forked from OSchip/llvm-project
735 lines
36 KiB
TableGen
735 lines
36 KiB
TableGen
//===- AlphaInstrInfo.td - The Alpha Instruction Set -------*- tablegen -*-===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file was developed by the LLVM research group and is distributed under
|
||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
include "AlphaInstrFormats.td"
|
||
|
||
//********************
|
||
//Custom DAG Nodes
|
||
//********************
|
||
|
||
def SDTFPUnaryOpUnC : SDTypeProfile<1, 1, [
|
||
SDTCisFP<1>, SDTCisFP<0>
|
||
]>;
|
||
|
||
def Alpha_itoft : SDNode<"AlphaISD::ITOFT_", SDTIntToFPOp, []>;
|
||
def Alpha_ftoit : SDNode<"AlphaISD::FTOIT_", SDTFPToIntOp, []>;
|
||
def Alpha_cvtqt : SDNode<"AlphaISD::CVTQT_", SDTFPUnaryOpUnC, []>;
|
||
def Alpha_cvtqs : SDNode<"AlphaISD::CVTQS_", SDTFPUnaryOpUnC, []>;
|
||
def Alpha_cvttq : SDNode<"AlphaISD::CVTTQ_", SDTFPUnaryOp, []>;
|
||
|
||
// These are target-independent nodes, but have target-specific formats.
|
||
def SDT_AlphaCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i64> ]>;
|
||
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_AlphaCallSeq,[SDNPHasChain]>;
|
||
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_AlphaCallSeq,[SDNPHasChain]>;
|
||
|
||
|
||
//********************
|
||
//Paterns for matching
|
||
//********************
|
||
def invX : SDNodeXForm<imm, [{
|
||
return getI64Imm(~N->getValue());
|
||
}]>;
|
||
def immUExt8 : PatLeaf<(imm), [{
|
||
// immUExt8 predicate - True if the immediate fits in a 8-bit zero extended
|
||
// field. Used by instructions like 'addi'.
|
||
return (unsigned long)N->getValue() == (unsigned char)N->getValue();
|
||
}]>;
|
||
def immUExt8inv : PatLeaf<(imm), [{
|
||
// immUExt8inv predicate - True if the inverted immediate fits in a 8-bit zero extended
|
||
// field. Used by instructions like 'ornoti'.
|
||
return (unsigned long)~N->getValue() == (unsigned char)~N->getValue();
|
||
}], invX>;
|
||
def immSExt16 : PatLeaf<(imm), [{
|
||
// immSExt16 predicate - True if the immediate fits in a 16-bit sign extended
|
||
// field. Used by instructions like 'lda'.
|
||
return (int)N->getValue() == (short)N->getValue();
|
||
}]>;
|
||
|
||
def iZAPX : SDNodeXForm<imm, [{
|
||
// Transformation function: get the imm to ZAPi
|
||
uint64_t UImm = (uint64_t)N->getValue();
|
||
unsigned int build = 0;
|
||
for(int i = 0; i < 8; ++i)
|
||
{
|
||
