forked from OSchip/llvm-project
451 lines
16 KiB
C++
451 lines
16 KiB
C++
//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file This file implements the utility functions used by the GlobalISel
|
|
/// pipeline.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/GlobalISel/Utils.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/StackProtector.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/IR/Constants.h"
|
|
|
|
#define DEBUG_TYPE "globalisel-utils"
|
|
|
|
using namespace llvm;
|
|
|
|
unsigned llvm::constrainRegToClass(MachineRegisterInfo &MRI,
|
|
const TargetInstrInfo &TII,
|
|
const RegisterBankInfo &RBI, unsigned Reg,
|
|
const TargetRegisterClass &RegClass) {
|
|
if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
|
|
return MRI.createVirtualRegister(&RegClass);
|
|
|
|
return Reg;
|
|
}
|
|
|
|
unsigned llvm::constrainOperandRegClass(
|
|
const MachineFunction &MF, const TargetRegisterInfo &TRI,
|
|
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
|
|
const RegisterBankInfo &RBI, MachineInstr &InsertPt,
|
|
const TargetRegisterClass &RegClass, const MachineOperand &RegMO,
|
|
unsigned OpIdx) {
|
|
Register Reg = RegMO.getReg();
|
|
// Assume physical registers are properly constrained.
|
|
assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
|
|
|
|
unsigned ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
|
|
// If we created a new virtual register because the class is not compatible
|
|
// then create a copy between the new and the old register.
|
|
if (ConstrainedReg != Reg) {
|
|
MachineBasicBlock::iterator InsertIt(&InsertPt);
|
|
MachineBasicBlock &MBB = *InsertPt.getParent();
|
|
if (RegMO.isUse()) {
|
|
BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
|
|
TII.get(TargetOpcode::COPY), ConstrainedReg)
|
|
.addReg(Reg);
|
|
} else {
|
|
assert(RegMO.isDef() && "Must be a definition");
|
|
BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
|
|
TII.get(TargetOpcode::COPY), Reg)
|
|
.addReg(ConstrainedReg);
|
|
}
|
|
}
|
|
return ConstrainedReg;
|
|
}
|
|
|
|
unsigned llvm::constrainOperandRegClass(
|
|
const MachineFunction &MF, const TargetRegisterInfo &TRI,
|
|
MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
|
|
const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
|
|
const MachineOperand &RegMO, unsigned OpIdx) {
|
|
Register Reg = RegMO.getReg();
|
|
// Assume physical registers are properly constrained.
|
|
assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
|
|
|
|
const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF);
|
|
// Some of the target independent instructions, like COPY, may not impose any
|
|
// register class constraints on some of their operands: If it's a use, we can
|
|
// skip constraining as the instruction defining the register would constrain
|
|
// it.
|
|
|
|
// We can't constrain unallocatable register classes, because we can't create
|
|
// virtual registers for these classes, so we need to let targets handled this
|
|
// case.
|
|
if (RegClass && !RegClass->isAllocatable())
|
|
RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI);
|
|
|
|
if (!RegClass) {
|
|
assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
|
|
"Register class constraint is required unless either the "
|
|
"instruction is target independent or the operand is a use");
|
|
// FIXME: Just bailing out like this here could be not enough, unless we
|
|
// expect the users of this function to do the right thing for PHIs and
|
|
// COPY:
|
|
// v1 = COPY v0
|
|
// v2 = COPY v1
|
|
// v1 here may end up not being constrained at all. Please notice that to
|
|
// reproduce the issue we likely need a destination pattern of a selection
|
|
// rule producing such extra copies, not just an input GMIR with them as
|
|
// every existing target using selectImpl handles copies before calling it
|
|
// and they never reach this function.
|
|
return Reg;
|
|
}
|
|
return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass,
|
|
RegMO, OpIdx);
|
|
}
|
|
|
|
bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
|
|
const TargetInstrInfo &TII,
|
|
const TargetRegisterInfo &TRI,
|
|
const RegisterBankInfo &RBI) {
|
|
assert(!isPreISelGenericOpcode(I.getOpcode()) &&
|
|
"A selected instruction is expected");
|
|
MachineBasicBlock &MBB = *I.getParent();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
|
|
MachineOperand &MO = I.getOperand(OpI);
|
|
|
|
// There's nothing to be done on non-register operands.
