anonymous chaining must be >= 2");
FD->Chaining = new (Reader.getContext())NamedDecl*[FD->ChainingSize];
for (unsigned I = 0; I != FD->ChainingSize; ++I)
FD->Chaining[I] = readDeclAs<NamedDecl>();
mergeMergeable(FD);
}
ASTDeclReader::RedeclarableResult ASTDeclReader::VisitVarDeclImpl(VarDecl *VD) {
RedeclarableResult Redecl = VisitRedeclarable(VD);
VisitDeclaratorDecl(VD);
VD->VarDeclBits.SClass = (StorageClass)Record.readInt();
VD->VarDeclBits.TSCSpec = Record.readInt();
VD->VarDeclBits.InitStyle = Record.readInt();
VD->VarDeclBits.ARCPseudoStrong = Record.readInt();
if (!isa<ParmVarDecl>(VD)) {
VD->NonParmVarDeclBits.IsThisDeclarationADemotedDefinition =
Record.readInt();
VD->NonParmVarDeclBits.ExceptionVar = Record.readInt();
VD->NonParmVarDeclBits.NRVOVariable = Record.readInt();
VD->NonParmVarDeclBits.CXXForRangeDecl = Record.readInt();
VD->NonParmVarDeclBits.ObjCForDecl = Record.readInt();
VD->NonParmVarDeclBits.IsInline = Record.readInt();
VD->NonParmVarDeclBits.IsInlineSpecified = Record.readInt();
VD->NonParmVarDeclBits.IsConstexpr = Record.readInt();
VD->NonParmVarDeclBits.IsInitCapture = Record.readInt();
VD->NonParmVarDeclBits.PreviousDeclInSameBlockScope = Record.readInt();
VD->NonParmVarDeclBits.ImplicitParamKind = Record.readInt();
VD->NonParmVarDeclBits.EscapingByref = Record.readInt();
}
auto VarLinkage = Linkage(Record.readInt());
VD->setCachedLinkage(VarLinkage);
// Reconstruct the one piece of the IdentifierNamespace that we need.
if (VD->getStorageClass() == SC_Extern && VarLinkage != NoLinkage &&
VD->getLexicalDeclContext()->isFunctionOrMethod())
VD->setLocalExternDecl();
if (uint64_t Val = Record.readInt()) {
VD->setInit(Record.readExpr());
if (Val != 1) {
EvaluatedStmt *Eval = VD->ensureEvaluatedStmt();
Eval->HasConstantInitialization = (Val & 2) != 0;
Eval->HasConstantDestruction = (Val & 4) != 0;
}
}
if (VD->hasAttr<BlocksAttr>() && VD->getType()->getAsCXXRecordDecl()) {
Expr *CopyExpr = Record.readExpr();
if (CopyExpr)
Reader.getContext().setBlockVarCopyInit(VD, CopyExpr, Record.readInt());
}
if (VD->getStorageDuration() == SD_Static && Record.readInt()) {
Reader.DefinitionSource[VD] =
Loc.F->Kind == ModuleKind::MK_MainFile ||
Reader.getContext().getLangOpts().BuildingPCHWithObjectFile;
}
enum VarKind {
VarNotTemplate = 0, VarTemplate, StaticDataMemberSpecialization
};
switch ((VarKind)Record.readInt()) {
case VarNotTemplate:
// Only true variables (not parameters or implicit parameters) can be
// merged; the other kinds are not really redeclarable at all.
if (!isa<ParmVarDecl>(VD) && !isa<ImplicitParamDecl>(VD) &&
!isa<VarTemplateSpecializationDecl>(VD))
mergeRedeclarable(VD, Redecl);
break;
case VarTemplate:
// Merged when we merge the template.
VD->setDescribedVarTemplate(readDeclAs<VarTemplateDecl>());
break;
case StaticDataMemberSpecialization: { // HasMemberSpecializationInfo.
auto *Tmpl = readDeclAs<VarDecl>();
auto TSK = (TemplateSpecializationKind)Record.readInt();
SourceLocation POI = readSourceLocation();
Reader.getContext().setInstantiatedFromStaticDataMember(VD, Tmpl, TSK,POI);
mergeRedeclarable(VD, Redecl);
break;
}
}
return Redecl;
}
void ASTDeclReader::VisitImplicitParamDecl(ImplicitParamDecl *PD) {
VisitVarDecl(PD);
}
void ASTDeclReader::VisitParmVarDecl(ParmVarDecl *PD) {
VisitVarDecl(PD);
unsigned isObjCMethodParam = Record.readInt();
unsigned scopeDepth = Record.readInt();
unsigned scopeIndex = Record.readInt();
unsigned declQualifier = Record.readInt();
if (isObjCMethodParam) {
assert(scopeDepth == 0);
PD->setObjCMethodScopeInfo(scopeIndex);
PD->ParmVarDeclBits.ScopeDepthOrObjCQuals = declQualifier;
} else {
PD->setScopeInfo(scopeDepth, scopeIndex);
}
PD->ParmVarDeclBits.IsKNRPromoted = Record.readInt();
PD->ParmVarDeclBits.HasInheritedDefaultArg = Record.readInt();
if (Record.readInt()) // hasUninstantiatedDefaultArg.
PD->setUninstantiatedDefaultArg(Record.readExpr());
// FIXME: If this is a redeclaration of a function from another module, handle
// inheritance of default arguments.
}
void ASTDeclReader::VisitDecompositionDecl(DecompositionDecl *DD) {
VisitVarDecl(DD);
auto **BDs = DD->getTrailingObjects<BindingDecl *>();
for (unsigned I = 0; I != DD->NumBindings; ++I) {
BDs[I] = readDeclAs<BindingDecl>();
BDs[I]->setDecomposedDecl(DD);
}
}
void ASTDeclReader::VisitBindingDecl(BindingDecl *BD) {
VisitValueDecl(BD);
BD->Binding = Record.readExpr();
}
void ASTDeclReader::VisitFileScopeAsmDecl(FileScopeAsmDecl *AD) {
VisitDecl(AD);
AD->setAsmString(cast<StringLiteral>(Record.readExpr()));
AD->setRParenLoc(readSourceLocation());
}
void ASTDeclReader::VisitBlockDecl(BlockDecl *BD) {
VisitDecl(BD);
BD->setBody(cast_or_null<CompoundStmt>(Record.readStmt()));
BD->setSignatureAsWritten(readTypeSourceInfo());
unsigned NumParams = Record.readInt();
SmallVector<ParmVarDecl *, 16> Params;
Params.reserve(NumParams);
for (unsigned I = 0; I != NumParams; ++I)
Params.push_back(readDeclAs<ParmVarDecl>());
BD->setParams(Params);
BD->setIsVariadic(Record.readInt());
BD->setBlockMissingReturnType(Record.readInt());
BD->setIsConversionFromLambda(Record.readInt());
BD->setDoesNotEscape(Record.readInt());
BD->setCanAvoidCopyToHeap(Record.readInt());
bool capturesCXXThis = Record.readInt();
unsigned numCaptures = Record.readInt();
SmallVector<BlockDecl::Capture, 16> captures;
captures.reserve(numCaptures);
for (unsigned i = 0; i != numCaptures; ++i) {
auto *decl = readDeclAs<VarDecl>();
unsigned flags = Record.readInt();
bool byRef = (flags & 1);
bool nested = (flags & 2);
Expr *copyExpr = ((flags & 4) ? Record.readExpr() : nullptr);
captures.push_back(BlockDecl::Capture(decl, byRef, nested, copyExpr));
}
BD->setCaptures(Reader.getContext(), captures, capturesCXXThis);
}
void ASTDeclReader::VisitCapturedDecl(CapturedDecl *CD) {
VisitDecl(CD);
unsigned ContextParamPos = Record.readInt();
CD->setNothrow(Record.readInt() != 0);
// Body is set by VisitCapturedStmt.
for (unsigned I = 0; I < CD->NumParams; ++I) {
if (I != ContextParamPos)
CD->setParam(I, readDeclAs<ImplicitParamDecl>());
else
CD->setContextParam(I, readDeclAs<ImplicitParamDecl>());
}
}
void ASTDeclReader::VisitLinkageSpecDecl(LinkageSpecDecl *D) {
VisitDecl(D);
D->setLanguage((LinkageSpecDecl::LanguageIDs)Record.readInt());
D->setExternLoc(readSourceLocation());
D->setRBraceLoc(readSourceLocation());
}
void ASTDeclReader::VisitExportDecl(ExportDecl *D) {
VisitDecl(D);
D->RBraceLoc = readSourceLocation();
}
void ASTDeclReader::VisitLabelDecl(LabelDecl *D) {
VisitNamedDecl(D);
D->setLocStart(readSourceLocation());
}
void ASTDeclReader::VisitNamespaceDecl(NamespaceDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
VisitNamedDecl(D);
D->setInline(Record.readInt());
D->LocStart = readSourceLocation();
D->RBraceLoc = readSourceLocation();
// Defer loading the anonymous namespace until we've finished merging
// this namespace; loading it might load a later declaration of the
// same namespace, and we have an invariant that older declarations
// get merged before newer ones try to merge.
GlobalDeclID AnonNamespace = 0;
if (Redecl.getFirstID() == ThisDeclID) {
AnonNamespace = readDeclID();
} else {
// Link this namespace back to the first declaration, which has already
// been deserialized.
D->AnonOrFirstNamespaceAndInline.setPointer(D->getFirstDecl());
}
mergeRedeclarable(D, Redecl);
if (AnonNamespace) {
// Each module has its own anonymous namespace, which is disjoint from
// any other module's anonymous namespaces, so don't attach the anonymous
// namespace at all.
auto *Anon = cast<NamespaceDecl>(Reader.GetDecl(AnonNamespace));
if (!Record.isModule())
D->setAnonymousNamespace(Anon);
}
}
void ASTDeclReader::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
VisitNamedDecl(D);
D->NamespaceLoc = readSourceLocation();
D->IdentLoc = readSourceLocation();
D->QualifierLoc = Record.readNestedNameSpecifierLoc();
D->Namespace = readDeclAs<NamedDecl>();
mergeRedeclarable(D, Redecl);
}
void ASTDeclReader::VisitUsingDecl(UsingDecl *D) {
VisitNamedDecl(D);
D->setUsingLoc(readSourceLocation());
D->QualifierLoc = Record.readNestedNameSpecifierLoc();
D->DNLoc = Record.readDeclarationNameLoc(D->getDeclName());
D->FirstUsingShadow.setPointer(readDeclAs<UsingShadowDecl>());
D->setTypename(Record.readInt());
if (auto *Pattern = readDeclAs<NamedDecl>())
Reader.getContext().setInstantiatedFromUsingDecl(D, Pattern);
mergeMergeable(D);
}
void ASTDeclReader::VisitUsingEnumDecl(UsingEnumDecl *D) {
VisitNamedDecl(D);
D->setUsingLoc(readSourceLocation());
D->setEnumLoc(readSourceLocation());
D->Enum = readDeclAs<EnumDecl>();
D->FirstUsingShadow.setPointer(readDeclAs<UsingShadowDecl>());
if (auto *Pattern = readDeclAs<UsingEnumDecl>())
Reader.getContext().setInstantiatedFromUsingEnumDecl(D, Pattern);
mergeMergeable(D);
}
void ASTDeclReader::VisitUsingPackDecl(UsingPackDecl *D) {
VisitNamedDecl(D);
D->InstantiatedFrom = readDeclAs<NamedDecl>();
auto **Expansions = D->getTrailingObjects<NamedDecl *>();
for (unsigned I = 0; I != D->NumExpansions; ++I)
Expansions[I] = readDeclAs<NamedDecl>();
mergeMergeable(D);
}
void ASTDeclReader::VisitUsingShadowDecl(UsingShadowDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
VisitNamedDecl(D);
D->Underlying = readDeclAs<NamedDecl>();
D->IdentifierNamespace = Record.readInt();
D->UsingOrNextShadow = readDeclAs<NamedDecl>();
auto *Pattern = readDeclAs<UsingShadowDecl>();
if (Pattern)
Reader.getContext().setInstantiatedFromUsingShadowDecl(D, Pattern);
mergeRedeclarable(D, Redecl);
}
void ASTDeclReader::VisitConstructorUsingShadowDecl(
ConstructorUsingShadowDecl *D) {
VisitUsingShadowDecl(D);
D->NominatedBaseClassShadowDecl = readDeclAs<ConstructorUsingShadowDecl>();
D->ConstructedBaseClassShadowDecl = readDeclAs<ConstructorUsingShadowDecl>();
D->IsVirtual = Record.readInt();
}
void ASTDeclReader::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
VisitNamedDecl(D);
D->UsingLoc = readSourceLocation();
D->NamespaceLoc = readSourceLocation();
D->QualifierLoc = Record.readNestedNameSpecifierLoc();
D->NominatedNamespace = readDeclAs<NamedDecl>();
D->CommonAncestor = readDeclAs<DeclContext>();
}
void ASTDeclReader::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) {
VisitValueDecl(D);
D->setUsingLoc(readSourceLocation());
D->QualifierLoc = Record.readNestedNameSpecifierLoc();
D->DNLoc = Record.readDeclarationNameLoc(D->getDeclName());
D->EllipsisLoc = readSourceLocation();
mergeMergeable(D);
}
void ASTDeclReader::VisitUnresolvedUsingTypenameDecl(
UnresolvedUsingTypenameDecl *D) {
VisitTypeDecl(D);
D->TypenameLocation = readSourceLocation();
D->QualifierLoc = Record.readNestedNameSpecifierLoc();
D->EllipsisLoc = readSourceLocation();
mergeMergeable(D);
}
void ASTDeclReader::VisitUnresolvedUsingIfExistsDecl(
UnresolvedUsingIfExistsDecl *D) {
VisitNamedDecl(D);
}
void ASTDeclReader::ReadCXXDefinitionData(
struct CXXRecordDecl::DefinitionData &Data, const CXXRecordDecl *D) {
#define FIELD(Name, Width, Merge) \
Data.Name = Record.readInt();
#include "clang/AST/CXXRecordDeclDefinitionBits.def"
// Note: the caller has deserialized the IsLambda bit already.
Data.ODRHash = Record.readInt();
Data.HasODRHash = true;
if (Record.readInt()) {
Reader.DefinitionSource[D] =
Loc.F->Kind == ModuleKind::MK_MainFile ||
Reader.getContext().getLangOpts().BuildingPCHWithObjectFile;
}
Data.NumBases = Record.readInt();
if (Data.NumBases)
Data.Bases = ReadGlobalOffset();
Data.NumVBases = Record.readInt();
if (Data.NumVBases)
Data.VBases = ReadGlobalOffset();
Record.readUnresolvedSet(Data.Conversions);
Data.ComputedVisibleConversions = Record.readInt();
if (Data.ComputedVisibleConversions)
Record.readUnresolvedSet(Data.VisibleConversions);
assert(Data.Definition && "Data.Definition should be already set!");
Data.FirstFriend = readDeclID();
if (Data.IsLambda) {
using Capture = LambdaCapture;
auto &Lambda = static_cast<CXXRecordDecl::LambdaDefinitionData &>(Data);
Lambda.Dependent = Record.readInt();
Lambda.IsGenericLambda = Record.readInt();
Lambda.CaptureDefault = Record.readInt();
Lambda.NumCaptures = Record.readInt();
Lambda.NumExplicitCaptures = Record.readInt();
Lambda.HasKnownInternalLinkage = Record.readInt();
Lambda.ManglingNumber = Record.readInt();
D->setDeviceLambdaManglingNumber(Record.readInt());
Lambda.ContextDecl = readDeclID();
Lambda.Captures = (Capture *)Reader.getContext().Allocate(
sizeof(Capture) * Lambda.NumCaptures);
Capture *ToCapture = Lambda.Captures;
Lambda.MethodTyInfo = readTypeSourceInfo();
for (unsigned I = 0, N = Lambda.NumCaptures; I != N; ++I) {
SourceLocation Loc = readSourceLocation();
bool IsImplicit = Record.readInt();
auto Kind = static_cast<LambdaCaptureKind>(Record.readInt());
switch (Kind) {
case LCK_StarThis:
case LCK_This:
case LCK_VLAType:
*ToCapture++ = Capture(Loc, IsImplicit, Kind, nullptr,SourceLocation());
break;
case LCK_ByCopy:
case LCK_ByRef:
auto *Var = readDeclAs<VarDecl>();
SourceLocation EllipsisLoc = readSourceLocation();
*ToCapture++ = Capture(Loc, IsImplicit, Kind, Var, EllipsisLoc);
break;
}
}
}
}
void ASTDeclReader::MergeDefinitionData(
CXXRecordDecl *D, struct CXXRecordDecl::DefinitionData &&MergeDD) {
assert(D->DefinitionData &&
"merging class definition into non-definition");
auto &DD = *D->DefinitionData;
if (DD.Definition != MergeDD.Definition) {
// Track that we merged the definitions.
