forked from OSchip/llvm-project
1608 lines
62 KiB
C++
1608 lines
62 KiB
C++
//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis member access expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
/// Determines if the given class is provably not derived from all of
|
|
/// the prospective base classes.
|
|
static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
|
|
CXXRecordDecl *Record,
|
|
const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
|
|
if (Bases.count(Record->getCanonicalDecl()))
|
|
return false;
|
|
|
|
RecordDecl *RD = Record->getDefinition();
|
|
if (!RD) return false;
|
|
Record = cast<CXXRecordDecl>(RD);
|
|
|
|
for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
|
|
E = Record->bases_end(); I != E; ++I) {
|
|
CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
|
|
CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
|
|
if (!BaseRT) return false;
|
|
|
|
CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
|
|
if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
enum IMAKind {
|
|
/// The reference is definitely not an instance member access.
|
|
IMA_Static,
|
|
|
|
/// The reference may be an implicit instance member access.
|
|
IMA_Mixed,
|
|
|
|
/// The reference may be to an instance member, but it might be invalid if
|
|
/// so, because the context is not an instance method.
|
|
IMA_Mixed_StaticContext,
|
|
|
|
/// The reference may be to an instance member, but it is invalid if
|
|
/// so, because the context is from an unrelated class.
|
|
IMA_Mixed_Unrelated,
|
|
|
|
/// The reference is definitely an implicit instance member access.
|
|
IMA_Instance,
|
|
|
|
/// The reference may be to an unresolved using declaration.
|
|
IMA_Unresolved,
|
|
|
|
/// The reference may be to an unresolved using declaration and the
|
|
/// context is not an instance method.
|
|
IMA_Unresolved_StaticContext,
|
|
|
|
// The reference refers to a field which is not a member of the containing
|
|
// class, which is allowed because we're in C++11 mode and the context is
|
|
// unevaluated.
|
|
IMA_Field_Uneval_Context,
|
|
|
|
/// All possible referrents are instance members and the current
|
|
/// context is not an instance method.
|
|
IMA_Error_StaticContext,
|
|
|
|
/// All possible referrents are instance members of an unrelated
|
|
/// class.
|
|
IMA_Error_Unrelated
|
|
};
|
|
|
|
/// The given lookup names class member(s) and is not being used for
|
|
/// an address-of-member expression. Classify the type of access
|
|
/// according to whether it's possible that this reference names an
|
|
/// instance member. This is best-effort in dependent contexts; it is okay to
|
|
/// conservatively answer "yes", in which case some errors will simply
|
|
/// not be caught until template-instantiation.
|
|
static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
|
|
Scope *CurScope,
|
|
const LookupResult &R) {
|
|
assert(!R.empty() && (*R.begin())->isCXXClassMember());
|
|
|
|
DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
|
|
|
|
bool isStaticContext =
|
|
(!isa<CXXMethodDecl>(DC) ||
|
|
cast<CXXMethodDecl>(DC)->isStatic());
|
|
|
|
// C++0x [expr.prim]p4:
|
|
// Otherwise, if a member-declarator declares a non-static data member
|
|
// of a class X, the expression this is a prvalue of type "pointer to X"
|
|
// within the optional brace-or-equal-initializer.
|
|
if (CurScope->getFlags() & Scope::ThisScope)
|
|
isStaticContext = false;
|
|
|
|
if (R.isUnresolvableResult())
|
|
return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
|
|
|
|
// Collect all the declaring classes of instance members we find.
|
|
bool hasNonInstance = false;
|
|
bool isField = false;
|
|
llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
|
|
if (D->isCXXInstanceMember()) {
|
|
if (dyn_cast<FieldDecl>(D))
|
|
isField = true;
|
|
|
|
CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
|
|
Classes.insert(R->getCanonicalDecl());
|
|
}
|
|
else
|
|
hasNonInstance = true;
|
|
}
|
|
|
|
// If we didn't find any instance members, it can't be an implicit
|
|
// member reference.
|
|
if (Classes.empty())
|
|
return IMA_Static;
|
|
|
|
bool IsCXX11UnevaluatedField = false;
|
|
if (SemaRef.getLangOptions().CPlusPlus0x && isField) {
|
|
// C++11 [expr.prim.general]p12:
|
|
// An id-expression that denotes a non-static data member or non-static
|
|
// member function of a class can only be used:
|
|
// (...)
|
|
// - if that id-expression denotes a non-static data member and it
|
|
// appears in an unevaluated operand.
|
|
const Sema::ExpressionEvaluationContextRecord& record
|
|
= SemaRef.ExprEvalContexts.back();
|
|
if (record.Context == Sema::Unevaluated)
|
|
IsCXX11UnevaluatedField = true;
|
|
}
|
|
|
|
// If the current context is not an instance method, it can't be
|
|
// an implicit member reference.
|
|
if (isStaticContext) {
|
|
if (hasNonInstance)
|
|
return IMA_Mixed_StaticContext;
|
|
|
|
return IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context
|
|
: IMA_Error_StaticContext;
|
|
}
|
|
|
|
CXXRecordDecl *contextClass;
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
|
|
contextClass = MD->getParent()->getCanonicalDecl();
|
|
else
|
|
contextClass = cast<CXXRecordDecl>(DC);
|
|
|
|
// [class.mfct.non-static]p3:
|
|
// ...is used in the body of a non-static member function of class X,
|
|
// if name lookup (3.4.1) resolves the name in the id-expression to a
|
|
// non-static non-type member of some class C [...]
|
|
// ...if C is not X or a base class of X, the class member access expression
|
|
// is ill-formed.
|
|
if (R.getNamingClass() &&
|
|
contextClass->getCanonicalDecl() !=
|
|
R.getNamingClass()->getCanonicalDecl() &&
|
|
contextClass->isProvablyNotDerivedFrom(R.getNamingClass()))
|
|
return hasNonInstance ? IMA_Mixed_Unrelated :
|
|
IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context :
|
|
IMA_Error_Unrelated;
|
|
|
|
// If we can prove that the current context is unrelated to all the
|
|
// declaring classes, it can't be an implicit member reference (in
|
|
// which case it's an error if any of those members are selected).
|
|
if (IsProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
|
|
return hasNonInstance ? IMA_Mixed_Unrelated :
|
|
IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context :
|
|
IMA_Error_Unrelated;
|
|
|
|
return (hasNonInstance ? IMA_Mixed : IMA_Instance);
|
|
}
|
|
|
|
/// Diagnose a reference to a field with no object available.
|
|
static void DiagnoseInstanceReference(Sema &SemaRef,
|
|
const CXXScopeSpec &SS,
|
|
NamedDecl *rep,
|
|
const DeclarationNameInfo &nameInfo) {
|
|
SourceLocation Loc = nameInfo.getLoc();
|
|
SourceRange Range(Loc);
|
|
if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
|
|
|
|
if (isa<FieldDecl>(rep) || isa<IndirectFieldDecl>(rep)) {
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
|
|
if (MD->isStatic()) {
|
|
// "invalid use of member 'x' in static member function"
|
|
SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
|
|
<< Range << nameInfo.getName();
|
|
return;
|
|
}
|
|
}
|
|
|
|
SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
|
|
<< nameInfo.getName() << Range;
|
|
return;
|
|
}
|
|
|
|
SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
|
|
}
|
|
|
|
/// Builds an expression which might be an implicit member expression.