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
|
|
assert(MO.isReg() && "Unsupported non-reg operand");
|
|
|
|
Register Reg = MO.getReg();
|
|
// Physical registers don't need to be constrained.
|
|
if (Register::isPhysicalRegister(Reg))
|
|
continue;
|
|
|
|
// Register operands with a value of 0 (e.g. predicate operands) don't need
|
|
// to be constrained.
|
|
if (Reg == 0)
|
|
continue;
|
|
|
|
// If the operand is a vreg, we should constrain its regclass, and only
|
|
// insert COPYs if that's impossible.
|
|
// constrainOperandRegClass does that for us.
|
|
MO.setReg(constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(),
|
|
MO, OpI));
|
|
|
|
// Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
|
|
// done.
|
|
if (MO.isUse()) {
|
|
int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
|
|
if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
|
|
I.tieOperands(DefIdx, OpI);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool llvm::isTriviallyDead(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI) {
|
|
// If we can move an instruction, we can remove it. Otherwise, it has
|
|
// a side-effect of some sort.
|
|
bool SawStore = false;
|
|
if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
|
|
return false;
|
|
|
|
// Instructions without side-effects are dead iff they only define dead vregs.
|
|
for (auto &MO : MI.operands()) {
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
|
|
Register Reg = MO.getReg();
|
|
if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
|
|
MachineOptimizationRemarkEmitter &MORE,
|
|
MachineOptimizationRemarkMissed &R) {
|
|
MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
|
|
|
|
// Print the function name explicitly if we don't have a debug location (which
|
|
// makes the diagnostic less useful) or if we're going to emit a raw error.
|
|
if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
|
|
R << (" (in function: " + MF.getName() + ")").str();
|
|
|
|
if (TPC.isGlobalISelAbortEnabled())
|
|
report_fatal_error(R.getMsg());
|
|
else
|
|
MORE.emit(R);
|
|
}
|
|
|
|
void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
|
|
MachineOptimizationRemarkEmitter &MORE,
|
|
const char *PassName, StringRef Msg,
|
|
const MachineInstr &MI) {
|
|
MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
|
|
MI.getDebugLoc(), MI.getParent());
|
|
R << Msg;
|
|
// Printing MI is expensive; only do it if expensive remarks are enabled.
|
|
if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
|
|
R << ": " << ore::MNV("Inst", MI);
|
|
reportGISelFailure(MF, TPC, MORE, R);
|
|
}
|
|
|
|
Optional<int64_t> llvm::getConstantVRegVal(unsigned VReg,
|
|
const MachineRegisterInfo &MRI) {
|
|
Optional<ValueAndVReg> ValAndVReg =
|
|
getConstantVRegValWithLookThrough(VReg, MRI, /*LookThroughInstrs*/ false);
|
|
assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
|
|
"Value found while looking through instrs");
|
|
if (!ValAndVReg)
|
|
return None;
|
|
return ValAndVReg->Value;
|
|
}
|
|
|
|
Optional<ValueAndVReg> llvm::getConstantVRegValWithLookThrough(
|
|
unsigned VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
|
|
bool HandleFConstant) {
|
|
SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
|
|
MachineInstr *MI;
