llvm-project/lld/ELF/SyntheticSections.h

793 lines
27 KiB
C++

//===- SyntheticSection.h ---------------------------------------*- C++ -*-===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Synthetic sections represent chunks of linker-created data. If you
// need to create a chunk of data that to be included in some section
// in the result, you probably want to create it as a synthetic section.
//
// In reality, there are a few linker-synthesized chunks that are not
// of synthetic sections, such as thunks. But we are rewriting them so
// that eventually they are represented as synthetic sections.
//
// Synthetic sections are designed as input sections as opposed to
// output sections because we want to allow them to be manipulated
// using linker scripts just like other input sections from regular
// files.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_SYNTHETIC_SECTION_H
#define LLD_ELF_SYNTHETIC_SECTION_H
#include "GdbIndex.h"
#include "InputSection.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/MC/StringTableBuilder.h"
namespace lld {
namespace elf {
template <class ELFT> class SyntheticSection : public InputSection<ELFT> {
typedef typename ELFT::uint uintX_t;
public:
SyntheticSection(uintX_t Flags, uint32_t Type, uintX_t Addralign,
StringRef Name)
: InputSection<ELFT>(Flags, Type, Addralign, ArrayRef<uint8_t>(), Name,
InputSectionData::Synthetic) {
this->Live = true;
}
virtual ~SyntheticSection() = default;
virtual void writeTo(uint8_t *Buf) = 0;
virtual size_t getSize() const = 0;
virtual void finalize() {}
virtual bool empty() const { return false; }
uintX_t getVA() const {
return this->OutSec ? this->OutSec->Addr + this->OutSecOff : 0;
}
static bool classof(const InputSectionData *D) {
return D->kind() == InputSectionData::Synthetic;
}
};
template <class ELFT> class GotSection final : public SyntheticSection<ELFT> {
typedef typename ELFT::uint uintX_t;
public:
GotSection();
void writeTo(uint8_t *Buf) override;
size_t getSize() const override { return Size; }
void finalize() override;
bool empty() const override;
void addEntry(SymbolBody &Sym);
bool addDynTlsEntry(SymbolBody &Sym);
bool addTlsIndex();
uintX_t getGlobalDynAddr(const SymbolBody &B) const;
uintX_t getGlobalDynOffset(const SymbolBody &B) const;
uintX_t getTlsIndexVA() { return this->getVA() + TlsIndexOff; }
uint32_t getTlsIndexOff() const { return TlsIndexOff; }
// Flag to force GOT to be in output if we have relocations
// that relies on its address.
bool HasGotOffRel = false;
private:
size_t NumEntries = 0;
uint32_t TlsIndexOff = -1;
uintX_t Size = 0;
};
// .note.gnu.build-id section.
template <class ELFT> class BuildIdSection : public SyntheticSection<ELFT> {
// First 16 bytes are a header.
static const unsigned HeaderSize = 16;
public:
BuildIdSection();
void writeTo(uint8_t *Buf) override;
size_t getSize() const override { return HeaderSize + HashSize; }
void writeBuildId(llvm::ArrayRef<uint8_t> Buf);
private:
void computeHash(llvm::ArrayRef<uint8_t> Buf,
std::function<void(uint8_t *, ArrayRef<uint8_t>)> Hash);
size_t HashSize;
uint8_t *HashBuf;
};
template <class ELFT>
class MipsGotSection final : public SyntheticSection<ELFT> {
typedef typename ELFT::uint uintX_t;
public:
MipsGotSection();
void writeTo(uint8_t *Buf) override;
size_t getSize() const override { return Size; }
void finalize() override;
bool empty() const override;
void addEntry(SymbolBody &Sym, uintX_t Addend, RelExpr Expr);
bool addDynTlsEntry(SymbolBody &Sym);
bool addTlsIndex();
uintX_t getPageEntryOffset(const SymbolBody &B, uintX_t Addend) const;
uintX_t getBodyEntryOffset(const SymbolBody &B, uintX_t Addend) const;
uintX_t getGlobalDynOffset(const SymbolBody &B) const;
// Returns the symbol which corresponds to the first entry of the global part
// of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic
// table properties.
