forked from OSchip/llvm-project
590 lines
22 KiB
C++
590 lines
22 KiB
C++
//===- ICF.cpp ------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// ICF is short for Identical Code Folding. This is a size optimization to
|
|
// identify and merge two or more read-only sections (typically functions)
|
|
// that happened to have the same contents. It usually reduces output size
|
|
// by a few percent.
|
|
//
|
|
// In ICF, two sections are considered identical if they have the same
|
|
// section flags, section data, and relocations. Relocations are tricky,
|
|
// because two relocations are considered the same if they have the same
|
|
// relocation types, values, and if they point to the same sections *in
|
|
// terms of ICF*.
|
|
//
|
|
// Here is an example. If foo and bar defined below are compiled to the
|
|
// same machine instructions, ICF can and should merge the two, although
|
|
// their relocations point to each other.
|
|
//
|
|
// void foo() { bar(); }
|
|
// void bar() { foo(); }
|
|
//
|
|
// If you merge the two, their relocations point to the same section and
|
|
// thus you know they are mergeable, but how do you know they are
|
|
// mergeable in the first place? This is not an easy problem to solve.
|
|
//
|
|
// What we are doing in LLD is to partition sections into equivalence
|
|
// classes. Sections in the same equivalence class when the algorithm
|
|
// terminates are considered identical. Here are details:
|
|
//
|
|
// 1. First, we partition sections using their hash values as keys. Hash
|
|
// values contain section types, section contents and numbers of
|
|
// relocations. During this step, relocation targets are not taken into
|
|
// account. We just put sections that apparently differ into different
|
|
// equivalence classes.
|
|
//
|
|
// 2. Next, for each equivalence class, we visit sections to compare
|
|
// relocation targets. Relocation targets are considered equivalent if
|
|
// their targets are in the same equivalence class. Sections with
|
|
// different relocation targets are put into different equivalence
|
|
// classes.
|
|
//
|
|
// 3. If we split an equivalence class in step 2, two relocations
|
|
// previously target the same equivalence class may now target
|
|
// different equivalence classes. Therefore, we repeat step 2 until a
|
|
// convergence is obtained.
|
|
//
|
|
// 4. For each equivalence class C, pick an arbitrary section in C, and
|
|
// merge all the other sections in C with it.
|
|
//
|
|
// For small programs, this algorithm needs 3-5 iterations. For large
|
|
// programs such as Chromium, it takes more than 20 iterations.
|
|
//
|
|
// This algorithm was mentioned as an "optimistic algorithm" in [1],
|
|
// though gold implements a different algorithm than this.
|
|
//
|
|
// We parallelize each step so that multiple threads can work on different
|
|
// equivalence classes concurrently. That gave us a large performance
|
|
// boost when applying ICF on large programs. For example, MSVC link.exe
|
|
// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
|
|
// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
|
|
// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
|
|
// faster than MSVC or gold though.
|
|
//
|
|
// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
|
|
// in the Gold Linker
|
|
// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ICF.h"
|
|
#include "Config.h"
|
|
#include "EhFrame.h"
|
|
#include "LinkerScript.h"
|
|
#include "OutputSections.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Writer.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Support/Parallel.h"
|
|
#include "llvm/Support/TimeProfiler.h"
|
|
#include "llvm/Support/xxhash.h"
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::ELF;
|
|
using namespace llvm::object;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
namespace {
|
|
template <class ELFT> class ICF {
|
|
public:
|
|
void run();
|
|
|
|
private:
|
|
void segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant);
|
|
|
|
template <class RelTy>
|
|
bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA,
|
|
const InputSection *b, ArrayRef<RelTy> relsB);
|
|
|
|
template <class RelTy>
|
|
bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA,
|
|
const InputSection *b, ArrayRef<RelTy> relsB);
|
|
|
|
bool equalsConstant(const InputSection *a, const InputSection *b);
|
|
bool equalsVariable(const InputSection *a, const InputSection *b);
|
|
|
|
size_t findBoundary(size_t begin, size_t end);
|
|
|
|
void forEachClassRange(size_t begin, size_t end,
|
|
llvm::function_ref<void(size_t, size_t)> fn);
|
|
|
|
void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
|
|
|
|
std::vector<InputSection *> sections;
|
|
|
|
// We repeat the main loop while `Repeat` is true.
|
|
std::atomic<bool> repeat;
|
|
|
|
// The main loop counter.
|
|
int cnt = 0;
|
|
|
|
// We have two locations for equivalence classes. On the first iteration
|
|
// of the main loop, Class[0] has a valid value, and Class[1] contains
|
|
// garbage. We read equivalence classes from slot 0 and write to slot 1.