if ((UImm & 0x00FF) == 0x00FF)
|
||
build |= 1 << i;
|
||
else if ((UImm & 0x00FF) != 0)
|
||
{ build = 0; break; }
|
||
UImm >>= 8;
|
||
}
|
||
return getI64Imm(build);
|
||
}]>;
|
||
def immZAP : PatLeaf<(imm), [{
|
||
// immZAP predicate - True if the immediate fits is suitable for use in a
|
||
// ZAP instruction
|
||
uint64_t UImm = (uint64_t)N->getValue();
|
||
unsigned int build = 0;
|
||
for(int i = 0; i < 8; ++i)
|
||
{
|
||
if ((UImm & 0x00FF) == 0x00FF)
|
||
build |= 1 << i;
|
||
else if ((UImm & 0x00FF) != 0)
|
||
{ build = 0; break; }
|
||
UImm >>= 8;
|
||
}
|
||
return build != 0;
|
||
}], iZAPX>;
|
||
|
||
|
||
def intop : PatFrag<(ops node:$op), (sext_inreg node:$op, i32)>;
|
||
def add4 : PatFrag<(ops node:$op1, node:$op2),
|
||
(add (shl node:$op1, 2), node:$op2)>;
|
||
def sub4 : PatFrag<(ops node:$op1, node:$op2),
|
||
(sub (shl node:$op1, 2), node:$op2)>;
|
||
def add8 : PatFrag<(ops node:$op1, node:$op2),
|
||
(add (shl node:$op1, 3), node:$op2)>;
|
||
def sub8 : PatFrag<(ops node:$op1, node:$op2),
|
||
(sub (shl node:$op1, 3), node:$op2)>;
|
||
|
||
// //#define FP $15
|
||
// //#define RA $26
|
||
// //#define PV $27
|
||
// //#define GP $29
|
||
// //#define SP $30
|
||
|
||
def PHI : PseudoInstAlpha<(ops variable_ops), "#phi", []>;
|
||
|
||
def IDEF_I : PseudoInstAlpha<(ops GPRC:$RA), "#idef $RA",
|
||
[(set GPRC:$RA, (undef))]>;
|
||
def IDEF_F32 : PseudoInstAlpha<(ops F4RC:$RA), "#idef $RA",
|
||
[(set F4RC:$RA, (undef))]>;
|
||
def IDEF_F64 : PseudoInstAlpha<(ops F8RC:$RA), "#idef $RA",
|
||
[(set F8RC:$RA, (undef))]>;
|
||
|
||
def WTF : PseudoInstAlpha<(ops variable_ops), "#wtf", []>;
|
||
let isLoad = 1, hasCtrlDep = 1 in {
|
||
def ADJUSTSTACKUP : PseudoInstAlpha<(ops s64imm:$amt), "; ADJUP $amt",
|
||
[(callseq_start imm:$amt)]>;
|
||
def ADJUSTSTACKDOWN : PseudoInstAlpha<(ops s64imm:$amt), "; ADJDOWN $amt",
|
||
[(callseq_end imm:$amt)]>;
|
||
}
|
||
def ALTENT : PseudoInstAlpha<(ops s64imm:$TARGET), "$TARGET:\n", []>;
|
||
def PCLABEL : PseudoInstAlpha<(ops s64imm:$num), "PCMARKER_$num:\n",[]>;
|
||
def MEMLABEL : PseudoInstAlpha<(ops s64imm:$i, s64imm:$j, s64imm:$k, s64imm:$m),
|
||
"LSMARKER$$$i$$$j$$$k$$$m:\n",[]>;
|
||
|
||
//*****************
|
||
//These are shortcuts, the assembler expands them
|
||
//*****************
|
||
//AT = R28
|
||
//T0-T7 = R1 - R8
|
||
//T8-T11 = R22-R25
|
||
|
||
//An even better improvement on the Int = SetCC(FP): SelectCC!
