llvm-project/clang-tools-extra/clang-rename/USRLocFinder.cpp

510 lines
18 KiB
C++

//===--- tools/extra/clang-rename/USRLocFinder.cpp - Clang rename tool ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Mehtods for finding all instances of a USR. Our strategy is very
/// simple; we just compare the USR at every relevant AST node with the one
/// provided.
///
//===----------------------------------------------------------------------===//
#include "USRLocFinder.h"
#include "USRFinder.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Lexer.h"
#include "clang/Tooling/Core/Lookup.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include <cstddef>
#include <set>
#include <string>
#include <vector>
using namespace llvm;
namespace clang {
namespace rename {
namespace {
// \brief This visitor recursively searches for all instances of a USR in a
// translation unit and stores them for later usage.
class USRLocFindingASTVisitor
: public clang::RecursiveASTVisitor<USRLocFindingASTVisitor> {
public:
explicit USRLocFindingASTVisitor(const std::vector<std::string> &USRs,
StringRef PrevName,
const ASTContext &Context)
: USRSet(USRs.begin(), USRs.end()), PrevName(PrevName), Context(Context) {
}
// Declaration visitors:
bool VisitCXXConstructorDecl(clang::CXXConstructorDecl *ConstructorDecl) {
for (const auto *Initializer : ConstructorDecl->inits()) {
// Ignore implicit initializers.
if (!Initializer->isWritten())
continue;
if (const clang::FieldDecl *FieldDecl = Initializer->getMember()) {
if (USRSet.find(getUSRForDecl(FieldDecl)) != USRSet.end())
LocationsFound.push_back(Initializer->getSourceLocation());
}
}
return true;
}
bool VisitNamedDecl(const NamedDecl *Decl) {
if (USRSet.find(getUSRForDecl(Decl)) != USRSet.end())
checkAndAddLocation(Decl->getLocation());
return true;
}
// Expression visitors:
bool VisitDeclRefExpr(const DeclRefExpr *Expr) {
const NamedDecl *Decl = Expr->getFoundDecl();
if (USRSet.find(getUSRForDecl(Decl)) != USRSet.end()) {
const SourceManager &Manager = Decl->getASTContext().getSourceManager();
SourceLocation Location = Manager.getSpellingLoc(Expr->getLocation());
checkAndAddLocation(Location);
}
return true;
}
bool VisitMemberExpr(const MemberExpr *Expr) {
const NamedDecl *Decl = Expr->getFoundDecl().getDecl();
if (USRSet.find(getUSRForDecl(Decl)) != USRSet.end()) {
const SourceManager &Manager = Decl->getASTContext().getSourceManager();
SourceLocation Location = Manager.getSpellingLoc(Expr->getMemberLoc());
checkAndAddLocation(Location);
}
return true;
}
// Other visitors:
bool VisitTypeLoc(const TypeLoc Loc) {
if (USRSet.find(getUSRForDecl(Loc.getType()->getAsCXXRecordDecl())) !=
USRSet.end())
checkAndAddLocation(Loc.getBeginLoc());
if (const auto *TemplateTypeParm =
dyn_cast<TemplateTypeParmType>(Loc.getType())) {
if (USRSet.find(getUSRForDecl(TemplateTypeParm->getDecl())) !=
USRSet.end())
checkAndAddLocation(Loc.getBeginLoc());
}
return true;
}
// Non-visitors:
// \brief Returns a list of unique locations. Duplicate or overlapping
// locations are erroneous and should be reported!
const std::vector<clang::SourceLocation> &getLocationsFound() const {
return LocationsFound;
}
// Namespace traversal:
void handleNestedNameSpecifierLoc(NestedNameSpecifierLoc NameLoc) {
while (NameLoc) {
const NamespaceDecl *Decl =
NameLoc.getNestedNameSpecifier()->getAsNamespace();
if (Decl && USRSet.find(getUSRForDecl(Decl)) != USRSet.end())
checkAndAddLocation(NameLoc.getLocalBeginLoc());
NameLoc = NameLoc.getPrefix();
}
}
private:
void checkAndAddLocation(SourceLocation Loc) {
const SourceLocation BeginLoc = Loc;
const SourceLocation EndLoc = Lexer::getLocForEndOfToken(
BeginLoc, 0, Context.getSourceManager(), Context.getLangOpts());
StringRef TokenName =
Lexer::getSourceText(CharSourceRange::getTokenRange(BeginLoc, EndLoc),
Context.getSourceManager(), Context.getLangOpts());
size_t Offset = TokenName.find(PrevName);
// The token of the source location we find actually has the old
// name.