|
|
auto IsConstantOpcode = [HandleFConstant](unsigned Opcode) {
|
|
return Opcode == TargetOpcode::G_CONSTANT ||
|
|
(HandleFConstant && Opcode == TargetOpcode::G_FCONSTANT);
|
|
};
|
|
auto GetImmediateValue = [HandleFConstant,
|
|
&MRI](const MachineInstr &MI) -> Optional<APInt> {
|
|
const MachineOperand &CstVal = MI.getOperand(1);
|
|
if (!CstVal.isImm() && !CstVal.isCImm() &&
|
|
(!HandleFConstant || !CstVal.isFPImm()))
|
|
return None;
|
|
if (!CstVal.isFPImm()) {
|
|
unsigned BitWidth =
|
|
MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
|
|
APInt Val = CstVal.isImm() ? APInt(BitWidth, CstVal.getImm())
|
|
: CstVal.getCImm()->getValue();
|
|
assert(Val.getBitWidth() == BitWidth &&
|
|
"Value bitwidth doesn't match definition type");
|
|
return Val;
|
|
}
|
|
return CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
|
|
};
|
|
while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI->getOpcode()) &&
|
|
LookThroughInstrs) {
|
|
switch (MI->getOpcode()) {
|
|
case TargetOpcode::G_TRUNC:
|
|
case TargetOpcode::G_SEXT:
|
|
case TargetOpcode::G_ZEXT:
|
|
SeenOpcodes.push_back(std::make_pair(
|
|
MI->getOpcode(),
|
|
MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
|
|
VReg = MI->getOperand(1).getReg();
|
|
break;
|
|
case TargetOpcode::COPY:
|
|
VReg = MI->getOperand(1).getReg();
|
|
if (Register::isPhysicalRegister(VReg))
|
|
return None;
|
|
break;
|
|
case TargetOpcode::G_INTTOPTR:
|
|
VReg = MI->getOperand(1).getReg();
|
|
break;
|
|
default:
|
|
return None;
|
|
}
|
|
}
|
|
if (!MI || !IsConstantOpcode(MI->getOpcode()))
|
|
return None;
|
|
|
|
Optional<APInt> MaybeVal = GetImmediateValue(*MI);
|
|
if (!MaybeVal)
|
|
return None;
|
|
APInt &Val = *MaybeVal;
|
|
while (!SeenOpcodes.empty()) {
|
|
std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
|
|
switch (OpcodeAndSize.first) {
|
|
case TargetOpcode::G_TRUNC:
|
|
Val = Val.trunc(OpcodeAndSize.second);
|
|
break;
|
|
case TargetOpcode::G_SEXT:
|
|
Val = Val.sext(OpcodeAndSize.second);
|
|
break;
|
|
case TargetOpcode::G_ZEXT:
|
|
Val = Val.zext(OpcodeAndSize.second);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Val.getBitWidth() > 64)
|
|
return None;
|
|
|
|
return ValueAndVReg{Val.getSExtValue(), VReg};
|
|
}
|
|
|
|
const llvm::ConstantFP* llvm::getConstantFPVRegVal(unsigned VReg,
|
|
const MachineRegisterInfo &MRI) {
|
|
MachineInstr *MI = MRI.getVRegDef(VReg);
|
|
if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
|
|
return nullptr;
|
|
return MI->getOperand(1).getFPImm();
|
|
}
|
|
|
|
llvm::MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
|
|
const MachineRegisterInfo &MRI) {
|
|
auto *DefMI = MRI.getVRegDef(Reg);
|
|
auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
|
|
if (!DstTy.isValid())
|
|
return nullptr;
|
|
while (DefMI->getOpcode() == TargetOpcode::COPY) {
|
|
Register SrcReg = DefMI->getOperand(1).getReg();
|
|
auto SrcTy = MRI.getType(SrcReg);
|
|
if (!SrcTy.isValid() || SrcTy != DstTy)
|
|
break;
|
|
DefMI = MRI.getVRegDef(SrcReg);
|
|
}
|
|
return DefMI;
|
|
}
|
|
|
|
llvm::MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
|
|
const MachineRegisterInfo &MRI) {
|
|
MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
|
|
