forked from OSchip/llvm-project
836 lines
27 KiB
C++
836 lines
27 KiB
C++
//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the MapValue function, which is shared by various parts of
|
|
// the lib/Transforms/Utils library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Operator.h"
|
|
using namespace llvm;
|
|
|
|
// Out of line method to get vtable etc for class.
|
|
void ValueMapTypeRemapper::anchor() {}
|
|
void ValueMaterializer::anchor() {}
|
|
void ValueMaterializer::materializeInitFor(GlobalValue *New, GlobalValue *Old) {
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A GlobalValue whose initializer needs to be materialized.
|
|
struct DelayedGlobalValueInit {
|
|
GlobalValue *Old;
|
|
GlobalValue *New;
|
|
DelayedGlobalValueInit(const GlobalValue *Old, GlobalValue *New)
|
|
: Old(const_cast<GlobalValue *>(Old)), New(New) {}
|
|
};
|
|
|
|
/// A basic block used in a BlockAddress whose function body is not yet
|
|
/// materialized.
|
|
struct DelayedBasicBlock {
|
|
BasicBlock *OldBB;
|
|
std::unique_ptr<BasicBlock> TempBB;
|
|
|
|
// Explicit move for MSVC.
|
|
DelayedBasicBlock(DelayedBasicBlock &&X)
|
|
: OldBB(std::move(X.OldBB)), TempBB(std::move(X.TempBB)) {}
|
|
DelayedBasicBlock &operator=(DelayedBasicBlock &&X) {
|
|
OldBB = std::move(X.OldBB);
|
|
TempBB = std::move(X.TempBB);
|
|
return *this;
|
|
}
|
|
|
|
DelayedBasicBlock(const BlockAddress &Old)
|
|
: OldBB(Old.getBasicBlock()),
|
|
TempBB(BasicBlock::Create(Old.getContext())) {}
|
|
};
|
|
|
|
class MDNodeMapper;
|
|
class Mapper {
|
|
friend class MDNodeMapper;
|
|
|
|
ValueToValueMapTy &VM;
|
|
RemapFlags Flags;
|
|
ValueMapTypeRemapper *TypeMapper;
|
|
ValueMaterializer *Materializer;
|
|
|
|
SmallVector<DelayedGlobalValueInit, 8> DelayedInits;
|
|
SmallVector<DelayedBasicBlock, 1> DelayedBBs;
|
|
|
|
public:
|
|
Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
|
|
: VM(VM), Flags(Flags), TypeMapper(TypeMapper),
|
|
Materializer(Materializer) {}
|
|
|
|
~Mapper();
|
|
|
|
Value *mapValue(const Value *V);
|
|
void remapInstruction(Instruction *I);
|
|
void remapFunction(Function &F);
|
|
|
|
/// Map metadata.
|
|
///
|
|
/// Find the mapping for MD. Guarantees that the return will be resolved
|
|
/// (not an MDNode, or MDNode::isResolved() returns true).
|
|
Metadata *mapMetadata(const Metadata *MD);
|
|
|
|
// Map LocalAsMetadata, which never gets memoized.
|
|
//
|
|
// If the referenced local is not mapped, the principled return is nullptr.
|
|
// However, optimization passes sometimes move metadata operands *before* the
|
|
// SSA values they reference. To prevent crashes in \a RemapInstruction(),
|
|
// return "!{}" when RF_IgnoreMissingLocals is not set.
|
|
//
|
|
// \note Adding a mapping for LocalAsMetadata is unsupported. Add a mapping
|
|
// to the value map for the SSA value in question instead.
|
|
//
|
|
// FIXME: Once we have a verifier check for forward references to SSA values
|
|
// through metadata operands, always return nullptr on unmapped locals.
|
|
Metadata *mapLocalAsMetadata(const LocalAsMetadata &LAM);
|
|
|
|
private:
|
|
Value *mapBlockAddress(const BlockAddress &BA);
|
|
|
|
/// Map metadata that doesn't require visiting operands.