Reader.MergedDeclContexts.insert(std::make_pair(MergeDD.Definition,
DD.Definition));
Reader.PendingDefinitions.erase(MergeDD.Definition);
MergeDD.Definition->setCompleteDefinition(false);
Reader.mergeDefinitionVisibility(DD.Definition, MergeDD.Definition);
assert(Reader.Lookups.find(MergeDD.Definition) == Reader.Lookups.end() &&
"already loaded pending lookups for merged definition");
}
auto PFDI = Reader.PendingFakeDefinitionData.find(&DD);
if (PFDI != Reader.PendingFakeDefinitionData.end() &&
PFDI->second == ASTReader::PendingFakeDefinitionKind::Fake) {
// We faked up this definition data because we found a class for which we'd
// not yet loaded the definition. Replace it with the real thing now.
assert(!DD.IsLambda && !MergeDD.IsLambda && "faked up lambda definition?");
PFDI->second = ASTReader::PendingFakeDefinitionKind::FakeLoaded;
// Don't change which declaration is the definition; that is required
// to be invariant once we select it.
auto *Def = DD.Definition;
DD = std::move(MergeDD);
DD.Definition = Def;
return;
}
bool DetectedOdrViolation = false;
#define FIELD(Name, Width, Merge) Merge(Name)
#define MERGE_OR(Field) DD.Field |= MergeDD.Field;
#define NO_MERGE(Field) \
DetectedOdrViolation |= DD.Field != MergeDD.Field; \
MERGE_OR(Field)
#include "clang/AST/CXXRecordDeclDefinitionBits.def"
NO_MERGE(IsLambda)
#undef NO_MERGE
#undef MERGE_OR
if (DD.NumBases != MergeDD.NumBases || DD.NumVBases != MergeDD.NumVBases)
DetectedOdrViolation = true;
// FIXME: Issue a diagnostic if the base classes don't match when we come
// to lazily load them.
// FIXME: Issue a diagnostic if the list of conversion functions doesn't
// match when we come to lazily load them.
if (MergeDD.ComputedVisibleConversions && !DD.ComputedVisibleConversions) {
DD.VisibleConversions = std::move(MergeDD.VisibleConversions);
DD.ComputedVisibleConversions = true;
}
// FIXME: Issue a diagnostic if FirstFriend doesn't match when we come to
// lazily load it.
if (DD.IsLambda) {
// FIXME: ODR-checking for merging lambdas (this happens, for instance,
// when they occur within the body of a function template specialization).
}
if (D->getODRHash() != MergeDD.ODRHash) {
DetectedOdrViolation = true;
}
if (DetectedOdrViolation)
Reader.PendingOdrMergeFailures[DD.Definition].push_back(
{MergeDD.Definition, &MergeDD});
}
void ASTDeclReader::ReadCXXRecordDefinition(CXXRecordDecl *D, bool Update) {
struct CXXRecordDecl::DefinitionData *DD;
ASTContext &C = Reader.getContext();
// Determine whether this is a lambda closure type, so that we can
// allocate the appropriate DefinitionData structure.
bool IsLambda = Record.readInt();
if (IsLambda)
DD = new (C) CXXRecordDecl::LambdaDefinitionData(D, nullptr, false, false,
LCD_None);
else
DD = new (C) struct CXXRecordDecl::DefinitionData(D);
CXXRecordDecl *Canon = D->getCanonicalDecl();
// Set decl definition data before reading it, so that during deserialization
// when we read CXXRecordDecl, it already has definition data and we don't
// set fake one.
if (!Canon->DefinitionData)
Canon->DefinitionData = DD;
D->DefinitionData = Canon->DefinitionData;
ReadCXXDefinitionData(*DD, D);
// We might already have a different definition for this record. This can
// happen either because we're reading an update record, or because we've
// already done some merging. Either way, just merge into it.
if (Canon->DefinitionData != DD) {
MergeDefinitionData(Canon, std::move(*DD));
return;
}
// Mark this declaration as being a definition.
D->setCompleteDefinition(true);
// If this is not the first declaration or is an update record, we can have
// other redeclarations already. Make a note that we need to propagate the
// DefinitionData pointer onto them.
if (Update || Canon != D)
Reader.PendingDefinitions.insert(D);
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitCXXRecordDeclImpl(CXXRecordDecl *D) {
RedeclarableResult Redecl = VisitRecordDeclImpl(D);
ASTContext &C = Reader.getContext();
enum CXXRecKind {
CXXRecNotTemplate = 0, CXXRecTemplate, CXXRecMemberSpecialization
};
switch ((CXXRecKind)Record.readInt()) {
case CXXRecNotTemplate:
// Merged when we merge the folding set entry in the primary template.
if (!isa<ClassTemplateSpecializationDecl>(D))
mergeRedeclarable(D, Redecl);
break;
case CXXRecTemplate: {
// Merged when we merge the template.
auto *Template = readDeclAs<ClassTemplateDecl>();
D->TemplateOrInstantiation = Template;
if (!Template->getTemplatedDecl()) {
// We've not actually loaded the ClassTemplateDecl yet, because we're
// currently being loaded as its pattern. Rely on it to set up our
// TypeForDecl (see VisitClassTemplateDecl).
//
// Beware: we do not yet know our canonical declaration, and may still
// get merged once the surrounding class template has got off the ground.
DeferredTypeID = 0;
}
break;
}
case CXXRecMemberSpecialization: {
auto *RD = readDeclAs<CXXRecordDecl>();
auto TSK = (TemplateSpecializationKind)Record.readInt();
SourceLocation POI = readSourceLocation();
MemberSpecializationInfo *MSI = new (C) MemberSpecializationInfo(RD, TSK);
MSI->setPointOfInstantiation(POI);
D->TemplateOrInstantiation = MSI;
mergeRedeclarable(D, Redecl);
break;
}
}
bool WasDefinition = Record.readInt();
if (WasDefinition)
ReadCXXRecordDefinition(D, /*Update*/false);
else
// Propagate DefinitionData pointer from the canonical declaration.
D->DefinitionData = D->getCanonicalDecl()->DefinitionData;
// Lazily load the key function to avoid deserializing every method so we can
// compute it.
if (WasDefinition) {
DeclID KeyFn = readDeclID();
if (KeyFn && D->isCompleteDefinition())
// FIXME: This is wrong for the ARM ABI, where some other module may have
// made this function no longer be a key function. We need an update
// record or similar for that case.
C.KeyFunctions[D] = KeyFn;
}
return Redecl;
}
void ASTDeclReader::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) {
D->setExplicitSpecifier(Record.readExplicitSpec());
D->Ctor = readDeclAs<CXXConstructorDecl>();
VisitFunctionDecl(D);
D->setIsCopyDeductionCandidate(Record.readInt());
}
void ASTDeclReader::VisitCXXMethodDecl(CXXMethodDecl *D) {
VisitFunctionDecl(D);
unsigned NumOverridenMethods = Record.readInt();
if (D->isCanonicalDecl()) {
while (NumOverridenMethods--) {
// Avoid invariant checking of CXXMethodDecl::addOverriddenMethod,
// MD may be initializing.
if (auto *MD = readDeclAs<CXXMethodDecl>())
Reader.getContext().addOverriddenMethod(D, MD->getCanonicalDecl());
}
} else {
// We don't care about which declarations this used to override; we get
// the relevant information from the canonical declaration.
Record.skipInts(NumOverridenMethods);
}
}
void ASTDeclReader::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
// We need the inherited constructor information to merge the declaration,
// so we have to read it before we call VisitCXXMethodDecl.
D->setExplicitSpecifier(Record.readExplicitSpec());
if (D->isInheritingConstructor()) {
auto *Shadow = readDeclAs<ConstructorUsingShadowDecl>();
auto *Ctor = readDeclAs<CXXConstructorDecl>();
*D->getTrailingObjects<InheritedConstructor>() =
InheritedConstructor(Shadow, Ctor);
}
VisitCXXMethodDecl(D);
}
void ASTDeclReader::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
VisitCXXMethodDecl(D);
if (auto *OperatorDelete = readDeclAs<FunctionDecl>()) {
CXXDestructorDecl *Canon = D->getCanonicalDecl();
auto *ThisArg = Record.readExpr();
// FIXME: Check consistency if we have an old and new operator delete.
if (!Canon->OperatorDelete) {
Canon->OperatorDelete = OperatorDelete;
Canon->OperatorDeleteThisArg = ThisArg;
}
}
}
void ASTDeclReader::VisitCXXConversionDecl(CXXConversionDecl *D) {
D->setExplicitSpecifier(Record.readExplicitSpec());
VisitCXXMethodDecl(D);
}
void ASTDeclReader::VisitImportDecl(ImportDecl *D) {
VisitDecl(D);
D->ImportedModule = readModule();
D->setImportComplete(Record.readInt());
auto *StoredLocs = D->getTrailingObjects<SourceLocation>();
for (unsigned I = 0, N = Record.back(); I != N; ++I)
StoredLocs[I] = readSourceLocation();
Record.skipInts(1); // The number of stored source locations.
}
void ASTDeclReader::VisitAccessSpecDecl(AccessSpecDecl *D) {
VisitDecl(D);
D->setColonLoc(readSourceLocation());
}
void ASTDeclReader::VisitFriendDecl(FriendDecl *D) {
VisitDecl(D);
if (Record.readInt()) // hasFriendDecl
D->Friend = readDeclAs<NamedDecl>();
else
D->Friend = readTypeSourceInfo();
for (unsigned i = 0; i != D->NumTPLists; ++i)
D->getTrailingObjects<TemplateParameterList *>()[i] =
Record.readTemplateParameterList();
D->NextFriend = readDeclID();
D->UnsupportedFriend = (Record.readInt() != 0);
D->FriendLoc = readSourceLocation();
}
void ASTDeclReader::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
VisitDecl(D);
unsigned NumParams = Record.readInt();
D->NumParams = NumParams;
D->Params = new TemplateParameterList*[NumParams];
for (unsigned i = 0; i != NumParams; ++i)
D->Params[i] = Record.readTemplateParameterList();
if (Record.readInt()) // HasFriendDecl
D->Friend = readDeclAs<NamedDecl>();
else
D->Friend = readTypeSourceInfo();
D->FriendLoc = readSourceLocation();
}
DeclID ASTDeclReader::VisitTemplateDecl(TemplateDecl *D) {
VisitNamedDecl(D);
DeclID PatternID = readDeclID();
auto *TemplatedDecl = cast_or_null<NamedDecl>(Reader.GetDecl(PatternID));
TemplateParameterList *TemplateParams = Record.readTemplateParameterList();
D->init(TemplatedDecl, TemplateParams);
return PatternID;
}
void ASTDeclReader::VisitConceptDecl(ConceptDecl *D) {
VisitTemplateDecl(D);
D->ConstraintExpr = Record.readExpr();
mergeMergeable(D);
}
void ASTDeclReader::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) {
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitRedeclarableTemplateDecl(RedeclarableTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarable(D);
// Make sure we've allocated the Common pointer first. We do this before
// VisitTemplateDecl so that getCommonPtr() can be used during initialization.
RedeclarableTemplateDecl *CanonD = D->getCanonicalDecl();
if (!CanonD->Common) {
CanonD->Common = CanonD->newCommon(Reader.getContext());
Reader.PendingDefinitions.insert(CanonD);
}
D->Common = CanonD->Common;
// If this is the first declaration of the template, fill in the information
// for the 'common' pointer.
if (ThisDeclID == Redecl.getFirstID()) {
if (auto *RTD = readDeclAs<RedeclarableTemplateDecl>()) {
assert(RTD->getKind() == D->getKind() &&
"InstantiatedFromMemberTemplate kind mismatch");
D->setInstantiatedFromMemberTemplate(RTD);
if (Record.readInt())
D->setMemberSpecialization();
}
}
DeclID PatternID = VisitTemplateDecl(D);
D->IdentifierNamespace = Record.readInt();
mergeRedeclarable(D, Redecl, PatternID);
// If we merged the template with a prior declaration chain, merge the common
// pointer.
// FIXME: Actually merge here, don't just overwrite.
D->Common = D->getCanonicalDecl()->Common;
return Redecl;
}
void ASTDeclReader::VisitClassTemplateDecl(ClassTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
if (ThisDeclID == Redecl.getFirstID()) {
// This ClassTemplateDecl owns a CommonPtr; read it to keep track of all of
// the specializations.
SmallVector<serialization::DeclID, 32> SpecIDs;
readDeclIDList(SpecIDs);
ASTDeclReader::AddLazySpecializations(D, SpecIDs);
}
if (D->getTemplatedDecl()->TemplateOrInstantiation) {
// We were loaded before our templated declaration was. We've not set up
// its corresponding type yet (see VisitCXXRecordDeclImpl), so reconstruct
// it now.
Reader.getContext().getInjectedClassNameType(
D->getTemplatedDecl(), D->getInjectedClassNameSpecialization());
}
}
void ASTDeclReader::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) {
llvm_unreachable("BuiltinTemplates are not serialized");
}
/// TODO: Unify with ClassTemplateDecl version?
/// May require unifying ClassTemplateDecl and
/// VarTemplateDecl beyond TemplateDecl...
void ASTDeclReader::VisitVarTemplateDecl(VarTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
if (ThisDeclID == Redecl.getFirstID()) {
// This VarTemplateDecl owns a CommonPtr; read it to keep track of all of
// the specializations.
SmallVector<serialization::DeclID, 32> SpecIDs;
readDeclIDList(SpecIDs);
ASTDeclReader::AddLazySpecializations(D, SpecIDs);
}
}
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitClassTemplateSpecializationDeclImpl(
ClassTemplateSpecializationDecl *D) {
RedeclarableResult Redecl = VisitCXXRecordDeclImpl(D);
ASTContext &C = Reader.getContext();
if (Decl *InstD = readDecl()) {
if (auto *CTD = dyn_cast<ClassTemplateDecl>(InstD)) {
D->SpecializedTemplate = CTD;
} else {
SmallVector<TemplateArgument, 8> TemplArgs;
Record.readTemplateArgumentList(TemplArgs);
TemplateArgumentList *ArgList
= TemplateArgumentList::CreateCopy(C, TemplArgs);
auto *PS =
new (C) ClassTemplateSpecializationDecl::
SpecializedPartialSpecialization();
PS->PartialSpecialization
= cast<ClassTemplatePartialSpecializationDecl>(InstD);
PS->TemplateArgs = ArgList;
D->SpecializedTemplate = PS;
}
}
SmallVector<TemplateArgument, 8> TemplArgs;
Record.readTemplateArgumentList(TemplArgs, /*Canonicalize*/ true);
D->TemplateArgs = TemplateArgumentList::CreateCopy(C, TemplArgs);
D->PointOfInstantiation = readSourceLocation();
D->SpecializationKind = (TemplateSpecializationKind)Record.readInt();
bool writtenAsCanonicalDecl = Record.readInt();
if (writtenAsCanonicalDecl) {
auto *CanonPattern = readDeclAs<ClassTemplateDecl>();
if (D->isCanonicalDecl()) { // It's kept in the folding set.