|
|
ExprResult
|
|
Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
|
|
case IMA_Instance:
|
|
return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
|
|
|
|
case IMA_Mixed:
|
|
case IMA_Mixed_Unrelated:
|
|
case IMA_Unresolved:
|
|
return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
|
|
|
|
case IMA_Field_Uneval_Context:
|
|
Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
|
|
<< R.getLookupNameInfo().getName();
|
|
// Fall through.
|
|
case IMA_Static:
|
|
case IMA_Mixed_StaticContext:
|
|
case IMA_Unresolved_StaticContext:
|
|
if (TemplateArgs || TemplateKWLoc.isValid())
|
|
return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
|
|
return BuildDeclarationNameExpr(SS, R, false);
|
|
|
|
case IMA_Error_StaticContext:
|
|
case IMA_Error_Unrelated:
|
|
DiagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
|
|
R.getLookupNameInfo());
|
|
return ExprError();
|
|
}
|
|
|
|
llvm_unreachable("unexpected instance member access kind");
|
|
}
|
|
|
|
/// Check an ext-vector component access expression.
|
|
///
|
|
/// VK should be set in advance to the value kind of the base
|
|
/// expression.
|
|
static QualType
|
|
CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
|
|
SourceLocation OpLoc, const IdentifierInfo *CompName,
|
|
SourceLocation CompLoc) {
|
|
// FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
|
|
// see FIXME there.
|
|
//
|
|
// FIXME: This logic can be greatly simplified by splitting it along
|
|
// halving/not halving and reworking the component checking.
|
|
const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
|
|
|
|
// The vector accessor can't exceed the number of elements.
|
|
const char *compStr = CompName->getNameStart();
|
|
|
|
// This flag determines whether or not the component is one of the four
|
|
// special names that indicate a subset of exactly half the elements are
|
|
// to be selected.
|
|
bool HalvingSwizzle = false;
|
|
|
|
// This flag determines whether or not CompName has an 's' char prefix,
|
|
// indicating that it is a string of hex values to be used as vector indices.
|
|
bool HexSwizzle = *compStr == 's' || *compStr == 'S';
|
|
|
|
bool HasRepeated = false;
|
|
bool HasIndex[16] = {};
|
|
|
|
int Idx;
|
|
|
|
// Check that we've found one of the special components, or that the component
|
|
// names must come from the same set.
|
|
if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
|
|
!strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
|
|
HalvingSwizzle = true;
|
|
} else if (!HexSwizzle &&
|
|
(Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
|
|
do {
|
|
if (HasIndex[Idx]) HasRepeated = true;
|
|
HasIndex[Idx] = true;
|
|
compStr++;
|
|
} while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
|
|
} else {
|
|
if (HexSwizzle) compStr++;
|
|
while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
|
|
if (HasIndex[Idx]) HasRepeated = true;
|
|
HasIndex[Idx] = true;
|
|
compStr++;
|
|
}
|
|
}
|
|
|
|
if (!HalvingSwizzle && *compStr) {
|
|
// We didn't get to the end of the string. This means the component names
|
|
// didn't come from the same set *or* we encountered an illegal name.
|
|
S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
|
|
<< StringRef(compStr, 1) << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
|
|
// Ensure no component accessor exceeds the width of the vector type it
|
|
// operates on.
|
|
if (!HalvingSwizzle) {
|
|
compStr = CompName->getNameStart();
|
|
|
|
if (HexSwizzle)
|
|
compStr++;
|
|
|
|
while (*compStr) {
|
|
if (!vecType->isAccessorWithinNumElements(*compStr++)) {
|
|
S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
|
|
<< baseType << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
}
|
|
}
|
|
|
|
// The component accessor looks fine - now we need to compute the actual type.
|
|
// The vector type is implied by the component accessor. For example,
|
|
// vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
|
|
// vec4.s0 is a float, vec4.s23 is a vec3, etc.
|
|
// vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
|
|
unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
|
|
: CompName->getLength();
|
|
if (HexSwizzle)
|
|
CompSize--;
|
|
|
|
if (CompSize == 1)
|
|
return vecType->getElementType();
|
|
|
|
if (HasRepeated) VK = VK_RValue;
|
|
|
|
QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
|
|
// Now look up the TypeDefDecl from the vector type. Without this,
|
|
// diagostics look bad. We want extended vector types to appear built-in.
|
|
for (Sema::ExtVectorDeclsType::iterator
|
|
I = S.ExtVectorDecls.begin(S.ExternalSource),
|
|
E = S.ExtVectorDecls.end();
|
|
I != E; ++I) {
|
|
if ((*I)->getUnderlyingType() == VT)
|
|
return S.Context.getTypedefType(*I);
|
|
}
|
|
|
|
return VT; // should never get here (a typedef type should always be found).
|
|
}
|
|
|
|
static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
|
|
IdentifierInfo *Member,
|
|
const Selector &Sel,
|
|
ASTContext &Context) {
|
|
if (Member)
|
|
if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
|
|
return PD;
|
|
if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
|
|
return OMD;
|
|
|
|
for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
|
|
E = PDecl->protocol_end(); I != E; ++I) {
|
|
if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
|
|
Context))
|
|
return D;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
|
|
IdentifierInfo *Member,
|
|
const Selector &Sel,
|
|
ASTContext &Context) {
|
|
// Check protocols on qualified interfaces.
|
|
Decl *GDecl = 0;
|
|
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
|
|
E = QIdTy->qual_end(); I != E; ++I) {
|
|
if (Member)
|
|
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
|
|
GDecl = PD;
|
|
break;
|
|
}
|
|
// Also must look for a getter or setter name which uses property syntax.
|
|
if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
|
|
GDecl = OMD;
|
|
break;
|
|
}
|
|
}
|
|
if (!GDecl) {
|
|
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
|
|
E = QIdTy->qual_end(); I != E; ++I) {
|
|
// Search in the protocol-qualifier list of current protocol.
|
|
GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
|
|
Context);
|
|
if (GDecl)
|
|
return GDecl;
|
|
}
|
|
}
|
|
return GDecl;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
|
|
bool IsArrow, SourceLocation OpLoc,
|
|
const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
NamedDecl *FirstQualifierInScope,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
// Even in dependent contexts, try to diagnose base expressions with
|
|
// obviously wrong types, e.g.:
|
|
//
|
|
// T* t;
|
|
// t.f;
|
|
//
|
|
// In Obj-C++, however, the above expression is valid, since it could be
|
|
// accessing the 'f' property if T is an Obj-C interface. The extra check
|
|
// allows this, while still reporting an error if T is a struct pointer.