if (Offset != StringRef::npos)
LocationsFound.push_back(BeginLoc.getLocWithOffset(Offset));
}
const std::set<std::string> USRSet;
const std::string PrevName;
std::vector<clang::SourceLocation> LocationsFound;
const ASTContext &Context;
};
SourceLocation StartLocationForType(TypeLoc TL) {
// For elaborated types (e.g. `struct a::A`) we want the portion after the
// `struct` but including the namespace qualifier, `a::`.
if (auto ElaboratedTypeLoc = TL.getAs<clang::ElaboratedTypeLoc>()) {
NestedNameSpecifierLoc NestedNameSpecifier =
ElaboratedTypeLoc.getQualifierLoc();
if (NestedNameSpecifier.getNestedNameSpecifier())
return NestedNameSpecifier.getBeginLoc();
TL = TL.getNextTypeLoc();
}
return TL.getLocStart();
}
SourceLocation EndLocationForType(TypeLoc TL) {
// Dig past any namespace or keyword qualifications.
while (TL.getTypeLocClass() == TypeLoc::Elaborated ||
TL.getTypeLocClass() == TypeLoc::Qualified)
TL = TL.getNextTypeLoc();
// The location for template specializations (e.g. Foo<int>) includes the
// templated types in its location range. We want to restrict this to just
// before the `<` character.
if (TL.getTypeLocClass() == TypeLoc::TemplateSpecialization) {
return TL.castAs<TemplateSpecializationTypeLoc>()
.getLAngleLoc()
.getLocWithOffset(-1);
}
return TL.getEndLoc();
}
NestedNameSpecifier *GetNestedNameForType(TypeLoc TL) {
// Dig past any keyword qualifications.
while (TL.getTypeLocClass() == TypeLoc::Qualified)
TL = TL.getNextTypeLoc();
// For elaborated types (e.g. `struct a::A`) we want the portion after the
// `struct` but including the namespace qualifier, `a::`.
if (auto ElaboratedTypeLoc = TL.getAs<clang::ElaboratedTypeLoc>())
return ElaboratedTypeLoc.getQualifierLoc().getNestedNameSpecifier();
return nullptr;
}
// Find all locations identified by the given USRs for rename.
//
// This class will traverse the AST and find every AST node whose USR is in the
// given USRs' set.
class RenameLocFinder : public RecursiveASTVisitor<RenameLocFinder> {
public:
RenameLocFinder(llvm::ArrayRef<std::string> USRs, ASTContext &Context)
: USRSet(USRs.begin(), USRs.end()), Context(Context) {}
// A structure records all information of a symbol reference being renamed.
// We try to add as few prefix qualifiers as possible.
struct RenameInfo {
// The begin location of a symbol being renamed.
SourceLocation Begin;
// The end location of a symbol being renamed.
SourceLocation End;
// The declaration of a symbol being renamed (can be nullptr).
const NamedDecl *FromDecl;
// The declaration in which the nested name is contained (can be nullptr).
const Decl *Context;
// The nested name being replaced (can be nullptr).
const NestedNameSpecifier *Specifier;
};
// FIXME: Currently, prefix qualifiers will be added to the renamed symbol
// definition (e.g. "class Foo {};" => "class b::Bar {};" when renaming
// "a::Foo" to "b::Bar").
// For renaming declarations/definitions, prefix qualifiers should be filtered
// out.
bool VisitNamedDecl(const NamedDecl *Decl) {
// UsingDecl has been handled in other place.
if (llvm::isa<UsingDecl>(Decl))
return true;
// DestructorDecl has been handled in Typeloc.
if (llvm::isa<CXXDestructorDecl>(Decl))
return true;
if (Decl->isImplicit())
return true;
if (isInUSRSet(Decl)) {
RenameInfo Info = {Decl->getLocation(), Decl->getLocation(), nullptr,
nullptr, nullptr};
RenameInfos.push_back(Info);
}
return true;
}
bool VisitDeclRefExpr(const DeclRefExpr *Expr) {
const NamedDecl *Decl = Expr->getFoundDecl();
if (isInUSRSet(Decl)) {
RenameInfo Info = {Expr->getSourceRange().getBegin(),
Expr->getSourceRange().getEnd(), Decl,
getClosestAncestorDecl(*Expr), Expr->getQualifier()};
RenameInfos.push_back(Info);
}
return true;
}
bool VisitUsingDecl(const UsingDecl *Using) {
for (const auto *UsingShadow : Using->shadows()) {
if (isInUSRSet(UsingShadow->getTargetDecl())) {
UsingDecls.push_back(Using);
break;
}
}
return true;
}
bool VisitNestedNameSpecifierLocations(NestedNameSpecifierLoc NestedLoc) {
if (!NestedLoc.getNestedNameSpecifier()->getAsType())
return true;
if (IsTypeAliasWhichWillBeRenamedElsewhere(NestedLoc.getTypeLoc()))
return true;
if (const auto *TargetDecl =
getSupportedDeclFromTypeLoc(NestedLoc.getTypeLoc())) {
if (isInUSRSet(TargetDecl)) {
RenameInfo Info = {NestedLoc.getBeginLoc(),
EndLocationForType(NestedLoc.getTypeLoc()),
TargetDecl, getClosestAncestorDecl(NestedLoc),
NestedLoc.getNestedNameSpecifier()->getPrefix()};
RenameInfos.push_back(Info);
}
}
return true;
}
bool VisitTypeLoc(TypeLoc Loc) {
if (IsTypeAliasWhichWillBeRenamedElsewhere(Loc))
return true;
auto Parents = Context.getParents(Loc);
TypeLoc ParentTypeLoc;
if (!Parents.empty()) {
// Handle cases of nested name specificier locations.