// Set this as, or find, the canonical declaration for this specialization
ClassTemplateSpecializationDecl *CanonSpec;
if (auto *Partial = dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) {
CanonSpec = CanonPattern->getCommonPtr()->PartialSpecializations
.GetOrInsertNode(Partial);
} else {
CanonSpec =
CanonPattern->getCommonPtr()->Specializations.GetOrInsertNode(D);
}
// If there was already a canonical specialization, merge into it.
if (CanonSpec != D) {
mergeRedeclarable<TagDecl>(D, CanonSpec, Redecl);
// This declaration might be a definition. Merge with any existing
// definition.
if (auto *DDD = D->DefinitionData) {
if (CanonSpec->DefinitionData)
MergeDefinitionData(CanonSpec, std::move(*DDD));
else
CanonSpec->DefinitionData = D->DefinitionData;
}
D->DefinitionData = CanonSpec->DefinitionData;
}
}
}
// Explicit info.
if (TypeSourceInfo *TyInfo = readTypeSourceInfo()) {
auto *ExplicitInfo =
new (C) ClassTemplateSpecializationDecl::ExplicitSpecializationInfo;
ExplicitInfo->TypeAsWritten = TyInfo;
ExplicitInfo->ExternLoc = readSourceLocation();
ExplicitInfo->TemplateKeywordLoc = readSourceLocation();
D->ExplicitInfo = ExplicitInfo;
}
return Redecl;
}
void ASTDeclReader::VisitClassTemplatePartialSpecializationDecl(
ClassTemplatePartialSpecializationDecl *D) {
// We need to read the template params first because redeclarable is going to
// need them for profiling
TemplateParameterList *Params = Record.readTemplateParameterList();
D->TemplateParams = Params;
D->ArgsAsWritten = Record.readASTTemplateArgumentListInfo();
RedeclarableResult Redecl = VisitClassTemplateSpecializationDeclImpl(D);
// These are read/set from/to the first declaration.
if (ThisDeclID == Redecl.getFirstID()) {
D->InstantiatedFromMember.setPointer(
readDeclAs<ClassTemplatePartialSpecializationDecl>());
D->InstantiatedFromMember.setInt(Record.readInt());
}
}
void ASTDeclReader::VisitClassScopeFunctionSpecializationDecl(
ClassScopeFunctionSpecializationDecl *D) {
VisitDecl(D);
D->Specialization = readDeclAs<CXXMethodDecl>();
if (Record.readInt())
D->TemplateArgs = Record.readASTTemplateArgumentListInfo();
}
void ASTDeclReader::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
RedeclarableResult Redecl = VisitRedeclarableTemplateDecl(D);
if (ThisDeclID == Redecl.getFirstID()) {
// This FunctionTemplateDecl owns a CommonPtr; read it.
SmallVector<serialization::DeclID, 32> SpecIDs;
readDeclIDList(SpecIDs);
ASTDeclReader::AddLazySpecializations(D, SpecIDs);
}
}
/// TODO: Unify with ClassTemplateSpecializationDecl version?
/// May require unifying ClassTemplate(Partial)SpecializationDecl and
/// VarTemplate(Partial)SpecializationDecl with a new data
/// structure Template(Partial)SpecializationDecl, and
/// using Template(Partial)SpecializationDecl as input type.
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitVarTemplateSpecializationDeclImpl(
VarTemplateSpecializationDecl *D) {
RedeclarableResult Redecl = VisitVarDeclImpl(D);
ASTContext &C = Reader.getContext();
if (Decl *InstD = readDecl()) {
if (auto *VTD = dyn_cast<VarTemplateDecl>(InstD)) {
D->SpecializedTemplate = VTD;
} else {
SmallVector<TemplateArgument, 8> TemplArgs;
Record.readTemplateArgumentList(TemplArgs);
TemplateArgumentList *ArgList = TemplateArgumentList::CreateCopy(
C, TemplArgs);
auto *PS =
new (C)
VarTemplateSpecializationDecl::SpecializedPartialSpecialization();
PS->PartialSpecialization =
cast<VarTemplatePartialSpecializationDecl>(InstD);
PS->TemplateArgs = ArgList;
D->SpecializedTemplate = PS;
}
}
// Explicit info.
if (TypeSourceInfo *TyInfo = readTypeSourceInfo()) {
auto *ExplicitInfo =
new (C) VarTemplateSpecializationDecl::ExplicitSpecializationInfo;
ExplicitInfo->TypeAsWritten = TyInfo;
ExplicitInfo->ExternLoc = readSourceLocation();
ExplicitInfo->TemplateKeywordLoc = readSourceLocation();
D->ExplicitInfo = ExplicitInfo;
}
SmallVector<TemplateArgument, 8> TemplArgs;
Record.readTemplateArgumentList(TemplArgs, /*Canonicalize*/ true);
D->TemplateArgs = TemplateArgumentList::CreateCopy(C, TemplArgs);
D->PointOfInstantiation = readSourceLocation();
D->SpecializationKind = (TemplateSpecializationKind)Record.readInt();
D->IsCompleteDefinition = Record.readInt();
bool writtenAsCanonicalDecl = Record.readInt();
if (writtenAsCanonicalDecl) {
auto *CanonPattern = readDeclAs<VarTemplateDecl>();
if (D->isCanonicalDecl()) { // It's kept in the folding set.
// FIXME: If it's already present, merge it.
if (auto *Partial = dyn_cast<VarTemplatePartialSpecializationDecl>(D)) {
CanonPattern->getCommonPtr()->PartialSpecializations
.GetOrInsertNode(Partial);
} else {
CanonPattern->getCommonPtr()->Specializations.GetOrInsertNode(D);
}
}
}
return Redecl;
}
/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
/// May require unifying ClassTemplate(Partial)SpecializationDecl and
/// VarTemplate(Partial)SpecializationDecl with a new data
/// structure Template(Partial)SpecializationDecl, and
/// using Template(Partial)SpecializationDecl as input type.
void ASTDeclReader::VisitVarTemplatePartialSpecializationDecl(
VarTemplatePartialSpecializationDecl *D) {
TemplateParameterList *Params = Record.readTemplateParameterList();
D->TemplateParams = Params;
D->ArgsAsWritten = Record.readASTTemplateArgumentListInfo();
RedeclarableResult Redecl = VisitVarTemplateSpecializationDeclImpl(D);
// These are read/set from/to the first declaration.
if (ThisDeclID == Redecl.getFirstID()) {
D->InstantiatedFromMember.setPointer(
readDeclAs<VarTemplatePartialSpecializationDecl>());
D->InstantiatedFromMember.setInt(Record.readInt());
}
}
void ASTDeclReader::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) {
VisitTypeDecl(D);
D->setDeclaredWithTypename(Record.readInt());
if (Record.readBool()) {
NestedNameSpecifierLoc NNS = Record.readNestedNameSpecifierLoc();
DeclarationNameInfo DN = Record.readDeclarationNameInfo();
ConceptDecl *NamedConcept = Record.readDeclAs<ConceptDecl>();
const ASTTemplateArgumentListInfo *ArgsAsWritten = nullptr;
if (Record.readBool())
ArgsAsWritten = Record.readASTTemplateArgumentListInfo();
Expr *ImmediatelyDeclaredConstraint = Record.readExpr();
D->setTypeConstraint(NNS, DN, /*FoundDecl=*/nullptr, NamedConcept,
ArgsAsWritten, ImmediatelyDeclaredConstraint);
if ((D->ExpandedParameterPack = Record.readInt()))
D->NumExpanded = Record.readInt();
}
if (Record.readInt())
D->setDefaultArgument(readTypeSourceInfo());
}
void ASTDeclReader::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
VisitDeclaratorDecl(D);
// TemplateParmPosition.
D->setDepth(Record.readInt());
D->setPosition(Record.readInt());
if (D->hasPlaceholderTypeConstraint())
D->setPlaceholderTypeConstraint(Record.readExpr());
if (D->isExpandedParameterPack()) {
auto TypesAndInfos =
D->getTrailingObjects<std::pair<QualType, TypeSourceInfo *>>();
for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
new (&TypesAndInfos[I].first) QualType(Record.readType());
TypesAndInfos[I].second = readTypeSourceInfo();
}
} else {
// Rest of NonTypeTemplateParmDecl.
D->ParameterPack = Record.readInt();
if (Record.readInt())
D->setDefaultArgument(Record.readExpr());
}
}
void ASTDeclReader::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) {
VisitTemplateDecl(D);
// TemplateParmPosition.
D->setDepth(Record.readInt());
D->setPosition(Record.readInt());
if (D->isExpandedParameterPack()) {
auto **Data = D->getTrailingObjects<TemplateParameterList *>();
for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
I != N; ++I)
Data[I] = Record.readTemplateParameterList();
} else {
// Rest of TemplateTemplateParmDecl.
D->ParameterPack = Record.readInt();
if (Record.readInt())
D->setDefaultArgument(Reader.getContext(),
Record.readTemplateArgumentLoc());
}
}
void ASTDeclReader::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
VisitRedeclarableTemplateDecl(D);
}
void ASTDeclReader::VisitStaticAssertDecl(StaticAssertDecl *D) {
VisitDecl(D);
D->AssertExprAndFailed.setPointer(Record.readExpr());
D->AssertExprAndFailed.setInt(Record.readInt());
D->Message = cast_or_null<StringLiteral>(Record.readExpr());
D->RParenLoc = readSourceLocation();
}
void ASTDeclReader::VisitEmptyDecl(EmptyDecl *D) {
VisitDecl(D);
}
void ASTDeclReader::VisitLifetimeExtendedTemporaryDecl(
LifetimeExtendedTemporaryDecl *D) {
VisitDecl(D);
D->ExtendingDecl = readDeclAs<ValueDecl>();
D->ExprWithTemporary = Record.readStmt();
if (Record.readInt()) {
D->Value = new (D->getASTContext()) APValue(Record.readAPValue());
D->getASTContext().addDestruction(D->Value);
}
D->ManglingNumber = Record.readInt();
mergeMergeable(D);
}
std::pair<uint64_t, uint64_t>
ASTDeclReader::VisitDeclContext(DeclContext *DC) {
uint64_t LexicalOffset = ReadLocalOffset();
uint64_t VisibleOffset = ReadLocalOffset();
return std::make_pair(LexicalOffset, VisibleOffset);
}
template <typename T>
ASTDeclReader::RedeclarableResult
ASTDeclReader::VisitRedeclarable(Redeclarable<T> *D) {
DeclID FirstDeclID = readDeclID();
Decl *MergeWith = nullptr;
bool IsKeyDecl = ThisDeclID == FirstDeclID;
bool IsFirstLocalDecl = false;
uint64_t RedeclOffset = 0;
// 0 indicates that this declaration was the only declaration of its entity,
// and is used for space optimization.
if (FirstDeclID == 0) {
FirstDeclID = ThisDeclID;
IsKeyDecl = true;
IsFirstLocalDecl = true;
} else if (unsigned N = Record.readInt()) {
// This declaration was the first local declaration, but may have imported
// other declarations.
IsKeyDecl = N == 1;
IsFirstLocalDecl = true;
// We have some declarations that must be before us in our redeclaration
// chain. Read them now, and remember that we ought to merge with one of
// them.
// FIXME: Provide a known merge target to the second and subsequent such
// declaration.
for (unsigned I = 0; I != N - 1; ++I)
MergeWith = readDecl();
RedeclOffset = ReadLocalOffset();
} else {
// This declaration was not the first local declaration. Read the first
// local declaration now, to trigger the import of other redeclarations.
(void)readDecl();
}
auto *FirstDecl = cast_or_null<T>(Reader.GetDecl(FirstDeclID));
if (FirstDecl != D) {
// We delay loading of the redeclaration chain to avoid deeply nested calls.
// We temporarily set the first (canonical) declaration as the previous one
// which is the one that matters and mark the real previous DeclID to be
// loaded & attached later on.
D->RedeclLink = Redeclarable<T>::PreviousDeclLink(FirstDecl);
D->First = FirstDecl->getCanonicalDecl();
}
auto *DAsT = static_cast<T *>(D);
// Note that we need to load local redeclarations of this decl and build a
// decl chain for them. This must happen *after* we perform the preloading
// above; this ensures that the redeclaration chain is built in the correct
// order.
if (IsFirstLocalDecl)
Reader.PendingDeclChains.push_back(std::make_pair(DAsT, RedeclOffset));
return RedeclarableResult(MergeWith, FirstDeclID, IsKeyDecl);
}
/// Attempts to merge the given declaration (D) with another declaration
/// of the same entity.
template<typename T>
void ASTDeclReader::mergeRedeclarable(Redeclarable<T> *DBase,
RedeclarableResult &Redecl,
DeclID TemplatePatternID) {
// If modules are not available, there is no reason to perform this merge.
if (!Reader.getContext().getLangOpts().Modules)
return;
// If we're not the canonical declaration, we don't need to merge.
if (!DBase->isFirstDecl())
return;
auto *D = static_cast<T *>(DBase);
if (auto *Existing = Redecl.getKnownMergeTarget())
// We already know of an existing declaration we should merge with.
mergeRedeclarable(D, cast<T>(Existing), Redecl, TemplatePatternID);
else if (FindExistingResult ExistingRes = findExisting(D))
if (T *Existing = ExistingRes)
mergeRedeclarable(D, Existing, Redecl, TemplatePatternID);
}
/// "Cast" to type T, asserting if we don't have an implicit conversion.
/// We use this to put code in a template that will only be valid for certain
/// instantiations.
template<typename T> static T assert_cast(T t) { return t; }
template<typename T> static T assert_cast(...) {
llvm_unreachable("bad assert_cast");
}
/// Merge together the pattern declarations from two template
/// declarations.
void ASTDeclReader::mergeTemplatePattern(RedeclarableTemplateDecl *D,
RedeclarableTemplateDecl *Existing,
DeclID DsID, bool IsKeyDecl) {
auto *DPattern = D->getTemplatedDecl();
auto *ExistingPattern = Existing->getTemplatedDecl();
RedeclarableResult Result(/*MergeWith*/ ExistingPattern,
DPattern->getCanonicalDecl()->getGlobalID(),
IsKeyDecl);
if (auto *DClass = dyn_cast<CXXRecordDecl>(DPattern)) {
// Merge with any existing definition.
// FIXME: This is duplicated in several places. Refactor.
auto *ExistingClass =
cast<CXXRecordDecl>(ExistingPattern)->getCanonicalDecl();
if (auto *DDD = DClass->DefinitionData) {
if (ExistingClass->DefinitionData) {
MergeDefinitionData(ExistingClass, std::move(*DDD));
} else {
ExistingClass->DefinitionData = DClass->DefinitionData;
// We may have skipped this before because we thought that DClass
// was the canonical declaration.
Reader.PendingDefinitions.insert(DClass);
}
}
DClass->DefinitionData = ExistingClass->DefinitionData;
return mergeRedeclarable(DClass, cast<TagDecl>(ExistingPattern),
Result);
}
if (auto *DFunction = dyn_cast<FunctionDecl>(DPattern))
return mergeRedeclarable(DFunction, cast<FunctionDecl>(ExistingPattern),
Result);
if (auto *DVar = dyn_cast<VarDecl>(DPattern))
return mergeRedeclarable(DVar, cast<VarDecl>(ExistingPattern), Result);
if (auto *DAlias = dyn_cast<TypeAliasDecl>(DPattern))
return mergeRedeclarable(DAlias, cast<TypedefNameDecl>(ExistingPattern),
Result);
llvm_unreachable("merged an unknown kind of redeclarable template");
}
/// Attempts to merge the given declaration (D) with another declaration
/// of the same entity.
template<typename T>
void ASTDeclReader::mergeRedeclarable(Redeclarable<T> *DBase, T *Existing,
RedeclarableResult &Redecl,
DeclID TemplatePatternID) {
auto *D = static_cast<T *>(DBase);
T *ExistingCanon = Existing->getCanonicalDecl();
T *DCanon = D->getCanonicalDecl();
if (ExistingCanon != DCanon) {
assert(DCanon->getGlobalID() == Redecl.getFirstID() &&
"already merged this declaration");
// Have our redeclaration link point back at the canonical declaration
// of the existing declaration, so that this declaration has the
// appropriate canonical declaration.