// Returns nullptr if the global part is empty.
const SymbolBody *getFirstGlobalEntry() const;
// Returns the number of entries in the local part of GOT including
// the number of reserved entries.
unsigned getLocalEntriesNum() const;
// Returns offset of TLS part of the MIPS GOT table. This part goes
// after 'local' and 'global' entries.
uintX_t getTlsOffset() const;
uint32_t getTlsIndexOff() const { return TlsIndexOff; }
uintX_t getGp() const;
private:
// MIPS GOT consists of three parts: local, global and tls. Each part
// contains different types of entries. Here is a layout of GOT:
// - Header entries |
// - Page entries | Local part
// - Local entries (16-bit access) |
// - Local entries (32-bit access) |
// - Normal global entries || Global part
// - Reloc-only global entries ||
// - TLS entries ||| TLS part
//
// Header:
// Two entries hold predefined value 0x0 and 0x80000000.
// Page entries:
// These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16
// relocation against local symbols. They are initialized by higher 16-bit
// of the corresponding symbol's value. So each 64kb of address space
// requires a single GOT entry.
// Local entries (16-bit access):
// These entries created by GOT relocations against global non-preemptible
// symbols so dynamic linker is not necessary to resolve the symbol's
// values. "16-bit access" means that corresponding relocations address
// GOT using 16-bit index. Each unique Symbol-Addend pair has its own
// GOT entry.
// Local entries (32-bit access):
// These entries are the same as above but created by relocations which
// address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc).
// Normal global entries:
// These entries created by GOT relocations against preemptible global
// symbols. They need to be initialized by dynamic linker and they ordered
// exactly as the corresponding entries in the dynamic symbols table.
// Reloc-only global entries:
// These entries created for symbols that are referenced by dynamic
// relocations R_MIPS_REL32. These entries are not accessed with gp-relative
// addressing, but MIPS ABI requires that these entries be present in GOT.
// TLS entries:
// Entries created by TLS relocations.
// Number of "Header" entries.
static const unsigned HeaderEntriesNum = 2;
// Number of allocated "Page" entries.
uint32_t PageEntriesNum = 0;
// Map output sections referenced by MIPS GOT relocations
// to the first index of "Page" entries allocated for this section.
llvm::SmallMapVector<const OutputSectionBase *, size_t, 16> PageIndexMap;
typedef std::pair<const SymbolBody *, uintX_t> GotEntry;
typedef std::vector<GotEntry> GotEntries;
// Map from Symbol-Addend pair to the GOT index.
llvm::DenseMap<GotEntry, size_t> EntryIndexMap;
// Local entries (16-bit access).
GotEntries LocalEntries;
// Local entries (32-bit access).
GotEntries LocalEntries32;
// Normal and reloc-only global entries.
GotEntries GlobalEntries;
// TLS entries.
std::vector<const SymbolBody *> TlsEntries;
uint32_t TlsIndexOff = -1;
uintX_t Size = 0;
};
template <class ELFT>
class GotPltSection final : public SyntheticSection<ELFT> {
typedef typename ELFT::uint uintX_t;
public:
GotPltSection();
void addEntry(SymbolBody &Sym);
size_t getSize() const override;
void writeTo(uint8_t *Buf) override;
bool empty() const override { return Entries.empty(); }
private:
std::vector<const SymbolBody *> Entries;
};
// The IgotPltSection is a Got associated with the IpltSection for GNU Ifunc
// Symbols that will be relocated by Target->IRelativeRel.
// On most Targets the IgotPltSection will immediately follow the GotPltSection
// on ARM the IgotPltSection will immediately follow the GotSection.
template <class ELFT>
class IgotPltSection final : public SyntheticSection<ELFT> {
typedef typename ELFT::uint uintX_t;
public:
IgotPltSection();
void addEntry(SymbolBody &Sym);
size_t getSize() const override;
void writeTo(uint8_t *Buf) override;
bool empty() const override { return Entries.empty(); }
private:
std::vector<const SymbolBody *> Entries;
};
template <class ELFT>
class StringTableSection final : public SyntheticSection<ELFT> {
public:
typedef typename ELFT::uint uintX_t;
StringTableSection(StringRef Name, bool Dynamic);
unsigned addString(StringRef S, bool HashIt = true);
void writeTo(uint8_t *Buf) override;
size_t getSize() const override { return Size; }
bool isDynamic() const { return Dynamic; }
private:
const bool Dynamic;
// ELF string tables start with a NUL byte, so 1.