|
|
if (!IsArrow) {
|
|
const PointerType *PT = BaseType->getAs<PointerType>();
|
|
if (PT && (!getLangOptions().ObjC1 ||
|
|
PT->getPointeeType()->isRecordType())) {
|
|
assert(BaseExpr && "cannot happen with implicit member accesses");
|
|
Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
|
|
<< BaseType << BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
assert(BaseType->isDependentType() ||
|
|
NameInfo.getName().isDependentName() ||
|
|
isDependentScopeSpecifier(SS));
|
|
|
|
// Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
|
|
// must have pointer type, and the accessed type is the pointee.
|
|
return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
|
|
IsArrow, OpLoc,
|
|
SS.getWithLocInContext(Context),
|
|
TemplateKWLoc,
|
|
FirstQualifierInScope,
|
|
NameInfo, TemplateArgs));
|
|
}
|
|
|
|
/// We know that the given qualified member reference points only to
|
|
/// declarations which do not belong to the static type of the base
|
|
/// expression. Diagnose the problem.
|
|
static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
|
|
Expr *BaseExpr,
|
|
QualType BaseType,
|
|
const CXXScopeSpec &SS,
|
|
NamedDecl *rep,
|
|
const DeclarationNameInfo &nameInfo) {
|
|
// If this is an implicit member access, use a different set of
|
|
// diagnostics.
|
|
if (!BaseExpr)
|
|
return DiagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
|
|
|
|
SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
|
|
<< SS.getRange() << rep << BaseType;
|
|
}
|
|
|
|
// Check whether the declarations we found through a nested-name
|
|
// specifier in a member expression are actually members of the base
|
|
// type. The restriction here is:
|
|
//
|
|
// C++ [expr.ref]p2:
|
|
// ... In these cases, the id-expression shall name a
|
|
// member of the class or of one of its base classes.
|
|
//
|
|
// So it's perfectly legitimate for the nested-name specifier to name
|
|
// an unrelated class, and for us to find an overload set including
|
|
// decls from classes which are not superclasses, as long as the decl
|
|
// we actually pick through overload resolution is from a superclass.
|
|
bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
|
|
QualType BaseType,
|
|
const CXXScopeSpec &SS,
|
|
const LookupResult &R) {
|
|
const RecordType *BaseRT = BaseType->getAs<RecordType>();
|
|
if (!BaseRT) {
|
|
// We can't check this yet because the base type is still
|
|
// dependent.
|
|
assert(BaseType->isDependentType());
|
|
return false;
|
|
}
|
|
CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
|
|
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
|
// If this is an implicit member reference and we find a
|
|
// non-instance member, it's not an error.
|
|
if (!BaseExpr && !(*I)->isCXXInstanceMember())
|
|
return false;
|
|
|
|
// Note that we use the DC of the decl, not the underlying decl.
|
|
DeclContext *DC = (*I)->getDeclContext();
|
|
while (DC->isTransparentContext())
|
|
DC = DC->getParent();
|
|
|
|
if (!DC->isRecord())
|
|
continue;
|
|
|
|
llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
|
|
MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
|
|
|
|
if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
|
|
return false;
|
|
}
|
|
|
|
DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
|
|
R.getRepresentativeDecl(),
|
|
R.getLookupNameInfo());
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Callback to only accept typo corrections that are either a ValueDecl or a
|
|
// FunctionTemplateDecl.
|
|
class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
|
|
public:
|
|
virtual bool ValidateCandidate(const TypoCorrection &candidate) {
|
|
NamedDecl *ND = candidate.getCorrectionDecl();
|
|
return ND && (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND));
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
static bool
|
|
LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
|
|
SourceRange BaseRange, const RecordType *RTy,
|
|
SourceLocation OpLoc, CXXScopeSpec &SS,
|
|
bool HasTemplateArgs) {
|
|
RecordDecl *RDecl = RTy->getDecl();
|
|
if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
|
|
SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
|
|
<< BaseRange))
|
|
return true;
|
|
|
|
if (HasTemplateArgs) {
|
|
// LookupTemplateName doesn't expect these both to exist simultaneously.
|
|
QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
|
|
|
|
bool MOUS;
|
|
SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
|
|
return false;
|
|
}
|
|
|
|
DeclContext *DC = RDecl;
|
|
if (SS.isSet()) {
|
|
// If the member name was a qualified-id, look into the
|
|
// nested-name-specifier.
|
|
DC = SemaRef.computeDeclContext(SS, false);
|
|
|
|
if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
|
|
SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
|
|
<< SS.getRange() << DC;
|
|
return true;
|
|
}
|
|
|
|
assert(DC && "Cannot handle non-computable dependent contexts in lookup");
|
|
|
|
if (!isa<TypeDecl>(DC)) {
|
|
SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
|
|
<< DC << SS.getRange();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// The record definition is complete, now look up the member.
|
|
SemaRef.LookupQualifiedName(R, DC);
|
|
|
|
if (!R.empty())
|
|
return false;
|
|
|
|
// We didn't find anything with the given name, so try to correct
|
|
// for typos.
|
|
DeclarationName Name = R.getLookupName();
|
|
RecordMemberExprValidatorCCC Validator;
|
|
TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
|
|
R.getLookupKind(), NULL,
|
|
&SS, Validator, DC);
|
|
R.clear();
|
|
if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
|
|
std::string CorrectedStr(
|
|
Corrected.getAsString(SemaRef.getLangOptions()));
|
|
std::string CorrectedQuotedStr(
|
|
Corrected.getQuoted(SemaRef.getLangOptions()));
|
|
R.setLookupName(Corrected.getCorrection());
|
|
R.addDecl(ND);
|
|
SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
|
|
<< Name << DC << CorrectedQuotedStr << SS.getRange()
|
|
<< FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
|
|
SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
|
|
<< ND->getDeclName();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
|
|
SourceLocation OpLoc, bool IsArrow,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
NamedDecl *FirstQualifierInScope,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
if (BaseType->isDependentType() ||
|
|
(SS.isSet() && isDependentScopeSpecifier(SS)))
|
|
return ActOnDependentMemberExpr(Base, BaseType,
|
|
IsArrow, OpLoc,
|
|
SS, TemplateKWLoc, FirstQualifierInScope,
|
|
NameInfo, TemplateArgs);
|
|
|
|
LookupResult R(*this, NameInfo, LookupMemberName);
|
|
|
|
// Implicit member accesses.
|
|
if (!Base) {
|
|
QualType RecordTy = BaseType;
|
|
if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
|
|
if (LookupMemberExprInRecord(*this, R, SourceRange(),
|
|
RecordTy->getAs<RecordType>(),
|
|
OpLoc, SS, TemplateArgs != 0))
|
|
return ExprError();
|
|
|
|
// Explicit member accesses.
