forked from OSchip/llvm-project
229 lines
8.7 KiB
C++
229 lines
8.7 KiB
C++
//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the TwoAddress instruction pass which is used
|
|
// by most register allocators. Two-Address instructions are rewritten
|
|
// from:
|
|
//
|
|
// A = B op C
|
|
//
|
|
// to:
|
|
//
|
|
// A = B
|
|
// A op= C
|
|
//
|
|
// Note that if a register allocator chooses to use this pass, that it
|
|
// has to be capable of handling the non-SSA nature of these rewritten
|
|
// virtual registers.
|
|
//
|
|
// It is also worth noting that the duplicate operand of the two
|
|
// address instruction is removed.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "twoaddrinstr"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
|
|
STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
|
|
STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
|
|
|
|
namespace {
|
|
struct VISIBILITY_HIDDEN TwoAddressInstructionPass
|
|
: public MachineFunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
TwoAddressInstructionPass() : MachineFunctionPass((intptr_t)&ID) {}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
|
|
|
|
/// runOnMachineFunction - pass entry point
|
|
bool runOnMachineFunction(MachineFunction&);
|
|
};
|
|
|
|
char TwoAddressInstructionPass::ID = 0;
|
|
RegisterPass<TwoAddressInstructionPass>
|
|
X("twoaddressinstruction", "Two-Address instruction pass");
|
|
}
|
|
|
|
const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo();
|
|
|
|
void TwoAddressInstructionPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<LiveVariables>();
|
|
AU.addPreserved<LiveVariables>();
|
|
AU.addPreservedID(PHIEliminationID);
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// runOnMachineFunction - Reduce two-address instructions to two
|
|
/// operands.
|
|
///
|
|
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
|
|
DOUT << "Machine Function\n";
|
|
const TargetMachine &TM = MF.getTarget();
|
|
const TargetInstrInfo &TII = *TM.getInstrInfo();
|
|
const MRegisterInfo &MRI = *TM.getRegisterInfo();
|
|
LiveVariables &LV = getAnalysis<LiveVariables>();
|
|
|
|
bool MadeChange = false;
|
|
|
|
DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
|
|
DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
|
|
|
|
for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
|
|
mbbi != mbbe; ++mbbi) {
|
|
for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
|
|
mi != me; ++mi) {
|
|
const TargetInstrDescriptor *TID = mi->getInstrDescriptor();
|
|
|
|
bool FirstTied = true;
|
|
for (unsigned si = 1, e = TID->numOperands; si < e; ++si) {
|
|
int ti = TID->getOperandConstraint(si, TOI::TIED_TO);
|
|
if (ti == -1)
|
|
continue;
|
|
|
|
if (FirstTied) {
|
|
++NumTwoAddressInstrs;
|
|
DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
|
|
}
|
|
FirstTied = false;
|
|
|
|
assert(mi->getOperand(si).isRegister() && mi->getOperand(si).getReg() &&
|
|
mi->getOperand(si).isUse() && "two address instruction invalid");
|
|
|
|
// if the two operands are the same we just remove the use
|
|
// and mark the def as def&use, otherwise we have to insert a copy.
|
|
if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
|
|
// rewrite:
|
|
// a = b op c
|
|
// to:
|
|
// a = b
|
|
// a = a op c
|
|
unsigned regA = mi->getOperand(ti).getReg();
|
|
unsigned regB = mi->getOperand(si).getReg();
|
|
|
|
assert(MRegisterInfo::isVirtualRegister(regA) &&
|
|
MRegisterInfo::isVirtualRegister(regB) &&
|
|
"cannot update physical register live information");
|
|
|
|
#ifndef NDEBUG
|
|
// First, verify that we don't have a use of a in the instruction (a =
|
|
// b + a for example) because our transformation will not work. This
|
|
// should never occur because we are in SSA form.