//
// The VisitNestedNameSpecifierLoc interface is not impelmented in
// RecursiveASTVisitor, we have to handle it explicitly.
if (const auto *NSL = Parents[0].get<NestedNameSpecifierLoc>()) {
VisitNestedNameSpecifierLocations(*NSL);
return true;
}
if (const auto *TL = Parents[0].get<TypeLoc>())
ParentTypeLoc = *TL;
}
// Handle the outermost TypeLoc which is directly linked to the interesting
// declaration and don't handle nested name specifier locations.
if (const auto *TargetDecl = getSupportedDeclFromTypeLoc(Loc)) {
if (isInUSRSet(TargetDecl)) {
// Only handle the outermost typeLoc.
//
// For a type like "a::Foo", there will be two typeLocs for it.
// One ElaboratedType, the other is RecordType:
//
// ElaboratedType 0x33b9390 'a::Foo' sugar
// `-RecordType 0x338fef0 'class a::Foo'
// `-CXXRecord 0x338fe58 'Foo'
//
// Skip if this is an inner typeLoc.
if (!ParentTypeLoc.isNull() &&
isInUSRSet(getSupportedDeclFromTypeLoc(ParentTypeLoc)))
return true;
RenameInfo Info = {StartLocationForType(Loc), EndLocationForType(Loc),
TargetDecl, getClosestAncestorDecl(Loc),
GetNestedNameForType(Loc)};
RenameInfos.push_back(Info);
return true;
}
}
// Handle specific template class specialiation cases.
if (const auto *TemplateSpecType =
dyn_cast<TemplateSpecializationType>(Loc.getType())) {
TypeLoc TargetLoc = Loc;
if (!ParentTypeLoc.isNull()) {
if (llvm::isa<ElaboratedType>(ParentTypeLoc.getType()))
TargetLoc = ParentTypeLoc;
}
if (isInUSRSet(TemplateSpecType->getTemplateName().getAsTemplateDecl())) {
TypeLoc TargetLoc = Loc;
// FIXME: Find a better way to handle this case.
// For the qualified template class specification type like
// "ns::Foo<int>" in "ns::Foo<int>& f();", we want the parent typeLoc
// (ElaboratedType) of the TemplateSpecializationType in order to
// catch the prefix qualifiers "ns::".
if (!ParentTypeLoc.isNull() &&
llvm::isa<ElaboratedType>(ParentTypeLoc.getType()))
TargetLoc = ParentTypeLoc;
RenameInfo Info = {
StartLocationForType(TargetLoc), EndLocationForType(TargetLoc),
TemplateSpecType->getTemplateName().getAsTemplateDecl(),
getClosestAncestorDecl(
ast_type_traits::DynTypedNode::create(TargetLoc)),
GetNestedNameForType(TargetLoc)};
RenameInfos.push_back(Info);
}
}
return true;
}
// Returns a list of RenameInfo.
const std::vector<RenameInfo> &getRenameInfos() const { return RenameInfos; }
// Returns a list of using declarations which are needed to update.
const std::vector<const UsingDecl *> &getUsingDecls() const {
return UsingDecls;
}
private:
// FIXME: This method may not be suitable for renaming other types like alias
// types. Need to figure out a way to handle it.
bool IsTypeAliasWhichWillBeRenamedElsewhere(TypeLoc TL) const {
while (!TL.isNull()) {
// SubstTemplateTypeParm is the TypeLocation class for a substituted type
// inside a template expansion so we ignore these. For example:
//
// template<typename T> struct S {
// T t; // <-- this T becomes a TypeLoc(int) with class
// // SubstTemplateTypeParm when S<int> is instantiated
// }
if (TL.getTypeLocClass() == TypeLoc::SubstTemplateTypeParm)
return true;
// Typedef is the TypeLocation class for a type which is a typedef to the
// type we want to replace. We ignore the use of the typedef as we will
// replace the definition of it. For example:
//
// typedef int T;
// T a; // <--- This T is a TypeLoc(int) with class Typedef.
if (TL.getTypeLocClass() == TypeLoc::Typedef)
return true;
TL = TL.getNextTypeLoc();
}
return false;
}
// Get the supported declaration from a given typeLoc. If the declaration type
// is not supported, returns nullptr.
