forked from OSchip/llvm-project
588 lines
19 KiB
C++
588 lines
19 KiB
C++
//===- FileAnalysis.cpp -----------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "FileAnalysis.h"
|
|
#include "GraphBuilder.h"
|
|
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstPrinter.h"
|
|
#include "llvm/MC/MCInstrAnalysis.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCObjectFileInfo.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/Object/Binary.h"
|
|
#include "llvm/Object/COFF.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/Object/ObjectFile.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
|
|
using Instr = llvm::cfi_verify::FileAnalysis::Instr;
|
|
using LLVMSymbolizer = llvm::symbolize::LLVMSymbolizer;
|
|
|
|
namespace llvm {
|
|
namespace cfi_verify {
|
|
|
|
bool IgnoreDWARFFlag;
|
|
|
|
static cl::opt<bool, true> IgnoreDWARFArg(
|
|
"ignore-dwarf",
|
|
cl::desc(
|
|
"Ignore all DWARF data. This relaxes the requirements for all "
|
|
"statically linked libraries to have been compiled with '-g', but "
|
|
"will result in false positives for 'CFI unprotected' instructions."),
|
|
cl::location(IgnoreDWARFFlag), cl::init(false));
|
|
|
|
StringRef stringCFIProtectionStatus(CFIProtectionStatus Status) {
|
|
switch (Status) {
|
|
case CFIProtectionStatus::PROTECTED:
|
|
return "PROTECTED";
|
|
case CFIProtectionStatus::FAIL_NOT_INDIRECT_CF:
|
|
return "FAIL_NOT_INDIRECT_CF";
|
|
case CFIProtectionStatus::FAIL_ORPHANS:
|
|
return "FAIL_ORPHANS";
|
|
case CFIProtectionStatus::FAIL_BAD_CONDITIONAL_BRANCH:
|
|
return "FAIL_BAD_CONDITIONAL_BRANCH";
|
|
case CFIProtectionStatus::FAIL_REGISTER_CLOBBERED:
|
|
return "FAIL_REGISTER_CLOBBERED";
|
|
case CFIProtectionStatus::FAIL_INVALID_INSTRUCTION:
|
|
return "FAIL_INVALID_INSTRUCTION";
|
|
}
|
|
llvm_unreachable("Attempted to stringify an unknown enum value.");
|
|
}
|
|
|
|
Expected<FileAnalysis> FileAnalysis::Create(StringRef Filename) {
|
|
// Open the filename provided.
|
|
Expected<object::OwningBinary<object::Binary>> BinaryOrErr =
|
|
object::createBinary(Filename);
|
|
if (!BinaryOrErr)
|
|
return BinaryOrErr.takeError();
|
|
|
|
// Construct the object and allow it to take ownership of the binary.
|
|
object::OwningBinary<object::Binary> Binary = std::move(BinaryOrErr.get());
|
|
FileAnalysis Analysis(std::move(Binary));
|
|
|
|
Analysis.Object = dyn_cast<object::ObjectFile>(Analysis.Binary.getBinary());
|
|
if (!Analysis.Object)
|
|
return make_error<UnsupportedDisassembly>("Failed to cast object");
|
|
|
|
switch (Analysis.Object->getArch()) {
|
|
case Triple::x86:
|
|
case Triple::x86_64:
|
|
case Triple::aarch64:
|
|
case Triple::aarch64_be:
|
|
break;
|
|
default:
|
|
return make_error<UnsupportedDisassembly>("Unsupported architecture.");
|
|
}
|
|
|
|
Analysis.ObjectTriple = Analysis.Object->makeTriple();
|
|
Analysis.Features = Analysis.Object->getFeatures();
|
|
|
|
// Init the rest of the object.
