llvm-project/llvm/lib/Target/X86/X86FixupSetCC.cpp

187 lines
5.9 KiB
C++

//===---- X86FixupSetCC.cpp - optimize usage of LEA instructions ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pass that fixes zero-extension of setcc patterns.
// X86 setcc instructions are modeled to have no input arguments, and a single
// GR8 output argument. This is consistent with other similar instructions
// (e.g. movb), but means it is impossible to directly generate a setcc into
// the lower GR8 of a specified GR32.
// This means that ISel must select (zext (setcc)) into something like
// seta %al; movzbl %al, %eax.
// Unfortunately, this can cause a stall due to the partial register write
// performed by the setcc. Instead, we can use:
// xor %eax, %eax; seta %al
// This both avoids the stall, and encodes shorter.
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "x86-fixup-setcc"
STATISTIC(NumSubstZexts, "Number of setcc + zext pairs substituted");
namespace {
class X86FixupSetCCPass : public MachineFunctionPass {
public:
X86FixupSetCCPass() : MachineFunctionPass(ID) {}
const char *getPassName() const override { return "X86 Fixup SetCC"; }
bool runOnMachineFunction(MachineFunction &MF) override;
private:
// Find the preceding instruction that imp-defs eflags.
MachineInstr *findFlagsImpDef(MachineBasicBlock *MBB,
MachineBasicBlock::reverse_iterator MI);
// Return true if MI imp-uses eflags.
bool impUsesFlags(MachineInstr *MI);
// Return true if this is the opcode of a SetCC instruction with a register
// output.
bool isSetCCr(unsigned Opode);
MachineRegisterInfo *MRI;
const X86InstrInfo *TII;
enum { SearchBound = 16 };
static char ID;
};
char X86FixupSetCCPass::ID = 0;
}
FunctionPass *llvm::createX86FixupSetCC() { return new X86FixupSetCCPass(); }
bool X86FixupSetCCPass::isSetCCr(unsigned Opcode) {
switch (Opcode) {
default:
return false;
case X86::SETOr:
case X86::SETNOr:
case X86::SETBr:
case X86::SETAEr:
case X86::SETEr:
case X86::SETNEr:
case X86::SETBEr:
case X86::SETAr:
case X86::SETSr:
case X86::SETNSr:
case X86::SETPr:
case X86::SETNPr:
case X86::SETLr:
case X86::SETGEr:
case X86::SETLEr:
case X86::SETGr:
return true;
}
}
// We expect the instruction *immediately* before the setcc to imp-def
// EFLAGS (because of scheduling glue). To make this less brittle w.r.t
// scheduling, look backwards until we hit the beginning of the
// basic-block, or a small bound (to avoid quadratic behavior).
MachineInstr *
X86FixupSetCCPass::findFlagsImpDef(MachineBasicBlock *MBB,
MachineBasicBlock::reverse_iterator MI) {
auto MBBStart = MBB->instr_rend();
for (int i = 0; (i < SearchBound) && (MI != MBBStart); ++i, ++MI)
for (auto &Op : MI->implicit_operands())
if ((Op.getReg() == X86::EFLAGS) && (Op.isDef()))
return &*MI;
return nullptr;
}
bool X86FixupSetCCPass::impUsesFlags(MachineInstr *MI) {
for (auto &Op : MI->implicit_operands())
if ((Op.getReg() == X86::EFLAGS) && (Op.isUse()))
return true;
return false;
}
bool X86FixupSetCCPass::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
MRI = &MF.getRegInfo();
TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
SmallVector<MachineInstr*, 4> ToErase;
for (auto &MBB : MF) {
for (auto &MI : MBB) {
// Find a setcc that is used by a zext.
// This doesn't have to be the only use, the transformation is safe
// regardless.
if (!isSetCCr(MI.getOpcode()))
continue;
MachineInstr *ZExt = nullptr;
for (auto &Use : MRI->use_instructions(MI.getOperand(0).getReg()))
if (Use.getOpcode() == X86::MOVZX32rr8)
ZExt = &Use;
if (!ZExt)
continue;
// Find the preceding instruction that imp-defs eflags.
MachineInstr *FlagsDefMI = findFlagsImpDef(
MI.getParent(), MachineBasicBlock::reverse_iterator(&MI));
if (!FlagsDefMI)
continue;
// We'd like to put something that clobbers eflags directly before
// FlagsDefMI. This can't hurt anything after FlagsDefMI, because
// it, itself, by definition, clobbers eflags. But it may happen that
// FlagsDefMI also *uses* eflags, in which case the transformation is
// invalid.
if (impUsesFlags(FlagsDefMI))
continue;
++NumSubstZexts;
Changed = true;
// On 32-bit, we need to be careful to force an ABCD register.
const TargetRegisterClass *RC = MF.getSubtarget<X86Subtarget>().is64Bit()
? &X86::GR32RegClass
: &X86::GR32_ABCDRegClass;
unsigned ZeroReg = MRI->createVirtualRegister(RC);
unsigned InsertReg = MRI->createVirtualRegister(RC);
// Initialize a register with 0. This must go before the eflags def
BuildMI(MBB, FlagsDefMI, MI.getDebugLoc(), TII->get(X86::MOV32r0),
ZeroReg);
// X86 setcc only takes an output GR8, so fake a GR32 input by inserting
// the setcc result into the low byte of the zeroed register.
BuildMI(*ZExt->getParent(), ZExt, ZExt->getDebugLoc(),
TII->get(X86::INSERT_SUBREG), InsertReg)
.addReg(ZeroReg)
.addReg(MI.getOperand(0).getReg())
.addImm(X86::sub_8bit);
MRI->replaceRegWith(ZExt->getOperand(0).getReg(), InsertReg);
ToErase.push_back(ZExt);
}
}
for (auto &I : ToErase)
I->eraseFromParent();
return Changed;
}