|
|
Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
|
|
|
|
Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
|
|
Metadata *mapToSelf(const Metadata *MD);
|
|
};
|
|
|
|
class MDNodeMapper {
|
|
Mapper &M;
|
|
|
|
struct Data {
|
|
bool HasChangedOps = false;
|
|
bool HasChangedAddress = false;
|
|
unsigned ID = ~0u;
|
|
TempMDNode Placeholder;
|
|
|
|
Data() {}
|
|
Data(Data &&X)
|
|
: HasChangedOps(std::move(X.HasChangedOps)),
|
|
HasChangedAddress(std::move(X.HasChangedAddress)),
|
|
ID(std::move(X.ID)), Placeholder(std::move(X.Placeholder)) {}
|
|
Data &operator=(Data &&X) {
|
|
HasChangedOps = std::move(X.HasChangedOps);
|
|
HasChangedAddress = std::move(X.HasChangedAddress);
|
|
ID = std::move(X.ID);
|
|
Placeholder = std::move(X.Placeholder);
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
SmallDenseMap<const Metadata *, Data, 32> Info;
|
|
SmallVector<std::pair<MDNode *, bool>, 16> Worklist;
|
|
SmallVector<MDNode *, 16> POT;
|
|
|
|
public:
|
|
MDNodeMapper(Mapper &M) : M(M) {}
|
|
|
|
/// Map a metadata node (and its transitive operands).
|
|
///
|
|
/// This is the only entry point into MDNodeMapper. It works as follows:
|
|
///
|
|
/// 1. \a createPOT(): use a worklist to perform a post-order traversal of
|
|
/// the transitively referenced unmapped nodes.
|
|
///
|
|
/// 2. \a propagateChangedOperands(): track which nodes will change
|
|
/// operands, and which will have new addresses in the mapped scheme.
|
|
/// Propagate the changes through the POT until fixed point, to pick up
|
|
/// uniquing cycles that need to change.
|
|
///
|
|
/// 3. \a mapDistinctNodes(): map all the distinct nodes without touching
|
|
/// their operands. If RF_MoveDistinctMetadata, they get mapped to
|
|
/// themselves; otherwise, they get mapped to clones.
|
|
///
|
|
/// 4. \a mapUniquedNodes(): map the uniqued nodes (bottom-up), lazily
|
|
/// creating temporaries for forward references as needed.
|
|
///
|
|
/// 5. \a remapDistinctOperands(): remap the operands of the distinct nodes.
|
|
Metadata *map(const MDNode &FirstN);
|
|
|
|
private:
|
|
/// Return \c true as long as there's work to do.
|
|
bool hasWork() const { return !Worklist.empty(); }
|
|
|
|
/// Get the current node in the worklist.
|
|
MDNode &getCurrentNode() const { return *Worklist.back().first; }
|
|
|
|
/// Push a node onto the worklist.
|
|
///
|
|
/// Adds \c N to \a Worklist and \a Info, unless it's already inserted. If
|
|
/// \c N.isDistinct(), \a Data::HasChangedAddress will be set based on \a
|
|
/// RF_MoveDistinctMDs.
|
|
///
|
|
/// Returns the data for the node.
|
|
///
|
|
/// \post Data::HasChangedAddress iff !RF_MoveDistinctMDs && N.isDistinct().
|
|
/// \post Worklist.back().first == &N.
|
|
/// \post Worklist.back().second == false.
|
|
Data &push(const MDNode &N);
|
|
|
|
/// Map a node operand, and return true if it changes.
|
|
///
|
|
/// \post getMappedOp(Op) does not return None.
|
|
bool mapOperand(const Metadata *Op);
|
|
|
|
/// Get a previously mapped node.
|
|
Optional<Metadata *> getMappedOp(const Metadata *Op) const;
|
|
|
|
/// Try to pop a node off the worklist and store it in POT.
|
|
///
|
|
/// Returns \c true if it popped; \c false if its operands need to be
|
|
/// visited.
|
|
///
|
|
/// \post If Worklist.back().second == false: Worklist.back().second == true.
|
|
/// \post Else: Worklist.back() has been popped off and added to \a POT.
|
|
bool tryToPop();
|
|
|
|
/// Get a forward reference to a node to use as an operand.