uintX_t Size = 1;
llvm::DenseMap<StringRef, unsigned> StringMap;
std::vector<StringRef> Strings;
};
template <class ELFT> class DynamicReloc {
typedef typename ELFT::uint uintX_t;
public:
DynamicReloc(uint32_t Type, const InputSectionBase<ELFT> *InputSec,
uintX_t OffsetInSec, bool UseSymVA, SymbolBody *Sym,
uintX_t Addend)
: Type(Type), Sym(Sym), InputSec(InputSec), OffsetInSec(OffsetInSec),
UseSymVA(UseSymVA), Addend(Addend) {}
DynamicReloc(uint32_t Type, const OutputSectionBase *OutputSec,
uintX_t OffsetInSec, bool UseSymVA, SymbolBody *Sym,
uintX_t Addend)
: Type(Type), Sym(Sym), OutputSec(OutputSec), OffsetInSec(OffsetInSec),
UseSymVA(UseSymVA), Addend(Addend) {}
uintX_t getOffset() const;
uintX_t getAddend() const;
uint32_t getSymIndex() const;
const OutputSectionBase *getOutputSec() const { return OutputSec; }
const InputSectionBase<ELFT> *getInputSec() const { return InputSec; }
uint32_t Type;
private:
SymbolBody *Sym;
const InputSectionBase<ELFT> *InputSec = nullptr;
const OutputSectionBase *OutputSec = nullptr;
uintX_t OffsetInSec;
bool UseSymVA;
uintX_t Addend;
};
template <class ELFT>
class DynamicSection final : public SyntheticSection<ELFT> {
typedef typename ELFT::Dyn Elf_Dyn;
typedef typename ELFT::Rel Elf_Rel;
typedef typename ELFT::Rela Elf_Rela;
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::uint uintX_t;
// The .dynamic section contains information for the dynamic linker.
// The section consists of fixed size entries, which consist of
// type and value fields. Value are one of plain integers, symbol
// addresses, or section addresses. This struct represents the entry.
struct Entry {
int32_t Tag;
union {
OutputSectionBase *OutSec;
InputSection<ELFT> *InSec;
uint64_t Val;
const SymbolBody *Sym;
};
enum KindT { SecAddr, SecSize, SymAddr, PlainInt, InSecAddr } Kind;
Entry(int32_t Tag, OutputSectionBase *OutSec, KindT Kind = SecAddr)
: Tag(Tag), OutSec(OutSec), Kind(Kind) {}
Entry(int32_t Tag, InputSection<ELFT> *Sec)
: Tag(Tag), InSec(Sec), Kind(InSecAddr) {}
Entry(int32_t Tag, uint64_t Val) : Tag(Tag), Val(Val), Kind(PlainInt) {}
Entry(int32_t Tag, const SymbolBody *Sym)
: Tag(Tag), Sym(Sym), Kind(SymAddr) {}
};
// finalize() fills this vector with the section contents. finalize()
// cannot directly create final section contents because when the
// function is called, symbol or section addresses are not fixed yet.