|
|
if (auto InitResponse = Analysis.initialiseDisassemblyMembers())
|
|
return std::move(InitResponse);
|
|
|
|
if (auto SectionParseResponse = Analysis.parseCodeSections())
|
|
return std::move(SectionParseResponse);
|
|
|
|
if (auto SymbolTableParseResponse = Analysis.parseSymbolTable())
|
|
return std::move(SymbolTableParseResponse);
|
|
|
|
return std::move(Analysis);
|
|
}
|
|
|
|
FileAnalysis::FileAnalysis(object::OwningBinary<object::Binary> Binary)
|
|
: Binary(std::move(Binary)) {}
|
|
|
|
FileAnalysis::FileAnalysis(const Triple &ObjectTriple,
|
|
const SubtargetFeatures &Features)
|
|
: ObjectTriple(ObjectTriple), Features(Features) {}
|
|
|
|
const Instr *
|
|
FileAnalysis::getPrevInstructionSequential(const Instr &InstrMeta) const {
|
|
std::map<uint64_t, Instr>::const_iterator KV =
|
|
Instructions.find(InstrMeta.VMAddress);
|
|
if (KV == Instructions.end() || KV == Instructions.begin())
|
|
return nullptr;
|
|
|
|
if (!(--KV)->second.Valid)
|
|
return nullptr;
|
|
|
|
return &KV->second;
|
|
}
|
|
|
|
const Instr *
|
|
FileAnalysis::getNextInstructionSequential(const Instr &InstrMeta) const {
|
|
std::map<uint64_t, Instr>::const_iterator KV =
|
|
Instructions.find(InstrMeta.VMAddress);
|
|
if (KV == Instructions.end() || ++KV == Instructions.end())
|
|
return nullptr;
|
|
|
|
if (!KV->second.Valid)
|
|
return nullptr;
|
|
|
|
return &KV->second;
|
|
}
|
|
|
|
bool FileAnalysis::usesRegisterOperand(const Instr &InstrMeta) const {
|
|
for (const auto &Operand : InstrMeta.Instruction) {
|
|
if (Operand.isReg())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const Instr *FileAnalysis::getInstruction(uint64_t Address) const {
|
|
const auto &InstrKV = Instructions.find(Address);
|
|
if (InstrKV == Instructions.end())
|
|
return nullptr;
|
|
|
|
return &InstrKV->second;
|
|
}
|
|
|
|
const Instr &FileAnalysis::getInstructionOrDie(uint64_t Address) const {
|
|
const auto &InstrKV = Instructions.find(Address);
|
|
assert(InstrKV != Instructions.end() && "Address doesn't exist.");
|
|
return InstrKV->second;
|
|
}
|
|
|
|
bool FileAnalysis::isCFITrap(const Instr &InstrMeta) const {
|
|
const auto &InstrDesc = MII->get(InstrMeta.Instruction.getOpcode());
|
|
return InstrDesc.isTrap() || willTrapOnCFIViolation(InstrMeta);
|
|
}
|
|
|
|
bool FileAnalysis::willTrapOnCFIViolation(const Instr &InstrMeta) const {
|
|
const auto &InstrDesc = MII->get(InstrMeta.Instruction.getOpcode());
|
|
if (!InstrDesc.isCall())
|
|
return false;
|
|
uint64_t Target;
|
|
if (!MIA->evaluateBranch(InstrMeta.Instruction, InstrMeta.VMAddress,
|
|
InstrMeta.InstructionSize, Target))
|
|
return false;
|
|
return TrapOnFailFunctionAddresses.count(Target) > 0;
|
|
}
|
|
|
|
bool FileAnalysis::canFallThrough(const Instr &InstrMeta) const {
|
|
if (!InstrMeta.Valid)
|
|
return false;
|
|
|
|
if (isCFITrap(InstrMeta))
|
|
return false;
|
|
|
|
const auto &InstrDesc = MII->get(InstrMeta.Instruction.getOpcode());
|
|
if (InstrDesc.mayAffectControlFlow(InstrMeta.Instruction, *RegisterInfo))
|
|
return InstrDesc.isConditionalBranch();
|
|
|
|
return true;
|
|
}
|
|
|
|
const Instr *
|
|
FileAnalysis::getDefiniteNextInstruction(const Instr &InstrMeta) const {
|
|
if (!InstrMeta.Valid)
|
|
return nullptr;
|
|
|
|
if (isCFITrap(InstrMeta))
|
|
return nullptr;
|
|
|
|
const auto &InstrDesc = MII->get(InstrMeta.Instruction.getOpcode());
|
|
const Instr *NextMetaPtr;
|
|
if (InstrDesc.mayAffectControlFlow(InstrMeta.Instruction, *RegisterInfo)) {
