llvm-project/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp

768 lines
27 KiB
C++

//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the ScheduleDAG class, which is a base class used by
// scheduling implementation classes.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-RA-sched"
#include "SDNodeDbgValue.h"
#include "ScheduleDAGSDNodes.h"
#include "InstrEmitter.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(LoadsClustered, "Number of loads clustered together");
// This allows latency based scheduler to notice high latency instructions
// without a target itinerary. The choise if number here has more to do with
// balancing scheduler heursitics than with the actual machine latency.
static cl::opt<int> HighLatencyCycles(
"sched-high-latency-cycles", cl::Hidden, cl::init(10),
cl::desc("Roughly estimate the number of cycles that 'long latency'"
"instructions take for targets with no itinerary"));
ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
: ScheduleDAG(mf),
InstrItins(mf.getTarget().getInstrItineraryData()) {}
/// Run - perform scheduling.
///
void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
MachineBasicBlock::iterator insertPos) {
DAG = dag;
ScheduleDAG::Run(bb, insertPos);
}
/// NewSUnit - Creates a new SUnit and return a ptr to it.
///
SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
#ifndef NDEBUG
const SUnit *Addr = 0;
if (!SUnits.empty())
Addr = &SUnits[0];
#endif
SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
assert((Addr == 0 || Addr == &SUnits[0]) &&
"SUnits std::vector reallocated on the fly!");
SUnits.back().OrigNode = &SUnits.back();
SUnit *SU = &SUnits.back();
const TargetLowering &TLI = DAG->getTargetLoweringInfo();
if (!N ||
(N->isMachineOpcode() &&
N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
SU->SchedulingPref = Sched::None;
else
SU->SchedulingPref = TLI.getSchedulingPreference(N);
return SU;
}
SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
SUnit *SU = NewSUnit(Old->getNode());
SU->OrigNode = Old->OrigNode;
SU->Latency = Old->Latency;
SU->isCall = Old->isCall;
SU->isTwoAddress = Old->isTwoAddress;
SU->isCommutable = Old->isCommutable;
SU->hasPhysRegDefs = Old->hasPhysRegDefs;
SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
SU->SchedulingPref = Old->SchedulingPref;
Old->isCloned = true;
return SU;
}
/// CheckForPhysRegDependency - Check if the dependency between def and use of
/// a specified operand is a physical register dependency. If so, returns the
/// register and the cost of copying the register.
static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
const TargetRegisterInfo *TRI,
const TargetInstrInfo *TII,
unsigned &PhysReg, int &Cost) {
if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
return;
unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
return;
unsigned ResNo = User->getOperand(2).getResNo();
if (Def->isMachineOpcode()) {
const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
if (ResNo >= II.getNumDefs() &&
II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
PhysReg = Reg;
const TargetRegisterClass *RC =
TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
Cost = RC->getCopyCost();
}
}
}
static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
SmallVector<EVT, 4> VTs;
SDNode *GlueDestNode = Glue.getNode();
// Don't add glue from a node to itself.
if (GlueDestNode == N) return;
// Don't add glue to something which already has glue.
if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return;
for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
VTs.push_back(N->getValueType(I));
if (AddGlue)
VTs.push_back(MVT::Glue);
SmallVector<SDValue, 4> Ops;
for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
Ops.push_back(N->getOperand(I));
if (GlueDestNode)
Ops.push_back(Glue);
SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
MachineSDNode::mmo_iterator Begin = 0, End = 0;
MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
// Store memory references.
if (MN) {
Begin = MN->memoperands_begin();
End = MN->memoperands_end();
}
DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
// Reset the memory references
if (MN)
MN->setMemRefs(Begin, End);
}
/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
/// This function finds loads of the same base and different offsets. If the
/// offsets are not far apart (target specific), it add MVT::Glue inputs and
/// outputs to ensure they are scheduled together and in order. This
/// optimization may benefit some targets by improving cache locality.
void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
SDNode *Chain = 0;
unsigned NumOps = Node->getNumOperands();
if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
Chain = Node->getOperand(NumOps-1).getNode();
if (!Chain)
return;
// Look for other loads of the same chain. Find loads that are loading from
// the same base pointer and different offsets.