std::vector<Entry> Entries;
public:
DynamicSection();
void finalize() override;
void writeTo(uint8_t *Buf) override;
size_t getSize() const override { return Size; }
private:
void addEntries();
void add(Entry E) { Entries.push_back(E); }
uintX_t Size = 0;
};
template <class ELFT>
class RelocationSection final : public SyntheticSection<ELFT> {
typedef typename ELFT::Rel Elf_Rel;
typedef typename ELFT::Rela Elf_Rela;
typedef typename ELFT::uint uintX_t;
public:
RelocationSection(StringRef Name, bool Sort);
void addReloc(const DynamicReloc<ELFT> &Reloc);
unsigned getRelocOffset();
void finalize() override;
void writeTo(uint8_t *Buf) override;
bool empty() const override { return Relocs.empty(); }
size_t getSize() const override { return Relocs.size() * this->Entsize; }
size_t getRelativeRelocCount() const { return NumRelativeRelocs; }
private:
bool Sort;
size_t NumRelativeRelocs = 0;
std::vector<DynamicReloc<ELFT>> Relocs;
};
struct SymbolTableEntry {
SymbolBody *Symbol;
size_t StrTabOffset;
};
template <class ELFT>
class SymbolTableSection final : public SyntheticSection<ELFT> {
public:
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::SymRange Elf_Sym_Range;
typedef typename ELFT::uint uintX_t;
SymbolTableSection(StringTableSection<ELFT> &StrTabSec);
void finalize() override;
void writeTo(uint8_t *Buf) override;
size_t getSize() const override { return getNumSymbols() * sizeof(Elf_Sym); }
void addGlobal(SymbolBody *Body);
void addLocal(SymbolBody *Body);
StringTableSection<ELFT> &getStrTabSec() const { return StrTabSec; }
unsigned getNumSymbols() const { return Symbols.size() + 1; }
size_t getSymbolIndex(SymbolBody *Body);
ArrayRef<SymbolTableEntry> getSymbols() const { return Symbols; }
static const OutputSectionBase *getOutputSection(SymbolBody *Sym);
private:
void writeLocalSymbols(uint8_t *&Buf);
void writeGlobalSymbols(uint8_t *Buf);
// A vector of symbols and their string table offsets.
std::vector<SymbolTableEntry> Symbols;
StringTableSection<ELFT> &StrTabSec;
unsigned NumLocals = 0;
};
// Outputs GNU Hash section. For detailed explanation see:
// https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
template <class ELFT>
class GnuHashTableSection final : public SyntheticSection<ELFT> {
typedef typename ELFT::Off Elf_Off;
typedef typename ELFT::Word Elf_Word;
typedef typename ELFT::uint uintX_t;
public:
GnuHashTableSection();
void finalize() override;
void writeTo(uint8_t *Buf) override;
size_t getSize() const override { return this->Size; }
// Adds symbols to the hash table.
// Sorts the input to satisfy GNU hash section requirements.
void addSymbols(std::vector<SymbolTableEntry> &Symbols);
private:
static unsigned calcNBuckets(unsigned NumHashed);
static unsigned calcMaskWords(unsigned NumHashed);
void writeHeader(uint8_t *&Buf);
void writeBloomFilter(uint8_t *&Buf);
void writeHashTable(uint8_t *Buf);
struct SymbolData {
SymbolBody *Body;
size_t STName;
uint32_t Hash;
};
std::vector<SymbolData> Symbols;
unsigned MaskWords;
unsigned NBuckets;
unsigned Shift2;
uintX_t Size = 0;
};
template <class ELFT>
class HashTableSection final : public SyntheticSection<ELFT> {
typedef typename ELFT::Word Elf_Word;
public:
HashTableSection();
void finalize() override;
void writeTo(uint8_t *Buf) override;
size_t getSize() const override { return this->Size; }
private:
size_t Size = 0;
};
template <class ELFT> class PltSection final : public SyntheticSection<ELFT> {
public:
PltSection();
void writeTo(uint8_t *Buf) override;
size_t getSize() const override;
void addEntry(SymbolBody &Sym);
bool empty() const override { return Entries.empty(); }
void addSymbols();
private:
std::vector<std::pair<const SymbolBody *, unsigned>> Entries;
};
// The IpltSection is a variant of Plt for recording entries for GNU Ifunc
// symbols that will be subject to a Target->IRelativeRel
// The IpltSection immediately follows the Plt section in the Output Section
template <class ELFT> class IpltSection final : public SyntheticSection<ELFT> {
public:
IpltSection();
void writeTo(uint8_t *Buf) override;
size_t getSize() const override;
void addEntry(SymbolBody &Sym);
bool empty() const override { return Entries.empty(); }
void addSymbols();
private:
std::vector<std::pair<const SymbolBody *, unsigned>> Entries;
};
template <class ELFT>
class GdbIndexSection final : public SyntheticSection<ELFT> {
typedef typename ELFT::uint uintX_t;
const unsigned OffsetTypeSize = 4;
const unsigned CuListOffset = 6 * OffsetTypeSize;
const unsigned CompilationUnitSize = 16;
const unsigned AddressEntrySize = 16 + OffsetTypeSize;
const unsigned SymTabEntrySize = 2 * OffsetTypeSize;
public:
GdbIndexSection();
void finalize() override;
void writeTo(uint8_t *Buf) override;
size_t getSize() const override;
bool empty() const override;
// Pairs of [CU Offset, CU length].