|
|
///
|
|
/// Returns \c Op if it's not changing; otherwise, lazily creates a temporary
|
|
/// node and returns it.
|
|
Metadata &getFwdReference(const Data &D, MDNode &Op);
|
|
|
|
/// Create a post-order traversal from the given node.
|
|
///
|
|
/// This traverses the metadata graph deeply enough to map \c FirstN. It
|
|
/// uses \a mapOperand() (indirectly, \a Mapper::mapSimplifiedNode()), so any
|
|
/// metadata that has already been mapped will not be part of the POT.
|
|
///
|
|
/// \post \a POT is a post-order traversal ending with \c FirstN.
|
|
bool createPOT(const MDNode &FirstN);
|
|
|
|
/// Propagate changed operands through post-order traversal.
|
|
///
|
|
/// Until fixed point, iteratively update:
|
|
///
|
|
/// - \a Data::HasChangedOps based on \a Data::HasChangedAddress of operands;
|
|
/// - \a Data::HasChangedAddress based on Data::HasChangedOps.
|
|
///
|
|
/// This algorithm never changes \a Data::HasChangedAddress for distinct
|
|
/// nodes.
|
|
///
|
|
/// \post \a POT is a post-order traversal ending with \c FirstN.
|
|
void propagateChangedOperands();
|
|
|
|
/// Map all distinct nodes in POT.
|
|
///
|
|
/// \post \a getMappedOp() returns the correct node for every distinct node.
|
|
void mapDistinctNodes();
|
|
|
|
/// Map all uniqued nodes in POT with the correct operands.
|
|
///
|
|
/// \pre Distinct nodes are mapped (\a mapDistinctNodes() has been called).
|
|
/// \post \a getMappedOp() returns the correct node for every node.
|
|
/// \post \a MDNode::operands() is correct for every uniqued node.
|
|
/// \post \a MDNode::isResolved() returns true for every node.
|
|
void mapUniquedNodes();
|
|
|
|
/// Re-map the operands for distinct nodes in POT.
|
|
///
|
|
/// \pre Distinct nodes are mapped (\a mapDistinctNodes() has been called).
|
|
/// \pre Uniqued nodes are mapped (\a mapUniquedNodes() has been called).
|
|
/// \post \a MDNode::operands() is correct for every distinct node.
|
|
void remapDistinctOperands();
|
|
|
|
/// Remap a node's operands.
|
|
///
|
|
/// Iterate through operands and update them in place using \a getMappedOp()
|
|
/// and \a getFwdReference().
|
|
///
|
|
/// \pre N.isDistinct() or N.isTemporary().
|
|
/// \pre Distinct nodes are mapped (\a mapDistinctNodes() has been called).
|
|
/// \pre If \c N is distinct, all uniqued nodes are already mapped.
|
|
void remapOperands(const Data &D, MDNode &N);
|
|
};
|
|
|
|
} // end namespace
|
|
|
|
Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
return Mapper(VM, Flags, TypeMapper, Materializer).mapValue(V);
|
|
}
|
|
|
|
Value *Mapper::mapValue(const Value *V) {
|
|
ValueToValueMapTy::iterator I = VM.find(V);
|
|
|
|
// If the value already exists in the map, use it.
|
|
if (I != VM.end() && I->second) return I->second;
|
|
|
|
// If we have a materializer and it can materialize a value, use that.
|
|
if (Materializer) {
|
|
if (Value *NewV =
|
|
Materializer->materializeDeclFor(const_cast<Value *>(V))) {
|
|
VM[V] = NewV;
|
|
if (auto *NewGV = dyn_cast<GlobalValue>(NewV))
|
|
DelayedInits.push_back(
|
|
DelayedGlobalValueInit(cast<GlobalValue>(V), NewGV));
|
|
return NewV;
|
|
}
|
|
}
|
|
|
|
// Global values do not need to be seeded into the VM if they
|
|
// are using the identity mapping.
|
|
if (isa<GlobalValue>(V)) {
|
|
if (Flags & RF_NullMapMissingGlobalValues)
|
|
return nullptr;
|
|
return VM[V] = const_cast<Value*>(V);
|
|
}
|
|
|
|
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
|
|
// Inline asm may need *type* remapping.