D->RedeclLink = Redeclarable<T>::PreviousDeclLink(ExistingCanon);
D->First = ExistingCanon;
ExistingCanon->Used |= D->Used;
D->Used = false;
// When we merge a namespace, update its pointer to the first namespace.
// We cannot have loaded any redeclarations of this declaration yet, so
// there's nothing else that needs to be updated.
if (auto *Namespace = dyn_cast<NamespaceDecl>(D))
Namespace->AnonOrFirstNamespaceAndInline.setPointer(
assert_cast<NamespaceDecl*>(ExistingCanon));
// When we merge a template, merge its pattern.
if (auto *DTemplate = dyn_cast<RedeclarableTemplateDecl>(D))
mergeTemplatePattern(
DTemplate, assert_cast<RedeclarableTemplateDecl*>(ExistingCanon),
TemplatePatternID, Redecl.isKeyDecl());
// If this declaration is a key declaration, make a note of that.
if (Redecl.isKeyDecl())
Reader.KeyDecls[ExistingCanon].push_back(Redecl.getFirstID());
}
}
/// ODR-like semantics for C/ObjC allow us to merge tag types and a structural
/// check in Sema guarantees the types can be merged (see C11 6.2.7/1 or C89
/// 6.1.2.6/1). Although most merging is done in Sema, we need to guarantee
/// that some types are mergeable during deserialization, otherwise name
/// lookup fails. This is the case for EnumConstantDecl.
static bool allowODRLikeMergeInC(NamedDecl *ND) {
if (!ND)
return false;
// TODO: implement merge for other necessary decls.
if (isa<EnumConstantDecl, FieldDecl, IndirectFieldDecl>(ND))
return true;
return false;
}
/// Attempts to merge LifetimeExtendedTemporaryDecl with
/// identical class definitions from two different modules.
void ASTDeclReader::mergeMergeable(LifetimeExtendedTemporaryDecl *D) {
// If modules are not available, there is no reason to perform this merge.
if (!Reader.getContext().getLangOpts().Modules)
return;
LifetimeExtendedTemporaryDecl *LETDecl = D;
LifetimeExtendedTemporaryDecl *&LookupResult =
Reader.LETemporaryForMerging[std::make_pair(
LETDecl->getExtendingDecl(), LETDecl->getManglingNumber())];
if (LookupResult)
Reader.getContext().setPrimaryMergedDecl(LETDecl,
LookupResult->getCanonicalDecl());
else
LookupResult = LETDecl;
}
/// Attempts to merge the given declaration (D) with another declaration
/// of the same entity, for the case where the entity is not actually
/// redeclarable. This happens, for instance, when merging the fields of
/// identical class definitions from two different modules.
template<typename T>
void ASTDeclReader::mergeMergeable(Mergeable<T> *D) {
// If modules are not available, there is no reason to perform this merge.
if (!Reader.getContext().getLangOpts().Modules)
return;
// ODR-based merging is performed in C++ and in some cases (tag types) in C.
// Note that C identically-named things in different translation units are
// not redeclarations, but may still have compatible types, where ODR-like
// semantics may apply.
if (!Reader.getContext().getLangOpts().CPlusPlus &&
!allowODRLikeMergeInC(dyn_cast<NamedDecl>(static_cast<T*>(D))))
return;
if (FindExistingResult ExistingRes = findExisting(static_cast<T*>(D)))
if (T *Existing = ExistingRes)
Reader.getContext().setPrimaryMergedDecl(static_cast<T *>(D),
Existing->getCanonicalDecl());
}
void ASTDeclReader::VisitOMPThreadPrivateDecl(OMPThreadPrivateDecl *D) {
Record.readOMPChildren(D->Data);
VisitDecl(D);
}
void ASTDeclReader::VisitOMPAllocateDecl(OMPAllocateDecl *D) {
Record.readOMPChildren(D->Data);
VisitDecl(D);
}
void ASTDeclReader::VisitOMPRequiresDecl(OMPRequiresDecl * D) {
Record.readOMPChildren(D->Data);
VisitDecl(D);
}
void ASTDeclReader::VisitOMPDeclareReductionDecl(OMPDeclareReductionDecl *D) {
VisitValueDecl(D);
D->setLocation(readSourceLocation());
Expr *In = Record.readExpr();
Expr *Out = Record.readExpr();
D->setCombinerData(In, Out);
Expr *Combiner = Record.readExpr();
D->setCombiner(Combiner);
Expr *Orig = Record.readExpr();
Expr *Priv = Record.readExpr();
D->setInitializerData(Orig, Priv);
Expr *Init = Record.readExpr();
auto IK = static_cast<OMPDeclareReductionDecl::InitKind>(Record.readInt());
D->setInitializer(Init, IK);
D->PrevDeclInScope = readDeclID();
}
void ASTDeclReader::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) {
Record.readOMPChildren(D->Data);
VisitValueDecl(D);
D->VarName = Record.readDeclarationName();
D->PrevDeclInScope = readDeclID();
}
void ASTDeclReader::VisitOMPCapturedExprDecl(OMPCapturedExprDecl *D) {
VisitVarDecl(D);
}
//===----------------------------------------------------------------------===//
// Attribute Reading
//===----------------------------------------------------------------------===//
namespace {
class AttrReader {
ASTRecordReader &Reader;
public:
AttrReader(ASTRecordReader &Reader) : Reader(Reader) {}
uint64_t readInt() {
return Reader.readInt();
}
SourceRange readSourceRange() {
return Reader.readSourceRange();
}
SourceLocation readSourceLocation() {
return Reader.readSourceLocation();
}
Expr *readExpr() { return Reader.readExpr(); }
std::string readString() {
return Reader.readString();
}
TypeSourceInfo *readTypeSourceInfo() {
return Reader.readTypeSourceInfo();
}
IdentifierInfo *readIdentifier() {
return Reader.readIdentifier();
}
VersionTuple readVersionTuple() {
return Reader.readVersionTuple();
}
OMPTraitInfo *readOMPTraitInfo() { return Reader.readOMPTraitInfo(); }
template <typename T> T *GetLocalDeclAs(uint32_t LocalID) {
return Reader.GetLocalDeclAs<T>(LocalID);
}
};
}
Attr *ASTRecordReader::readAttr() {
AttrReader Record(*this);
auto V = Record.readInt();
if (!V)
return nullptr;
Attr *New = nullptr;
// Kind is stored as a 1-based integer because 0 is used to indicate a null
// Attr pointer.
auto Kind = static_cast<attr::Kind>(V - 1);
ASTContext &Context = getContext();
IdentifierInfo *AttrName = Record.readIdentifier();
IdentifierInfo *ScopeName = Record.readIdentifier();
SourceRange AttrRange = Record.readSourceRange();
SourceLocation ScopeLoc = Record.readSourceLocation();
unsigned ParsedKind = Record.readInt();
unsigned Syntax = Record.readInt();
unsigned SpellingIndex = Record.readInt();
AttributeCommonInfo Info(AttrName, ScopeName, AttrRange, ScopeLoc,
AttributeCommonInfo::Kind(ParsedKind),
AttributeCommonInfo::Syntax(Syntax), SpellingIndex);
#include "clang/Serialization/AttrPCHRead.inc"
assert(New && "Unable to decode attribute?");
return New;
}
/// Reads attributes from the current stream position.
void ASTRecordReader::readAttributes(AttrVec &Attrs) {
for (unsigned I = 0, E = readInt(); I != E; ++I)
Attrs.push_back(readAttr());
}
//===----------------------------------------------------------------------===//
// ASTReader Implementation
//===----------------------------------------------------------------------===//
/// Note that we have loaded the declaration with the given
/// Index.
///
/// This routine notes that this declaration has already been loaded,
/// so that future GetDecl calls will return this declaration rather
/// than trying to load a new declaration.
inline void ASTReader::LoadedDecl(unsigned Index, Decl *D) {
assert(!DeclsLoaded[Index] && "Decl loaded twice?");
DeclsLoaded[Index] = D;
}
/// Determine whether the consumer will be interested in seeing
/// this declaration (via HandleTopLevelDecl).
///
/// This routine should return true for anything that might affect
/// code generation, e.g., inline function definitions, Objective-C
/// declarations with metadata, etc.
static bool isConsumerInterestedIn(ASTContext &Ctx, Decl *D, bool HasBody) {
// An ObjCMethodDecl is never considered as "interesting" because its
// implementation container always is.
// An ImportDecl or VarDecl imported from a module map module will get
// emitted when we import the relevant module.
if (isPartOfPerModuleInitializer(D)) {
auto *M = D->getImportedOwningModule();
if (M && M->Kind == Module::ModuleMapModule &&
Ctx.DeclMustBeEmitted(D))
return false;
}
if (isa<FileScopeAsmDecl>(D) ||
isa<ObjCProtocolDecl>(D) ||
isa<ObjCImplDecl>(D) ||
isa<ImportDecl>(D) ||
isa<PragmaCommentDecl>(D) ||
isa<PragmaDetectMismatchDecl>(D))
return true;
if (isa<OMPThreadPrivateDecl>(D) || isa<OMPDeclareReductionDecl>(D) ||
isa<OMPDeclareMapperDecl>(D) || isa<OMPAllocateDecl>(D) ||
isa<OMPRequiresDecl>(D))
return !D->getDeclContext()->isFunctionOrMethod();
if (const auto *Var = dyn_cast<VarDecl>(D))
return Var->isFileVarDecl() &&
(Var->isThisDeclarationADefinition() == VarDecl::Definition ||
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Var));
if (const auto *Func = dyn_cast<FunctionDecl>(D))
return Func->doesThisDeclarationHaveABody() || HasBody;
if (auto *ES = D->getASTContext().getExternalSource())
if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
return true;
return false;
}
/// Get the correct cursor and offset for loading a declaration.
ASTReader::RecordLocation
ASTReader::DeclCursorForID(DeclID ID, SourceLocation &Loc) {
GlobalDeclMapType::iterator I = GlobalDeclMap.find(ID);
assert(I != GlobalDeclMap.end() && "Corrupted global declaration map");
ModuleFile *M = I->second;
const DeclOffset &DOffs =
M->DeclOffsets[ID - M->BaseDeclID - NUM_PREDEF_DECL_IDS];
Loc = TranslateSourceLocation(*M, DOffs.getLocation());
return RecordLocation(M, DOffs.getBitOffset(M->DeclsBlockStartOffset));
}
ASTReader::RecordLocation ASTReader::getLocalBitOffset(uint64_t GlobalOffset) {
auto I = GlobalBitOffsetsMap.find(GlobalOffset);
assert(I != GlobalBitOffsetsMap.end() && "Corrupted global bit offsets map");
return RecordLocation(I->second, GlobalOffset - I->second->GlobalBitOffset);
}
uint64_t ASTReader::getGlobalBitOffset(ModuleFile &M, uint64_t LocalOffset) {
return LocalOffset + M.GlobalBitOffset;
}
static bool isSameTemplateParameterList(const ASTContext &C,
const TemplateParameterList *X,
const TemplateParameterList *Y);
/// Determine whether two template parameters are similar enough
/// that they may be used in declarations of the same template.
static bool isSameTemplateParameter(const NamedDecl *X,
const NamedDecl *Y) {
if (X->getKind() != Y->getKind())
return false;
if (const auto *TX = dyn_cast<TemplateTypeParmDecl>(X)) {
const auto *TY = cast<TemplateTypeParmDecl>(Y);
if (TX->isParameterPack() != TY->isParameterPack())
return false;
if (TX->hasTypeConstraint() != TY->hasTypeConstraint())
return false;
const TypeConstraint *TXTC = TX->getTypeConstraint();
const TypeConstraint *TYTC = TY->getTypeConstraint();
if (!TXTC != !TYTC)
return false;
if (TXTC && TYTC) {
if (TXTC->getNamedConcept() != TYTC->getNamedConcept())
return false;
if (TXTC->hasExplicitTemplateArgs() != TYTC->hasExplicitTemplateArgs())
return false;
if (TXTC->hasExplicitTemplateArgs()) {
const auto *TXTCArgs = TXTC->getTemplateArgsAsWritten();
const auto *TYTCArgs = TYTC->getTemplateArgsAsWritten();
if (TXTCArgs->NumTemplateArgs != TYTCArgs->NumTemplateArgs)
return false;
llvm::FoldingSetNodeID XID, YID;
for (const auto &ArgLoc : TXTCArgs->arguments())
ArgLoc.getArgument().Profile(XID, X->getASTContext());
for (const auto &ArgLoc : TYTCArgs->arguments())
ArgLoc.getArgument().Profile(YID, Y->getASTContext());
if (XID != YID)
return false;
}
}
return true;
}
if (const auto *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
const auto *TY = cast<NonTypeTemplateParmDecl>(Y);
return TX->isParameterPack() == TY->isParameterPack() &&
TX->getASTContext().hasSameType(TX->getType(), TY->getType());
}
const auto *TX = cast<TemplateTemplateParmDecl>(X);
const auto *TY = cast<TemplateTemplateParmDecl>(Y);
return TX->isParameterPack() == TY->isParameterPack() &&
isSameTemplateParameterList(TX->getASTContext(),
TX->getTemplateParameters(),
TY->getTemplateParameters());
}
static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) {
if (auto *NS = X->getAsNamespace())
return NS;
if (auto *NAS = X->getAsNamespaceAlias())
return NAS->getNamespace();
return nullptr;
}
static bool isSameQualifier(const NestedNameSpecifier *X,
const NestedNameSpecifier *Y) {
if (auto *NSX = getNamespace(X)) {
auto *NSY = getNamespace(Y);
if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl())
return false;
} else if (X->getKind() != Y->getKind())
return false;
// FIXME: For namespaces and types, we're permitted to check that the entity
// is named via the same tokens. We should probably do so.
switch (X->getKind()) {
case NestedNameSpecifier::Identifier:
if (X->getAsIdentifier() != Y->getAsIdentifier())
return false;
break;
case NestedNameSpecifier::Namespace:
case NestedNameSpecifier::NamespaceAlias:
// We've already checked that we named the same namespace.
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
if (X->getAsType()->getCanonicalTypeInternal() !=
Y->getAsType()->getCanonicalTypeInternal())
return false;
break;
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
return true;
}
// Recurse into earlier portion of NNS, if any.
auto *PX = X->getPrefix();
auto *PY = Y->getPrefix();
if (PX && PY)
return isSameQualifier(PX, PY);
return !PX && !PY;
}
/// Determine whether two template parameter lists are similar enough
/// that they may be used in declarations of the same template.
static bool isSameTemplateParameterList(const ASTContext &C,
const TemplateParameterList *X,
const TemplateParameterList *Y) {
if (X->size() != Y->size())
return false;
for (unsigned I = 0, N = X->size(); I != N; ++I)
if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I)))
return false;
const Expr *XRC = X->getRequiresClause();
const Expr *YRC = Y->getRequiresClause();
if (!XRC != !YRC)
return false;
if (XRC) {
llvm::FoldingSetNodeID XRCID, YRCID;
XRC->Profile(XRCID, C, /*Canonical=*/true);
YRC->Profile(YRCID, C, /*Canonical=*/true);
if (XRCID != YRCID)
return false;
}
return true;
}
/// Determine whether the attributes we can overload on are identical for A and
/// B. Will ignore any overloadable attrs represented in the type of A and B.
static bool hasSameOverloadableAttrs(const FunctionDecl *A,
const FunctionDecl *B) {
// Note that pass_object_size attributes are represented in the function's
// ExtParameterInfo, so we don't need to check them here.
llvm::FoldingSetNodeID Cand1ID, Cand2ID;
auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>();
auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>();
for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) {
Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
// Return false if the number of enable_if attributes is different.
if (!Cand1A || !Cand2A)
return false;
Cand1ID.clear();
Cand2ID.clear();
(*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true);
(*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true);
// Return false if any of the enable_if expressions of A and B are
// different.
if (Cand1ID != Cand2ID)
return false;
}
return true;
}
/// Determine whether the two declarations refer to the same entity.
static bool isSameEntity(NamedDecl *X, NamedDecl *Y) {
assert(X->getDeclName() == Y->getDeclName() && "Declaration name mismatch!");
if (X == Y)
return true;
// Must be in the same context.