std::vector<std::pair<uintX_t, uintX_t>> CompilationUnits;
llvm::StringTableBuilder StringPool;
GdbHashTab SymbolTable;
// The CU vector portion of the constant pool.
std::vector<std::vector<std::pair<uint32_t, uint8_t>>> CuVectors;
std::vector<AddressEntry<ELFT>> AddressArea;
private:
void parseDebugSections();
void readDwarf(InputSection<ELFT> *I);
uint32_t CuTypesOffset;
uint32_t SymTabOffset;
uint32_t ConstantPoolOffset;
uint32_t StringPoolOffset;
size_t CuVectorsSize = 0;
std::vector<size_t> CuVectorsOffset;
bool Finalized = false;
};
// --eh-frame-hdr option tells linker to construct a header for all the
// .eh_frame sections. This header is placed to a section named .eh_frame_hdr
// and also to a PT_GNU_EH_FRAME segment.
// At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by
// calling dl_iterate_phdr.
// This section contains a lookup table for quick binary search of FDEs.
// Detailed info about internals can be found in Ian Lance Taylor's blog:
// http://www.airs.com/blog/archives/460 (".eh_frame")
// http://www.airs.com/blog/archives/462 (".eh_frame_hdr")
template <class ELFT>
class EhFrameHeader final : public SyntheticSection<ELFT> {
typedef typename ELFT::uint uintX_t;
public:
EhFrameHeader();
void writeTo(uint8_t *Buf) override;
size_t getSize() const override;
void addFde(uint32_t Pc, uint32_t FdeVA);
bool empty() const override;
private:
struct FdeData {
uint32_t Pc;
uint32_t FdeVA;
};
std::vector<FdeData> Fdes;
};
// For more information about .gnu.version and .gnu.version_r see:
// https://www.akkadia.org/drepper/symbol-versioning
// The .gnu.version_d section which has a section type of SHT_GNU_verdef shall
// contain symbol version definitions. The number of entries in this section
// shall be contained in the DT_VERDEFNUM entry of the .dynamic section.
// The section shall contain an array of Elf_Verdef structures, optionally
// followed by an array of Elf_Verdaux structures.
template <class ELFT>
class VersionDefinitionSection final : public SyntheticSection<ELFT> {
typedef typename ELFT::Verdef Elf_Verdef;
typedef typename ELFT::Verdaux Elf_Verdaux;
public:
VersionDefinitionSection();
void finalize() override;
size_t getSize() const override;
void writeTo(uint8_t *Buf) override;
private:
void writeOne(uint8_t *Buf, uint32_t Index, StringRef Name, size_t NameOff);
unsigned FileDefNameOff;
};
// The .gnu.version section specifies the required version of each symbol in the
// dynamic symbol table. It contains one Elf_Versym for each dynamic symbol
// table entry. An Elf_Versym is just a 16-bit integer that refers to a version
// identifier defined in the either .gnu.version_r or .gnu.version_d section.
// The values 0 and 1 are reserved. All other values are used for versions in
// the own object or in any of the dependencies.
template <class ELFT>
class VersionTableSection final : public SyntheticSection<ELFT> {
typedef typename ELFT::Versym Elf_Versym;
public:
VersionTableSection();
void finalize() override;
size_t getSize() const override;
void writeTo(uint8_t *Buf) override;
bool empty() const override;
};
// The .gnu.version_r section defines the version identifiers used by
// .gnu.version. It contains a linked list of Elf_Verneed data structures. Each
// Elf_Verneed specifies the version requirements for a single DSO, and contains
// a reference to a linked list of Elf_Vernaux data structures which define the
// mapping from version identifiers to version names.