|
|
// So, Class[0] represents the current class, and Class[1] represents
|
|
// the next class. On each iteration, we switch their roles and use them
|
|
// alternately.
|
|
//
|
|
// Why are we doing this? Recall that other threads may be working on
|
|
// other equivalence classes in parallel. They may read sections that we
|
|
// are updating. We cannot update equivalence classes in place because
|
|
// it breaks the invariance that all possibly-identical sections must be
|
|
// in the same equivalence class at any moment. In other words, the for
|
|
// loop to update equivalence classes is not atomic, and that is
|
|
// observable from other threads. By writing new classes to other
|
|
// places, we can keep the invariance.
|
|
//
|
|
// Below, `Current` has the index of the current class, and `Next` has
|
|
// the index of the next class. If threading is enabled, they are either
|
|
// (0, 1) or (1, 0).
|
|
//
|
|
// Note on single-thread: if that's the case, they are always (0, 0)
|
|
// because we can safely read the next class without worrying about race
|
|
// conditions. Using the same location makes this algorithm converge
|
|
// faster because it uses results of the same iteration earlier.
|
|
int current = 0;
|
|
int next = 0;
|
|
};
|
|
}
|
|
|
|
// Returns true if section S is subject of ICF.
|
|
static bool isEligible(InputSection *s) {
|
|
if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
|
|
return false;
|
|
|
|
// Don't merge writable sections. .data.rel.ro sections are marked as writable
|
|
// but are semantically read-only.
|
|
if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
|
|
!s->name.startswith(".data.rel.ro."))
|
|
return false;
|
|
|
|
// SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
|
|
// so we don't consider them for ICF individually.
|
|
if (s->flags & SHF_LINK_ORDER)
|
|
return false;
|
|
|
|
// Don't merge synthetic sections as their Data member is not valid and empty.
|
|
// The Data member needs to be valid for ICF as it is used by ICF to determine
|
|
// the equality of section contents.
|
|
if (isa<SyntheticSection>(s))
|
|
return false;
|
|
|
|
// .init and .fini contains instructions that must be executed to initialize
|
|
// and finalize the process. They cannot and should not be merged.
|
|
if (s->name == ".init" || s->name == ".fini")
|
|
return false;
|
|
|
|
// A user program may enumerate sections named with a C identifier using
|
|
// __start_* and __stop_* symbols. We cannot ICF any such sections because
|
|
// that could change program semantics.
|
|
if (isValidCIdentifier(s->name))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Split an equivalence class into smaller classes.
|
|
template <class ELFT>
|
|
void ICF<ELFT>::segregate(size_t begin, size_t end, uint32_t eqClassBase,
|
|
bool constant) {
|
|
// This loop rearranges sections in [Begin, End) so that all sections
|
|
// that are equal in terms of equals{Constant,Variable} are contiguous
|
|
// in [Begin, End).
|
|
//
|
|
// The algorithm is quadratic in the worst case, but that is not an
|
|
// issue in practice because the number of the distinct sections in
|
|
// each range is usually very small.
|
|
|
|
while (begin < end) {
|
|
// Divide [Begin, End) into two. Let Mid be the start index of the
|
|
// second group.
|
|
auto bound =
|
|
std::stable_partition(sections.begin() + begin + 1,
|
|
sections.begin() + end, [&](InputSection *s) {
|
|
if (constant)
|
|
return equalsConstant(sections[begin], s);
|
|
return equalsVariable(sections[begin], s);
|
|
});
|
|
size_t mid = bound - sections.begin();
|
|
|
|
// Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
|
|
// updating the sections in [Begin, Mid). We use Mid as the basis for
|
|
// the equivalence class ID because every group ends with a unique index.
|
|
// Add this to eqClassBase to avoid equality with unique IDs.
|
|
for (size_t i = begin; i < mid; ++i)
|
|
sections[i]->eqClass[next] = eqClassBase + mid;
|
|
|
|
// If we created a group, we need to iterate the main loop again.
|
|
if (mid != end)
|
|
repeat = true;
|
|
|
|
begin = mid;
|
|
}
|
|
}
|
|
|
|
// Compare two lists of relocations.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra,
|
|
const InputSection *secB, ArrayRef<RelTy> rb) {
|
|
if (ra.size() != rb.size())
|
|
return false;
|
|
for (size_t i = 0; i < ra.size(); ++i) {
|
|
if (ra[i].r_offset != rb[i].r_offset ||
|
|
ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL))
|
|
return false;
|
|
|
|
uint64_t addA = getAddend<ELFT>(ra[i]);
|
|
uint64_t addB = getAddend<ELFT>(rb[i]);
|
|
|
|
Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
|
|
Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
|
|
if (&sa == &sb) {
|
|
if (addA == addB)
|
|
continue;
|
|
return false;
|
|
}
|
|
|
|
auto *da = dyn_cast<Defined>(&sa);
|
|
auto *db = dyn_cast<Defined>(&sb);
|
|
|
|
// Placeholder symbols generated by linker scripts look the same now but
|
|
// may have different values later.