|
|
FunctionType *NewTy = IA->getFunctionType();
|
|
if (TypeMapper) {
|
|
NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
|
|
|
|
if (NewTy != IA->getFunctionType())
|
|
V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
|
|
IA->hasSideEffects(), IA->isAlignStack());
|
|
}
|
|
|
|
return VM[V] = const_cast<Value*>(V);
|
|
}
|
|
|
|
if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
|
|
const Metadata *MD = MDV->getMetadata();
|
|
|
|
if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
|
|
// Look through to grab the local value.
|
|
if (Value *LV = mapValue(LAM->getValue())) {
|
|
if (V == LAM->getValue())
|
|
return const_cast<Value *>(V);
|
|
return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
|
|
}
|
|
|
|
// FIXME: always return nullptr once Verifier::verifyDominatesUse()
|
|
// ensures metadata operands only reference defined SSA values.
|
|
return (Flags & RF_IgnoreMissingLocals)
|
|
? nullptr
|
|
: MetadataAsValue::get(V->getContext(),
|
|
MDTuple::get(V->getContext(), None));
|
|
}
|
|
|
|
// If this is a module-level metadata and we know that nothing at the module
|
|
// level is changing, then use an identity mapping.
|
|
if (Flags & RF_NoModuleLevelChanges)
|
|
return VM[V] = const_cast<Value *>(V);
|
|
|
|
// Map the metadata and turn it into a value.
|
|
auto *MappedMD = mapMetadata(MD);
|
|
if (MD == MappedMD)
|
|
return VM[V] = const_cast<Value *>(V);
|
|
return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD);
|
|
}
|
|
|
|
// Okay, this either must be a constant (which may or may not be mappable) or
|
|
// is something that is not in the mapping table.
|
|
Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
|
|
if (!C)
|
|
return nullptr;
|
|
|
|
if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
|
|
return mapBlockAddress(*BA);
|
|
|
|
// Otherwise, we have some other constant to remap. Start by checking to see
|
|
// if all operands have an identity remapping.
|
|
unsigned OpNo = 0, NumOperands = C->getNumOperands();
|
|
Value *Mapped = nullptr;
|
|
for (; OpNo != NumOperands; ++OpNo) {
|
|
Value *Op = C->getOperand(OpNo);
|
|
Mapped = mapValue(Op);
|
|
if (Mapped != C) break;
|
|
}
|
|
|
|
// See if the type mapper wants to remap the type as well.
|
|
Type *NewTy = C->getType();
|
|
if (TypeMapper)
|
|
NewTy = TypeMapper->remapType(NewTy);
|
|
|
|
// If the result type and all operands match up, then just insert an identity
|
|
// mapping.
|
|
if (OpNo == NumOperands && NewTy == C->getType())
|
|
return VM[V] = C;
|
|
|
|
// Okay, we need to create a new constant. We've already processed some or
|
|
// all of the operands, set them all up now.
|
|
SmallVector<Constant*, 8> Ops;
|
|
Ops.reserve(NumOperands);
|
|
for (unsigned j = 0; j != OpNo; ++j)
|
|
Ops.push_back(cast<Constant>(C->getOperand(j)));
|
|
|
|
// If one of the operands mismatch, push it and the other mapped operands.
|
|
if (OpNo != NumOperands) {
|
|
Ops.push_back(cast<Constant>(Mapped));
|
|
|
|
// Map the rest of the operands that aren't processed yet.
|
|
for (++OpNo; OpNo != NumOperands; ++OpNo)
|
|
Ops.push_back(cast<Constant>(mapValue(C->getOperand(OpNo))));
|
|
}
|
|
Type *NewSrcTy = nullptr;
|
|
if (TypeMapper)
|
|
if (auto *GEPO = dyn_cast<GEPOperator>(C))
|
|
NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
|
|
return VM[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
|
|
if (isa<ConstantArray>(C))
|
|
return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
|
|
if (isa<ConstantStruct>(C))
|
|
return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
|
|
if (isa<ConstantVector>(C))
|
|
return VM[V] = ConstantVector::get(Ops);
|
|
// If this is a no-operand constant, it must be because the type was remapped.
