llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp

532 lines
17 KiB
C++

//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The LoopPredication pass tries to convert loop variant range checks to loop
// invariant by widening checks across loop iterations. For example, it will
// convert
//
// for (i = 0; i < n; i++) {
// guard(i < len);
// ...
// }
//
// to
//
// for (i = 0; i < n; i++) {
// guard(n - 1 < len);
// ...
// }
//
// After this transformation the condition of the guard is loop invariant, so
// loop-unswitch can later unswitch the loop by this condition which basically
// predicates the loop by the widened condition:
//
// if (n - 1 < len)
// for (i = 0; i < n; i++) {
// ...
// }
// else
// deoptimize
//
// It's tempting to rely on SCEV here, but it has proven to be problematic.
// Generally the facts SCEV provides about the increment step of add
// recurrences are true if the backedge of the loop is taken, which implicitly
// assumes that the guard doesn't fail. Using these facts to optimize the
// guard results in a circular logic where the guard is optimized under the
// assumption that it never fails.
//
// For example, in the loop below the induction variable will be marked as nuw
// basing on the guard. Basing on nuw the guard predicate will be considered
// monotonic. Given a monotonic condition it's tempting to replace the induction
// variable in the condition with its value on the last iteration. But this
// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
//
// for (int i = b; i != e; i++)
// guard(i u< len)
//
// One of the ways to reason about this problem is to use an inductive proof
// approach. Given the loop:
//
// if (B(Start)) {
// do {
// I = PHI(Start, I.INC)
// I.INC = I + Step
// guard(G(I));
// } while (B(I.INC));
// }
//
// where B(x) and G(x) are predicates that map integers to booleans, we want a
// loop invariant expression M such the following program has the same semantics
// as the above:
//
// if (B(Start)) {
// do {
// I = PHI(Start, I.INC)
// I.INC = I + Step
// guard(G(Start) && M);
// } while (B(I.INC));
// }
//
// One solution for M is M = forall X . (G(X) && B(X + Step)) => G(X + Step)
//
// Informal proof that the transformation above is correct:
//
// By the definition of guards we can rewrite the guard condition to:
// G(I) && G(Start) && M
//
// Let's prove that for each iteration of the loop:
// G(Start) && M => G(I)
// And the condition above can be simplified to G(Start) && M.
//
// Induction base.
// G(Start) && M => G(Start)
//
// Induction step. Assuming G(Start) && M => G(I) on the subsequent
// iteration:
//
// B(I + Step) is true because it's the backedge condition.
// G(I) is true because the backedge is guarded by this condition.
//
// So M = forall X . (G(X) && B(X + Step)) => G(X + Step) implies
// G(I + Step).
//
// Note that we can use anything stronger than M, i.e. any condition which
// implies M.
//
// For now the transformation is limited to the following case:
// * The loop has a single latch with the condition of the form:
// ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
// * The step of the IV used in the latch condition is 1.
// * The IV of the latch condition is the same as the post increment IV of the
// guard condition.
// * The guard condition is
// i u< guardLimit.
//
// For the ult latch comparison case M is:
// forall X . X u< guardLimit && (X + 1) u< latchLimit =>
// (X + 1) u< guardLimit
//
// This is true if latchLimit u<= guardLimit since then
// (X + 1) u< latchLimit u<= guardLimit == (X + 1) u< guardLimit.
//
// So for ult condition the widened condition is:
// i.start u< guardLimit && latchLimit u<= guardLimit
// Similarly for ule condition the widened condition is:
// i.start u< guardLimit && latchLimit u< guardLimit
//
// For the signed latch comparison case M is:
// forall X . X u< guardLimit && (X + 1) s< latchLimit =>
// (X + 1) u< guardLimit
//
// The only way the antecedent can be true and the consequent can be false is
// if
// X == guardLimit - 1
// (and guardLimit is non-zero, but we won't use this latter fact).
// If X == guardLimit - 1 then the second half of the antecedent is
// guardLimit s< latchLimit
// and its negation is
// latchLimit s<= guardLimit.