return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
|
|
}
|
|
|
|
APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
|
|
if (Size == 32)
|
|
return APFloat(float(Val));
|
|
if (Size == 64)
|
|
return APFloat(Val);
|
|
if (Size != 16)
|
|
llvm_unreachable("Unsupported FPConstant size");
|
|
bool Ignored;
|
|
APFloat APF(Val);
|
|
APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
|
|
return APF;
|
|
}
|
|
|
|
Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const unsigned Op1,
|
|
const unsigned Op2,
|
|
const MachineRegisterInfo &MRI) {
|
|
auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
|
|
auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI);
|
|
if (MaybeOp1Cst && MaybeOp2Cst) {
|
|
LLT Ty = MRI.getType(Op1);
|
|
APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
|
|
APInt C2(Ty.getSizeInBits(), *MaybeOp2Cst, true);
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case TargetOpcode::G_ADD:
|
|
return C1 + C2;
|
|
case TargetOpcode::G_AND:
|
|
return C1 & C2;
|
|
case TargetOpcode::G_ASHR:
|
|
return C1.ashr(C2);
|
|
case TargetOpcode::G_LSHR:
|
|
return C1.lshr(C2);
|
|
case TargetOpcode::G_MUL:
|
|
return C1 * C2;
|
|
case TargetOpcode::G_OR:
|
|
return C1 | C2;
|
|
case TargetOpcode::G_SHL:
|
|
return C1 << C2;
|
|
case TargetOpcode::G_SUB:
|
|
return C1 - C2;
|
|
case TargetOpcode::G_XOR:
|
|
return C1 ^ C2;
|
|
case TargetOpcode::G_UDIV:
|
|
if (!C2.getBoolValue())
|
|
break;
|
|
return C1.udiv(C2);
|
|
case TargetOpcode::G_SDIV:
|
|
if (!C2.getBoolValue())
|
|
break;
|
|
return C1.sdiv(C2);
|
|
case TargetOpcode::G_UREM:
|
|
if (!C2.getBoolValue())
|
|
break;
|
|
return C1.urem(C2);
|
|
case TargetOpcode::G_SREM:
|
|
if (!C2.getBoolValue())
|
|
break;
|
|
return C1.srem(C2);
|
|
}
|
|
}
|
|
return None;
|
|
}
|
|
|
|
bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
|
|
bool SNaN) {
|
|
const MachineInstr *DefMI = MRI.getVRegDef(Val);
|
|
if (!DefMI)
|
|
return false;
|
|
|
|
if (DefMI->getFlag(MachineInstr::FmNoNans))
|
|
return true;
|
|
|
|
if (SNaN) {
|
|
// FP operations quiet. For now, just handle the ones inserted during
|
|
// legalization.
|
|
switch (DefMI->getOpcode()) {
|
|
case TargetOpcode::G_FPEXT:
|
|
case TargetOpcode::G_FPTRUNC:
|
|
case TargetOpcode::G_FCANONICALIZE:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const unsigned Op1,
|
|
uint64_t Imm,
|
|
const MachineRegisterInfo &MRI) {
|
|
auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
|
|
if (MaybeOp1Cst) {
|
|
LLT Ty = MRI.getType(Op1);
|
|
APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case TargetOpcode::G_SEXT_INREG:
|
|
return C1.trunc(Imm).sext(C1.getBitWidth());
|
|
}
|
|
}
|
|
return None;
|
|
}
|
|
|
|
void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
|
|
AU.addPreserved<StackProtector>();
|
|
}
|
|
|
|
MVT llvm::getMVTForLLT(LLT Ty) {
|
|
if (!Ty.isVector())
|
|
return MVT::getIntegerVT(Ty.getSizeInBits());
|
|
|
|
return MVT::getVectorVT(
|
|
MVT::getIntegerVT(Ty.getElementType().getSizeInBits()),
|
|
Ty.getNumElements());
|
|
}
|
|
|
|
LLT llvm::getLLTForMVT(MVT Ty) {
|
|
if (!Ty.isVector())
|
|
return LLT::scalar(Ty.getSizeInBits());
|
|
|
|
return LLT::vector(Ty.getVectorNumElements(),
|
|
Ty.getVectorElementType().getSizeInBits());
|
|
}
|