|
|
if (isa<UndefValue>(C))
|
|
return VM[V] = UndefValue::get(NewTy);
|
|
if (isa<ConstantAggregateZero>(C))
|
|
return VM[V] = ConstantAggregateZero::get(NewTy);
|
|
assert(isa<ConstantPointerNull>(C));
|
|
return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
|
|
}
|
|
|
|
Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
|
|
Function *F = cast<Function>(mapValue(BA.getFunction()));
|
|
|
|
// F may not have materialized its initializer. In that case, create a
|
|
// dummy basic block for now, and replace it once we've materialized all
|
|
// the initializers.
|
|
BasicBlock *BB;
|
|
if (F->empty()) {
|
|
DelayedBBs.push_back(DelayedBasicBlock(BA));
|
|
BB = DelayedBBs.back().TempBB.get();
|
|
} else {
|
|
BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
|
|
}
|
|
|
|
return VM[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
|
|
}
|
|
|
|
Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
|
|
VM.MD()[Key].reset(Val);
|
|
return Val;
|
|
}
|
|
|
|
Metadata *Mapper::mapToSelf(const Metadata *MD) {
|
|
return mapToMetadata(MD, const_cast<Metadata *>(MD));
|
|
}
|
|
|
|
bool MDNodeMapper::mapOperand(const Metadata *Op) {
|
|
if (!Op)
|
|
return false;
|
|
|
|
if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
|
|
assert((isa<MDString>(Op) || M.VM.getMappedMD(Op)) &&
|
|
"Expected result to be memoized");
|
|
return *MappedOp != Op;
|
|
}
|
|
|
|
return push(*cast<MDNode>(Op)).HasChangedAddress;
|
|
}
|
|
|
|
Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
|
|
if (!Op)
|
|
return nullptr;
|
|
|
|
if (Optional<Metadata *> MappedOp = M.VM.getMappedMD(Op))
|
|
return *MappedOp;
|
|
|
|
if (isa<MDString>(Op))
|
|
return const_cast<Metadata *>(Op);
|
|
|
|
return None;
|
|
}
|
|
|
|
Metadata &MDNodeMapper::getFwdReference(const Data &D, MDNode &Op) {
|
|
auto Where = Info.find(&Op);
|
|
assert(Where != Info.end() && "Expected a valid reference");
|
|
|
|
auto &OpD = Where->second;
|
|
assert(OpD.ID > D.ID && "Expected a forward reference");
|
|
|
|
if (!OpD.HasChangedAddress)
|
|
return Op;
|
|
|
|
// Lazily construct a temporary node.
|
|
if (!OpD.Placeholder)
|
|
OpD.Placeholder = Op.clone();
|
|
|
|
return *OpD.Placeholder;
|
|
}
|
|
|
|
void MDNodeMapper::remapOperands(const Data &D, MDNode &N) {
|
|
for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
|
|
Metadata *Old = N.getOperand(I);
|
|
Metadata *New;
|
|
if (Optional<Metadata *> MappedOp = getMappedOp(Old)){
|
|
New = *MappedOp;
|
|
} else {
|
|
assert(!N.isDistinct() &&
|
|
"Expected all nodes to be pre-mapped for distinct operands");
|
|
MDNode &OldN = *cast<MDNode>(Old);
|
|
assert(!OldN.isDistinct() && "Expected distinct nodes to be pre-mapped");
|
|
New = &getFwdReference(D, OldN);
|
|
}
|
|
|
|
if (Old != New)
|
|
N.replaceOperandWith(I, New);
|
|
}
|
|
}
|
|
|
|
MDNodeMapper::Data &MDNodeMapper::push(const MDNode &N) {
|
|
auto Insertion = Info.insert(std::make_pair(&N, Data()));
|
|
auto &D = Insertion.first->second;
|
|
if (!Insertion.second)
|
|
return D;
|
|
|
|
// Add to the worklist; check for distinct nodes that are required to be
|
|
// copied.
