llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl_thread.cc

413 lines
12 KiB
C++

//===-- tsan_rtl_thread.cc ------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_placement_new.h"
#include "tsan_rtl.h"
#include "tsan_mman.h"
#include "tsan_platform.h"
#include "tsan_report.h"
#include "tsan_sync.h"
namespace __tsan {
#ifndef TSAN_GO
const int kThreadQuarantineSize = 16;
#else
const int kThreadQuarantineSize = 64;
#endif
static void MaybeReportThreadLeak(ThreadContext *tctx) {
if (tctx->detached)
return;
if (tctx->status != ThreadStatusCreated
&& tctx->status != ThreadStatusRunning
&& tctx->status != ThreadStatusFinished)
return;
ScopedReport rep(ReportTypeThreadLeak);
rep.AddThread(tctx);
OutputReport(CTX(), rep);
}
void ThreadFinalize(ThreadState *thr) {
CHECK_GT(thr->in_rtl, 0);
if (!flags()->report_thread_leaks)
return;
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
for (unsigned i = 0; i < kMaxTid; i++) {
ThreadContext *tctx = ctx->threads[i];
if (tctx == 0)
continue;
MaybeReportThreadLeak(tctx);
}
}
int ThreadCount(ThreadState *thr) {
CHECK_GT(thr->in_rtl, 0);
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
int cnt = 0;
for (unsigned i = 0; i < kMaxTid; i++) {
ThreadContext *tctx = ctx->threads[i];
if (tctx == 0)
continue;
if (tctx->status != ThreadStatusCreated
&& tctx->status != ThreadStatusRunning)
continue;
cnt++;
}
return cnt;
}
static void ThreadDead(ThreadState *thr, ThreadContext *tctx) {
Context *ctx = CTX();
CHECK_GT(thr->in_rtl, 0);
CHECK(tctx->status == ThreadStatusRunning
|| tctx->status == ThreadStatusFinished);
DPrintf("#%d: ThreadDead uid=%zu\n", thr->tid, tctx->user_id);
tctx->status = ThreadStatusDead;
tctx->user_id = 0;
tctx->sync.Reset();
// Put to dead list.
tctx->dead_next = 0;
if (ctx->dead_list_size == 0)
ctx->dead_list_head = tctx;
else
ctx->dead_list_tail->dead_next = tctx;
ctx->dead_list_tail = tctx;
ctx->dead_list_size++;
}
int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
CHECK_GT(thr->in_rtl, 0);
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
StatInc(thr, StatThreadCreate);
int tid = -1;
ThreadContext *tctx = 0;
if (ctx->dead_list_size > kThreadQuarantineSize
|| ctx->thread_seq >= kMaxTid) {
if (ctx->dead_list_size == 0) {
Printf("ThreadSanitizer: %d thread limit exceeded. Dying.\n",
kMaxTid);
Die();
}
StatInc(thr, StatThreadReuse);
tctx = ctx->dead_list_head;
ctx->dead_list_head = tctx->dead_next;
ctx->dead_list_size--;
if (ctx->dead_list_size == 0) {
CHECK_EQ(tctx->dead_next, 0);
ctx->dead_list_head = 0;
}
CHECK_EQ(tctx->status, ThreadStatusDead);
tctx->status = ThreadStatusInvalid;
tctx->reuse_count++;
tctx->sync.Reset();
tid = tctx->tid;
DestroyAndFree(tctx->dead_info);
} else {
StatInc(thr, StatThreadMaxTid);
tid = ctx->thread_seq++;
void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
tctx = new(mem) ThreadContext(tid);
ctx->threads[tid] = tctx;
}
CHECK_NE(tctx, 0);
CHECK_GE(tid, 0);
CHECK_LT(tid, kMaxTid);
DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", thr->tid, tid, uid);
CHECK_EQ(tctx->status, ThreadStatusInvalid);
ctx->alive_threads++;
if (ctx->max_alive_threads < ctx->alive_threads) {
ctx->max_alive_threads++;
CHECK_EQ(ctx->max_alive_threads, ctx->alive_threads);
StatInc(thr, StatThreadMaxAlive);
}
tctx->status = ThreadStatusCreated;
tctx->thr = 0;
tctx->user_id = uid;
tctx->unique_id = ctx->unique_thread_seq++;
tctx->detached = detached;
if (tid) {
thr->fast_state.IncrementEpoch();
// Can't increment epoch w/o writing to the trace as well.
TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->fast_synch_epoch = thr->fast_state.epoch();
thr->clock.release(&tctx->sync);
StatInc(thr, StatSyncRelease);
tctx->creation_stack.ObtainCurrent(thr, pc);
}
return tid;
}
void ThreadStart(ThreadState *thr, int tid, uptr os_id) {
CHECK_GT(thr->in_rtl, 0);
uptr stk_addr = 0;
uptr stk_size = 0;
uptr tls_addr = 0;
uptr tls_size = 0;
GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
if (tid) {
if (stk_addr && stk_size) {
MemoryResetRange(thr, /*pc=*/ 1, stk_addr, stk_size);
}
if (tls_addr && tls_size) {
// Check that the thr object is in tls;
const uptr thr_beg = (uptr)thr;
const uptr thr_end = (uptr)thr + sizeof(*thr);
CHECK_GE(thr_beg, tls_addr);
CHECK_LE(thr_beg, tls_addr + tls_size);
CHECK_GE(thr_end, tls_addr);
CHECK_LE(thr_end, tls_addr + tls_size);
// Since the thr object is huge, skip it.
MemoryResetRange(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
MemoryResetRange(thr, /*pc=*/ 2, thr_end, tls_addr + tls_size - thr_end);
}
}
Lock l(&CTX()->thread_mtx);
ThreadContext *tctx = CTX()->threads[tid];
CHECK_NE(tctx, 0);
CHECK_EQ(tctx->status, ThreadStatusCreated);
tctx->status = ThreadStatusRunning;
tctx->os_id = os_id;
tctx->epoch0 = tctx->epoch1 + 1;
tctx->epoch1 = (u64)-1;
new(thr) ThreadState(CTX(), tid, tctx->unique_id,
tctx->epoch0, stk_addr, stk_size,
tls_addr, tls_size);
#ifdef TSAN_GO
// Setup dynamic shadow stack.
const int kInitStackSize = 8;
thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack,
kInitStackSize * sizeof(uptr));
thr->shadow_stack_pos = thr->shadow_stack;
thr->shadow_stack_end = thr->shadow_stack + kInitStackSize;
#endif
tctx->thr = thr;
thr->fast_synch_epoch = tctx->epoch0;
thr->clock.set(tid, tctx->epoch0);
thr->clock.acquire(&tctx->sync);
StatInc(thr, StatSyncAcquire);
DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
"tls_addr=%zx tls_size=%zx\n",
tid, (uptr)tctx->epoch0, stk_addr, stk_size, tls_addr, tls_size);
thr->is_alive = true;
}
void ThreadFinish(ThreadState *thr) {
CHECK_GT(thr->in_rtl, 0);
StatInc(thr, StatThreadFinish);
// FIXME: Treat it as write.
if (thr->stk_addr && thr->stk_size)
MemoryResetRange(thr, /*pc=*/ 3, thr->stk_addr, thr->stk_size);
if (thr->tls_addr && thr->tls_size) {
const uptr thr_beg = (uptr)thr;
const uptr thr_end = (uptr)thr + sizeof(*thr);
// Since the thr object is huge, skip it.
MemoryResetRange(thr, /*pc=*/ 4, thr->tls_addr, thr_beg - thr->tls_addr);
MemoryResetRange(thr, /*pc=*/ 5,
thr_end, thr->tls_addr + thr->tls_size - thr_end);
}
thr->is_alive = false;
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
ThreadContext *tctx = ctx->threads[thr->tid];
CHECK_NE(tctx, 0);
CHECK_EQ(tctx->status, ThreadStatusRunning);
CHECK_GT(ctx->alive_threads, 0);
ctx->alive_threads--;
if (tctx->detached) {
ThreadDead(thr, tctx);
} else {
thr->fast_state.IncrementEpoch();
// Can't increment epoch w/o writing to the trace as well.
TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeMop, 0);
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->fast_synch_epoch = thr->fast_state.epoch();
thr->clock.release(&tctx->sync);
StatInc(thr, StatSyncRelease);
tctx->status = ThreadStatusFinished;
}
// Save from info about the thread.
tctx->dead_info = new(internal_alloc(MBlockDeadInfo, sizeof(ThreadDeadInfo)))
ThreadDeadInfo();
internal_memcpy(&tctx->dead_info->trace.events[0],
&thr->trace.events[0], sizeof(thr->trace.events));
for (int i = 0; i < kTraceParts; i++) {
tctx->dead_info->trace.headers[i].stack0.CopyFrom(
thr->trace.headers[i].stack0);
}
tctx->epoch1 = thr->fast_state.epoch();
#ifndef TSAN_GO
AlloctorThreadFinish(thr);
#endif
thr->~ThreadState();
StatAggregate(ctx->stat, thr->stat);
tctx->thr = 0;
}
int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
CHECK_GT(thr->in_rtl, 0);
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
int res = -1;
for (unsigned tid = 0; tid < kMaxTid; tid++) {
ThreadContext *tctx = ctx->threads[tid];
if (tctx != 0 && tctx->user_id == uid
&& tctx->status != ThreadStatusInvalid) {
tctx->user_id = 0;
res = tid;
break;
}
}
DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res);
return res;
}
void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
CHECK_GT(thr->in_rtl, 0);
CHECK_GT(tid, 0);
CHECK_LT(tid, kMaxTid);
DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
ThreadContext *tctx = ctx->threads[tid];
if (tctx->status == ThreadStatusInvalid) {
Printf("ThreadSanitizer: join of non-existent thread\n");
return;
}
CHECK_EQ(tctx->detached, false);
CHECK_EQ(tctx->status, ThreadStatusFinished);
thr->clock.acquire(&tctx->sync);
StatInc(thr, StatSyncAcquire);
ThreadDead(thr, tctx);
}
void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
CHECK_GT(thr->in_rtl, 0);
CHECK_GT(tid, 0);
CHECK_LT(tid, kMaxTid);
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
ThreadContext *tctx = ctx->threads[tid];
if (tctx->status == ThreadStatusInvalid) {
Printf("ThreadSanitizer: detach of non-existent thread\n");
return;
}
if (tctx->status == ThreadStatusFinished) {
ThreadDead(thr, tctx);
} else {
tctx->detached = true;
}
}
void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
uptr size, bool is_write) {
if (size == 0)
return;
u64 *shadow_mem = (u64*)MemToShadow(addr);
DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
thr->tid, (void*)pc, (void*)addr,
(int)size, is_write);
#if TSAN_DEBUG
if (!IsAppMem(addr)) {
Printf("Access to non app mem %zx\n", addr);
DCHECK(IsAppMem(addr));
}
if (!IsAppMem(addr + size - 1)) {
Printf("Access to non app mem %zx\n", addr + size - 1);
DCHECK(IsAppMem(addr + size - 1));
}
if (!IsShadowMem((uptr)shadow_mem)) {
Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
DCHECK(IsShadowMem((uptr)shadow_mem));
}
if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
Printf("Bad shadow addr %p (%zx)\n",
shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
}
#endif
StatInc(thr, StatMopRange);
FastState fast_state = thr->fast_state;
if (fast_state.GetIgnoreBit())
return;
fast_state.IncrementEpoch();
thr->fast_state = fast_state;
TraceAddEvent(thr, fast_state.epoch(), EventTypeMop, pc);
bool unaligned = (addr % kShadowCell) != 0;
// Handle unaligned beginning, if any.
for (; addr % kShadowCell && size; addr++, size--) {
int const kAccessSizeLog = 0;
Shadow cur(fast_state);
cur.SetWrite(is_write);
cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write,
shadow_mem, cur);
}
if (unaligned)
shadow_mem += kShadowCnt;
// Handle middle part, if any.
for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
int const kAccessSizeLog = 3;
Shadow cur(fast_state);
cur.SetWrite(is_write);
cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write,
shadow_mem, cur);
shadow_mem += kShadowCnt;
}
// Handle ending, if any.
for (; size; addr++, size--) {
int const kAccessSizeLog = 0;
Shadow cur(fast_state);
cur.SetWrite(is_write);
cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write,
shadow_mem, cur);
}
}
void MemoryRead1Byte(ThreadState *thr, uptr pc, uptr addr) {
MemoryAccess(thr, pc, addr, 0, 0);
}
void MemoryWrite1Byte(ThreadState *thr, uptr pc, uptr addr) {
MemoryAccess(thr, pc, addr, 0, 1);
}
void MemoryRead8Byte(ThreadState *thr, uptr pc, uptr addr) {
MemoryAccess(thr, pc, addr, 3, 0);
}
void MemoryWrite8Byte(ThreadState *thr, uptr pc, uptr addr) {
MemoryAccess(thr, pc, addr, 3, 1);
}
} // namespace __tsan