//
// In other words, if latchLimit s<= guardLimit then:
// (the ranges below are written in ConstantRange notation, where [A, B) is the
// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
//
// forall X . X u< guardLimit && (X + 1) s< latchLimit => (X + 1) u< guardLimit
// == forall X . X u< guardLimit && (X + 1) s< guardLimit => (X + 1) u< guardLimit
// == forall X . X in [0, guardLimit) && (X + 1) in [INT_MIN, guardLimit) => (X + 1) in [0, guardLimit)
// == forall X . X in [0, guardLimit) && X in [INT_MAX, guardLimit-1) => X in [-1, guardLimit-1)
// == forall X . X in [0, guardLimit-1) => X in [-1, guardLimit-1)
// == true
//
// So the widened condition is:
// i.start u< guardLimit && latchLimit s<= guardLimit
// Similarly for sle condition the widened condition is:
// i.start u< guardLimit && latchLimit s< guardLimit
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopPredication.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#define DEBUG_TYPE "loop-predication"
using namespace llvm;
namespace {
class LoopPredication {
/// Represents an induction variable check:
/// icmp Pred, <induction variable>, <loop invariant limit>
struct LoopICmp {
ICmpInst::Predicate Pred;
const SCEVAddRecExpr *IV;
const SCEV *Limit;
LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
const SCEV *Limit)
: Pred(Pred), IV(IV), Limit(Limit) {}
LoopICmp() {}
};
ScalarEvolution *SE;
Loop *L;
const DataLayout *DL;
BasicBlock *Preheader;
LoopICmp LatchCheck;
Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
ICI->getOperand(1));
}
Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
Value *RHS);
Optional<LoopICmp> parseLoopLatchICmp();
Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
Instruction *InsertAt);
Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
IRBuilder<> &Builder);
bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
public:
LoopPredication(ScalarEvolution *SE) : SE(SE){};
bool runOnLoop(Loop *L);
};
class LoopPredicationLegacyPass : public LoopPass {
public:
static char ID;
LoopPredicationLegacyPass() : LoopPass(ID) {
initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
getLoopAnalysisUsage(AU);
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
if (skipLoop(L))
return false;
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
LoopPredication LP(SE);
return LP.runOnLoop(L);
}
};
char LoopPredicationLegacyPass::ID = 0;
} // end namespace llvm
INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
"Loop predication", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
"Loop predication", false, false)
Pass *llvm::createLoopPredicationPass() {
return new LoopPredicationLegacyPass();
}
PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &U) {
LoopPredication LP(&AR.SE);
if (!LP.runOnLoop(&L))
return PreservedAnalyses::all();
return getLoopPassPreservedAnalyses();
}
Optional<LoopPredication::LoopICmp>
LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
Value *RHS) {
const SCEV *LHSS = SE->getSCEV(LHS);
if (isa<SCEVCouldNotCompute>(LHSS))
return None;
const SCEV *RHSS = SE->getSCEV(RHS);
if (isa<SCEVCouldNotCompute>(RHSS))
return None;
// Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
if (SE->isLoopInvariant(LHSS, L)) {
std::swap(LHS, RHS);
std::swap(LHSS, RHSS);
Pred = ICmpInst::getSwappedPredicate(Pred);
}
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
if (!AR || AR->getLoop() != L)
return None;
return LoopICmp(Pred, AR, RHSS);
}
Value *LoopPredication::expandCheck(SCEVExpander &Expander,
IRBuilder<> &Builder,
ICmpInst::Predicate Pred, const SCEV *LHS,
const SCEV *RHS, Instruction *InsertAt) {
// TODO: we can check isLoopEntryGuardedByCond before emitting the check
Type *Ty = LHS->getType();
assert(Ty == RHS->getType() && "expandCheck operands have different types?");
if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
return Builder.getTrue();
Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
return Builder.CreateICmp(Pred, LHSV, RHSV);
}
/// If ICI can be widened to a loop invariant condition emits the loop
/// invariant condition in the loop preheader and return it, otherwise
/// returns None.
Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
SCEVExpander &Expander,
IRBuilder<> &Builder) {
DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
DEBUG(ICI->dump());
// parseLoopStructure guarantees that the latch condition is:
// ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
// We are looking for the range checks of the form:
// i u< guardLimit
auto RangeCheck = parseLoopICmp(ICI);
if (!RangeCheck) {
DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
return None;
}
if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred
<< ")!\n");
return None;
}
auto *RangeCheckIV = RangeCheck->IV;
auto *PostIncRangeCheckIV = RangeCheckIV->getPostIncExpr(*SE);
if (LatchCheck.IV != PostIncRangeCheckIV) {
DEBUG(dbgs() << "Post increment range check IV (" << *PostIncRangeCheckIV
<< ") is not the same as latch IV (" << *LatchCheck.IV
<< ")!\n");
return None;
}
assert(RangeCheckIV->getStepRecurrence(*SE)->isOne() && "must be one");
const SCEV *Start = RangeCheckIV->getStart();
// Generate the widened condition:
// i.start u< guardLimit && latchLimit <pred> guardLimit
// where <pred> depends on the latch condition predicate. See the file
// header comment for the reasoning.