|
|
Worklist.push_back(std::make_pair(&const_cast<MDNode &>(N), false));
|
|
D.HasChangedAddress = !(M.Flags & RF_MoveDistinctMDs) && N.isDistinct();
|
|
return D;
|
|
}
|
|
|
|
bool MDNodeMapper::tryToPop() {
|
|
if (!Worklist.back().second) {
|
|
Worklist.back().second = true;
|
|
return false;
|
|
}
|
|
|
|
MDNode *N = Worklist.pop_back_val().first;
|
|
Info[N].ID = POT.size();
|
|
POT.push_back(N);
|
|
return true;
|
|
}
|
|
|
|
bool MDNodeMapper::createPOT(const MDNode &FirstN) {
|
|
bool AnyChanges = false;
|
|
|
|
// Do a traversal of the unmapped subgraph, tracking whether operands change.
|
|
// In some cases, these changes will propagate naturally, but
|
|
// propagateChangedOperands() catches the general case.
|
|
AnyChanges |= push(FirstN).HasChangedAddress;
|
|
while (hasWork()) {
|
|
if (tryToPop())
|
|
continue;
|
|
|
|
MDNode &N = getCurrentNode();
|
|
bool LocalChanges = false;
|
|
for (const Metadata *Op : N.operands())
|
|
LocalChanges |= mapOperand(Op);
|
|
|
|
if (!LocalChanges)
|
|
continue;
|
|
|
|
AnyChanges = true;
|
|
auto &D = Info[&N];
|
|
D.HasChangedOps = true;
|
|
|
|
// Uniqued nodes change address when operands change.
|
|
if (!N.isDistinct())
|
|
D.HasChangedAddress = true;
|
|
}
|
|
return AnyChanges;
|
|
}
|
|
|
|
void MDNodeMapper::propagateChangedOperands() {
|
|
bool AnyChangedAddresses;
|
|
do {
|
|
AnyChangedAddresses = false;
|
|
for (MDNode *N : POT) {
|
|
auto &NI = Info[N];
|
|
if (NI.HasChangedOps)
|
|
continue;
|
|
|
|
if (!llvm::any_of(N->operands(), [&](const Metadata *Op) {
|
|
auto Where = Info.find(Op);
|
|
return Where != Info.end() && Where->second.HasChangedAddress;
|
|
}))
|
|
continue;
|
|
|
|
NI.HasChangedOps = true;
|
|
if (!N->isDistinct()) {
|
|
NI.HasChangedAddress = true;
|
|
AnyChangedAddresses = true;
|
|
}
|
|
}
|
|
} while (AnyChangedAddresses);
|
|
}
|
|
|
|
void MDNodeMapper::mapDistinctNodes() {
|
|
// Map all the distinct nodes in POT.
|
|
for (MDNode *N : POT) {
|
|
if (!N->isDistinct())
|
|
continue;
|
|
|
|
if (M.Flags & RF_MoveDistinctMDs)
|
|
M.mapToSelf(N);
|
|
else
|
|
M.mapToMetadata(N, MDNode::replaceWithDistinct(N->clone()));
|
|
}
|
|
}
|
|
|
|
void MDNodeMapper::mapUniquedNodes() {
|
|
// Construct uniqued nodes, building forward references as necessary.
|
|
SmallVector<MDNode *, 16> CyclicNodes;
|
|
for (auto *N : POT) {
|
|
if (N->isDistinct())
|
|
continue;
|
|
|
|
auto &D = Info[N];
|
|
assert(D.HasChangedAddress == D.HasChangedOps &&
|
|
"Uniqued nodes should change address iff ops change");
|
|
if (!D.HasChangedAddress) {
|
|
M.mapToSelf(N);
|
|
continue;
|
|
}
|
|
|
|
TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
|
|
remapOperands(D, *ClonedN);
|
|
CyclicNodes.push_back(MDNode::replaceWithUniqued(std::move(ClonedN)));
|
|
M.mapToMetadata(N, CyclicNodes.back());
|
|
}
|
|
|
|
// Resolve cycles.