//
// Note that we can't use DeclContext::Equals here, because the DeclContexts
// could be two different declarations of the same function. (We will fix the
// semantic DC to refer to the primary definition after merging.)
if (!declaresSameEntity(cast<Decl>(X->getDeclContext()->getRedeclContext()),
cast<Decl>(Y->getDeclContext()->getRedeclContext())))
return false;
// Two typedefs refer to the same entity if they have the same underlying
// type.
if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(X))
if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Y))
return X->getASTContext().hasSameType(TypedefX->getUnderlyingType(),
TypedefY->getUnderlyingType());
// Must have the same kind.
if (X->getKind() != Y->getKind())
return false;
// Objective-C classes and protocols with the same name always match.
if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X))
return true;
if (isa<ClassTemplateSpecializationDecl>(X)) {
// No need to handle these here: we merge them when adding them to the
// template.
return false;
}
// Compatible tags match.
if (const auto *TagX = dyn_cast<TagDecl>(X)) {
const auto *TagY = cast<TagDecl>(Y);
return (TagX->getTagKind() == TagY->getTagKind()) ||
((TagX->getTagKind() == TTK_Struct || TagX->getTagKind() == TTK_Class ||
TagX->getTagKind() == TTK_Interface) &&
(TagY->getTagKind() == TTK_Struct || TagY->getTagKind() == TTK_Class ||
TagY->getTagKind() == TTK_Interface));
}
// Functions with the same type and linkage match.
// FIXME: This needs to cope with merging of prototyped/non-prototyped
// functions, etc.
if (const auto *FuncX = dyn_cast<FunctionDecl>(X)) {
const auto *FuncY = cast<FunctionDecl>(Y);
if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(X)) {
const auto *CtorY = cast<CXXConstructorDecl>(Y);
if (CtorX->getInheritedConstructor() &&
!isSameEntity(CtorX->getInheritedConstructor().getConstructor(),
CtorY->getInheritedConstructor().getConstructor()))
return false;
}
if (FuncX->isMultiVersion() != FuncY->isMultiVersion())
return false;
// Multiversioned functions with different feature strings are represented
// as separate declarations.
if (FuncX->isMultiVersion()) {
const auto *TAX = FuncX->getAttr<TargetAttr>();
const auto *TAY = FuncY->getAttr<TargetAttr>();
assert(TAX && TAY && "Multiversion Function without target attribute");
if (TAX->getFeaturesStr() != TAY->getFeaturesStr())
return false;
}
ASTContext &C = FuncX->getASTContext();
const Expr *XRC = FuncX->getTrailingRequiresClause();
const Expr *YRC = FuncY->getTrailingRequiresClause();
if (!XRC != !YRC)
return false;
if (XRC) {
llvm::FoldingSetNodeID XRCID, YRCID;
XRC->Profile(XRCID, C, /*Canonical=*/true);
YRC->Profile(YRCID, C, /*Canonical=*/true);
if (XRCID != YRCID)
return false;
}
auto GetTypeAsWritten = [](const FunctionDecl *FD) {
// Map to the first declaration that we've already merged into this one.
// The TSI of redeclarations might not match (due to calling conventions
// being inherited onto the type but not the TSI), but the TSI type of
// the first declaration of the function should match across modules.
FD = FD->getCanonicalDecl();
return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType()
: FD->getType();
};
QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY);
if (!C.hasSameType(XT, YT)) {
// We can get functions with different types on the redecl chain in C++17
// if they have differing exception specifications and at least one of
// the excpetion specs is unresolved.
auto *XFPT = XT->getAs<FunctionProtoType>();
auto *YFPT = YT->getAs<FunctionProtoType>();
if (C.getLangOpts().CPlusPlus17 && XFPT && YFPT &&
(isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) ||
isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) &&
C.hasSameFunctionTypeIgnoringExceptionSpec(XT, YT))
return true;
return false;
}
return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() &&
hasSameOverloadableAttrs(FuncX, FuncY);
}
// Variables with the same type and linkage match.
if (const auto *VarX = dyn_cast<VarDecl>(X)) {
const auto *VarY = cast<VarDecl>(Y);
if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) {
ASTContext &C = VarX->getASTContext();
if (C.hasSameType(VarX->getType(), VarY->getType()))
return true;
// We can get decls with different types on the redecl chain. Eg.
// template <typename T> struct S { static T Var[]; }; // #1
// template <typename T> T S<T>::Var[sizeof(T)]; // #2
// Only? happens when completing an incomplete array type. In this case
// when comparing #1 and #2 we should go through their element type.
const ArrayType *VarXTy = C.getAsArrayType(VarX->getType());
const ArrayType *VarYTy = C.getAsArrayType(VarY->getType());
if (!VarXTy || !VarYTy)
return false;
if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType())
return C.hasSameType(VarXTy->getElementType(), VarYTy->getElementType());
}
return false;
}
// Namespaces with the same name and inlinedness match.
if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(X)) {
const auto *NamespaceY = cast<NamespaceDecl>(Y);
return NamespaceX->isInline() == NamespaceY->isInline();
}
// Identical template names and kinds match if their template parameter lists
// and patterns match.
if (const auto *TemplateX = dyn_cast<TemplateDecl>(X)) {
const auto *TemplateY = cast<TemplateDecl>(Y);
return isSameEntity(TemplateX->getTemplatedDecl(),
TemplateY->getTemplatedDecl()) &&
isSameTemplateParameterList(TemplateX->getASTContext(),
TemplateX->getTemplateParameters(),
TemplateY->getTemplateParameters());
}
// Fields with the same name and the same type match.
if (const auto *FDX = dyn_cast<FieldDecl>(X)) {
const auto *FDY = cast<FieldDecl>(Y);
// FIXME: Also check the bitwidth is odr-equivalent, if any.
return X->getASTContext().hasSameType(FDX->getType(), FDY->getType());
}
// Indirect fields with the same target field match.
if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(X)) {
const auto *IFDY = cast<IndirectFieldDecl>(Y);
return IFDX->getAnonField()->getCanonicalDecl() ==
IFDY->getAnonField()->getCanonicalDecl();
}
// Enumerators with the same name match.
if (isa<EnumConstantDecl>(X))
// FIXME: Also check the value is odr-equivalent.
return true;
// Using shadow declarations with the same target match.
if (const auto *USX = dyn_cast<UsingShadowDecl>(X)) {
const auto *USY = cast<UsingShadowDecl>(Y);
return USX->getTargetDecl() == USY->getTargetDecl();
}
// Using declarations with the same qualifier match. (We already know that
// the name matches.)
if (const auto *UX = dyn_cast<UsingDecl>(X)) {
const auto *UY = cast<UsingDecl>(Y);
return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
UX->hasTypename() == UY->hasTypename() &&
UX->isAccessDeclaration() == UY->isAccessDeclaration();
}
if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) {
const auto *UY = cast<UnresolvedUsingValueDecl>(Y);
return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
UX->isAccessDeclaration() == UY->isAccessDeclaration();
}
if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X)) {
return isSameQualifier(
UX->getQualifier(),
cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier());
}
// Using-pack declarations are only created by instantiation, and match if
// they're instantiated from matching UnresolvedUsing...Decls.
if (const auto *UX = dyn_cast<UsingPackDecl>(X)) {
return declaresSameEntity(
UX->getInstantiatedFromUsingDecl(),
cast<UsingPackDecl>(Y)->getInstantiatedFromUsingDecl());
}
// Namespace alias definitions with the same target match.
if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) {
const auto *NAY = cast<NamespaceAliasDecl>(Y);
return NAX->getNamespace()->Equals(NAY->getNamespace());
}
return false;
}
/// Find the context in which we should search for previous declarations when
/// looking for declarations to merge.
DeclContext *ASTDeclReader::getPrimaryContextForMerging(ASTReader &Reader,
DeclContext *DC) {
if (auto *ND = dyn_cast<NamespaceDecl>(DC))
return ND->getOriginalNamespace();
if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) {
// Try to dig out the definition.
auto *DD = RD->DefinitionData;
if (!DD)
DD = RD->getCanonicalDecl()->DefinitionData;
// If there's no definition yet, then DC's definition is added by an update
// record, but we've not yet loaded that update record. In this case, we
// commit to DC being the canonical definition now, and will fix this when
// we load the update record.
if (!DD) {
DD = new (Reader.getContext()) struct CXXRecordDecl::DefinitionData(RD);
RD->setCompleteDefinition(true);
RD->DefinitionData = DD;
RD->getCanonicalDecl()->DefinitionData = DD;
// Track that we did this horrible thing so that we can fix it later.
Reader.PendingFakeDefinitionData.insert(
std::make_pair(DD, ASTReader::PendingFakeDefinitionKind::Fake));
}
return DD->Definition;
}
if (auto *RD = dyn_cast<RecordDecl>(DC))
return RD->getDefinition();
if (auto *ED = dyn_cast<EnumDecl>(DC))
return ED->getASTContext().getLangOpts().CPlusPlus? ED->getDefinition()
: nullptr;
// We can see the TU here only if we have no Sema object. In that case,
// there's no TU scope to look in, so using the DC alone is sufficient.
if (auto *TU = dyn_cast<TranslationUnitDecl>(DC))
return TU;
return nullptr;
}
ASTDeclReader::FindExistingResult::~FindExistingResult() {
// Record that we had a typedef name for linkage whether or not we merge
// with that declaration.
if (TypedefNameForLinkage) {
DeclContext *DC = New->getDeclContext()->getRedeclContext();
Reader.ImportedTypedefNamesForLinkage.insert(
std::make_pair(std::make_pair(DC, TypedefNameForLinkage), New));
return;
}
if (!AddResult || Existing)
return;
DeclarationName Name = New->getDeclName();
DeclContext *DC = New->getDeclContext()->getRedeclContext();
if (needsAnonymousDeclarationNumber(New)) {
setAnonymousDeclForMerging(Reader, New->getLexicalDeclContext(),
AnonymousDeclNumber, New);
} else if (DC->isTranslationUnit() &&
!Reader.getContext().getLangOpts().CPlusPlus) {
if (Reader.getIdResolver().tryAddTopLevelDecl(New, Name))
Reader.PendingFakeLookupResults[Name.getAsIdentifierInfo()]
.push_back(New);
} else if (DeclContext *MergeDC = getPrimaryContextForMerging(Reader, DC)) {
// Add the declaration to its redeclaration context so later merging
// lookups will find it.
MergeDC->makeDeclVisibleInContextImpl(New, /*Internal*/true);
}
}
/// Find the declaration that should be merged into, given the declaration found
/// by name lookup. If we're merging an anonymous declaration within a typedef,
/// we need a matching typedef, and we merge with the type inside it.
static NamedDecl *getDeclForMerging(NamedDecl *Found,
bool IsTypedefNameForLinkage) {
if (!IsTypedefNameForLinkage)
return Found;
// If we found a typedef declaration that gives a name to some other
// declaration, then we want that inner declaration. Declarations from
// AST files are handled via ImportedTypedefNamesForLinkage.
if (Found->isFromASTFile())
return nullptr;
if (auto *TND = dyn_cast<TypedefNameDecl>(Found))
return TND->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
return nullptr;
}
/// Find the declaration to use to populate the anonymous declaration table
/// for the given lexical DeclContext. We only care about finding local
/// definitions of the context; we'll merge imported ones as we go.
DeclContext *
ASTDeclReader::getPrimaryDCForAnonymousDecl(DeclContext *LexicalDC) {
// For classes, we track the definition as we merge.
if (auto *RD = dyn_cast<CXXRecordDecl>(LexicalDC)) {
auto *DD = RD->getCanonicalDecl()->DefinitionData;
return DD ? DD->Definition : nullptr;
}
// For anything else, walk its merged redeclarations looking for a definition.
// Note that we can't just call getDefinition here because the redeclaration
// chain isn't wired up.
for (auto *D : merged_redecls(cast<Decl>(LexicalDC))) {
if (auto *FD = dyn_cast<FunctionDecl>(D))
if (FD->isThisDeclarationADefinition())
return FD;
if (auto *MD = dyn_cast<ObjCMethodDecl>(D))
if (MD->isThisDeclarationADefinition())
return MD;
if (auto *RD = dyn_cast<RecordDecl>(D))
if (RD->isThisDeclarationADefinition())
return RD;
}
// No merged definition yet.
return nullptr;
}
NamedDecl *ASTDeclReader::getAnonymousDeclForMerging(ASTReader &Reader,
DeclContext *DC,
unsigned Index) {
// If the lexical context has been merged, look into the now-canonical
// definition.
auto *CanonDC = cast<Decl>(DC)->getCanonicalDecl();
// If we've seen this before, return the canonical declaration.
auto &Previous = Reader.AnonymousDeclarationsForMerging[CanonDC];
if (Index < Previous.size() && Previous[Index])
return Previous[Index];
// If this is the first time, but we have parsed a declaration of the context,
// build the anonymous declaration list from the parsed declaration.
auto *PrimaryDC = getPrimaryDCForAnonymousDecl(DC);
if (PrimaryDC && !cast<Decl>(PrimaryDC)->isFromASTFile()) {
numberAnonymousDeclsWithin(PrimaryDC, [&](NamedDecl *ND, unsigned Number) {
if (Previous.size() == Number)
Previous.push_back(cast<NamedDecl>(ND->getCanonicalDecl()));
else
Previous[Number] = cast<NamedDecl>(ND->getCanonicalDecl());
});
}
return Index < Previous.size() ? Previous[Index] : nullptr;
}
void ASTDeclReader::setAnonymousDeclForMerging(ASTReader &Reader,
DeclContext *DC, unsigned Index,
NamedDecl *D) {
auto *CanonDC = cast<Decl>(DC)->getCanonicalDecl();
auto &Previous = Reader.AnonymousDeclarationsForMerging[CanonDC];
if (Index >= Previous.size())
Previous.resize(Index + 1);
if (!Previous[Index])
Previous[Index] = D;
}
ASTDeclReader::FindExistingResult ASTDeclReader::findExisting(NamedDecl *D) {
DeclarationName Name = TypedefNameForLinkage ? TypedefNameForLinkage
: D->getDeclName();
if (!Name && !needsAnonymousDeclarationNumber(D)) {
// Don't bother trying to find unnamed declarations that are in
// unmergeable contexts.
FindExistingResult Result(Reader, D, /*Existing=*/nullptr,
AnonymousDeclNumber, TypedefNameForLinkage);
Result.suppress();
return Result;
}
DeclContext *DC = D->getDeclContext()->getRedeclContext();
if (TypedefNameForLinkage) {
auto It = Reader.ImportedTypedefNamesForLinkage.find(
std::make_pair(DC, TypedefNameForLinkage));
if (It != Reader.ImportedTypedefNamesForLinkage.end())
if (isSameEntity(It->second, D))
return FindExistingResult(Reader, D, It->second, AnonymousDeclNumber,
TypedefNameForLinkage);
// Go on to check in other places in case an existing typedef name
// was not imported.
}
if (needsAnonymousDeclarationNumber(D)) {
// This is an anonymous declaration that we may need to merge. Look it up
// in its context by number.
if (auto *Existing = getAnonymousDeclForMerging(
Reader, D->getLexicalDeclContext(), AnonymousDeclNumber))
if (isSameEntity(Existing, D))
return FindExistingResult(Reader, D, Existing, AnonymousDeclNumber,
TypedefNameForLinkage);
} else if (DC->isTranslationUnit() &&
!Reader.getContext().getLangOpts().CPlusPlus) {
IdentifierResolver &IdResolver = Reader.getIdResolver();
// Temporarily consider the identifier to be up-to-date. We don't want to
// cause additional lookups here.
class UpToDateIdentifierRAII {
IdentifierInfo *II;
bool WasOutToDate = false;
public:
explicit UpToDateIdentifierRAII(IdentifierInfo *II) : II(II) {
if (II) {
WasOutToDate = II->isOutOfDate();
if (WasOutToDate)
II->setOutOfDate(false);
}
}
~UpToDateIdentifierRAII() {
if (WasOutToDate)
II->setOutOfDate(true);
}
} UpToDate(Name.getAsIdentifierInfo());
for (IdentifierResolver::iterator I = IdResolver.begin(Name),
IEnd = IdResolver.end();
I != IEnd; ++I) {
if (NamedDecl *Existing = getDeclForMerging(*I, TypedefNameForLinkage))
if (isSameEntity(Existing, D))
return FindExistingResult(Reader, D, Existing, AnonymousDeclNumber,
TypedefNameForLinkage);
}
} else if (DeclContext *MergeDC = getPrimaryContextForMerging(Reader, DC)) {
DeclContext::lookup_result R = MergeDC->noload_lookup(Name);
for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
if (NamedDecl *Existing = getDeclForMerging(*I, TypedefNameForLinkage))
if (isSameEntity(Existing, D))
return FindExistingResult(Reader, D, Existing, AnonymousDeclNumber,
TypedefNameForLinkage);
}
} else {
// Not in a mergeable context.
return FindExistingResult(Reader);
}
// If this declaration is from a merged context, make a note that we need to
// check that the canonical definition of that context contains the decl.