|
|
} else {
|
|
ExprResult BaseResult = Owned(Base);
|
|
ExprResult Result =
|
|
LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
|
|
SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
|
|
|
|
if (BaseResult.isInvalid())
|
|
return ExprError();
|
|
Base = BaseResult.take();
|
|
|
|
if (Result.isInvalid()) {
|
|
Owned(Base);
|
|
return ExprError();
|
|
}
|
|
|
|
if (Result.get())
|
|
return move(Result);
|
|
|
|
// LookupMemberExpr can modify Base, and thus change BaseType
|
|
BaseType = Base->getType();
|
|
}
|
|
|
|
return BuildMemberReferenceExpr(Base, BaseType,
|
|
OpLoc, IsArrow, SS, TemplateKWLoc,
|
|
FirstQualifierInScope, R, TemplateArgs);
|
|
}
|
|
|
|
static ExprResult
|
|
BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
|
|
const CXXScopeSpec &SS, FieldDecl *Field,
|
|
DeclAccessPair FoundDecl,
|
|
const DeclarationNameInfo &MemberNameInfo);
|
|
|
|
ExprResult
|
|
Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
|
|
SourceLocation loc,
|
|
IndirectFieldDecl *indirectField,
|
|
Expr *baseObjectExpr,
|
|
SourceLocation opLoc) {
|
|
// First, build the expression that refers to the base object.
|
|
|
|
bool baseObjectIsPointer = false;
|
|
Qualifiers baseQuals;
|
|
|
|
// Case 1: the base of the indirect field is not a field.
|
|
VarDecl *baseVariable = indirectField->getVarDecl();
|
|
CXXScopeSpec EmptySS;
|
|
if (baseVariable) {
|
|
assert(baseVariable->getType()->isRecordType());
|
|
|
|
// In principle we could have a member access expression that
|
|
// accesses an anonymous struct/union that's a static member of
|
|
// the base object's class. However, under the current standard,
|
|
// static data members cannot be anonymous structs or unions.
|
|
// Supporting this is as easy as building a MemberExpr here.
|
|
assert(!baseObjectExpr && "anonymous struct/union is static data member?");
|
|
|
|
DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
|
|
|
|
ExprResult result
|
|
= BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
|
|
if (result.isInvalid()) return ExprError();
|
|
|
|
baseObjectExpr = result.take();
|
|
baseObjectIsPointer = false;
|
|
baseQuals = baseObjectExpr->getType().getQualifiers();
|
|
|
|
// Case 2: the base of the indirect field is a field and the user
|
|
// wrote a member expression.
|
|
} else if (baseObjectExpr) {
|
|
// The caller provided the base object expression. Determine
|
|
// whether its a pointer and whether it adds any qualifiers to the
|
|
// anonymous struct/union fields we're looking into.
|
|
QualType objectType = baseObjectExpr->getType();
|
|
|
|
if (const PointerType *ptr = objectType->getAs<PointerType>()) {
|
|
baseObjectIsPointer = true;
|
|
objectType = ptr->getPointeeType();
|
|
} else {
|
|
baseObjectIsPointer = false;
|
|
}
|
|
baseQuals = objectType.getQualifiers();
|
|
|
|
// Case 3: the base of the indirect field is a field and we should
|
|
// build an implicit member access.
|
|
} else {
|
|
// We've found a member of an anonymous struct/union that is
|
|
// inside a non-anonymous struct/union, so in a well-formed
|
|
// program our base object expression is "this".
|
|
QualType ThisTy = getCurrentThisType();
|
|
if (ThisTy.isNull()) {
|
|
Diag(loc, diag::err_invalid_member_use_in_static_method)
|
|
<< indirectField->getDeclName();
|
|
return ExprError();
|
|
}
|
|
|
|
// Our base object expression is "this".
|
|
CheckCXXThisCapture(loc);
|
|
baseObjectExpr
|
|
= new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
|
|
baseObjectIsPointer = true;
|
|
baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
|
|
}
|
|
|
|
// Build the implicit member references to the field of the
|
|
// anonymous struct/union.
|
|
Expr *result = baseObjectExpr;
|
|
IndirectFieldDecl::chain_iterator
|
|
FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
|
|
|
|
// Build the first member access in the chain with full information.
|
|
if (!baseVariable) {
|
|
FieldDecl *field = cast<FieldDecl>(*FI);
|
|
|
|
// FIXME: use the real found-decl info!
|
|
DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
|
|
|
|
// Make a nameInfo that properly uses the anonymous name.
|
|
DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
|
|
|
|
result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
|
|
EmptySS, field, foundDecl,
|
|
memberNameInfo).take();
|
|
baseObjectIsPointer = false;
|
|
|
|
// FIXME: check qualified member access
|
|
}
|
|
|
|
// In all cases, we should now skip the first declaration in the chain.
|
|
++FI;
|
|
|
|
while (FI != FEnd) {
|
|
FieldDecl *field = cast<FieldDecl>(*FI++);
|
|
|
|
// FIXME: these are somewhat meaningless
|
|
DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
|
|
DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
|
|
|
|
result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
|
|
(FI == FEnd? SS : EmptySS), field,
|
|
foundDecl, memberNameInfo).take();
|
|
}
|
|
|
|
return Owned(result);
|
|
}
|
|
|
|
/// \brief Build a MemberExpr AST node.
|
|
static MemberExpr *BuildMemberExpr(Sema &SemaRef,
|
|
ASTContext &C, Expr *Base, bool isArrow,
|
|
const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
ValueDecl *Member,
|
|
DeclAccessPair FoundDecl,
|
|
const DeclarationNameInfo &MemberNameInfo,
|
|
QualType Ty,
|
|
ExprValueKind VK, ExprObjectKind OK,
|
|
const TemplateArgumentListInfo *TemplateArgs = 0) {
|
|
assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
|
|
MemberExpr *E =
|
|
MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
|
|
TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
|
|
TemplateArgs, Ty, VK, OK);
|
|
SemaRef.MarkMemberReferenced(E);
|
|
return E;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
|
|
SourceLocation OpLoc, bool IsArrow,
|
|
const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
NamedDecl *FirstQualifierInScope,
|
|
LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
bool SuppressQualifierCheck) {
|
|
QualType BaseType = BaseExprType;
|
|
if (IsArrow) {
|
|
assert(BaseType->isPointerType());
|
|
BaseType = BaseType->castAs<PointerType>()->getPointeeType();
|
|
}
|
|
R.setBaseObjectType(BaseType);
|
|
|
|
const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
|
|
DeclarationName MemberName = MemberNameInfo.getName();
|
|
SourceLocation MemberLoc = MemberNameInfo.getLoc();
|
|
|
|
if (R.isAmbiguous())
|
|
return ExprError();
|
|
|
|
if (R.empty()) {
|
|
// Rederive where we looked up.
|
|
DeclContext *DC = (SS.isSet()
|
|
? computeDeclContext(SS, false)
|
|
: BaseType->getAs<RecordType>()->getDecl());
|
|
|
|
Diag(R.getNameLoc(), diag::err_no_member)
|
|
<< MemberName << DC
|
|
<< (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
|
|
return ExprError();
|
|
}
|
|
|
|
// Diagnose lookups that find only declarations from a non-base
|
|
// type. This is possible for either qualified lookups (which may
|
|
// have been qualified with an unrelated type) or implicit member
|
|
// expressions (which were found with unqualified lookup and thus
|
|
// may have come from an enclosing scope). Note that it's okay for
|
|
// lookup to find declarations from a non-base type as long as those
|
|
// aren't the ones picked by overload resolution.