|
|
if (!da || !db || da->scriptDefined || db->scriptDefined)
|
|
return false;
|
|
|
|
// When comparing a pair of relocations, if they refer to different symbols,
|
|
// and either symbol is preemptible, the containing sections should be
|
|
// considered different. This is because even if the sections are identical
|
|
// in this DSO, they may not be after preemption.
|
|
if (da->isPreemptible || db->isPreemptible)
|
|
return false;
|
|
|
|
// Relocations referring to absolute symbols are constant-equal if their
|
|
// values are equal.
|
|
if (!da->section && !db->section && da->value + addA == db->value + addB)
|
|
continue;
|
|
if (!da->section || !db->section)
|
|
return false;
|
|
|
|
if (da->section->kind() != db->section->kind())
|
|
return false;
|
|
|
|
// Relocations referring to InputSections are constant-equal if their
|
|
// section offsets are equal.
|
|
if (isa<InputSection>(da->section)) {
|
|
if (da->value + addA == db->value + addB)
|
|
continue;
|
|
return false;
|
|
}
|
|
|
|
// Relocations referring to MergeInputSections are constant-equal if their
|
|
// offsets in the output section are equal.
|
|
auto *x = dyn_cast<MergeInputSection>(da->section);
|
|
if (!x)
|
|
return false;
|
|
auto *y = cast<MergeInputSection>(db->section);
|
|
if (x->getParent() != y->getParent())
|
|
return false;
|
|
|
|
uint64_t offsetA =
|
|
sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
|
|
uint64_t offsetB =
|
|
sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
|
|
if (offsetA != offsetB)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Compare "non-moving" part of two InputSections, namely everything
|
|
// except relocation targets.
|
|
template <class ELFT>
|
|
bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
|
|
if (a->flags != b->flags || a->getSize() != b->getSize() ||
|
|
a->data() != b->data())
|
|
return false;
|
|
|
|
// If two sections have different output sections, we cannot merge them.
|
|
assert(a->getParent() && b->getParent());
|
|
if (a->getParent() != b->getParent())
|
|
return false;
|
|
|
|
const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
|
|
const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
|
|
return ra.areRelocsRel() ? constantEq(a, ra.rels, b, rb.rels)
|
|
: constantEq(a, ra.relas, b, rb.relas);
|
|
}
|
|
|
|
// Compare two lists of relocations. Returns true if all pairs of
|
|
// relocations point to the same section in terms of ICF.
|
|
template <class ELFT>
|
|
template <class RelTy>
|
|
bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra,
|
|
const InputSection *secB, ArrayRef<RelTy> rb) {
|
|
assert(ra.size() == rb.size());
|
|
|
|
for (size_t i = 0; i < ra.size(); ++i) {
|
|
// The two sections must be identical.
|
|
Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
|
|
Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
|
|
if (&sa == &sb)
|
|
continue;
|
|
|
|
auto *da = cast<Defined>(&sa);
|
|
auto *db = cast<Defined>(&sb);
|
|
|
|
// We already dealt with absolute and non-InputSection symbols in
|
|
// constantEq, and for InputSections we have already checked everything
|
|
// except the equivalence class.
|
|
if (!da->section)
|
|
continue;
|
|
auto *x = dyn_cast<InputSection>(da->section);
|
|
if (!x)
|
|
continue;
|
|
auto *y = cast<InputSection>(db->section);
|
|
|
|
// Sections that are in the special equivalence class 0, can never be the
|
|
// same in terms of the equivalence class.
|
|
if (x->eqClass[current] == 0)
|
|
return false;
|
|
if (x->eqClass[current] != y->eqClass[current])
|
|
return false;
|
|
};
|
|
|
|
return true;
|
|
}
|
|
|
|
// Compare "moving" part of two InputSections, namely relocation targets.