//
// FIXME: We should do something similar if we merge two definitions of the
// same template specialization into the same CXXRecordDecl.
auto MergedDCIt = Reader.MergedDeclContexts.find(D->getLexicalDeclContext());
if (MergedDCIt != Reader.MergedDeclContexts.end() &&
MergedDCIt->second == D->getDeclContext())
Reader.PendingOdrMergeChecks.push_back(D);
return FindExistingResult(Reader, D, /*Existing=*/nullptr,
AnonymousDeclNumber, TypedefNameForLinkage);
}
template<typename DeclT>
Decl *ASTDeclReader::getMostRecentDeclImpl(Redeclarable<DeclT> *D) {
return D->RedeclLink.getLatestNotUpdated();
}
Decl *ASTDeclReader::getMostRecentDeclImpl(...) {
llvm_unreachable("getMostRecentDecl on non-redeclarable declaration");
}
Decl *ASTDeclReader::getMostRecentDecl(Decl *D) {
assert(D);
switch (D->getKind()) {
#define ABSTRACT_DECL(TYPE)
#define DECL(TYPE, BASE) \
case Decl::TYPE: \
return getMostRecentDeclImpl(cast<TYPE##Decl>(D));
#include "clang/AST/DeclNodes.inc"
}
llvm_unreachable("unknown decl kind");
}
Decl *ASTReader::getMostRecentExistingDecl(Decl *D) {
return ASTDeclReader::getMostRecentDecl(D->getCanonicalDecl());
}
void ASTDeclReader::mergeInheritableAttributes(ASTReader &Reader, Decl *D,
Decl *Previous) {
InheritableAttr *NewAttr = nullptr;
ASTContext &Context = Reader.getContext();
const auto *IA = Previous->getAttr<MSInheritanceAttr>();
if (IA && !D->hasAttr<MSInheritanceAttr>()) {
NewAttr = cast<InheritableAttr>(IA->clone(Context));
NewAttr->setInherited(true);
D->addAttr(NewAttr);
}
}
template<typename DeclT>
void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader,
Redeclarable<DeclT> *D,
Decl *Previous, Decl *Canon) {
D->RedeclLink.setPrevious(cast<DeclT>(Previous));
D->First = cast<DeclT>(Previous)->First;
}
namespace clang {
template<>
void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader,
Redeclarable<VarDecl> *D,
Decl *Previous, Decl *Canon) {
auto *VD = static_cast<VarDecl *>(D);
auto *PrevVD = cast<VarDecl>(Previous);
D->RedeclLink.setPrevious(PrevVD);
D->First = PrevVD->First;
// We should keep at most one definition on the chain.
// FIXME: Cache the definition once we've found it. Building a chain with
// N definitions currently takes O(N^2) time here.
if (VD->isThisDeclarationADefinition() == VarDecl::Definition) {
for (VarDecl *CurD = PrevVD; CurD; CurD = CurD->getPreviousDecl()) {
if (CurD->isThisDeclarationADefinition() == VarDecl::Definition) {
Reader.mergeDefinitionVisibility(CurD, VD);
VD->demoteThisDefinitionToDeclaration();
break;
}
}
}
}
static bool isUndeducedReturnType(QualType T) {
auto *DT = T->getContainedDeducedType();
return DT && !DT->isDeduced();
}
template<>
void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader,
Redeclarable<FunctionDecl> *D,
Decl *Previous, Decl *Canon) {
auto *FD = static_cast<FunctionDecl *>(D);
auto *PrevFD = cast<FunctionDecl>(Previous);
FD->RedeclLink.setPrevious(PrevFD);
FD->First = PrevFD->First;
// If the previous declaration is an inline function declaration, then this
// declaration is too.
if (PrevFD->isInlined() != FD->isInlined()) {
// FIXME: [dcl.fct.spec]p4:
// If a function with external linkage is declared inline in one
// translation unit, it shall be declared inline in all translation
// units in which it appears.
//
// Be careful of this case:
//
// module A:
// template<typename T> struct X { void f(); };
// template<typename T> inline void X<T>::f() {}
//
// module B instantiates the declaration of X<int>::f
// module C instantiates the definition of X<int>::f
//
// If module B and C are merged, we do not have a violation of this rule.
FD->setImplicitlyInline(true);
}
auto *FPT = FD->getType()->getAs<FunctionProtoType>();
auto *PrevFPT = PrevFD->getType()->getAs<FunctionProtoType>();
if (FPT && PrevFPT) {
// If we need to propagate an exception specification along the redecl
// chain, make a note of that so that we can do so later.
bool IsUnresolved = isUnresolvedExceptionSpec(FPT->getExceptionSpecType());
bool WasUnresolved =
isUnresolvedExceptionSpec(PrevFPT->getExceptionSpecType());
if (IsUnresolved != WasUnresolved)
Reader.PendingExceptionSpecUpdates.insert(
{Canon, IsUnresolved ? PrevFD : FD});
// If we need to propagate a deduced return type along the redecl chain,
// make a note of that so that we can do it later.
bool IsUndeduced = isUndeducedReturnType(FPT->getReturnType());
bool WasUndeduced = isUndeducedReturnType(PrevFPT->getReturnType());
if (IsUndeduced != WasUndeduced)
Reader.PendingDeducedTypeUpdates.insert(
{cast<FunctionDecl>(Canon),
(IsUndeduced ? PrevFPT : FPT)->getReturnType()});
}
}
} // namespace clang
void ASTDeclReader::attachPreviousDeclImpl(ASTReader &Reader, ...) {
llvm_unreachable("attachPreviousDecl on non-redeclarable declaration");
}
/// Inherit the default template argument from \p From to \p To. Returns
/// \c false if there is no default template for \p From.
template <typename ParmDecl>
static bool inheritDefaultTemplateArgument(ASTContext &Context, ParmDecl *From,
Decl *ToD) {
auto *To = cast<ParmDecl>(ToD);
if (!From->hasDefaultArgument())
return false;
To->setInheritedDefaultArgument(Context, From);
return true;
}
static void inheritDefaultTemplateArguments(ASTContext &Context,
TemplateDecl *From,
TemplateDecl *To) {
auto *FromTP = From->getTemplateParameters();
auto *ToTP = To->getTemplateParameters();
assert(FromTP->size() == ToTP->size() && "merged mismatched templates?");
for (unsigned I = 0, N = FromTP->size(); I != N; ++I) {
NamedDecl *FromParam = FromTP->getParam(I);
NamedDecl *ToParam = ToTP->getParam(I);
if (auto *FTTP = dyn_cast<TemplateTypeParmDecl>(FromParam))
inheritDefaultTemplateArgument(Context, FTTP, ToParam);
else if (auto *FNTTP = dyn_cast<NonTypeTemplateParmDecl>(FromParam))
inheritDefaultTemplateArgument(Context, FNTTP, ToParam);
else
inheritDefaultTemplateArgument(
Context, cast<TemplateTemplateParmDecl>(FromParam), ToParam);
}
}
void ASTDeclReader::attachPreviousDecl(ASTReader &Reader, Decl *D,
Decl *Previous, Decl *Canon) {
assert(D && Previous);
switch (D->getKind()) {
#define ABSTRACT_DECL(TYPE)
#define DECL(TYPE, BASE) \
case Decl::TYPE: \
attachPreviousDeclImpl(Reader, cast<TYPE##Decl>(D), Previous, Canon); \
break;
#include "clang/AST/DeclNodes.inc"
}
// If the declaration was visible in one module, a redeclaration of it in
// another module remains visible even if it wouldn't be visible by itself.
//
// FIXME: In this case, the declaration should only be visible if a module
// that makes it visible has been imported.
D->IdentifierNamespace |=
Previous->IdentifierNamespace &
(Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
// If the declaration declares a template, it may inherit default arguments
// from the previous declaration.
if (auto *TD = dyn_cast<TemplateDecl>(D))
inheritDefaultTemplateArguments(Reader.getContext(),
cast<TemplateDecl>(Previous), TD);
// If any of the declaration in the chain contains an Inheritable attribute,
// it needs to be added to all the declarations in the redeclarable chain.
// FIXME: Only the logic of merging MSInheritableAttr is present, it should
// be extended for all inheritable attributes.
mergeInheritableAttributes(Reader, D, Previous);
}
template<typename DeclT>
void ASTDeclReader::attachLatestDeclImpl(Redeclarable<DeclT> *D, Decl *Latest) {
D->RedeclLink.setLatest(cast<DeclT>(Latest));
}
void ASTDeclReader::attachLatestDeclImpl(...) {
llvm_unreachable("attachLatestDecl on non-redeclarable declaration");
}
void ASTDeclReader::attachLatestDecl(Decl *D, Decl *Latest) {
assert(D && Latest);
switch (D->getKind()) {
#define ABSTRACT_DECL(TYPE)
#define DECL(TYPE, BASE) \
case Decl::TYPE: \
attachLatestDeclImpl(cast<TYPE##Decl>(D), Latest); \
break;
#include "clang/AST/DeclNodes.inc"
}
}
template<typename DeclT>
void ASTDeclReader::markIncompleteDeclChainImpl(Redeclarable<DeclT> *D) {
D->RedeclLink.markIncomplete();
}
void ASTDeclReader::markIncompleteDeclChainImpl(...) {
llvm_unreachable("markIncompleteDeclChain on non-redeclarable declaration");
}
void ASTReader::markIncompleteDeclChain(Decl *D) {
switch (D->getKind()) {
#define ABSTRACT_DECL(TYPE)
#define DECL(TYPE, BASE) \
case Decl::TYPE: \
ASTDeclReader::markIncompleteDeclChainImpl(cast<TYPE##Decl>(D)); \
break;
#include "clang/AST/DeclNodes.inc"
}
}
/// Read the declaration at the given offset from the AST file.
Decl *ASTReader::ReadDeclRecord(DeclID ID) {
unsigned Index = ID - NUM_PREDEF_DECL_IDS;
SourceLocation DeclLoc;
RecordLocation Loc = DeclCursorForID(ID, DeclLoc);
llvm::BitstreamCursor &DeclsCursor = Loc.F->DeclsCursor;
// Keep track of where we are in the stream, then jump back there
// after reading this declaration.
SavedStreamPosition SavedPosition(DeclsCursor);
ReadingKindTracker ReadingKind(Read_Decl, *this);
// Note that we are loading a declaration record.
Deserializing ADecl(this);
auto Fail = [](const char *what, llvm::Error &&Err) {
llvm::report_fatal_error(Twine("ASTReader::readDeclRecord failed ") + what +
": " + toString(std::move(Err)));
};
if (llvm::Error JumpFailed = DeclsCursor.JumpToBit(Loc.Offset))
Fail("jumping", std::move(JumpFailed));
ASTRecordReader Record(*this, *Loc.F);
ASTDeclReader Reader(*this, Record, Loc, ID, DeclLoc);
Expected<unsigned> MaybeCode = DeclsCursor.ReadCode();
if (!MaybeCode)
Fail("reading code", MaybeCode.takeError());
unsigned Code = MaybeCode.get();
ASTContext &Context = getContext();
Decl *D = nullptr;
Expected<unsigned> MaybeDeclCode = Record.readRecord(DeclsCursor, Code);
if (!MaybeDeclCode)
llvm::report_fatal_error(
"ASTReader::readDeclRecord failed reading decl code: " +
toString(MaybeDeclCode.takeError()));
switch ((DeclCode)MaybeDeclCode.get()) {
case DECL_CONTEXT_LEXICAL:
case DECL_CONTEXT_VISIBLE:
llvm_unreachable("Record cannot be de-serialized with readDeclRecord");
case DECL_TYPEDEF:
D = TypedefDecl::CreateDeserialized(Context, ID);
break;
case DECL_TYPEALIAS:
D = TypeAliasDecl::CreateDeserialized(Context, ID);
break;
case DECL_ENUM:
D = EnumDecl::CreateDeserialized(Context, ID);
break;
case DECL_RECORD:
D = RecordDecl::CreateDeserialized(Context, ID);
break;
case DECL_ENUM_CONSTANT:
D = EnumConstantDecl::CreateDeserialized(Context, ID);
break;
case DECL_FUNCTION:
D = FunctionDecl::CreateDeserialized(Context, ID);
break;
case DECL_LINKAGE_SPEC:
D = LinkageSpecDecl::CreateDeserialized(Context, ID);
break;
case DECL_EXPORT:
D = ExportDecl::CreateDeserialized(Context, ID);
break;
case DECL_LABEL:
D = LabelDecl::CreateDeserialized(Context, ID);
break;
case DECL_NAMESPACE:
D = NamespaceDecl::CreateDeserialized(Context, ID);
break;
case DECL_NAMESPACE_ALIAS:
D = NamespaceAliasDecl::CreateDeserialized(Context, ID);
break;
case DECL_USING:
D = UsingDecl::CreateDeserialized(Context, ID);
break;
case DECL_USING_PACK:
D = UsingPackDecl::CreateDeserialized(Context, ID, Record.readInt());
break;
case DECL_USING_SHADOW:
D = UsingShadowDecl::CreateDeserialized(Context, ID);
break;
case DECL_USING_ENUM:
D = UsingEnumDecl::CreateDeserialized(Context, ID);
break;
case DECL_CONSTRUCTOR_USING_SHADOW:
D = ConstructorUsingShadowDecl::CreateDeserialized(Context, ID);
break;
case DECL_USING_DIRECTIVE:
D = UsingDirectiveDecl::CreateDeserialized(Context, ID);
break;
case DECL_UNRESOLVED_USING_VALUE:
D = UnresolvedUsingValueDecl::CreateDeserialized(Context, ID);
break;
case DECL_UNRESOLVED_USING_TYPENAME:
D = UnresolvedUsingTypenameDecl::CreateDeserialized(Context, ID);
break;
case DECL_UNRESOLVED_USING_IF_EXISTS:
D = UnresolvedUsingIfExistsDecl::CreateDeserialized(Context, ID);
break;
case DECL_CXX_RECORD:
D = CXXRecordDecl::CreateDeserialized(Context, ID);
break;
case DECL_CXX_DEDUCTION_GUIDE:
D = CXXDeductionGuideDecl::CreateDeserialized(Context, ID);
break;
case DECL_CXX_METHOD:
D = CXXMethodDecl::CreateDeserialized(Context, ID);
break;
case DECL_CXX_CONSTRUCTOR:
D = CXXConstructorDecl::CreateDeserialized(Context, ID, Record.readInt());
break;
case DECL_CXX_DESTRUCTOR:
D = CXXDestructorDecl::CreateDeserialized(Context, ID);
break;
case DECL_CXX_CONVERSION:
D = CXXConversionDecl::CreateDeserialized(Context, ID);
break;
case DECL_ACCESS_SPEC:
D = AccessSpecDecl::CreateDeserialized(Context, ID);
break;
case DECL_FRIEND:
D = FriendDecl::CreateDeserialized(Context, ID, Record.readInt());
break;
case DECL_FRIEND_TEMPLATE:
D = FriendTemplateDecl::CreateDeserialized(Context, ID);
break;
case DECL_CLASS_TEMPLATE:
D = ClassTemplateDecl::CreateDeserialized(Context, ID);
break;
case DECL_CLASS_TEMPLATE_SPECIALIZATION:
D = ClassTemplateSpecializationDecl::CreateDeserialized(Context, ID);
break;
case DECL_CLASS_TEMPLATE_PARTIAL_SPECIALIZATION:
D = ClassTemplatePartialSpecializationDecl::CreateDeserialized(Context, ID);
break;
case DECL_VAR_TEMPLATE:
D = VarTemplateDecl::CreateDeserialized(Context, ID);
break;
case DECL_VAR_TEMPLATE_SPECIALIZATION:
D = VarTemplateSpecializationDecl::CreateDeserialized(Context, ID);
break;