template <class ELFT>
class VersionNeedSection final : public SyntheticSection<ELFT> {
typedef typename ELFT::Verneed Elf_Verneed;
typedef typename ELFT::Vernaux Elf_Vernaux;
// A vector of shared files that need Elf_Verneed data structures and the
// string table offsets of their sonames.
std::vector<std::pair<SharedFile<ELFT> *, size_t>> Needed;
// The next available version identifier.
unsigned NextIndex;
public:
VersionNeedSection();
void addSymbol(SharedSymbol<ELFT> *SS);
void finalize() override;
void writeTo(uint8_t *Buf) override;
size_t getSize() const override;
size_t getNeedNum() const { return Needed.size(); }
bool empty() const override;
};
// .MIPS.abiflags section.
template <class ELFT>
class MipsAbiFlagsSection final : public SyntheticSection<ELFT> {
typedef llvm::object::Elf_Mips_ABIFlags<ELFT> Elf_Mips_ABIFlags;
public:
static MipsAbiFlagsSection *create();
MipsAbiFlagsSection(Elf_Mips_ABIFlags Flags);
size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); }
void writeTo(uint8_t *Buf) override;
private:
Elf_Mips_ABIFlags Flags;
};
// .MIPS.options section.
template <class ELFT>
class MipsOptionsSection final : public SyntheticSection<ELFT> {
typedef llvm::object::Elf_Mips_Options<ELFT> Elf_Mips_Options;
typedef llvm::object::Elf_Mips_RegInfo<ELFT> Elf_Mips_RegInfo;
public:
static MipsOptionsSection *create();
MipsOptionsSection(Elf_Mips_RegInfo Reginfo);
void writeTo(uint8_t *Buf) override;
size_t getSize() const override {
return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
}
private:
Elf_Mips_RegInfo Reginfo;
};
// MIPS .reginfo section.
template <class ELFT>
class MipsReginfoSection final : public SyntheticSection<ELFT> {
typedef llvm::object::Elf_Mips_RegInfo<ELFT> Elf_Mips_RegInfo;
public:
static MipsReginfoSection *create();
MipsReginfoSection(Elf_Mips_RegInfo Reginfo);
size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); }
void writeTo(uint8_t *Buf) override;
private:
Elf_Mips_RegInfo Reginfo;
};
// This is a MIPS specific section to hold a space within the data segment
// of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
// See "Dynamic section" in Chapter 5 in the following document:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
template <class ELFT> class MipsRldMapSection : public SyntheticSection<ELFT> {
public:
MipsRldMapSection();
size_t getSize() const override { return sizeof(typename ELFT::uint); }
void writeTo(uint8_t *Buf) override;
};
template <class ELFT> class ARMExidxSentinelSection : public SyntheticSection<ELFT> {
public:
ARMExidxSentinelSection();
size_t getSize() const override { return 8; }
void writeTo(uint8_t *Buf) override;
};
// A container for one or more linker generated thunks. Instances of these
// thunks including ARM interworking and Mips LA25 PI to non-PI thunks.
template <class ELFT> class ThunkSection : public SyntheticSection<ELFT> {
public:
// ThunkSection in OS, with desired OutSecOff of Off
ThunkSection(OutputSectionBase *OS, uint64_t Off);
// Add a newly created Thunk to this container:
// Thunk is given offset from start of this InputSection
// Thunk defines a symbol in this InputSection that can be used as target
// of a relocation
void addThunk(Thunk<ELFT> *T);
size_t getSize() const override { return Size; }
void writeTo(uint8_t *Buf) override;
InputSection<ELFT> *getTargetInputSection() const;
private:
std::vector<const Thunk<ELFT> *> Thunks;
size_t Size = 0;
};
template <class ELFT> InputSection<ELFT> *createCommonSection();
template <class ELFT> InputSection<ELFT> *createInterpSection();
template <class ELFT> MergeInputSection<ELFT> *createCommentSection();
template <class ELFT>
SymbolBody *
addSyntheticLocal(StringRef Name, uint8_t Type, typename ELFT::uint Value,
typename ELFT::uint Size, InputSectionBase<ELFT> *Section);
// Linker generated sections which can be used as inputs.