SmallPtrSet<SDNode*, 16> Visited;
SmallVector<int64_t, 4> Offsets;
DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode.
bool Cluster = false;
SDNode *Base = Node;
for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
I != E; ++I) {
SDNode *User = *I;
if (User == Node || !Visited.insert(User))
continue;
int64_t Offset1, Offset2;
if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
Offset1 == Offset2)
// FIXME: Should be ok if they addresses are identical. But earlier
// optimizations really should have eliminated one of the loads.
continue;
if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
Offsets.push_back(Offset1);
O2SMap.insert(std::make_pair(Offset2, User));
Offsets.push_back(Offset2);
if (Offset2 < Offset1)
Base = User;
Cluster = true;
}
if (!Cluster)
return;
// Sort them in increasing order.
std::sort(Offsets.begin(), Offsets.end());
// Check if the loads are close enough.
SmallVector<SDNode*, 4> Loads;
unsigned NumLoads = 0;
int64_t BaseOff = Offsets[0];
SDNode *BaseLoad = O2SMap[BaseOff];
Loads.push_back(BaseLoad);
for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
int64_t Offset = Offsets[i];
SDNode *Load = O2SMap[Offset];
if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
break; // Stop right here. Ignore loads that are further away.
Loads.push_back(Load);
++NumLoads;
}
if (NumLoads == 0)
return;
// Cluster loads by adding MVT::Glue outputs and inputs. This also
// ensure they are scheduled in order of increasing addresses.
SDNode *Lead = Loads[0];
AddGlue(Lead, SDValue(0, 0), true, DAG);
SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1);
for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
bool OutGlue = I < E - 1;
SDNode *Load = Loads[I];
AddGlue(Load, InGlue, OutGlue, DAG);
if (OutGlue)
InGlue = SDValue(Load, Load->getNumValues() - 1);
++LoadsClustered;
}
}
/// ClusterNodes - Cluster certain nodes which should be scheduled together.
///
void ScheduleDAGSDNodes::ClusterNodes() {
for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
E = DAG->allnodes_end(); NI != E; ++NI) {
SDNode *Node = &*NI;
if (!Node || !Node->isMachineOpcode())
continue;
unsigned Opc = Node->getMachineOpcode();
const TargetInstrDesc &TID = TII->get(Opc);
if (TID.mayLoad())
// Cluster loads from "near" addresses into combined SUnits.
ClusterNeighboringLoads(Node);
}
}
void ScheduleDAGSDNodes::BuildSchedUnits() {
// During scheduling, the NodeId field of SDNode is used to map SDNodes
// to their associated SUnits by holding SUnits table indices. A value
// of -1 means the SDNode does not yet have an associated SUnit.
unsigned NumNodes = 0;
for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
E = DAG->allnodes_end(); NI != E; ++NI) {
NI->setNodeId(-1);
++NumNodes;
}
// Reserve entries in the vector for each of the SUnits we are creating. This
// ensure that reallocation of the vector won't happen, so SUnit*'s won't get
// invalidated.
// FIXME: Multiply by 2 because we may clone nodes during scheduling.
// This is a temporary workaround.
SUnits.reserve(NumNodes * 2);
// Add all nodes in depth first order.
SmallVector<SDNode*, 64> Worklist;
SmallPtrSet<SDNode*, 64> Visited;
Worklist.push_back(DAG->getRoot().getNode());
Visited.insert(DAG->getRoot().getNode());
while (!Worklist.empty()) {
SDNode *NI = Worklist.pop_back_val();
// Add all operands to the worklist unless they've already been added.
for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
if (Visited.insert(NI->getOperand(i).getNode()))
Worklist.push_back(NI->getOperand(i).getNode());
if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
continue;
// If this node has already been processed, stop now.
if (NI->getNodeId() != -1) continue;
SUnit *NodeSUnit = NewSUnit(NI);
// See if anything is glued to this node, if so, add them to glued
// nodes. Nodes can have at most one glue input and one glue output. Glue
// is required to be the last operand and result of a node.
// Scan up to find glued preds.