|
|
if (InstrDesc.isConditionalBranch())
|
|
return nullptr;
|
|
|
|
uint64_t Target;
|
|
if (!MIA->evaluateBranch(InstrMeta.Instruction, InstrMeta.VMAddress,
|
|
InstrMeta.InstructionSize, Target))
|
|
return nullptr;
|
|
|
|
NextMetaPtr = getInstruction(Target);
|
|
} else {
|
|
NextMetaPtr =
|
|
getInstruction(InstrMeta.VMAddress + InstrMeta.InstructionSize);
|
|
}
|
|
|
|
if (!NextMetaPtr || !NextMetaPtr->Valid)
|
|
return nullptr;
|
|
|
|
return NextMetaPtr;
|
|
}
|
|
|
|
std::set<const Instr *>
|
|
FileAnalysis::getDirectControlFlowXRefs(const Instr &InstrMeta) const {
|
|
std::set<const Instr *> CFCrossReferences;
|
|
const Instr *PrevInstruction = getPrevInstructionSequential(InstrMeta);
|
|
|
|
if (PrevInstruction && canFallThrough(*PrevInstruction))
|
|
CFCrossReferences.insert(PrevInstruction);
|
|
|
|
const auto &TargetRefsKV = StaticBranchTargetings.find(InstrMeta.VMAddress);
|
|
if (TargetRefsKV == StaticBranchTargetings.end())
|
|
return CFCrossReferences;
|
|
|
|
for (uint64_t SourceInstrAddress : TargetRefsKV->second) {
|
|
const auto &SourceInstrKV = Instructions.find(SourceInstrAddress);
|
|
if (SourceInstrKV == Instructions.end()) {
|
|
errs() << "Failed to find source instruction at address "
|
|
<< format_hex(SourceInstrAddress, 2)
|
|
<< " for the cross-reference to instruction at address "
|
|
<< format_hex(InstrMeta.VMAddress, 2) << ".\n";
|
|
continue;
|
|
}
|
|
|
|
CFCrossReferences.insert(&SourceInstrKV->second);
|
|
}
|
|
|
|
return CFCrossReferences;
|
|
}
|
|
|
|
const std::set<uint64_t> &FileAnalysis::getIndirectInstructions() const {
|
|
return IndirectInstructions;
|
|
}
|
|
|
|
const MCRegisterInfo *FileAnalysis::getRegisterInfo() const {
|
|
return RegisterInfo.get();
|
|
}
|
|
|
|
const MCInstrInfo *FileAnalysis::getMCInstrInfo() const { return MII.get(); }
|
|
|
|
const MCInstrAnalysis *FileAnalysis::getMCInstrAnalysis() const {
|
|
return MIA.get();
|
|
}
|
|
|
|
Expected<DIInliningInfo> FileAnalysis::symbolizeInlinedCode(uint64_t Address) {
|
|
assert(Symbolizer != nullptr && "Symbolizer is invalid.");
|
|
return Symbolizer->symbolizeInlinedCode(Object->getFileName(), Address);
|
|
}
|
|
|
|
CFIProtectionStatus
|
|
FileAnalysis::validateCFIProtection(const GraphResult &Graph) const {
|
|
const Instr *InstrMetaPtr = getInstruction(Graph.BaseAddress);
|
|
if (!InstrMetaPtr)
|
|
return CFIProtectionStatus::FAIL_INVALID_INSTRUCTION;
|
|
|
|
const auto &InstrDesc = MII->get(InstrMetaPtr->Instruction.getOpcode());
|
|
if (!InstrDesc.mayAffectControlFlow(InstrMetaPtr->Instruction, *RegisterInfo))
|
|
return CFIProtectionStatus::FAIL_NOT_INDIRECT_CF;
|
|
|
|
if (!usesRegisterOperand(*InstrMetaPtr))
|
|
return CFIProtectionStatus::FAIL_NOT_INDIRECT_CF;
|
|
|
|
if (!Graph.OrphanedNodes.empty())
|
|
return CFIProtectionStatus::FAIL_ORPHANS;
|
|
|
|
for (const auto &BranchNode : Graph.ConditionalBranchNodes) {
|
|
if (!BranchNode.CFIProtection)
|
|
return CFIProtectionStatus::FAIL_BAD_CONDITIONAL_BRANCH;
|
|
}
|
|
|
|
if (indirectCFOperandClobber(Graph) != Graph.BaseAddress)
|
|
return CFIProtectionStatus::FAIL_REGISTER_CLOBBERED;
|
|
|
|
return CFIProtectionStatus::PROTECTED;
|
|
}
|
|
|
|
uint64_t FileAnalysis::indirectCFOperandClobber(const GraphResult &Graph) const {
|
|
assert(Graph.OrphanedNodes.empty() && "Orphaned nodes should be empty.");
|
|
|
|
// Get the set of registers we must check to ensure they're not clobbered.