|
||
//These are evil because they hide control flow in a MBB
|
||
//really the ISel should emit multiple MBB
|
||
let isTwoAddress = 1 in {
|
||
//Conditional move of an int based on a FP CC
|
||
def CMOVEQ_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, F8RC:$RCOND),
|
||
"fbne $RCOND, 42f\n\tbis $RSRC_T,$RSRC_T,$RDEST\n42:\n", []>;
|
||
def CMOVEQi_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, u8imm:$L, F8RC:$RCOND),
|
||
"fbne $RCOND, 42f\n\taddq $$31,$L,$RDEST\n42:\n", []>;
|
||
|
||
def CMOVNE_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, F8RC:$RCOND),
|
||
"fbeq $RCOND, 42f\n\tbis $RSRC_T,$RSRC_T,$RDEST\n42:\n", []>;
|
||
def CMOVNEi_FP : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, u8imm:$L, F8RC:$RCOND),
|
||
"fbeq $RCOND, 42f\n\taddq $$31,$L,$RDEST\n42:\n", []>;
|
||
//Conditional move of an FP based on a Int CC
|
||
def FCMOVEQ_INT : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, F8RC:$RCOND),
|
||
"bne $RCOND, 42f\n\tcpys $RSRC_T,$RSRC_T,$RDEST\n42:\n", []>;
|
||
def FCMOVNE_INT : PseudoInstAlpha<(ops GPRC:$RDEST, GPRC:$RSRC_F, GPRC:$RSRC_T, F8RC:$RCOND),
|
||
"beq $RCOND, 42f\n\tcpys $RSRC_T,$RSRC_T,$RDEST\n42:\n", []>;
|
||
}
|
||
|
||
//***********************
|
||
//Real instructions
|
||
//***********************
|
||
|
||
//Operation Form:
|
||
|
||
//conditional moves, int
|
||
def CMOVEQi : OForm4L< 0x11, 0x24, "cmoveq $RCOND,$L,$RDEST">; //CMOVE if RCOND = zero
|
||
def CMOVGEi : OForm4L< 0x11, 0x46, "cmovge $RCOND,$L,$RDEST">; //CMOVE if RCOND >= zero
|
||
def CMOVGTi : OForm4L< 0x11, 0x66, "cmovgt $RCOND,$L,$RDEST">; //CMOVE if RCOND > zero
|
||
def CMOVLBCi : OForm4L< 0x11, 0x16, "cmovlbc $RCOND,$L,$RDEST">; //CMOVE if RCOND low bit clear
|
||
def CMOVLBSi : OForm4L< 0x11, 0x14, "cmovlbs $RCOND,$L,$RDEST">; //CMOVE if RCOND low bit set
|
||
def CMOVLEi : OForm4L< 0x11, 0x64, "cmovle $RCOND,$L,$RDEST">; //CMOVE if RCOND <= zero
|
||
def CMOVLTi : OForm4L< 0x11, 0x44, "cmovlt $RCOND,$L,$RDEST">; //CMOVE if RCOND < zero
|
||
def CMOVNEi : OForm4L< 0x11, 0x26, "cmovne $RCOND,$L,$RDEST">; //CMOVE if RCOND != zero
|
||
|
||
let OperandList = (ops GPRC:$RDEST, GPRC:$RTRUE, GPRC:$RFALSE, GPRC:$RCOND) in {
|
||
def CMOVLBC : OForm4< 0x11, 0x16, "cmovlbc $RCOND,$RFALSE,$RDEST",
|
||
[(set GPRC:$RDEST, (select (xor GPRC:$RCOND, 1), GPRC:$RTRUE, GPRC:$RFALSE))]>;
|
||
def CMOVLBS : OForm4< 0x11, 0x14, "cmovlbs $RCOND,$RFALSE,$RDEST",
|
||
[(set GPRC:$RDEST, (select (and GPRC:$RCOND, 1), GPRC:$RTRUE, GPRC:$RFALSE))]>;
|
||
def CMOVEQ : OForm4< 0x11, 0x24, "cmoveq $RCOND,$RFALSE,$RDEST",
|
||
[(set GPRC:$RDEST, (select (seteq GPRC:$RCOND, 0), GPRC:$RTRUE, GPRC:$RFALSE))]>;
|
||
def CMOVGE : OForm4< 0x11, 0x46, "cmovge $RCOND,$RFALSE,$RDEST",
|
||
[(set GPRC:$RDEST, (select (setge GPRC:$RCOND, 0), GPRC:$RTRUE, GPRC:$RFALSE))]>;
|
||
def CMOVGT : OForm4< 0x11, 0x66, "cmovgt $RCOND,$RFALSE,$RDEST",
|
||