|
|
if ((SS.isSet() || !BaseExpr ||
|
|
(isa<CXXThisExpr>(BaseExpr) &&
|
|
cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
|
|
!SuppressQualifierCheck &&
|
|
CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
|
|
return ExprError();
|
|
|
|
// Construct an unresolved result if we in fact got an unresolved
|
|
// result.
|
|
if (R.isOverloadedResult() || R.isUnresolvableResult()) {
|
|
// Suppress any lookup-related diagnostics; we'll do these when we
|
|
// pick a member.
|
|
R.suppressDiagnostics();
|
|
|
|
UnresolvedMemberExpr *MemExpr
|
|
= UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
|
|
BaseExpr, BaseExprType,
|
|
IsArrow, OpLoc,
|
|
SS.getWithLocInContext(Context),
|
|
TemplateKWLoc, MemberNameInfo,
|
|
TemplateArgs, R.begin(), R.end());
|
|
|
|
return Owned(MemExpr);
|
|
}
|
|
|
|
assert(R.isSingleResult());
|
|
DeclAccessPair FoundDecl = R.begin().getPair();
|
|
NamedDecl *MemberDecl = R.getFoundDecl();
|
|
|
|
// FIXME: diagnose the presence of template arguments now.
|
|
|
|
// If the decl being referenced had an error, return an error for this
|
|
// sub-expr without emitting another error, in order to avoid cascading
|
|
// error cases.
|
|
if (MemberDecl->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// Handle the implicit-member-access case.
|
|
if (!BaseExpr) {
|
|
// If this is not an instance member, convert to a non-member access.
|
|
if (!MemberDecl->isCXXInstanceMember())
|
|
return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
|
|
|
|
SourceLocation Loc = R.getNameLoc();
|
|
if (SS.getRange().isValid())
|
|
Loc = SS.getRange().getBegin();
|
|
CheckCXXThisCapture(Loc);
|
|
BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
|
|
}
|
|
|
|
bool ShouldCheckUse = true;
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
|
|
// Don't diagnose the use of a virtual member function unless it's
|
|
// explicitly qualified.
|
|
if (MD->isVirtual() && !SS.isSet())
|
|
ShouldCheckUse = false;
|
|
}
|
|
|
|
// Check the use of this member.
|
|
if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
|
|
Owned(BaseExpr);
|
|
return ExprError();
|
|
}
|
|
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
|
|
return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
|
|
SS, FD, FoundDecl, MemberNameInfo);
|
|
|
|
if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
|
|
// We may have found a field within an anonymous union or struct
|
|
// (C++ [class.union]).
|
|
return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
|
|
BaseExpr, OpLoc);
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
|
|
return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
|
|
TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
|
|
Var->getType().getNonReferenceType(),
|
|
VK_LValue, OK_Ordinary));
|
|
}
|
|
|
|
if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
|
|
ExprValueKind valueKind;
|
|
QualType type;
|
|
if (MemberFn->isInstance()) {
|
|
valueKind = VK_RValue;
|
|
type = Context.BoundMemberTy;
|
|
} else {
|
|
valueKind = VK_LValue;
|
|
type = MemberFn->getType();
|
|
}
|
|
|
|
return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
|
|
TemplateKWLoc, MemberFn, FoundDecl,
|
|
MemberNameInfo, type, valueKind,
|
|
OK_Ordinary));
|
|
}
|
|
assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
|
|
|
|
if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
|
|
return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
|
|
TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
|
|
Enum->getType(), VK_RValue, OK_Ordinary));
|
|
}
|
|
|
|
Owned(BaseExpr);
|
|
|
|
// We found something that we didn't expect. Complain.
|
|
if (isa<TypeDecl>(MemberDecl))
|
|
Diag(MemberLoc, diag::err_typecheck_member_reference_type)
|
|
<< MemberName << BaseType << int(IsArrow);
|
|
else
|
|
Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
|
|
<< MemberName << BaseType << int(IsArrow);
|
|
|
|
Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
|
|
<< MemberName;
|
|
R.suppressDiagnostics();
|
|
return ExprError();
|
|
}
|
|
|
|
/// Given that normal member access failed on the given expression,
|
|
/// and given that the expression's type involves builtin-id or
|
|
/// builtin-Class, decide whether substituting in the redefinition
|
|
/// types would be profitable. The redefinition type is whatever
|
|
/// this translation unit tried to typedef to id/Class; we store
|
|
/// it to the side and then re-use it in places like this.
|
|
static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
|
|
const ObjCObjectPointerType *opty
|
|
= base.get()->getType()->getAs<ObjCObjectPointerType>();
|
|
if (!opty) return false;
|
|
|
|
const ObjCObjectType *ty = opty->getObjectType();
|
|
|
|
QualType redef;
|
|
if (ty->isObjCId()) {
|
|
redef = S.Context.getObjCIdRedefinitionType();
|
|
} else if (ty->isObjCClass()) {
|
|
redef = S.Context.getObjCClassRedefinitionType();
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Do the substitution as long as the redefinition type isn't just a
|
|
// possibly-qualified pointer to builtin-id or builtin-Class again.
|
|
opty = redef->getAs<ObjCObjectPointerType>();
|
|
if (opty && !opty->getObjectType()->getInterface() != 0)
|
|
return false;
|
|
|
|
base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
|
|
return true;
|
|
}
|
|
|
|
static bool isRecordType(QualType T) {
|
|
return T->isRecordType();
|
|
}
|
|
static bool isPointerToRecordType(QualType T) {
|
|
if (const PointerType *PT = T->getAs<PointerType>())
|
|
return PT->getPointeeType()->isRecordType();
|
|
return false;
|
|
}
|
|
|
|
/// Perform conversions on the LHS of a member access expression.
|
|
ExprResult
|
|
Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
|
|
if (IsArrow && !Base->getType()->isFunctionType())
|
|
return DefaultFunctionArrayLvalueConversion(Base);
|
|
|
|
return CheckPlaceholderExpr(Base);
|
|
}
|
|
|
|
/// Look up the given member of the given non-type-dependent
|
|
/// expression. This can return in one of two ways:
|
|
/// * If it returns a sentinel null-but-valid result, the caller will
|
|
/// assume that lookup was performed and the results written into
|
|
/// the provided structure. It will take over from there.
|
|
/// * Otherwise, the returned expression will be produced in place of
|
|
/// an ordinary member expression.
|
|
///
|
|
/// The ObjCImpDecl bit is a gross hack that will need to be properly
|
|
/// fixed for ObjC++.
|
|
ExprResult
|
|
Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
|
|
bool &IsArrow, SourceLocation OpLoc,
|
|
CXXScopeSpec &SS,
|
|
Decl *ObjCImpDecl, bool HasTemplateArgs) {
|
|
assert(BaseExpr.get() && "no base expression");
|
|
|
|
// Perform default conversions.