case DECL_VAR_TEMPLATE_PARTIAL_SPECIALIZATION:
D = VarTemplatePartialSpecializationDecl::CreateDeserialized(Context, ID);
break;
case DECL_CLASS_SCOPE_FUNCTION_SPECIALIZATION:
D = ClassScopeFunctionSpecializationDecl::CreateDeserialized(Context, ID);
break;
case DECL_FUNCTION_TEMPLATE:
D = FunctionTemplateDecl::CreateDeserialized(Context, ID);
break;
case DECL_TEMPLATE_TYPE_PARM: {
bool HasTypeConstraint = Record.readInt();
D = TemplateTypeParmDecl::CreateDeserialized(Context, ID,
HasTypeConstraint);
break;
}
case DECL_NON_TYPE_TEMPLATE_PARM: {
bool HasTypeConstraint = Record.readInt();
D = NonTypeTemplateParmDecl::CreateDeserialized(Context, ID,
HasTypeConstraint);
break;
}
case DECL_EXPANDED_NON_TYPE_TEMPLATE_PARM_PACK: {
bool HasTypeConstraint = Record.readInt();
D = NonTypeTemplateParmDecl::CreateDeserialized(Context, ID,
Record.readInt(),
HasTypeConstraint);
break;
}
case DECL_TEMPLATE_TEMPLATE_PARM:
D = TemplateTemplateParmDecl::CreateDeserialized(Context, ID);
break;
case DECL_EXPANDED_TEMPLATE_TEMPLATE_PARM_PACK:
D = TemplateTemplateParmDecl::CreateDeserialized(Context, ID,
Record.readInt());
break;
case DECL_TYPE_ALIAS_TEMPLATE:
D = TypeAliasTemplateDecl::CreateDeserialized(Context, ID);
break;
case DECL_CONCEPT:
D = ConceptDecl::CreateDeserialized(Context, ID);
break;
case DECL_REQUIRES_EXPR_BODY:
D = RequiresExprBodyDecl::CreateDeserialized(Context, ID);
break;
case DECL_STATIC_ASSERT:
D = StaticAssertDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_METHOD:
D = ObjCMethodDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_INTERFACE:
D = ObjCInterfaceDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_IVAR:
D = ObjCIvarDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_PROTOCOL:
D = ObjCProtocolDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_AT_DEFS_FIELD:
D = ObjCAtDefsFieldDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_CATEGORY:
D = ObjCCategoryDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_CATEGORY_IMPL:
D = ObjCCategoryImplDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_IMPLEMENTATION:
D = ObjCImplementationDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_COMPATIBLE_ALIAS:
D = ObjCCompatibleAliasDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_PROPERTY:
D = ObjCPropertyDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_PROPERTY_IMPL:
D = ObjCPropertyImplDecl::CreateDeserialized(Context, ID);
break;
case DECL_FIELD:
D = FieldDecl::CreateDeserialized(Context, ID);
break;
case DECL_INDIRECTFIELD:
D = IndirectFieldDecl::CreateDeserialized(Context, ID);
break;
case DECL_VAR:
D = VarDecl::CreateDeserialized(Context, ID);
break;
case DECL_IMPLICIT_PARAM:
D = ImplicitParamDecl::CreateDeserialized(Context, ID);
break;
case DECL_PARM_VAR:
D = ParmVarDecl::CreateDeserialized(Context, ID);
break;
case DECL_DECOMPOSITION:
D = DecompositionDecl::CreateDeserialized(Context, ID, Record.readInt());
break;
case DECL_BINDING:
D = BindingDecl::CreateDeserialized(Context, ID);
break;
case DECL_FILE_SCOPE_ASM:
D = FileScopeAsmDecl::CreateDeserialized(Context, ID);
break;
case DECL_BLOCK:
D = BlockDecl::CreateDeserialized(Context, ID);
break;
case DECL_MS_PROPERTY:
D = MSPropertyDecl::CreateDeserialized(Context, ID);
break;
case DECL_MS_GUID:
D = MSGuidDecl::CreateDeserialized(Context, ID);
break;
case DECL_TEMPLATE_PARAM_OBJECT:
D = TemplateParamObjectDecl::CreateDeserialized(Context, ID);
break;
case DECL_CAPTURED:
D = CapturedDecl::CreateDeserialized(Context, ID, Record.readInt());
break;
case DECL_CXX_BASE_SPECIFIERS:
Error("attempt to read a C++ base-specifier record as a declaration");
return nullptr;
case DECL_CXX_CTOR_INITIALIZERS:
Error("attempt to read a C++ ctor initializer record as a declaration");
return nullptr;
case DECL_IMPORT:
// Note: last entry of the ImportDecl record is the number of stored source
// locations.
D = ImportDecl::CreateDeserialized(Context, ID, Record.back());
break;
case DECL_OMP_THREADPRIVATE: {
Record.skipInts(1);
unsigned NumChildren = Record.readInt();
Record.skipInts(1);
D = OMPThreadPrivateDecl::CreateDeserialized(Context, ID, NumChildren);
break;
}
case DECL_OMP_ALLOCATE: {
unsigned NumClauses = Record.readInt();
unsigned NumVars = Record.readInt();
Record.skipInts(1);
D = OMPAllocateDecl::CreateDeserialized(Context, ID, NumVars, NumClauses);
break;
}
case DECL_OMP_REQUIRES: {
unsigned NumClauses = Record.readInt();
Record.skipInts(2);
D = OMPRequiresDecl::CreateDeserialized(Context, ID, NumClauses);
break;
}
case DECL_OMP_DECLARE_REDUCTION:
D = OMPDeclareReductionDecl::CreateDeserialized(Context, ID);
break;
case DECL_OMP_DECLARE_MAPPER: {
unsigned NumClauses = Record.readInt();
Record.skipInts(2);
D = OMPDeclareMapperDecl::CreateDeserialized(Context, ID, NumClauses);
break;
}
case DECL_OMP_CAPTUREDEXPR:
D = OMPCapturedExprDecl::CreateDeserialized(Context, ID);
break;
case DECL_PRAGMA_COMMENT:
D = PragmaCommentDecl::CreateDeserialized(Context, ID, Record.readInt());
break;
case DECL_PRAGMA_DETECT_MISMATCH:
D = PragmaDetectMismatchDecl::CreateDeserialized(Context, ID,
Record.readInt());
break;
case DECL_EMPTY:
D = EmptyDecl::CreateDeserialized(Context, ID);
break;
case DECL_LIFETIME_EXTENDED_TEMPORARY:
D = LifetimeExtendedTemporaryDecl::CreateDeserialized(Context, ID);
break;
case DECL_OBJC_TYPE_PARAM:
D = ObjCTypeParamDecl::CreateDeserialized(Context, ID);
break;
}
assert(D && "Unknown declaration reading AST file");
LoadedDecl(Index, D);
// Set the DeclContext before doing any deserialization, to make sure internal
// calls to Decl::getASTContext() by Decl's methods will find the
// TranslationUnitDecl without crashing.
D->setDeclContext(Context.getTranslationUnitDecl());
Reader.Visit(D);
// If this declaration is also a declaration context, get the
// offsets for its tables of lexical and visible declarations.
if (auto *DC = dyn_cast<DeclContext>(D)) {
std::pair<uint64_t, uint64_t> Offsets = Reader.VisitDeclContext(DC);
if (Offsets.first &&
ReadLexicalDeclContextStorage(*Loc.F, DeclsCursor, Offsets.first, DC))
return nullptr;
if (Offsets.second &&
ReadVisibleDeclContextStorage(*Loc.F, DeclsCursor, Offsets.second, ID))
return nullptr;
}
assert(Record.getIdx() == Record.size());
// Load any relevant update records.
PendingUpdateRecords.push_back(
PendingUpdateRecord(ID, D, /*JustLoaded=*/true));
// Load the categories after recursive loading is finished.
if (auto *Class = dyn_cast<ObjCInterfaceDecl>(D))
// If we already have a definition when deserializing the ObjCInterfaceDecl,
// we put the Decl in PendingDefinitions so we can pull the categories here.
if (Class->isThisDeclarationADefinition() ||
PendingDefinitions.count(Class))
loadObjCCategories(ID, Class);
// If we have deserialized a declaration that has a definition the
// AST consumer might need to know about, queue it.
// We don't pass it to the consumer immediately because we may be in recursive
// loading, and some declarations may still be initializing.
PotentiallyInterestingDecls.push_back(
InterestingDecl(D, Reader.hasPendingBody()));
return D;
}
void ASTReader::PassInterestingDeclsToConsumer() {
assert(Consumer);
if (PassingDeclsToConsumer)
return;
// Guard variable to avoid recursively redoing the process of passing
// decls to consumer.
SaveAndRestore<bool> GuardPassingDeclsToConsumer(PassingDeclsToConsumer,
true);
// Ensure that we've loaded all potentially-interesting declarations
// that need to be eagerly loaded.
for (auto ID : EagerlyDeserializedDecls)
GetDecl(ID);
EagerlyDeserializedDecls.clear();
while (!PotentiallyInterestingDecls.empty()) {
InterestingDecl D = PotentiallyInterestingDecls.front();
PotentiallyInterestingDecls.pop_front();
if (isConsumerInterestedIn(getContext(), D.getDecl(), D.hasPendingBody()))
PassInterestingDeclToConsumer(D.getDecl());
}
}
void ASTReader::loadDeclUpdateRecords(PendingUpdateRecord &Record) {
// The declaration may have been modified by files later in the chain.
// If this is the case, read the record containing the updates from each file
// and pass it to ASTDeclReader to make the modifications.
serialization::GlobalDeclID ID = Record.ID;
Decl *D = Record.D;
ProcessingUpdatesRAIIObj ProcessingUpdates(*this);
DeclUpdateOffsetsMap::iterator UpdI = DeclUpdateOffsets.find(ID);
SmallVector<serialization::DeclID, 8> PendingLazySpecializationIDs;
if (UpdI != DeclUpdateOffsets.end()) {
auto UpdateOffsets = std::move(UpdI->second);
DeclUpdateOffsets.erase(UpdI);
// Check if this decl was interesting to the consumer. If we just loaded
// the declaration, then we know it was interesting and we skip the call
// to isConsumerInterestedIn because it is unsafe to call in the
// current ASTReader state.
bool WasInteresting =
Record.JustLoaded || isConsumerInterestedIn(getContext(), D, false);
for (auto &FileAndOffset : UpdateOffsets) {
ModuleFile *F = FileAndOffset.first;
uint64_t Offset = FileAndOffset.second;
llvm::BitstreamCursor &Cursor = F->DeclsCursor;
SavedStreamPosition SavedPosition(Cursor);
if (llvm::Error JumpFailed = Cursor.JumpToBit(Offset))
// FIXME don't do a fatal error.
llvm::report_fatal_error(
"ASTReader::loadDeclUpdateRecords failed jumping: " +
toString(std::move(JumpFailed)));
Expected<unsigned> MaybeCode = Cursor.ReadCode();
if (!MaybeCode)
llvm::report_fatal_error(
"ASTReader::loadDeclUpdateRecords failed reading code: " +
toString(MaybeCode.takeError()));
unsigned Code = MaybeCode.get();
ASTRecordReader Record(*this, *F);
if (Expected<unsigned> MaybeRecCode = Record.readRecord(Cursor, Code))
assert(MaybeRecCode.get() == DECL_UPDATES &&
"Expected DECL_UPDATES record!");
else
llvm::report_fatal_error(
"ASTReader::loadDeclUpdateRecords failed reading rec code: " +
toString(MaybeCode.takeError()));
ASTDeclReader Reader(*this, Record, RecordLocation(F, Offset), ID,
SourceLocation());
Reader.UpdateDecl(D, PendingLazySpecializationIDs);
// We might have made this declaration interesting. If so, remember that
// we need to hand it off to the consumer.
if (!WasInteresting &&
isConsumerInterestedIn(getContext(), D, Reader.hasPendingBody())) {
PotentiallyInterestingDecls.push_back(
InterestingDecl(D, Reader.hasPendingBody()));
WasInteresting = true;
}
}
}
// Add the lazy specializations to the template.
assert((PendingLazySpecializationIDs.empty() || isa<ClassTemplateDecl>(D) ||
isa<FunctionTemplateDecl>(D) || isa<VarTemplateDecl>(D)) &&
"Must not have pending specializations");
if (auto *CTD = dyn_cast<ClassTemplateDecl>(D))
ASTDeclReader::AddLazySpecializations(CTD, PendingLazySpecializationIDs);
else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D))
ASTDeclReader::AddLazySpecializations(FTD, PendingLazySpecializationIDs);
else if (auto *VTD = dyn_cast<VarTemplateDecl>(D))
ASTDeclReader::AddLazySpecializations(VTD, PendingLazySpecializationIDs);
PendingLazySpecializationIDs.clear();
// Load the pending visible updates for this decl context, if it has any.
auto I = PendingVisibleUpdates.find(ID);
if (I != PendingVisibleUpdates.end()) {
auto VisibleUpdates = std::move(I->second);
PendingVisibleUpdates.erase(I);
auto *DC = cast<DeclContext>(D)->getPrimaryContext();
for (const auto &Update : VisibleUpdates)
Lookups[DC].Table.add(
Update.Mod, Update.Data,
reader::ASTDeclContextNameLookupTrait(*this, *Update.Mod));
DC->setHasExternalVisibleStorage(true);
}
}
void ASTReader::loadPendingDeclChain(Decl *FirstLocal, uint64_t LocalOffset) {
// Attach FirstLocal to the end of the decl chain.
Decl *CanonDecl = FirstLocal->getCanonicalDecl();
if (FirstLocal != CanonDecl) {
Decl *PrevMostRecent = ASTDeclReader::getMostRecentDecl(CanonDecl);
ASTDeclReader::attachPreviousDecl(
*this, FirstLocal, PrevMostRecent ? PrevMostRecent : CanonDecl,
CanonDecl);
}
if (!LocalOffset) {
ASTDeclReader::attachLatestDecl(CanonDecl, FirstLocal);
return;
}
// Load the list of other redeclarations from this module file.
ModuleFile *M = getOwningModuleFile(FirstLocal);
assert(M && "imported decl from no module file");
llvm::BitstreamCursor &Cursor = M->DeclsCursor;
SavedStreamPosition SavedPosition(Cursor);
if (llvm::Error JumpFailed = Cursor.JumpToBit(LocalOffset))
llvm::report_fatal_error(
"ASTReader::loadPendingDeclChain failed jumping: " +
toString(std::move(JumpFailed)));
RecordData Record;
Expected<unsigned> MaybeCode = Cursor.ReadCode();
if (!MaybeCode)
llvm::report_fatal_error(
"ASTReader::loadPendingDeclChain failed reading code: " +
toString(MaybeCode.takeError()));
unsigned Code = MaybeCode.get();
if (Expected<unsigned> MaybeRecCode = Cursor.readRecord(Code, Record))
assert(MaybeRecCode.get() == LOCAL_REDECLARATIONS &&
"expected LOCAL_REDECLARATIONS record!");
else
llvm::report_fatal_error(
"ASTReader::loadPendingDeclChain failed reading rec code: " +
toString(MaybeCode.takeError()));
// FIXME: We have several different dispatches on decl kind here; maybe
// we should instead generate one loop per kind and dispatch up-front?