|
|
for (unsigned i = 0; i != mi->getNumOperands(); ++i)
|
|
assert((int)i == ti ||
|
|
!mi->getOperand(i).isRegister() ||
|
|
mi->getOperand(i).getReg() != regA);
|
|
#endif
|
|
|
|
// If this instruction is not the killing user of B, see if we can
|
|
// rearrange the code to make it so. Making it the killing user will
|
|
// allow us to coalesce A and B together, eliminating the copy we are
|
|
// about to insert.
|
|
if (!LV.KillsRegister(mi, regB)) {
|
|
// If this instruction is commutative, check to see if C dies. If
|
|
// so, swap the B and C operands. This makes the live ranges of A
|
|
// and C joinable.
|
|
// FIXME: This code also works for A := B op C instructions.
|
|
if ((TID->Flags & M_COMMUTABLE) && mi->getNumOperands() == 3) {
|
|
assert(mi->getOperand(3-si).isRegister() &&
|
|
"Not a proper commutative instruction!");
|
|
unsigned regC = mi->getOperand(3-si).getReg();
|
|
if (LV.KillsRegister(mi, regC)) {
|
|
DOUT << "2addr: COMMUTING : " << *mi;
|
|
MachineInstr *NewMI = TII.commuteInstruction(mi);
|
|
if (NewMI == 0) {
|
|
DOUT << "2addr: COMMUTING FAILED!\n";
|
|
} else {
|
|
DOUT << "2addr: COMMUTED TO: " << *NewMI;
|
|
// If the instruction changed to commute it, update livevar.
|
|
if (NewMI != mi) {
|
|
LV.instructionChanged(mi, NewMI); // Update live variables
|
|
mbbi->insert(mi, NewMI); // Insert the new inst
|
|
mbbi->erase(mi); // Nuke the old inst.
|
|
mi = NewMI;
|
|
}
|
|
|
|
++NumCommuted;
|
|
regB = regC;
|
|
goto InstructionRearranged;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this instruction is potentially convertible to a true
|
|
// three-address instruction,
|
|
if (TID->Flags & M_CONVERTIBLE_TO_3_ADDR)
|
|
// FIXME: This assumes there are no more operands which are tied
|
|
// to another register.
|
|
#ifndef NDEBUG
|
|
for (unsigned i = si+1, e = TID->numOperands; i < e; ++i)
|
|
assert(TID->getOperandConstraint(i, TOI::TIED_TO) == -1);
|
|
#endif
|
|
|
|
if (MachineInstr *New = TII.convertToThreeAddress(mbbi, mi, LV)) {
|
|
DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
|
|
DOUT << "2addr: TO 3-ADDR: " << *New;
|
|
mbbi->erase(mi); // Nuke the old inst.
|
|
mi = New;
|
|
++NumConvertedTo3Addr;
|
|
// Done with this instruction.
|
|
break;
|
|
}
|
|
}
|
|
|
|
InstructionRearranged:
|
|
const TargetRegisterClass* rc = MF.getSSARegMap()->getRegClass(regA);
|
|
MRI.copyRegToReg(*mbbi, mi, regA, regB, rc);
|
|
|
|
MachineBasicBlock::iterator prevMi = prior(mi);
|
|
DOUT << "\t\tprepend:\t"; DEBUG(prevMi->print(*cerr.stream(), &TM));
|
|
|
|
// Update live variables for regA
|
|
LiveVariables::VarInfo& varInfo = LV.getVarInfo(regA);
|
|
varInfo.DefInst = prevMi;
|
|
|
|
if (LV.removeVirtualRegisterKilled(regB, mbbi, mi))
|
|
LV.addVirtualRegisterKilled(regB, prevMi);
|
|
|
|
if (LV.removeVirtualRegisterDead(regB, mbbi, mi))
|
|
LV.addVirtualRegisterDead(regB, prevMi);
|
|
|
|
// replace all occurences of regB with regA
|
|
for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
|
|
if (mi->getOperand(i).isRegister() &&
|
|
mi->getOperand(i).getReg() == regB)
|
|
mi->getOperand(i).setReg(regA);
|
|
}
|
|
}
|
|
|
|
assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
|
|
mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
|
|
MadeChange = true;
|
|
|
|
DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
|
|
}
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|