|
|
BaseExpr = PerformMemberExprBaseConversion(BaseExpr.take(), IsArrow);
|
|
if (BaseExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
QualType BaseType = BaseExpr.get()->getType();
|
|
assert(!BaseType->isDependentType());
|
|
|
|
DeclarationName MemberName = R.getLookupName();
|
|
SourceLocation MemberLoc = R.getNameLoc();
|
|
|
|
// For later type-checking purposes, turn arrow accesses into dot
|
|
// accesses. The only access type we support that doesn't follow
|
|
// the C equivalence "a->b === (*a).b" is ObjC property accesses,
|
|
// and those never use arrows, so this is unaffected.
|
|
if (IsArrow) {
|
|
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
|
|
BaseType = Ptr->getPointeeType();
|
|
else if (const ObjCObjectPointerType *Ptr
|
|
= BaseType->getAs<ObjCObjectPointerType>())
|
|
BaseType = Ptr->getPointeeType();
|
|
else if (BaseType->isRecordType()) {
|
|
// Recover from arrow accesses to records, e.g.:
|
|
// struct MyRecord foo;
|
|
// foo->bar
|
|
// This is actually well-formed in C++ if MyRecord has an
|
|
// overloaded operator->, but that should have been dealt with
|
|
// by now.
|
|
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
|
|
<< BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
|
|
<< FixItHint::CreateReplacement(OpLoc, ".");
|
|
IsArrow = false;
|
|
} else if (BaseType->isFunctionType()) {
|
|
goto fail;
|
|
} else {
|
|
Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
|
|
<< BaseType << BaseExpr.get()->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// Handle field access to simple records.
|
|
if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
|
|
if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
|
|
RTy, OpLoc, SS, HasTemplateArgs))
|
|
return ExprError();
|
|
|
|
// Returning valid-but-null is how we indicate to the caller that
|
|
// the lookup result was filled in.
|
|
return Owned((Expr*) 0);
|
|
}
|
|
|
|
// Handle ivar access to Objective-C objects.
|
|
if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
|
|
if (!SS.isEmpty() && !SS.isInvalid()) {
|
|
Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
|
|
<< 1 << SS.getScopeRep()
|
|
<< FixItHint::CreateRemoval(SS.getRange());
|
|
SS.clear();
|
|
}
|
|
|
|
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
|
|
|
|
// There are three cases for the base type:
|
|
// - builtin id (qualified or unqualified)
|
|
// - builtin Class (qualified or unqualified)
|
|
// - an interface
|
|
ObjCInterfaceDecl *IDecl = OTy->getInterface();
|
|
if (!IDecl) {
|
|
if (getLangOptions().ObjCAutoRefCount &&
|
|
(OTy->isObjCId() || OTy->isObjCClass()))
|
|
goto fail;
|
|
// There's an implicit 'isa' ivar on all objects.
|
|
// But we only actually find it this way on objects of type 'id',
|
|
// apparently.ghjg
|
|
if (OTy->isObjCId() && Member->isStr("isa")) {
|
|
Diag(MemberLoc, diag::warn_objc_isa_use);
|
|
return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
|
|
Context.getObjCClassType()));
|
|
}
|
|
|
|
if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
goto fail;
|
|
}
|
|
|
|
if (RequireCompleteType(OpLoc, BaseType,
|
|
PDiag(diag::err_typecheck_incomplete_tag)
|
|
<< BaseExpr.get()->getSourceRange()))
|
|
return ExprError();
|
|
|
|
ObjCInterfaceDecl *ClassDeclared;
|
|
ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
|
|
|
|
if (!IV) {
|
|
// Attempt to correct for typos in ivar names.
|
|
DeclFilterCCC<ObjCIvarDecl> Validator;
|
|
Validator.IsObjCIvarLookup = IsArrow;
|
|
if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
|
|
LookupMemberName, NULL, NULL,
|
|
Validator, IDecl)) {
|
|
IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
|
|
Diag(R.getNameLoc(),
|
|
diag::err_typecheck_member_reference_ivar_suggest)
|
|
<< IDecl->getDeclName() << MemberName << IV->getDeclName()
|
|
<< FixItHint::CreateReplacement(R.getNameLoc(),
|
|
IV->getNameAsString());
|
|
Diag(IV->getLocation(), diag::note_previous_decl)
|
|
<< IV->getDeclName();
|
|
} else {
|
|
if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
|
|
Diag(MemberLoc,
|
|
diag::err_property_found_suggest)
|
|
<< Member << BaseExpr.get()->getType()
|
|
<< FixItHint::CreateReplacement(OpLoc, ".");
|
|
return ExprError();
|
|
}
|
|
|
|
Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
|
|
<< IDecl->getDeclName() << MemberName
|
|
<< BaseExpr.get()->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// If the decl being referenced had an error, return an error for this
|
|
// sub-expr without emitting another error, in order to avoid cascading
|
|
// error cases.
|
|
if (IV->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// Check whether we can reference this field.
|
|
if (DiagnoseUseOfDecl(IV, MemberLoc))
|
|
return ExprError();
|
|
if (IV->getAccessControl() != ObjCIvarDecl::Public &&
|
|
IV->getAccessControl() != ObjCIvarDecl::Package) {
|
|
ObjCInterfaceDecl *ClassOfMethodDecl = 0;
|
|
if (ObjCMethodDecl *MD = getCurMethodDecl())
|
|
ClassOfMethodDecl = MD->getClassInterface();
|
|
else if (ObjCImpDecl && getCurFunctionDecl()) {
|
|
// Case of a c-function declared inside an objc implementation.
|
|
// FIXME: For a c-style function nested inside an objc implementation
|
|
// class, there is no implementation context available, so we pass
|
|
// down the context as argument to this routine. Ideally, this context
|
|
// need be passed down in the AST node and somehow calculated from the
|
|
// AST for a function decl.
|
|
if (ObjCImplementationDecl *IMPD =
|
|
dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
|
|
ClassOfMethodDecl = IMPD->getClassInterface();
|
|
else if (ObjCCategoryImplDecl* CatImplClass =
|
|
dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
|
|
ClassOfMethodDecl = CatImplClass->getClassInterface();
|
|
}
|
|
|
|
if (IV->getAccessControl() == ObjCIvarDecl::Private) {
|
|
if (!declaresSameEntity(ClassDeclared, IDecl) ||
|
|
!declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
|
|
Diag(MemberLoc, diag::error_private_ivar_access)
|
|
<< IV->getDeclName();
|
|
} else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
|
|
// @protected
|
|
Diag(MemberLoc, diag::error_protected_ivar_access)
|
|
<< IV->getDeclName();
|
|
}
|
|
if (getLangOptions().ObjCAutoRefCount) {
|
|
Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
|
|
if (UO->getOpcode() == UO_Deref)
|
|
BaseExp = UO->getSubExpr()->IgnoreParenCasts();
|
|
|
|
if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
|
|
if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
|
|
Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
|
|
}
|
|
|
|
return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
|
|
MemberLoc, BaseExpr.take(),
|
|
IsArrow));
|
|
}
|
|
|
|
// Objective-C property access.
|
|
const ObjCObjectPointerType *OPT;
|
|
if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
|
|
if (!SS.isEmpty() && !SS.isInvalid()) {
|
|
Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
|
|
<< 0 << SS.getScopeRep()
|
|
<< FixItHint::CreateRemoval(SS.getRange());
|
|
SS.clear();
|
|
}
|
|
|
|
// This actually uses the base as an r-value.
|
|
BaseExpr = DefaultLvalueConversion(BaseExpr.take());
|
|
if (BaseExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
|
|
|
|
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
|
|
|
|
const ObjCObjectType *OT = OPT->getObjectType();
|
|
|
|
// id, with and without qualifiers.
|
|
if (OT->isObjCId()) {
|
|
// Check protocols on qualified interfaces.