SDNode *N = NI;
while (N->getNumOperands() &&
N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
N = N->getOperand(N->getNumOperands()-1).getNode();
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NodeSUnit->NodeNum);
if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
NodeSUnit->isCall = true;
}
// Scan down to find any glued succs.
N = NI;
while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
SDValue GlueVal(N, N->getNumValues()-1);
// There are either zero or one users of the Glue result.
bool HasGlueUse = false;
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
UI != E; ++UI)
if (GlueVal.isOperandOf(*UI)) {
HasGlueUse = true;
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NodeSUnit->NodeNum);
N = *UI;
if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
NodeSUnit->isCall = true;
break;
}
if (!HasGlueUse) break;
}
// If there are glue operands involved, N is now the bottom-most node
// of the sequence of nodes that are glued together.
// Update the SUnit.
NodeSUnit->setNode(N);
assert(N->getNodeId() == -1 && "Node already inserted!");
N->setNodeId(NodeSUnit->NodeNum);
// Compute NumRegDefsLeft. This must be done before AddSchedEdges.
InitNumRegDefsLeft(NodeSUnit);
// Assign the Latency field of NodeSUnit using target-provided information.
ComputeLatency(NodeSUnit);
}
}
void ScheduleDAGSDNodes::AddSchedEdges() {
const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
// Check to see if the scheduler cares about latencies.
bool UnitLatencies = ForceUnitLatencies();
// Pass 2: add the preds, succs, etc.
for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
SUnit *SU = &SUnits[su];
SDNode *MainNode = SU->getNode();
if (MainNode->isMachineOpcode()) {
unsigned Opc = MainNode->getMachineOpcode();
const TargetInstrDesc &TID = TII->get(Opc);
for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
SU->isTwoAddress = true;
break;
}
}
if (TID.isCommutable())
SU->isCommutable = true;
}
// Find all predecessors and successors of the group.
for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
if (N->isMachineOpcode() &&
TII->get(N->getMachineOpcode()).getImplicitDefs()) {
SU->hasPhysRegClobbers = true;
unsigned NumUsed = InstrEmitter::CountResults(N);
while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
--NumUsed; // Skip over unused values at the end.
if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
SU->hasPhysRegDefs = true;
}
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
SDNode *OpN = N->getOperand(i).getNode();
if (isPassiveNode(OpN)) continue; // Not scheduled.
SUnit *OpSU = &SUnits[OpN->getNodeId()];
assert(OpSU && "Node has no SUnit!");
if (OpSU == SU) continue; // In the same group.
EVT OpVT = N->getOperand(i).getValueType();
assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
bool isChain = OpVT == MVT::Other;
unsigned PhysReg = 0;
int Cost = 1;
// Determine if this is a physical register dependency.
CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
assert((PhysReg == 0 || !isChain) &&
"Chain dependence via physreg data?");
// FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
// emits a copy from the physical register to a virtual register unless
// it requires a cross class copy (cost < 0). That means we are only
// treating "expensive to copy" register dependency as physical register
// dependency. This may change in the future though.
if (Cost >= 0)
PhysReg = 0;
// If this is a ctrl dep, latency is 1.
unsigned OpLatency = isChain ? 1 : OpSU->Latency;
const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
OpLatency, PhysReg);
if (!isChain && !UnitLatencies) {
ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
}
if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
// Multiple register uses are combined in the same SUnit. For example,
// we could have a set of glued nodes with all their defs consumed by
// another set of glued nodes. Register pressure tracking sees this as
// a single use, so to keep pressure balanced we reduce the defs.
//
// We can't tell (without more book-keeping) if this results from
// glued nodes or duplicate operands. As long as we don't reduce
// NumRegDefsLeft to zero, we handle the common cases well.
--OpSU->NumRegDefsLeft;
}
}
}
}
}
/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
/// are input. This SUnit graph is similar to the SelectionDAG, but
/// excludes nodes that aren't interesting to scheduling, and represents
/// glued together nodes with a single SUnit.
void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
// Cluster certain nodes which should be scheduled together.
ClusterNodes();
// Populate the SUnits array.