Decl *MostRecent = FirstLocal;
for (unsigned I = 0, N = Record.size(); I != N; ++I) {
auto *D = GetLocalDecl(*M, Record[N - I - 1]);
ASTDeclReader::attachPreviousDecl(*this, D, MostRecent, CanonDecl);
MostRecent = D;
}
ASTDeclReader::attachLatestDecl(CanonDecl, MostRecent);
}
namespace {
/// Given an ObjC interface, goes through the modules and links to the
/// interface all the categories for it.
class ObjCCategoriesVisitor {
ASTReader &Reader;
ObjCInterfaceDecl *Interface;
llvm::SmallPtrSetImpl<ObjCCategoryDecl *> &Deserialized;
ObjCCategoryDecl *Tail = nullptr;
llvm::DenseMap<DeclarationName, ObjCCategoryDecl *> NameCategoryMap;
serialization::GlobalDeclID InterfaceID;
unsigned PreviousGeneration;
void add(ObjCCategoryDecl *Cat) {
// Only process each category once.
if (!Deserialized.erase(Cat))
return;
// Check for duplicate categories.
if (Cat->getDeclName()) {
ObjCCategoryDecl *&Existing = NameCategoryMap[Cat->getDeclName()];
if (Existing &&
Reader.getOwningModuleFile(Existing)
!= Reader.getOwningModuleFile(Cat)) {
// FIXME: We should not warn for duplicates in diamond:
//
// MT //
// / \ //
// ML MR //
// \ / //
// MB //
//
// If there are duplicates in ML/MR, there will be warning when
// creating MB *and* when importing MB. We should not warn when
// importing.
Reader.Diag(Cat->getLocation(), diag::warn_dup_category_def)
<< Interface->getDeclName() << Cat->getDeclName();
Reader.Diag(Existing->getLocation(), diag::note_previous_definition);
} else if (!Existing) {
// Record this category.
Existing = Cat;
}
}
// Add this category to the end of the chain.
if (Tail)
ASTDeclReader::setNextObjCCategory(Tail, Cat);
else
Interface->setCategoryListRaw(Cat);
Tail = Cat;
}
public:
ObjCCategoriesVisitor(ASTReader &Reader,
ObjCInterfaceDecl *Interface,
llvm::SmallPtrSetImpl<ObjCCategoryDecl *> &Deserialized,
serialization::GlobalDeclID InterfaceID,
unsigned PreviousGeneration)
: Reader(Reader), Interface(Interface), Deserialized(Deserialized),
InterfaceID(InterfaceID), PreviousGeneration(PreviousGeneration) {
// Populate the name -> category map with the set of known categories.
for (auto *Cat : Interface->known_categories()) {
if (Cat->getDeclName())
NameCategoryMap[Cat->getDeclName()] = Cat;
// Keep track of the tail of the category list.
Tail = Cat;
}
}
bool operator()(ModuleFile &M) {
// If we've loaded all of the category information we care about from
// this module file, we're done.
if (M.Generation <= PreviousGeneration)
return true;
// Map global ID of the definition down to the local ID used in this
// module file. If there is no such mapping, we'll find nothing here
// (or in any module it imports).
DeclID LocalID = Reader.mapGlobalIDToModuleFileGlobalID(M, InterfaceID);
if (!LocalID)
return true;
// Perform a binary search to find the local redeclarations for this
// declaration (if any).
const ObjCCategoriesInfo Compare = { LocalID, 0 };
const ObjCCategoriesInfo *Result
= std::lower_bound(M.ObjCCategoriesMap,
M.ObjCCategoriesMap + M.LocalNumObjCCategoriesInMap,
Compare);
if (Result == M.ObjCCategoriesMap + M.LocalNumObjCCategoriesInMap ||
Result->DefinitionID != LocalID) {
// We didn't find anything. If the class definition is in this module
// file, then the module files it depends on cannot have any categories,
// so suppress further lookup.
return Reader.isDeclIDFromModule(InterfaceID, M);
}
// We found something. Dig out all of the categories.
unsigned Offset = Result->Offset;
unsigned N = M.ObjCCategories[Offset];
M.ObjCCategories[Offset++] = 0; // Don't try to deserialize again
for (unsigned I = 0; I != N; ++I)
add(cast_or_null<ObjCCategoryDecl>(
Reader.GetLocalDecl(M, M.ObjCCategories[Offset++])));
return true;
}
};
} // namespace
void ASTReader::loadObjCCategories(serialization::GlobalDeclID ID,
ObjCInterfaceDecl *D,
unsigned PreviousGeneration) {
ObjCCategoriesVisitor Visitor(*this, D, CategoriesDeserialized, ID,
PreviousGeneration);
ModuleMgr.visit(Visitor);
}
template<typename DeclT, typename Fn>
static void forAllLaterRedecls(DeclT *D, Fn F) {
F(D);
// Check whether we've already merged D into its redeclaration chain.
// MostRecent may or may not be nullptr if D has not been merged. If
// not, walk the merged redecl chain and see if it's there.
auto *MostRecent = D->getMostRecentDecl();
bool Found = false;
for (auto *Redecl = MostRecent; Redecl && !Found;
Redecl = Redecl->getPreviousDecl())
Found = (Redecl == D);
// If this declaration is merged, apply the functor to all later decls.
if (Found) {
for (auto *Redecl = MostRecent; Redecl != D;
Redecl = Redecl->getPreviousDecl())
F(Redecl);
}
}
void ASTDeclReader::UpdateDecl(Decl *D,
llvm::SmallVectorImpl<serialization::DeclID> &PendingLazySpecializationIDs) {
while (Record.getIdx() < Record.size()) {
switch ((DeclUpdateKind)Record.readInt()) {
case UPD_CXX_ADDED_IMPLICIT_MEMBER: {
auto *RD = cast<CXXRecordDecl>(D);
// FIXME: If we also have an update record for instantiating the
// definition of D, we need that to happen before we get here.
Decl *MD = Record.readDecl();
assert(MD && "couldn't read decl from update record");
// FIXME: We should call addHiddenDecl instead, to add the member
// to its DeclContext.
RD->addedMember(MD);
break;
}
case UPD_CXX_ADDED_TEMPLATE_SPECIALIZATION:
// It will be added to the template's lazy specialization set.
PendingLazySpecializationIDs.push_back(readDeclID());
break;
case UPD_CXX_ADDED_ANONYMOUS_NAMESPACE: {
auto *Anon = readDeclAs<NamespaceDecl>();
// Each module has its own anonymous namespace, which is disjoint from
// any other module's anonymous namespaces, so don't attach the anonymous
// namespace at all.
if (!Record.isModule()) {
if (auto *TU = dyn_cast<TranslationUnitDecl>(D))
TU->setAnonymousNamespace(Anon);
else
cast<NamespaceDecl>(D)->setAnonymousNamespace(Anon);
}
break;
}
case UPD_CXX_ADDED_VAR_DEFINITION: {
auto *VD = cast<VarDecl>(D);
VD->NonParmVarDeclBits.IsInline = Record.readInt();
VD->NonParmVarDeclBits.IsInlineSpecified = Record.readInt();
uint64_t Val = Record.readInt();
if (Val && !VD->getInit()) {
VD->setInit(Record.readExpr());
if (Val != 1) {
EvaluatedStmt *Eval = VD->ensureEvaluatedStmt();
Eval->HasConstantInitialization = (Val & 2) != 0;
Eval->HasConstantDestruction = (Val & 4) != 0;
}
}
break;
}
case UPD_CXX_POINT_OF_INSTANTIATION: {
SourceLocation POI = Record.readSourceLocation();
if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(D)) {
VTSD->setPointOfInstantiation(POI);
} else if (auto *VD = dyn_cast<VarDecl>(D)) {
VD->getMemberSpecializationInfo()->setPointOfInstantiation(POI);
} else {
auto *FD = cast<FunctionDecl>(D);
if (auto *FTSInfo = FD->TemplateOrSpecialization
.dyn_cast<FunctionTemplateSpecializationInfo *>())
FTSInfo->setPointOfInstantiation(POI);
else
FD->TemplateOrSpecialization.get<MemberSpecializationInfo *>()
->setPointOfInstantiation(POI);
}
break;
}
case UPD_CXX_INSTANTIATED_DEFAULT_ARGUMENT: {
auto *Param = cast<ParmVarDecl>(D);
// We have to read the default argument regardless of whether we use it
// so that hypothetical further update records aren't messed up.
// TODO: Add a function to skip over the next expr record.
auto *DefaultArg = Record.readExpr();
// Only apply the update if the parameter still has an uninstantiated
// default argument.
if (Param->hasUninstantiatedDefaultArg())
Param->setDefaultArg(DefaultArg);
break;
}
case UPD_CXX_INSTANTIATED_DEFAULT_MEMBER_INITIALIZER: {
auto *FD = cast<FieldDecl>(D);
auto *DefaultInit = Record.readExpr();
// Only apply the update if the field still has an uninstantiated
// default member initializer.
if (FD->hasInClassInitializer() && !FD->getInClassInitializer()) {
if (DefaultInit)
FD->setInClassInitializer(DefaultInit);
else
// Instantiation failed. We can get here if we serialized an AST for
// an invalid program.
FD->removeInClassInitializer();
}
break;
}
case UPD_CXX_ADDED_FUNCTION_DEFINITION: {
auto *FD = cast<FunctionDecl>(D);
if (Reader.PendingBodies[FD]) {
// FIXME: Maybe check for ODR violations.
// It's safe to stop now because this update record is always last.
return;
}
if (Record.readInt()) {
// Maintain AST consistency: any later redeclarations of this function
// are inline if this one is. (We might have merged another declaration
// into this one.)
forAllLaterRedecls(FD, [](FunctionDecl *FD) {
FD->setImplicitlyInline();
});
}
FD->setInnerLocStart(readSourceLocation());
ReadFunctionDefinition(FD);
assert(Record.getIdx() == Record.size() && "lazy body must be last");
break;
}
case UPD_CXX_INSTANTIATED_CLASS_DEFINITION: {
auto *RD = cast<CXXRecordDecl>(D);
auto *OldDD = RD->getCanonicalDecl()->DefinitionData;
bool HadRealDefinition =
OldDD && (OldDD->Definition != RD ||
!Reader.PendingFakeDefinitionData.count(OldDD));
RD->setParamDestroyedInCallee(Record.readInt());
RD->setArgPassingRestrictions(
(RecordDecl::ArgPassingKind)Record.readInt());
ReadCXXRecordDefinition(RD, /*Update*/true);
// Visible update is handled separately.
uint64_t LexicalOffset = ReadLocalOffset();
if (!HadRealDefinition && LexicalOffset) {
Record.readLexicalDeclContextStorage(LexicalOffset, RD);
Reader.PendingFakeDefinitionData.erase(OldDD);
}
auto TSK = (TemplateSpecializationKind)Record.readInt();
SourceLocation POI = readSourceLocation();
if (MemberSpecializationInfo *MSInfo =
RD->getMemberSpecializationInfo()) {
MSInfo->setTemplateSpecializationKind(TSK);
MSInfo->setPointOfInstantiation(POI);
} else {
auto *Spec = cast<ClassTemplateSpecializationDecl>(RD);
Spec->setTemplateSpecializationKind(TSK);
Spec->setPointOfInstantiation(POI);
if (Record.readInt()) {
auto *PartialSpec =
readDeclAs<ClassTemplatePartialSpecializationDecl>();
SmallVector<TemplateArgument, 8> TemplArgs;
Record.readTemplateArgumentList(TemplArgs);
auto *TemplArgList = TemplateArgumentList::CreateCopy(
Reader.getContext(), TemplArgs);
// FIXME: If we already have a partial specialization set,
// check that it matches.
if (!Spec->getSpecializedTemplateOrPartial()
.is<ClassTemplatePartialSpecializationDecl *>())
Spec->setInstantiationOf(PartialSpec, TemplArgList);
}
}
RD->setTagKind((TagTypeKind)Record.readInt());
RD->setLocation(readSourceLocation());
RD->setLocStart(readSourceLocation());
RD->setBraceRange(readSourceRange());
if (Record.readInt()) {
AttrVec Attrs;
Record.readAttributes(Attrs);
// If the declaration already has attributes, we assume that some other
// AST file already loaded them.
if (!D->hasAttrs())
D->setAttrsImpl(Attrs, Reader.getContext());
}
break;
}
case UPD_CXX_RESOLVED_DTOR_DELETE: {
// Set the 'operator delete' directly to avoid emitting another update
// record.
auto *Del = readDeclAs<FunctionDecl>();
auto *First = cast<CXXDestructorDecl>(D->getCanonicalDecl());
auto *ThisArg = Record.readExpr();
// FIXME: Check consistency if we have an old and new operator delete.
if (!First->OperatorDelete) {
First->OperatorDelete = Del;
First->OperatorDeleteThisArg = ThisArg;
}
break;
}
case UPD_CXX_RESOLVED_EXCEPTION_SPEC: {
SmallVector<QualType, 8> ExceptionStorage;
auto ESI = Record.readExceptionSpecInfo(ExceptionStorage);
// Update this declaration's exception specification, if needed.
auto *FD = cast<FunctionDecl>(D);
auto *FPT = FD->getType()->castAs<FunctionProtoType>();
// FIXME: If the exception specification is already present, check that it
// matches.
if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
FD->setType(Reader.getContext().getFunctionType(
FPT->getReturnType(), FPT->getParamTypes(),
FPT->getExtProtoInfo().withExceptionSpec(ESI)));
// When we get to the end of deserializing, see if there are other decls
// that we need to propagate this exception specification onto.
Reader.PendingExceptionSpecUpdates.insert(
std::make_pair(FD->getCanonicalDecl(), FD));
}
break;
}
case UPD_CXX_DEDUCED_RETURN_TYPE: {
auto *FD = cast<FunctionDecl>(D);
QualType DeducedResultType = Record.readType();
Reader.PendingDeducedTypeUpdates.insert(
{FD->getCanonicalDecl(), DeducedResultType});
break;
}
case UPD_DECL_MARKED_USED:
// Maintain AST consistency: any later redeclarations are used too.
D->markUsed(Reader.getContext());
break;
case UPD_MANGLING_NUMBER:
Reader.getContext().setManglingNumber(cast<NamedDecl>(D),
Record.readInt());
break;
case UPD_STATIC_LOCAL_NUMBER:
Reader.getContext().setStaticLocalNumber(cast<VarDecl>(D),
Record.readInt());
break;
case UPD_DECL_MARKED_OPENMP_THREADPRIVATE:
D->addAttr(OMPThreadPrivateDeclAttr::CreateImplicit(
Reader.getContext(), readSourceRange(),
AttributeCommonInfo::AS_Pragma));
break;
case UPD_DECL_MARKED_OPENMP_ALLOCATE: {
auto AllocatorKind =
static_cast<OMPAllocateDeclAttr::AllocatorTypeTy>(Record.readInt());
Expr *Allocator = Record.readExpr();
SourceRange SR = readSourceRange();
D->addAttr(OMPAllocateDeclAttr::CreateImplicit(
Reader.getContext(), AllocatorKind, Allocator, SR,
AttributeCommonInfo::AS_Pragma));
break;
}
case UPD_DECL_EXPORTED: {
unsigned SubmoduleID = readSubmoduleID();
auto *Exported = cast<NamedDecl>(D);
Module *Owner = SubmoduleID ? Reader.getSubmodule(SubmoduleID) : nullptr;
Reader.getContext().mergeDefinitionIntoModule(Exported, Owner);
Reader.PendingMergedDefinitionsToDeduplicate.insert(Exported);
break;
}
case UPD_DECL_MARKED_OPENMP_DECLARETARGET: {
auto MapType = Record.readEnum<OMPDeclareTargetDeclAttr::MapTypeTy>();
auto DevType = Record.readEnum<OMPDeclareTargetDeclAttr::DevTypeTy>();
unsigned Level = Record.readInt();
D->addAttr(OMPDeclareTargetDeclAttr::CreateImplicit(
Reader.getContext(), MapType, DevType, Level, readSourceRange(),
AttributeCommonInfo::AS_Pragma));
break;
}
case UPD_ADDED_ATTR_TO_RECORD:
AttrVec Attrs;
Record.readAttributes(Attrs);
assert(Attrs.size() == 1);
D->addAttr(Attrs[0]);
break;
}
}
}