|
|
const Instr &IndirectCF = getInstructionOrDie(Graph.BaseAddress);
|
|
DenseSet<unsigned> RegisterNumbers;
|
|
for (const auto &Operand : IndirectCF.Instruction) {
|
|
if (Operand.isReg())
|
|
RegisterNumbers.insert(Operand.getReg());
|
|
}
|
|
assert(RegisterNumbers.size() && "Zero register operands on indirect CF.");
|
|
|
|
// Now check all branches to indirect CFs and ensure no clobbering happens.
|
|
for (const auto &Branch : Graph.ConditionalBranchNodes) {
|
|
uint64_t Node;
|
|
if (Branch.IndirectCFIsOnTargetPath)
|
|
Node = Branch.Target;
|
|
else
|
|
Node = Branch.Fallthrough;
|
|
|
|
// Some architectures (e.g., AArch64) cannot load in an indirect branch, so
|
|
// we allow them one load.
|
|
bool canLoad = !MII->get(IndirectCF.Instruction.getOpcode()).mayLoad();
|
|
|
|
// We walk backwards from the indirect CF. It is the last node returned by
|
|
// Graph.flattenAddress, so we skip it since we already handled it.
|
|
DenseSet<unsigned> CurRegisterNumbers = RegisterNumbers;
|
|
std::vector<uint64_t> Nodes = Graph.flattenAddress(Node);
|
|
for (auto I = Nodes.rbegin() + 1, E = Nodes.rend(); I != E; ++I) {
|
|
Node = *I;
|
|
const Instr &NodeInstr = getInstructionOrDie(Node);
|
|
const auto &InstrDesc = MII->get(NodeInstr.Instruction.getOpcode());
|
|
|
|
for (auto RI = CurRegisterNumbers.begin(), RE = CurRegisterNumbers.end();
|
|
RI != RE; ++RI) {
|
|
unsigned RegNum = *RI;
|
|
if (InstrDesc.hasDefOfPhysReg(NodeInstr.Instruction, RegNum,
|
|
*RegisterInfo)) {
|
|
if (!canLoad || !InstrDesc.mayLoad())
|
|
return Node;
|
|
canLoad = false;
|
|
CurRegisterNumbers.erase(RI);
|
|
// Add the registers this load reads to those we check for clobbers.
|
|
for (unsigned i = InstrDesc.getNumDefs(),
|
|
e = InstrDesc.getNumOperands(); i != e; i++) {
|
|
const auto Operand = NodeInstr.Instruction.getOperand(i);
|
|
if (Operand.isReg())
|
|
CurRegisterNumbers.insert(Operand.getReg());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Graph.BaseAddress;
|
|
}
|
|
|
|
void FileAnalysis::printInstruction(const Instr &InstrMeta,
|
|
raw_ostream &OS) const {
|
|
Printer->printInst(&InstrMeta.Instruction, OS, "", *SubtargetInfo.get());
|
|
}
|
|
|
|
Error FileAnalysis::initialiseDisassemblyMembers() {
|
|
std::string TripleName = ObjectTriple.getTriple();
|
|
ArchName = "";
|
|
MCPU = "";
|
|
std::string ErrorString;
|
|
|
|
Symbolizer.reset(new LLVMSymbolizer());
|
|
|
|
ObjectTarget =
|
|
TargetRegistry::lookupTarget(ArchName, ObjectTriple, ErrorString);
|
|
if (!ObjectTarget)
|
|
return make_error<UnsupportedDisassembly>(
|
|
(Twine("Couldn't find target \"") + ObjectTriple.getTriple() +
|
|
"\", failed with error: " + ErrorString)
|
|
.str());
|
|
|
|
RegisterInfo.reset(ObjectTarget->createMCRegInfo(TripleName));
|
|
if (!RegisterInfo)
|
|
return make_error<UnsupportedDisassembly>(
|
|
"Failed to initialise RegisterInfo.");
|
|
|
|
AsmInfo.reset(ObjectTarget->createMCAsmInfo(*RegisterInfo, TripleName));
|
|
if (!AsmInfo)
|
|
return make_error<UnsupportedDisassembly>("Failed to initialise AsmInfo.");
|
|
|
|
SubtargetInfo.reset(ObjectTarget->createMCSubtargetInfo(
|
|
TripleName, MCPU, Features.getString()));
|
|
if (!SubtargetInfo)
|
|
return make_error<UnsupportedDisassembly>(