template <class ELFT> struct In {
static InputSection<ELFT> *ARMAttributes;
static BuildIdSection<ELFT> *BuildId;
static InputSection<ELFT> *Common;
static DynamicSection<ELFT> *Dynamic;
static StringTableSection<ELFT> *DynStrTab;
static SymbolTableSection<ELFT> *DynSymTab;
static EhFrameHeader<ELFT> *EhFrameHdr;
static GnuHashTableSection<ELFT> *GnuHashTab;
static GdbIndexSection<ELFT> *GdbIndex;
static GotSection<ELFT> *Got;
static MipsGotSection<ELFT> *MipsGot;
static GotPltSection<ELFT> *GotPlt;
static IgotPltSection<ELFT> *IgotPlt;
static HashTableSection<ELFT> *HashTab;
static InputSection<ELFT> *Interp;
static MipsRldMapSection<ELFT> *MipsRldMap;
static PltSection<ELFT> *Plt;
static IpltSection<ELFT> *Iplt;
static RelocationSection<ELFT> *RelaDyn;
static RelocationSection<ELFT> *RelaPlt;
static RelocationSection<ELFT> *RelaIplt;
static StringTableSection<ELFT> *ShStrTab;
static StringTableSection<ELFT> *StrTab;
static SymbolTableSection<ELFT> *SymTab;
static VersionDefinitionSection<ELFT> *VerDef;
static VersionTableSection<ELFT> *VerSym;
static VersionNeedSection<ELFT> *VerNeed;
};
template <class ELFT> InputSection<ELFT> *In<ELFT>::ARMAttributes;
template <class ELFT> BuildIdSection<ELFT> *In<ELFT>::BuildId;
template <class ELFT> InputSection<ELFT> *In<ELFT>::Common;
template <class ELFT> DynamicSection<ELFT> *In<ELFT>::Dynamic;
template <class ELFT> StringTableSection<ELFT> *In<ELFT>::DynStrTab;
template <class ELFT> SymbolTableSection<ELFT> *In<ELFT>::DynSymTab;
template <class ELFT> EhFrameHeader<ELFT> *In<ELFT>::EhFrameHdr;
template <class ELFT> GdbIndexSection<ELFT> *In<ELFT>::GdbIndex;
template <class ELFT> GnuHashTableSection<ELFT> *In<ELFT>::GnuHashTab;
template <class ELFT> GotSection<ELFT> *In<ELFT>::Got;
template <class ELFT> MipsGotSection<ELFT> *In<ELFT>::MipsGot;
template <class ELFT> GotPltSection<ELFT> *In<ELFT>::GotPlt;
template <class ELFT> IgotPltSection<ELFT> *In<ELFT>::IgotPlt;
template <class ELFT> HashTableSection<ELFT> *In<ELFT>::HashTab;
template <class ELFT> InputSection<ELFT> *In<ELFT>::Interp;
template <class ELFT> MipsRldMapSection<ELFT> *In<ELFT>::MipsRldMap;
template <class ELFT> PltSection<ELFT> *In<ELFT>::Plt;
template <class ELFT> IpltSection<ELFT> *In<ELFT>::Iplt;
template <class ELFT> RelocationSection<ELFT> *In<ELFT>::RelaDyn;
template <class ELFT> RelocationSection<ELFT> *In<ELFT>::RelaPlt;
template <class ELFT> RelocationSection<ELFT> *In<ELFT>::RelaIplt;
template <class ELFT> StringTableSection<ELFT> *In<ELFT>::ShStrTab;
template <class ELFT> StringTableSection<ELFT> *In<ELFT>::StrTab;
template <class ELFT> SymbolTableSection<ELFT> *In<ELFT>::SymTab;
template <class ELFT> VersionDefinitionSection<ELFT> *In<ELFT>::VerDef;
template <class ELFT> VersionTableSection<ELFT> *In<ELFT>::VerSym;
template <class ELFT> VersionNeedSection<ELFT> *In<ELFT>::VerNeed;
} // namespace elf
} // namespace lld
#endif