BuildSchedUnits();
// Compute all the scheduling dependencies between nodes.
AddSchedEdges();
}
// Initialize NumNodeDefs for the current Node's opcode.
void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
// Check for phys reg copy.
if (!Node)
return;
if (!Node->isMachineOpcode()) {
if (Node->getOpcode() == ISD::CopyFromReg)
NodeNumDefs = 1;
else
NodeNumDefs = 0;
return;
}
unsigned POpc = Node->getMachineOpcode();
if (POpc == TargetOpcode::IMPLICIT_DEF) {
// No register need be allocated for this.
NodeNumDefs = 0;
return;
}
unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
// Some instructions define regs that are not represented in the selection DAG
// (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
DefIdx = 0;
}
// Construct a RegDefIter for this SUnit and find the first valid value.
ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
const ScheduleDAGSDNodes *SD)
: SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
InitNodeNumDefs();
Advance();
}
// Advance to the next valid value defined by the SUnit.
void ScheduleDAGSDNodes::RegDefIter::Advance() {
for (;Node;) { // Visit all glued nodes.
for (;DefIdx < NodeNumDefs; ++DefIdx) {
if (!Node->hasAnyUseOfValue(DefIdx))
continue;
if (Node->isMachineOpcode() &&
Node->getMachineOpcode() == TargetOpcode::EXTRACT_SUBREG) {
// Propagate the incoming (full-register) type. I doubt it's needed.
ValueType = Node->getOperand(0).getValueType();
}
else {
ValueType = Node->getValueType(DefIdx);
}
++DefIdx;
return; // Found a normal regdef.
}
Node = Node->getGluedNode();
if (Node == NULL) {
return; // No values left to visit.
}
InitNodeNumDefs();
}
}
void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
assert(SU->NumRegDefsLeft == 0 && "expect a new node");
for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
++SU->NumRegDefsLeft;
}
}
void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
// Check to see if the scheduler cares about latencies.
if (ForceUnitLatencies()) {
SU->Latency = 1;
return;
}
if (!InstrItins || InstrItins->isEmpty()) {
SDNode *N = SU->getNode();
if (N && N->isMachineOpcode() &&
TII->isHighLatencyDef(N->getMachineOpcode()))
SU->Latency = HighLatencyCycles;
else
SU->Latency = 1;
return;
}
// Compute the latency for the node. We use the sum of the latencies for
// all nodes glued together into this SUnit.
SU->Latency = 0;
for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
if (N->isMachineOpcode())
SU->Latency += TII->getInstrLatency(InstrItins, N);
}
void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
unsigned OpIdx, SDep& dep) const{
// Check to see if the scheduler cares about latencies.
if (ForceUnitLatencies())
return;
if (dep.getKind() != SDep::Data)
return;
unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
if (Use->isMachineOpcode())
// Adjust the use operand index by num of defs.
OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
!BB->succ_empty()) {
unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
// This copy is a liveout value. It is likely coalesced, so reduce the
// latency so not to penalize the def.
// FIXME: need target specific adjustment here?
Latency = (Latency > 1) ? Latency - 1 : 1;
}
if (Latency >= 0)
dep.setLatency(Latency);
}
void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
if (!SU->getNode()) {
dbgs() << "PHYS REG COPY\n";
return;
}
SU->getNode()->dump(DAG);
dbgs() << "\n";
SmallVector<SDNode *, 4> GluedNodes;
for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
GluedNodes.push_back(N);
while (!GluedNodes.empty()) {
dbgs() << " ";
GluedNodes.back()->dump(DAG);
dbgs() << "\n";
GluedNodes.pop_back();
}
}
namespace {
struct OrderSorter {
bool operator()(const std::pair<unsigned, MachineInstr*> &A,
const std::pair<unsigned, MachineInstr*> &B) {
return A.first < B.first;
}
};
}
/// ProcessSDDbgValues - Process SDDbgValues assoicated with this node.
static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG,
InstrEmitter &Emitter,
SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
DenseMap<SDValue, unsigned> &VRBaseMap,
unsigned Order) {
if (!N->getHasDebugValue())
return;
// Opportunistically insert immediate dbg_value uses, i.e. those with source
// order number right after the N.