ICmpInst::Predicate LimitCheckPred;
switch (LatchCheck.Pred) {
case ICmpInst::ICMP_ULT:
LimitCheckPred = ICmpInst::ICMP_ULE;
break;
case ICmpInst::ICMP_ULE:
LimitCheckPred = ICmpInst::ICMP_ULT;
break;
case ICmpInst::ICMP_SLT:
LimitCheckPred = ICmpInst::ICMP_SLE;
break;
case ICmpInst::ICMP_SLE:
LimitCheckPred = ICmpInst::ICMP_SLT;
break;
default:
llvm_unreachable("Unsupported loop latch!");
}
auto CanExpand = [this](const SCEV *S) {
return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
};
if (!CanExpand(Start) || !CanExpand(LatchCheck.Limit) ||
!CanExpand(RangeCheck->Limit))
return None;
Instruction *InsertAt = Preheader->getTerminator();
auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred,
LatchCheck.Limit, RangeCheck->Limit, InsertAt);
auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck->Pred,
Start, RangeCheck->Limit, InsertAt);
return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
}
bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
SCEVExpander &Expander) {
DEBUG(dbgs() << "Processing guard:\n");
DEBUG(Guard->dump());
IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
// The guard condition is expected to be in form of:
// cond1 && cond2 && cond3 ...
// Iterate over subconditions looking for for icmp conditions which can be
// widened across loop iterations. Widening these conditions remember the
// resulting list of subconditions in Checks vector.
SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Checks;
unsigned NumWidened = 0;
do {
Value *Condition = Worklist.pop_back_val();
if (!Visited.insert(Condition).second)
continue;
Value *LHS, *RHS;
using namespace llvm::PatternMatch;
if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
Worklist.push_back(LHS);
Worklist.push_back(RHS);
continue;
}
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
Checks.push_back(NewRangeCheck.getValue());
NumWidened++;
continue;
}
}
// Save the condition as is if we can't widen it
Checks.push_back(Condition);
} while (Worklist.size() != 0);
if (NumWidened == 0)
return false;
// Emit the new guard condition
Builder.SetInsertPoint(Guard);
Value *LastCheck = nullptr;
for (auto *Check : Checks)
if (!LastCheck)
LastCheck = Check;
else
LastCheck = Builder.CreateAnd(LastCheck, Check);
Guard->setOperand(0, LastCheck);
DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
return true;
}
Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
using namespace PatternMatch;
BasicBlock *LoopLatch = L->getLoopLatch();
if (!LoopLatch) {
DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
return None;
}
ICmpInst::Predicate Pred;
Value *LHS, *RHS;
BasicBlock *TrueDest, *FalseDest;
if (!match(LoopLatch->getTerminator(),
m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
FalseDest))) {
DEBUG(dbgs() << "Failed to match the latch terminator!\n");
return None;
}
assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
"One of the latch's destinations must be the header");
if (TrueDest != L->getHeader())
Pred = ICmpInst::getInversePredicate(Pred);
auto Result = parseLoopICmp(Pred, LHS, RHS);
if (!Result) {
DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
return None;
}
if (Result->Pred != ICmpInst::ICMP_ULT &&
Result->Pred != ICmpInst::ICMP_SLT &&
Result->Pred != ICmpInst::ICMP_ULE &&
Result->Pred != ICmpInst::ICMP_SLE) {
DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
<< ")!\n");
return None;
}
// Check affine first, so if it's not we don't try to compute the step
// recurrence.
if (!Result->IV->isAffine()) {
DEBUG(dbgs() << "The induction variable is not affine!\n");
return None;
}
auto *Step = Result->IV->getStepRecurrence(*SE);
if (!Step->isOne()) {
DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
return None;
}
return Result;
}
bool LoopPredication::runOnLoop(Loop *Loop) {
L = Loop;
DEBUG(dbgs() << "Analyzing ");
DEBUG(L->dump());
Module *M = L->getHeader()->getModule();
// There is nothing to do if the module doesn't use guards
auto *GuardDecl =
M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
if (!GuardDecl || GuardDecl->use_empty())
return false;
DL = &M->getDataLayout();
Preheader = L->getLoopPreheader();
if (!Preheader)
return false;
auto LatchCheckOpt = parseLoopLatchICmp();
if (!LatchCheckOpt)
return false;
LatchCheck = *LatchCheckOpt;
// Collect all the guards into a vector and process later, so as not
// to invalidate the instruction iterator.
SmallVector<IntrinsicInst *, 4> Guards;
for (const auto BB : L->blocks())
for (auto &I : *BB)
if (auto *II = dyn_cast<IntrinsicInst>(&I))
if (II->getIntrinsicID() == Intrinsic::experimental_guard)
Guards.push_back(II);
if (Guards.empty())
return false;
SCEVExpander Expander(*SE, *DL, "loop-predication");
bool Changed = false;
for (auto *Guard : Guards)
Changed |= widenGuardConditions(Guard, Expander);
return Changed;
}