|
|
for (auto *N : CyclicNodes)
|
|
if (!N->isResolved())
|
|
N->resolveCycles();
|
|
}
|
|
|
|
void MDNodeMapper::remapDistinctOperands() {
|
|
for (auto *N : POT) {
|
|
if (!N->isDistinct())
|
|
continue;
|
|
|
|
auto &D = Info[N];
|
|
if (!D.HasChangedOps)
|
|
continue;
|
|
|
|
assert(D.HasChangedAddress == !bool(M.Flags & RF_MoveDistinctMDs) &&
|
|
"Distinct nodes should change address iff they cannot be moved");
|
|
remapOperands(D, D.HasChangedAddress ? *cast<MDNode>(*getMappedOp(N)) : *N);
|
|
}
|
|
}
|
|
|
|
Metadata *MDNodeMapper::map(const MDNode &FirstN) {
|
|
assert(!(M.Flags & RF_NoModuleLevelChanges) &&
|
|
"MDNodeMapper::map assumes module-level changes");
|
|
assert(POT.empty() && "MDNodeMapper::map is not re-entrant");
|
|
|
|
// Require resolved nodes whenever metadata might be remapped.
|
|
assert(FirstN.isResolved() && "Unexpected unresolved node");
|
|
|
|
// Return early if nothing at all changed.
|
|
if (!createPOT(FirstN)) {
|
|
for (const MDNode *N : POT)
|
|
M.mapToSelf(N);
|
|
return &const_cast<MDNode &>(FirstN);
|
|
}
|
|
|
|
propagateChangedOperands();
|
|
mapDistinctNodes();
|
|
mapUniquedNodes();
|
|
remapDistinctOperands();
|
|
|
|
// Return the original node, remapped.
|
|
return *getMappedOp(&FirstN);
|
|
}
|
|
|
|
Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
|
|
// If the value already exists in the map, use it.
|
|
if (Optional<Metadata *> NewMD = VM.getMappedMD(MD))
|
|
return *NewMD;
|
|
|
|
if (isa<MDString>(MD))
|
|
return const_cast<Metadata *>(MD);
|
|
|
|
// This is a module-level metadata. If nothing at the module level is
|
|
// changing, use an identity mapping.
|
|
if ((Flags & RF_NoModuleLevelChanges))
|
|
return const_cast<Metadata *>(MD);
|
|
|
|
if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
|
|
// Disallow recursion into metadata mapping through mapValue.
|
|
VM.disableMapMetadata();
|
|
Value *MappedV = mapValue(CMD->getValue());
|
|
VM.enableMapMetadata();
|
|
|
|
if (CMD->getValue() == MappedV)
|
|
return mapToSelf(MD);
|
|
|
|
return mapToMetadata(MD, MappedV ? ValueAsMetadata::get(MappedV) : nullptr);
|
|
}
|
|
|
|
assert(isa<MDNode>(MD) && "Expected a metadata node");
|
|
|
|
return None;
|
|
}
|
|
|
|
Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
return Mapper(VM, Flags, TypeMapper, Materializer).mapMetadata(MD);
|
|
}
|
|
|
|
Metadata *Mapper::mapLocalAsMetadata(const LocalAsMetadata &LAM) {
|
|
// Lookup the mapping for the value itself, and return the appropriate
|
|
// metadata.
|
|
if (Value *V = mapValue(LAM.getValue())) {
|
|
if (V == LAM.getValue())
|
|
return const_cast<LocalAsMetadata *>(&LAM);
|
|
return ValueAsMetadata::get(V);
|
|
}
|
|
|
|
// FIXME: always return nullptr once Verifier::verifyDominatesUse() ensures
|
|
// metadata operands only reference defined SSA values.
|
|
return (Flags & RF_IgnoreMissingLocals)
|
|
? nullptr
|
|
: MDTuple::get(LAM.getContext(), None);
|
|
}
|
|
|
|
Metadata *Mapper::mapMetadata(const Metadata *MD) {
|
|
assert(MD && "Expected valid metadata");
|
|
assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
|
|
|
|
if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
|
|
return *NewMD;
|
|
|
|
return MDNodeMapper(*this).map(*cast<MDNode>(MD));
|
|
}
|
|
|
|
Mapper::~Mapper() {
|
|
// Materialize global initializers.