MachineBasicBlock *BB = Emitter.getBlock();
MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
if (DVs[i]->isInvalidated())
continue;
unsigned DVOrder = DVs[i]->getOrder();
if (!Order || DVOrder == ++Order) {
MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
if (DbgMI) {
Orders.push_back(std::make_pair(DVOrder, DbgMI));
BB->insert(InsertPos, DbgMI);
}
DVs[i]->setIsInvalidated();
}
}
}
// ProcessSourceNode - Process nodes with source order numbers. These are added
// to a vector which EmitSchedule uses to determine how to insert dbg_value
// instructions in the right order.
static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
InstrEmitter &Emitter,
DenseMap<SDValue, unsigned> &VRBaseMap,
SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
SmallSet<unsigned, 8> &Seen) {
unsigned Order = DAG->GetOrdering(N);
if (!Order || !Seen.insert(Order)) {
// Process any valid SDDbgValues even if node does not have any order
// assigned.
ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
return;
}
MachineBasicBlock *BB = Emitter.getBlock();
if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
// Did not insert any instruction.
Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
return;
}
Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
}
/// EmitSchedule - Emit the machine code in scheduled order.
MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
InstrEmitter Emitter(BB, InsertPos);
DenseMap<SDValue, unsigned> VRBaseMap;
DenseMap<SUnit*, unsigned> CopyVRBaseMap;
SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
SmallSet<unsigned, 8> Seen;
bool HasDbg = DAG->hasDebugValues();
// If this is the first BB, emit byval parameter dbg_value's.
if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
for (; PDI != PDE; ++PDI) {
MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
if (DbgMI)
BB->insert(InsertPos, DbgMI);
}
}
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
SUnit *SU = Sequence[i];
if (!SU) {
// Null SUnit* is a noop.
EmitNoop();
continue;
}
// For pre-regalloc scheduling, create instructions corresponding to the
// SDNode and any glued SDNodes and append them to the block.
if (!SU->getNode()) {
// Emit a copy.
EmitPhysRegCopy(SU, CopyVRBaseMap);
continue;
}
SmallVector<SDNode *, 4> GluedNodes;
for (SDNode *N = SU->getNode()->getGluedNode(); N;
N = N->getGluedNode())
GluedNodes.push_back(N);
while (!GluedNodes.empty()) {
SDNode *N = GluedNodes.back();
Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
VRBaseMap);
// Remember the source order of the inserted instruction.
if (HasDbg)
ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
GluedNodes.pop_back();
}
Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
VRBaseMap);
// Remember the source order of the inserted instruction.
if (HasDbg)
ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
Seen);
}
// Insert all the dbg_values which have not already been inserted in source
// order sequence.
if (HasDbg) {
MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
// Sort the source order instructions and use the order to insert debug
// values.
std::sort(Orders.begin(), Orders.end(), OrderSorter());
SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
// Now emit the rest according to source order.
unsigned LastOrder = 0;
for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
unsigned Order = Orders[i].first;
MachineInstr *MI = Orders[i].second;
// Insert all SDDbgValue's whose order(s) are before "Order".
if (!MI)
continue;
for (; DI != DE &&
(*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
if ((*DI)->isInvalidated())
continue;
MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
if (DbgMI) {
if (!LastOrder)
// Insert to start of the BB (after PHIs).
BB->insert(BBBegin, DbgMI);
else {
// Insert at the instruction, which may be in a different
// block, if the block was split by a custom inserter.
MachineBasicBlock::iterator Pos = MI;
MI->getParent()->insert(llvm::next(Pos), DbgMI);
}
}
}
LastOrder = Order;
}
// Add trailing DbgValue's before the terminator. FIXME: May want to add
// some of them before one or more conditional branches?
while (DI != DE) {
MachineBasicBlock *InsertBB = Emitter.getBlock();
MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
if (!(*DI)->isInvalidated()) {
MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
if (DbgMI)
InsertBB->insert(Pos, DbgMI);
}
++DI;
}
}
BB = Emitter.getBlock();
InsertPos = Emitter.getInsertPos();
return BB;
}