|
|
"Failed to initialise SubtargetInfo.");
|
|
|
|
MII.reset(ObjectTarget->createMCInstrInfo());
|
|
if (!MII)
|
|
return make_error<UnsupportedDisassembly>("Failed to initialise MII.");
|
|
|
|
Context.reset(new MCContext(AsmInfo.get(), RegisterInfo.get(), &MOFI));
|
|
|
|
Disassembler.reset(
|
|
ObjectTarget->createMCDisassembler(*SubtargetInfo, *Context));
|
|
|
|
if (!Disassembler)
|
|
return make_error<UnsupportedDisassembly>(
|
|
"No disassembler available for target");
|
|
|
|
MIA.reset(ObjectTarget->createMCInstrAnalysis(MII.get()));
|
|
|
|
Printer.reset(ObjectTarget->createMCInstPrinter(
|
|
ObjectTriple, AsmInfo->getAssemblerDialect(), *AsmInfo, *MII,
|
|
*RegisterInfo));
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
Error FileAnalysis::parseCodeSections() {
|
|
if (!IgnoreDWARFFlag) {
|
|
std::unique_ptr<DWARFContext> DWARF = DWARFContext::create(*Object);
|
|
if (!DWARF)
|
|
return make_error<StringError>("Could not create DWARF information.",
|
|
inconvertibleErrorCode());
|
|
|
|
bool LineInfoValid = false;
|
|
|
|
for (auto &Unit : DWARF->compile_units()) {
|
|
const auto &LineTable = DWARF->getLineTableForUnit(Unit.get());
|
|
if (LineTable && !LineTable->Rows.empty()) {
|
|
LineInfoValid = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!LineInfoValid)
|
|
return make_error<StringError>(
|
|
"DWARF line information missing. Did you compile with '-g'?",
|
|
inconvertibleErrorCode());
|
|
}
|
|
|
|
for (const object::SectionRef &Section : Object->sections()) {
|
|
// Ensure only executable sections get analysed.
|
|
if (!(object::ELFSectionRef(Section).getFlags() & ELF::SHF_EXECINSTR))
|
|
continue;
|
|
|
|
// Avoid checking the PLT since it produces spurious failures on AArch64
|
|
// when ignoring DWARF data.
|
|
StringRef SectionName;
|
|
if (!Section.getName(SectionName) && SectionName == ".plt")
|
|
continue;
|
|
|
|
StringRef SectionContents;
|
|
if (Section.getContents(SectionContents))
|
|
return make_error<StringError>("Failed to retrieve section contents",
|
|
inconvertibleErrorCode());
|
|
|
|
ArrayRef<uint8_t> SectionBytes((const uint8_t *)SectionContents.data(),
|
|
Section.getSize());
|
|
parseSectionContents(SectionBytes, Section.getAddress());
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
void FileAnalysis::parseSectionContents(ArrayRef<uint8_t> SectionBytes,
|
|
uint64_t SectionAddress) {
|
|
assert(Symbolizer && "Symbolizer is uninitialised.");
|
|
MCInst Instruction;
|
|
Instr InstrMeta;
|
|
uint64_t InstructionSize;
|
|
|
|
for (uint64_t Byte = 0; Byte < SectionBytes.size();) {
|
|
bool ValidInstruction =
|
|
Disassembler->getInstruction(Instruction, InstructionSize,
|
|
SectionBytes.drop_front(Byte), 0, nulls(),
|
|
outs()) == MCDisassembler::Success;
|
|
|
|
Byte += InstructionSize;
|
|
|
|
uint64_t VMAddress = SectionAddress + Byte - InstructionSize;
|
|
InstrMeta.Instruction = Instruction;
|
|
InstrMeta.VMAddress = VMAddress;
|
|
InstrMeta.InstructionSize = InstructionSize;
|
|
InstrMeta.Valid = ValidInstruction;
|
|
|
|
addInstruction(InstrMeta);
|
|
|
|
if (!ValidInstruction)
|
|
continue;
|
|
|
|
// Skip additional parsing for instructions that do not affect the control
|
|
// flow.