|
|
template <class ELFT>
|
|
bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
|
|
const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
|
|
const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
|
|
return ra.areRelocsRel() ? variableEq(a, ra.rels, b, rb.rels)
|
|
: variableEq(a, ra.relas, b, rb.relas);
|
|
}
|
|
|
|
template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
|
|
uint32_t eqClass = sections[begin]->eqClass[current];
|
|
for (size_t i = begin + 1; i < end; ++i)
|
|
if (eqClass != sections[i]->eqClass[current])
|
|
return i;
|
|
return end;
|
|
}
|
|
|
|
// Sections in the same equivalence class are contiguous in Sections
|
|
// vector. Therefore, Sections vector can be considered as contiguous
|
|
// groups of sections, grouped by the class.
|
|
//
|
|
// This function calls Fn on every group within [Begin, End).
|
|
template <class ELFT>
|
|
void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
|
|
llvm::function_ref<void(size_t, size_t)> fn) {
|
|
while (begin < end) {
|
|
size_t mid = findBoundary(begin, end);
|
|
fn(begin, mid);
|
|
begin = mid;
|
|
}
|
|
}
|
|
|
|
// Call Fn on each equivalence class.
|
|
template <class ELFT>
|
|
void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
|
|
// If threading is disabled or the number of sections are
|
|
// too small to use threading, call Fn sequentially.
|
|
if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) {
|
|
forEachClassRange(0, sections.size(), fn);
|
|
++cnt;
|
|
return;
|
|
}
|
|
|
|
current = cnt % 2;
|
|
next = (cnt + 1) % 2;
|
|
|
|
// Shard into non-overlapping intervals, and call Fn in parallel.
|
|
// The sharding must be completed before any calls to Fn are made
|
|
// so that Fn can modify the Chunks in its shard without causing data
|
|
// races.
|
|
const size_t numShards = 256;
|
|
size_t step = sections.size() / numShards;
|
|
size_t boundaries[numShards + 1];
|
|
boundaries[0] = 0;
|
|
boundaries[numShards] = sections.size();
|
|
|
|
parallelForEachN(1, numShards, [&](size_t i) {
|
|
boundaries[i] = findBoundary((i - 1) * step, sections.size());
|
|
});
|
|
|
|
parallelForEachN(1, numShards + 1, [&](size_t i) {
|
|
if (boundaries[i - 1] < boundaries[i])
|
|
forEachClassRange(boundaries[i - 1], boundaries[i], fn);
|
|
});
|
|
++cnt;
|
|
}
|
|
|
|
// Combine the hashes of the sections referenced by the given section into its
|
|
// hash.
|
|
template <class ELFT, class RelTy>
|
|
static void combineRelocHashes(unsigned cnt, InputSection *isec,
|
|
ArrayRef<RelTy> rels) {
|
|
uint32_t hash = isec->eqClass[cnt % 2];
|
|
for (RelTy rel : rels) {
|
|
Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel);
|
|
if (auto *d = dyn_cast<Defined>(&s))
|
|
if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
|
|
hash += relSec->eqClass[cnt % 2];
|
|
}
|
|
// Set MSB to 1 to avoid collisions with unique IDs.
|
|
isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
|
|
}
|
|
|
|
static void print(const Twine &s) {
|
|
if (config->printIcfSections)
|
|
message(s);
|
|
}
|
|
|
|
// The main function of ICF.
|
|
template <class ELFT> void ICF<ELFT>::run() {
|
|
// Compute isPreemptible early. We may add more symbols later, so this loop
|
|
// cannot be merged with the later computeIsPreemptible() pass which is used
|
|
// by scanRelocations().
|
|
if (config->hasDynSymTab)
|
|
for (Symbol *sym : symtab->symbols())
|
|
sym->isPreemptible = computeIsPreemptible(*sym);
|
|
|
|
// Two text sections may have identical content and relocations but different
|
|
// LSDA, e.g. the two functions may have catch blocks of different types. If a
|
|
// text section is referenced by a .eh_frame FDE with LSDA, it is not
|
|
// eligible. This is implemented by iterating over CIE/FDE and setting
|
|
// eqClass[0] to the referenced text section from a live FDE.
|
|
//
|
|
// If two .gcc_except_table have identical semantics (usually identical
|
|
// content with PC-relative encoding), we will lose folding opportunity.
|
|
uint32_t uniqueId = 0;
|
|
for (Partition &part : partitions)
|
|
part.ehFrame->iterateFDEWithLSDA<ELFT>(
|
|
[&](InputSection &s) { s.eqClass[0] = s.eqClass[1] = ++uniqueId; });
|
|
|
|
// Collect sections to merge.
|
|
for (InputSectionBase *sec : inputSections) {
|
|
auto *s = cast<InputSection>(sec);
|
|
if (s->eqClass[0] == 0) {
|
|
if (isEligible(s))
|
|
sections.push_back(s);
|
|
else
|
|
// Ineligible sections are assigned unique IDs, i.e. each section
|
|
// belongs to an equivalence class of its own.