//
// FIXME: support more types, e.g. enum, type alias.
const NamedDecl *getSupportedDeclFromTypeLoc(TypeLoc Loc) {
if (const auto *RD = Loc.getType()->getAsCXXRecordDecl())
return RD;
return nullptr;
}
// Get the closest ancester which is a declaration of a given AST node.
template <typename ASTNodeType>
const Decl *getClosestAncestorDecl(const ASTNodeType &Node) {
auto Parents = Context.getParents(Node);
// FIXME: figure out how to handle it when there are multiple parents.
if (Parents.size() != 1)
return nullptr;
if (ast_type_traits::ASTNodeKind::getFromNodeKind<Decl>().isBaseOf(
Parents[0].getNodeKind()))
return Parents[0].template get<Decl>();
return getClosestAncestorDecl(Parents[0]);
}
// Get the parent typeLoc of a given typeLoc. If there is no such parent,
// return nullptr.
const TypeLoc *getParentTypeLoc(TypeLoc Loc) const {
auto Parents = Context.getParents(Loc);
// FIXME: figure out how to handle it when there are multiple parents.
if (Parents.size() != 1)
return nullptr;
return Parents[0].get<TypeLoc>();
}
// Check whether the USR of a given Decl is in the USRSet.
bool isInUSRSet(const Decl *Decl) const {
auto USR = getUSRForDecl(Decl);
if (USR.empty())
return false;
return llvm::is_contained(USRSet, USR);
}
const std::set<std::string> USRSet;
ASTContext &Context;
std::vector<RenameInfo> RenameInfos;
// Record all interested using declarations which contains the using-shadow
// declarations of the symbol declarations being renamed.
std::vector<const UsingDecl *> UsingDecls;
};
} // namespace
std::vector<SourceLocation>
getLocationsOfUSRs(const std::vector<std::string> &USRs, StringRef PrevName,
Decl *Decl) {
USRLocFindingASTVisitor Visitor(USRs, PrevName, Decl->getASTContext());
Visitor.TraverseDecl(Decl);
NestedNameSpecifierLocFinder Finder(Decl->getASTContext());
for (const auto &Location : Finder.getNestedNameSpecifierLocations())
Visitor.handleNestedNameSpecifierLoc(Location);
return Visitor.getLocationsFound();
}
std::vector<tooling::AtomicChange>
createRenameAtomicChanges(llvm::ArrayRef<std::string> USRs,
llvm::StringRef NewName, Decl *TranslationUnitDecl) {
RenameLocFinder Finder(USRs, TranslationUnitDecl->getASTContext());
Finder.TraverseDecl(TranslationUnitDecl);
const SourceManager &SM =
TranslationUnitDecl->getASTContext().getSourceManager();
std::vector<tooling::AtomicChange> AtomicChanges;
auto Replace = [&](SourceLocation Start, SourceLocation End,
llvm::StringRef Text) {
tooling::AtomicChange ReplaceChange = tooling::AtomicChange(SM, Start);
llvm::Error Err = ReplaceChange.replace(
SM, CharSourceRange::getTokenRange(Start, End), Text);
if (Err) {
llvm::errs() << "Faile to add replacement to AtomicChange: "
<< llvm::toString(std::move(Err)) << "\n";
return;
}
AtomicChanges.push_back(std::move(ReplaceChange));
};
for (const auto &RenameInfo : Finder.getRenameInfos()) {
std::string ReplacedName = NewName.str();
if (RenameInfo.FromDecl && RenameInfo.Context) {
if (!llvm::isa<clang::TranslationUnitDecl>(
RenameInfo.Context->getDeclContext())) {
ReplacedName = tooling::replaceNestedName(
RenameInfo.Specifier, RenameInfo.Context->getDeclContext(),
RenameInfo.FromDecl,
NewName.startswith("::") ? NewName.str() : ("::" + NewName).str());
}
}
// If the NewName contains leading "::", add it back.
if (NewName.startswith("::") && NewName.substr(2) == ReplacedName)
ReplacedName = NewName.str();
Replace(RenameInfo.Begin, RenameInfo.End, ReplacedName);
}
// Hanlde using declarations explicitly as "using a::Foo" don't trigger
// typeLoc for "a::Foo".
for (const auto *Using : Finder.getUsingDecls())
Replace(Using->getLocStart(), Using->getLocEnd(), "using " + NewName.str());
return AtomicChanges;
}
} // namespace rename
} // namespace clang