|
|
const auto &InstrDesc = MII->get(Instruction.getOpcode());
|
|
if (!InstrDesc.mayAffectControlFlow(Instruction, *RegisterInfo))
|
|
continue;
|
|
|
|
uint64_t Target;
|
|
if (MIA->evaluateBranch(Instruction, VMAddress, InstructionSize, Target)) {
|
|
// If the target can be evaluated, it's not indirect.
|
|
StaticBranchTargetings[Target].push_back(VMAddress);
|
|
continue;
|
|
}
|
|
|
|
if (!usesRegisterOperand(InstrMeta))
|
|
continue;
|
|
|
|
if (InstrDesc.isReturn())
|
|
continue;
|
|
|
|
// Check if this instruction exists in the range of the DWARF metadata.
|
|
if (!IgnoreDWARFFlag) {
|
|
auto LineInfo =
|
|
Symbolizer->symbolizeCode(Object->getFileName(), VMAddress);
|
|
if (!LineInfo) {
|
|
handleAllErrors(LineInfo.takeError(), [](const ErrorInfoBase &E) {
|
|
errs() << "Symbolizer failed to get line: " << E.message() << "\n";
|
|
});
|
|
continue;
|
|
}
|
|
|
|
if (LineInfo->FileName == "<invalid>")
|
|
continue;
|
|
}
|
|
|
|
IndirectInstructions.insert(VMAddress);
|
|
}
|
|
}
|
|
|
|
void FileAnalysis::addInstruction(const Instr &Instruction) {
|
|
const auto &KV =
|
|
Instructions.insert(std::make_pair(Instruction.VMAddress, Instruction));
|
|
if (!KV.second) {
|
|
errs() << "Failed to add instruction at address "
|
|
<< format_hex(Instruction.VMAddress, 2)
|
|
<< ": Instruction at this address already exists.\n";
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
Error FileAnalysis::parseSymbolTable() {
|
|
// Functions that will trap on CFI violations.
|
|
SmallSet<StringRef, 4> TrapOnFailFunctions;
|
|
TrapOnFailFunctions.insert("__cfi_slowpath");
|
|
TrapOnFailFunctions.insert("__cfi_slowpath_diag");
|
|
TrapOnFailFunctions.insert("abort");
|
|
|
|
// Look through the list of symbols for functions that will trap on CFI
|
|
// violations.
|
|
for (auto &Sym : Object->symbols()) {
|
|
auto SymNameOrErr = Sym.getName();
|
|
if (!SymNameOrErr)
|
|
consumeError(SymNameOrErr.takeError());
|
|
else if (TrapOnFailFunctions.count(*SymNameOrErr) > 0) {
|
|
auto AddrOrErr = Sym.getAddress();
|
|
if (!AddrOrErr)
|
|
consumeError(AddrOrErr.takeError());
|
|
else
|
|
TrapOnFailFunctionAddresses.insert(*AddrOrErr);
|
|
}
|
|
}
|
|
if (auto *ElfObject = dyn_cast<object::ELFObjectFileBase>(Object)) {
|
|
for (const auto &Addr : ElfObject->getPltAddresses()) {
|
|
object::SymbolRef Sym(Addr.first, Object);
|
|
auto SymNameOrErr = Sym.getName();
|
|
if (!SymNameOrErr)
|
|
consumeError(SymNameOrErr.takeError());
|
|
else if (TrapOnFailFunctions.count(*SymNameOrErr) > 0)
|
|
TrapOnFailFunctionAddresses.insert(Addr.second);
|
|
}
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
UnsupportedDisassembly::UnsupportedDisassembly(StringRef Text) : Text(Text) {}
|
|
|
|
char UnsupportedDisassembly::ID;
|
|
void UnsupportedDisassembly::log(raw_ostream &OS) const {
|
|
OS << "Could not initialise disassembler: " << Text;
|
|
}
|
|
|
|
std::error_code UnsupportedDisassembly::convertToErrorCode() const {
|
|
return std::error_code();
|
|
}
|
|
|
|
} // namespace cfi_verify
|
|
} // namespace llvm
|