|
|
s->eqClass[0] = s->eqClass[1] = ++uniqueId;
|
|
}
|
|
}
|
|
|
|
// Initially, we use hash values to partition sections.
|
|
parallelForEach(sections, [&](InputSection *s) {
|
|
// Set MSB to 1 to avoid collisions with unique IDs.
|
|
s->eqClass[0] = xxHash64(s->data()) | (1U << 31);
|
|
});
|
|
|
|
// Perform 2 rounds of relocation hash propagation. 2 is an empirical value to
|
|
// reduce the average sizes of equivalence classes, i.e. segregate() which has
|
|
// a large time complexity will have less work to do.
|
|
for (unsigned cnt = 0; cnt != 2; ++cnt) {
|
|
parallelForEach(sections, [&](InputSection *s) {
|
|
const RelsOrRelas<ELFT> rels = s->template relsOrRelas<ELFT>();
|
|
if (rels.areRelocsRel())
|
|
combineRelocHashes<ELFT>(cnt, s, rels.rels);
|
|
else
|
|
combineRelocHashes<ELFT>(cnt, s, rels.relas);
|
|
});
|
|
}
|
|
|
|
// From now on, sections in Sections vector are ordered so that sections
|
|
// in the same equivalence class are consecutive in the vector.
|
|
llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
|
|
return a->eqClass[0] < b->eqClass[0];
|
|
});
|
|
|
|
// Compare static contents and assign unique equivalence class IDs for each
|
|
// static content. Use a base offset for these IDs to ensure no overlap with
|
|
// the unique IDs already assigned.
|
|
uint32_t eqClassBase = ++uniqueId;
|
|
forEachClass([&](size_t begin, size_t end) {
|
|
segregate(begin, end, eqClassBase, true);
|
|
});
|
|
|
|
// Split groups by comparing relocations until convergence is obtained.
|
|
do {
|
|
repeat = false;
|
|
forEachClass([&](size_t begin, size_t end) {
|
|
segregate(begin, end, eqClassBase, false);
|
|
});
|
|
} while (repeat);
|
|
|
|
log("ICF needed " + Twine(cnt) + " iterations");
|
|
|
|
// Merge sections by the equivalence class.
|
|
forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
|
|
if (end - begin == 1)
|
|
return;
|
|
print("selected section " + toString(sections[begin]));
|
|
for (size_t i = begin + 1; i < end; ++i) {
|
|
print(" removing identical section " + toString(sections[i]));
|
|
sections[begin]->replace(sections[i]);
|
|
|
|
// At this point we know sections merged are fully identical and hence
|
|
// we want to remove duplicate implicit dependencies such as link order
|
|
// and relocation sections.
|
|
for (InputSection *isec : sections[i]->dependentSections)
|
|
isec->markDead();
|
|
}
|
|
});
|
|
|
|
// Change Defined symbol's section field to the canonical one.
|
|
auto fold = [](Symbol *sym) {
|
|
if (auto *d = dyn_cast<Defined>(sym))
|
|
if (auto *sec = dyn_cast_or_null<InputSection>(d->section))
|
|
if (sec->repl != d->section) {
|
|
d->section = sec->repl;
|
|
d->folded = true;
|
|
}
|
|
};
|
|
for (Symbol *sym : symtab->symbols())
|
|
fold(sym);
|
|
parallelForEach(objectFiles, [&](ELFFileBase *file) {
|
|
for (Symbol *sym : file->getLocalSymbols())
|
|
fold(sym);
|
|
});
|
|
|
|
// InputSectionDescription::sections is populated by processSectionCommands().
|
|
// ICF may fold some input sections assigned to output sections. Remove them.
|
|
for (SectionCommand *cmd : script->sectionCommands)
|
|
if (auto *sec = dyn_cast<OutputSection>(cmd))
|
|
for (SectionCommand *subCmd : sec->commands)
|
|
if (auto *isd = dyn_cast<InputSectionDescription>(subCmd))
|
|
llvm::erase_if(isd->sections,
|
|
[](InputSection *isec) { return !isec->isLive(); });
|
|
}
|
|
|
|
// ICF entry point function.
|
|
template <class ELFT> void elf::doIcf() {
|
|
llvm::TimeTraceScope timeScope("ICF");
|
|
ICF<ELFT>().run();
|
|
}
|
|
|
|
template void elf::doIcf<ELF32LE>();
|
|
template void elf::doIcf<ELF32BE>();
|
|
template void elf::doIcf<ELF64LE>();
|
|
template void elf::doIcf<ELF64BE>();
|