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
|
|
if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
|
|
if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
|
|
// Check the use of this declaration
|
|
if (DiagnoseUseOfDecl(PD, MemberLoc))
|
|
return ExprError();
|
|
|
|
return Owned(new (Context) ObjCPropertyRefExpr(PD,
|
|
Context.PseudoObjectTy,
|
|
VK_LValue,
|
|
OK_ObjCProperty,
|
|
MemberLoc,
|
|
BaseExpr.take()));
|
|
}
|
|
|
|
if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
|
|
// Check the use of this method.
|
|
if (DiagnoseUseOfDecl(OMD, MemberLoc))
|
|
return ExprError();
|
|
Selector SetterSel =
|
|
SelectorTable::constructSetterName(PP.getIdentifierTable(),
|
|
PP.getSelectorTable(), Member);
|
|
ObjCMethodDecl *SMD = 0;
|
|
if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
|
|
SetterSel, Context))
|
|
SMD = dyn_cast<ObjCMethodDecl>(SDecl);
|
|
|
|
return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD,
|
|
Context.PseudoObjectTy,
|
|
VK_LValue, OK_ObjCProperty,
|
|
MemberLoc, BaseExpr.take()));
|
|
}
|
|
}
|
|
// Use of id.member can only be for a property reference. Do not
|
|
// use the 'id' redefinition in this case.
|
|
if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
|
|
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
|
|
<< MemberName << BaseType);
|
|
}
|
|
|
|
// 'Class', unqualified only.
|
|
if (OT->isObjCClass()) {
|
|
// Only works in a method declaration (??!).
|
|
ObjCMethodDecl *MD = getCurMethodDecl();
|
|
if (!MD) {
|
|
if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
|
|
goto fail;
|
|
}
|
|
|
|
// Also must look for a getter name which uses property syntax.
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
|
|
ObjCInterfaceDecl *IFace = MD->getClassInterface();
|
|
ObjCMethodDecl *Getter;
|
|
if ((Getter = IFace->lookupClassMethod(Sel))) {
|
|
// Check the use of this method.
|
|
if (DiagnoseUseOfDecl(Getter, MemberLoc))
|
|
return ExprError();
|
|
} else
|
|
Getter = IFace->lookupPrivateMethod(Sel, false);
|
|
// If we found a getter then this may be a valid dot-reference, we
|
|
// will look for the matching setter, in case it is needed.
|
|
Selector SetterSel =
|
|
SelectorTable::constructSetterName(PP.getIdentifierTable(),
|
|
PP.getSelectorTable(), Member);
|
|
ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
|
|
if (!Setter) {
|
|
// If this reference is in an @implementation, also check for 'private'
|
|
// methods.
|
|
Setter = IFace->lookupPrivateMethod(SetterSel, false);
|
|
}
|
|
// Look through local category implementations associated with the class.
|
|
if (!Setter)
|
|
Setter = IFace->getCategoryClassMethod(SetterSel);
|
|
|
|
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
|
|
return ExprError();
|
|
|
|
if (Getter || Setter) {
|
|
return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
|
|
Context.PseudoObjectTy,
|
|
VK_LValue, OK_ObjCProperty,
|
|
MemberLoc, BaseExpr.take()));
|
|
}
|
|
|
|
if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
|
|
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
|
|
<< MemberName << BaseType);
|
|
}
|
|
|
|
// Normal property access.
|
|
return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc,
|
|
MemberName, MemberLoc,
|
|
SourceLocation(), QualType(), false);
|
|
}
|
|
|
|
// Handle 'field access' to vectors, such as 'V.xx'.
|
|
if (BaseType->isExtVectorType()) {
|
|
// FIXME: this expr should store IsArrow.
|
|
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
|
|
ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
|
|
QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
|
|
Member, MemberLoc);
|
|
if (ret.isNull())
|
|
return ExprError();
|
|
|
|
return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
|
|
*Member, MemberLoc));
|
|
}
|
|
|
|
// Adjust builtin-sel to the appropriate redefinition type if that's
|
|
// not just a pointer to builtin-sel again.
|
|
if (IsArrow &&
|
|
BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
|
|
!Context.getObjCSelRedefinitionType()->isObjCSelType()) {
|
|
BaseExpr = ImpCastExprToType(BaseExpr.take(),
|
|
Context.getObjCSelRedefinitionType(),
|
|
CK_BitCast);
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
}
|
|
|
|
// Failure cases.
|
|
fail:
|
|
|
|
// Recover from dot accesses to pointers, e.g.:
|
|
// type *foo;
|
|
// foo.bar
|
|
// This is actually well-formed in two cases:
|
|
// - 'type' is an Objective C type
|
|
// - 'bar' is a pseudo-destructor name which happens to refer to
|
|
// the appropriate pointer type
|
|
if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
|
|
if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
|
|
MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
|
|
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
|
|
<< BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
|
|
<< FixItHint::CreateReplacement(OpLoc, "->");
|
|
|
|
// Recurse as an -> access.
|
|
IsArrow = true;
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
}
|
|
}
|
|
|
|
// If the user is trying to apply -> or . to a function name, it's probably
|
|
// because they forgot parentheses to call that function.
|
|
if (tryToRecoverWithCall(BaseExpr,
|
|
PDiag(diag::err_member_reference_needs_call),
|
|
/*complain*/ false,
|
|
IsArrow ? &isPointerToRecordType : &isRecordType)) {
|
|
if (BaseExpr.isInvalid())
|
|
return ExprError();
|
|
BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
|
|
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
|
|
ObjCImpDecl, HasTemplateArgs);
|
|
}
|
|
|
|
Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
|
|
<< BaseType << BaseExpr.get()->getSourceRange();
|
|
|
|
return ExprError();
|
|
}
|
|
|
|
/// The main callback when the parser finds something like
|
|
/// expression . [nested-name-specifier] identifier
|
|
/// expression -> [nested-name-specifier] identifier
|
|
/// where 'identifier' encompasses a fairly broad spectrum of
|
|
/// possibilities, including destructor and operator references.