|
|
while (!DelayedInits.empty()) {
|
|
auto Init = DelayedInits.pop_back_val();
|
|
Materializer->materializeInitFor(Init.New, Init.Old);
|
|
}
|
|
|
|
// Process block addresses delayed until global inits.
|
|
while (!DelayedBBs.empty()) {
|
|
DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
|
|
BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
|
|
DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
|
|
}
|
|
|
|
// We don't expect these to grow after clearing.
|
|
assert(DelayedInits.empty());
|
|
assert(DelayedBBs.empty());
|
|
}
|
|
|
|
MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
return cast_or_null<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM,
|
|
Flags, TypeMapper, Materializer));
|
|
}
|
|
|
|
void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
Mapper(VM, Flags, TypeMapper, Materializer).remapInstruction(I);
|
|
}
|
|
|
|
void Mapper::remapInstruction(Instruction *I) {
|
|
// Remap operands.
|
|
for (Use &Op : I->operands()) {
|
|
Value *V = mapValue(Op);
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V)
|
|
Op = V;
|
|
else
|
|
assert((Flags & RF_IgnoreMissingLocals) &&
|
|
"Referenced value not in value map!");
|
|
}
|
|
|
|
// Remap phi nodes' incoming blocks.
|
|
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *V = mapValue(PN->getIncomingBlock(i));
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V)
|
|
PN->setIncomingBlock(i, cast<BasicBlock>(V));
|
|
else
|
|
assert((Flags & RF_IgnoreMissingLocals) &&
|
|
"Referenced block not in value map!");
|
|
}
|
|
}
|
|
|
|
// Remap attached metadata.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
I->getAllMetadata(MDs);
|
|
for (const auto &MI : MDs) {
|
|
MDNode *Old = MI.second;
|
|
MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
|
|
if (New != Old)
|
|
I->setMetadata(MI.first, New);
|
|
}
|
|
|
|
if (!TypeMapper)
|
|
return;
|
|
|
|
// If the instruction's type is being remapped, do so now.
|
|
if (auto CS = CallSite(I)) {
|
|
SmallVector<Type *, 3> Tys;
|
|
FunctionType *FTy = CS.getFunctionType();
|
|
Tys.reserve(FTy->getNumParams());
|
|
for (Type *Ty : FTy->params())
|
|
Tys.push_back(TypeMapper->remapType(Ty));
|
|
CS.mutateFunctionType(FunctionType::get(
|
|
TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
|
|
return;
|
|
}
|
|
if (auto *AI = dyn_cast<AllocaInst>(I))
|
|
AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
GEP->setSourceElementType(
|
|
TypeMapper->remapType(GEP->getSourceElementType()));
|
|
GEP->setResultElementType(
|
|
TypeMapper->remapType(GEP->getResultElementType()));
|
|
}
|
|
I->mutateType(TypeMapper->remapType(I->getType()));
|
|
}
|
|
|
|
void llvm::RemapFunction(Function &F, ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
Mapper(VM, Flags, TypeMapper, Materializer).remapFunction(F);
|
|
}
|
|
|
|
void Mapper::remapFunction(Function &F) {
|
|
// Remap the operands.
|
|
for (Use &Op : F.operands())
|
|
if (Op)
|
|
Op = mapValue(Op);
|
|
|
|
// Remap the metadata attachments.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
|
|
F.getAllMetadata(MDs);
|
|
for (const auto &I : MDs)
|
|
F.setMetadata(I.first, cast_or_null<MDNode>(mapMetadata(I.second)));
|
|
|
|
// Remap the argument types.
|
|
if (TypeMapper)
|
|
for (Argument &A : F.args())
|
|
A.mutateType(TypeMapper->remapType(A.getType()));
|
|
|
|
// Remap the instructions.
|
|
for (BasicBlock &BB : F)
|
|
for (Instruction &I : BB)
|
|
remapInstruction(&I);
|
|
}
|