|
|
///
|
|
/// \param OpKind either tok::arrow or tok::period
|
|
/// \param HasTrailingLParen whether the next token is '(', which
|
|
/// is used to diagnose mis-uses of special members that can
|
|
/// only be called
|
|
/// \param ObjCImpDecl the current ObjC @implementation decl;
|
|
/// this is an ugly hack around the fact that ObjC @implementations
|
|
/// aren't properly put in the context chain
|
|
ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
|
|
SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
UnqualifiedId &Id,
|
|
Decl *ObjCImpDecl,
|
|
bool HasTrailingLParen) {
|
|
if (SS.isSet() && SS.isInvalid())
|
|
return ExprError();
|
|
|
|
// Warn about the explicit constructor calls Microsoft extension.
|
|
if (getLangOptions().MicrosoftExt &&
|
|
Id.getKind() == UnqualifiedId::IK_ConstructorName)
|
|
Diag(Id.getSourceRange().getBegin(),
|
|
diag::ext_ms_explicit_constructor_call);
|
|
|
|
TemplateArgumentListInfo TemplateArgsBuffer;
|
|
|
|
// Decompose the name into its component parts.
|
|
DeclarationNameInfo NameInfo;
|
|
const TemplateArgumentListInfo *TemplateArgs;
|
|
DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
|
|
NameInfo, TemplateArgs);
|
|
|
|
DeclarationName Name = NameInfo.getName();
|
|
bool IsArrow = (OpKind == tok::arrow);
|
|
|
|
NamedDecl *FirstQualifierInScope
|
|
= (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
|
|
static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
|
|
|
|
// This is a postfix expression, so get rid of ParenListExprs.
|
|
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
|
|
if (Result.isInvalid()) return ExprError();
|
|
Base = Result.take();
|
|
|
|
if (Base->getType()->isDependentType() || Name.isDependentName() ||
|
|
isDependentScopeSpecifier(SS)) {
|
|
Result = ActOnDependentMemberExpr(Base, Base->getType(),
|
|
IsArrow, OpLoc,
|
|
SS, TemplateKWLoc, FirstQualifierInScope,
|
|
NameInfo, TemplateArgs);
|
|
} else {
|
|
LookupResult R(*this, NameInfo, LookupMemberName);
|
|
ExprResult BaseResult = Owned(Base);
|
|
Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
|
|
SS, ObjCImpDecl, TemplateArgs != 0);
|
|
if (BaseResult.isInvalid())
|
|
return ExprError();
|
|
Base = BaseResult.take();
|
|
|
|
if (Result.isInvalid()) {
|
|
Owned(Base);
|
|
return ExprError();
|
|
}
|
|
|
|
if (Result.get()) {
|
|
// The only way a reference to a destructor can be used is to
|
|
// immediately call it, which falls into this case. If the
|
|
// next token is not a '(', produce a diagnostic and build the
|
|
// call now.
|
|
if (!HasTrailingLParen &&
|
|
Id.getKind() == UnqualifiedId::IK_DestructorName)
|
|
return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
|
|
|
|
return move(Result);
|
|
}
|
|
|
|
Result = BuildMemberReferenceExpr(Base, Base->getType(),
|
|
OpLoc, IsArrow, SS, TemplateKWLoc,
|
|
FirstQualifierInScope, R, TemplateArgs);
|
|
}
|
|
|
|
return move(Result);
|
|
}
|
|
|
|
static ExprResult
|
|
BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
|
|
const CXXScopeSpec &SS, FieldDecl *Field,
|
|
DeclAccessPair FoundDecl,
|
|
const DeclarationNameInfo &MemberNameInfo) {
|
|
// x.a is an l-value if 'a' has a reference type. Otherwise:
|
|
// x.a is an l-value/x-value/pr-value if the base is (and note
|
|
// that *x is always an l-value), except that if the base isn't
|
|
// an ordinary object then we must have an rvalue.
|
|
ExprValueKind VK = VK_LValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
if (!IsArrow) {
|
|
if (BaseExpr->getObjectKind() == OK_Ordinary)
|
|
VK = BaseExpr->getValueKind();
|
|
else
|
|
VK = VK_RValue;
|
|
}
|
|
if (VK != VK_RValue && Field->isBitField())
|
|
OK = OK_BitField;
|
|
|
|
// Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
|
|
QualType MemberType = Field->getType();
|
|
if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
|
|
MemberType = Ref->getPointeeType();
|
|
VK = VK_LValue;
|
|
} else {
|
|
QualType BaseType = BaseExpr->getType();
|
|
if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
|
|
|
|
Qualifiers BaseQuals = BaseType.getQualifiers();
|
|
|
|
// GC attributes are never picked up by members.
|
|
BaseQuals.removeObjCGCAttr();
|
|
|
|
// CVR attributes from the base are picked up by members,
|
|
// except that 'mutable' members don't pick up 'const'.
|
|
if (Field->isMutable()) BaseQuals.removeConst();
|
|
|
|
Qualifiers MemberQuals
|
|
= S.Context.getCanonicalType(MemberType).getQualifiers();
|
|
|
|
// TR 18037 does not allow fields to be declared with address spaces.
|
|
assert(!MemberQuals.hasAddressSpace());
|
|
|
|
Qualifiers Combined = BaseQuals + MemberQuals;
|
|
if (Combined != MemberQuals)
|
|
MemberType = S.Context.getQualifiedType(MemberType, Combined);
|
|
}
|
|
|
|
ExprResult Base =
|
|
S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
|
|
FoundDecl, Field);
|
|
if (Base.isInvalid())
|
|
return ExprError();
|
|
return S.Owned(BuildMemberExpr(S, S.Context, Base.take(), IsArrow, SS,
|
|
/*TemplateKWLoc=*/SourceLocation(),
|
|
Field, FoundDecl, MemberNameInfo,
|
|
MemberType, VK, OK));
|
|
}
|
|
|
|
/// Builds an implicit member access expression. The current context
|
|
/// is known to be an instance method, and the given unqualified lookup
|
|
/// set is known to contain only instance members, at least one of which
|
|
/// is from an appropriate type.
|
|
ExprResult
|
|
Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
bool IsKnownInstance) {
|
|
assert(!R.empty() && !R.isAmbiguous());
|
|
|
|
SourceLocation loc = R.getNameLoc();
|
|
|
|
// We may have found a field within an anonymous union or struct
|
|
// (C++ [class.union]).
|
|
// FIXME: template-ids inside anonymous structs?
|
|
if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
|
|
return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
|
|
|
|
// If this is known to be an instance access, go ahead and build an
|
|
// implicit 'this' expression now.
|
|
// 'this' expression now.
|
|
QualType ThisTy = getCurrentThisType();
|
|
assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
|
|
|
|
Expr *baseExpr = 0; // null signifies implicit access
|
|
if (IsKnownInstance) {
|
|
SourceLocation Loc = R.getNameLoc();
|
|
if (SS.getRange().isValid())
|
|
Loc = SS.getRange().getBegin();
|
|
CheckCXXThisCapture(Loc);
|
|
baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
|
|
}
|
|
|
|
return BuildMemberReferenceExpr(baseExpr, ThisTy,
|
|
/*OpLoc*/ SourceLocation(),
|
|
/*IsArrow*/ true,
|
|
SS, TemplateKWLoc,
|
|
/*FirstQualifierInScope*/ 0,
|
|
R, TemplateArgs);
|
|
}
|