[(set GPRC:$RDEST, (select (setgt GPRC:$RCOND, 0), GPRC:$RTRUE, GPRC:$RFALSE))]>;
|
||
def CMOVLE : OForm4< 0x11, 0x64, "cmovle $RCOND,$RFALSE,$RDEST",
|
||
[(set GPRC:$RDEST, (select (setlt GPRC:$RCOND, 0), GPRC:$RTRUE, GPRC:$RFALSE))]>;
|
||
def CMOVLT : OForm4< 0x11, 0x44, "cmovlt $RCOND,$RFALSE,$RDEST",
|
||
[(set GPRC:$RDEST, (select (setlt GPRC:$RCOND, 0), GPRC:$RTRUE, GPRC:$RFALSE))]>;
|
||
def CMOVNE : OForm4< 0x11, 0x26, "cmovne $RCOND,$RFALSE,$RDEST",
|
||
[(set GPRC:$RDEST, (select (setne GPRC:$RCOND, 0), GPRC:$RTRUE, GPRC:$RFALSE))]>;
|
||
}
|
||
|
||
//FIXME: fold setcc with select for all cases. clearly I need patterns for inverted conditions
|
||
// and constants (which require inverted conditions as legalize puts the constant in the
|
||
// wrong field for the instruction definition
|
||
def : Pat<(select GPRC:$which, GPRC:$src1, GPRC:$src2),
|
||
(CMOVEQ GPRC:$src1, GPRC:$src2, GPRC:$which)>;
|
||
|
||
|
||
def ADDL : OForm< 0x10, 0x00, "addl $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (intop (add GPRC:$RA, GPRC:$RB)))]>;
|
||
def ADDLi : OFormL<0x10, 0x00, "addl $RA,$L,$RC",
|
||
[(set GPRC:$RC, (intop (add GPRC:$RA, immUExt8:$L)))]>;
|
||
def ADDQ : OForm< 0x10, 0x20, "addq $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (add GPRC:$RA, GPRC:$RB))]>;
|
||
def ADDQi : OFormL<0x10, 0x20, "addq $RA,$L,$RC",
|
||
[(set GPRC:$RC, (add GPRC:$RA, immUExt8:$L))]>;
|
||
def AND : OForm< 0x11, 0x00, "and $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (and GPRC:$RA, GPRC:$RB))]>;
|
||
def ANDi : OFormL<0x11, 0x00, "and $RA,$L,$RC",
|
||
[(set GPRC:$RC, (and GPRC:$RA, immUExt8:$L))]>;
|
||
def BIC : OForm< 0x11, 0x08, "bic $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (and GPRC:$RA, (not GPRC:$RB)))]>;
|
||
def BICi : OFormL<0x11, 0x08, "bic $RA,$L,$RC",
|
||
[(set GPRC:$RC, (and GPRC:$RA, immUExt8inv:$L))]>;
|
||
def BIS : OForm< 0x11, 0x20, "bis $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (or GPRC:$RA, GPRC:$RB))]>;
|
||
def BISi : OFormL<0x11, 0x20, "bis $RA,$L,$RC",
|
||
[(set GPRC:$RC, (or GPRC:$RA, immUExt8:$L))]>;
|
||
def CTLZ : OForm2<0x1C, 0x32, "CTLZ $RB,$RC",
|
||
[(set GPRC:$RC, (ctlz GPRC:$RB))]>;
|
||
def CTPOP : OForm2<0x1C, 0x30, "CTPOP $RB,$RC",
|
||
[(set GPRC:$RC, (ctpop GPRC:$RB))]>;
|
||
def CTTZ : OForm2<0x1C, 0x33, "CTTZ $RB,$RC",
|
||
[(set GPRC:$RC, (cttz GPRC:$RB))]>;
|
||
def EQV : OForm< 0x11, 0x48, "eqv $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (xor GPRC:$RA, (not GPRC:$RB)))]>;
|
||
def EQVi : OFormL<0x11, 0x48, "eqv $RA,$L,$RC",
|
||
[(set GPRC:$RC, (xor GPRC:$RA, immUExt8inv:$L))]>;
|
||
//def EXTBL : OForm< 0x12, 0x06, "EXTBL $RA,$RB,$RC", []>; //Extract byte low
|
||
//def EXTBLi : OFormL<0x12, 0x06, "EXTBL $RA,$L,$RC", []>; //Extract byte low
|
||
//def EXTLH : OForm< 0x12, 0x6A, "EXTLH $RA,$RB,$RC", []>; //Extract longword high
|
||
//def EXTLHi : OFormL<0x12, 0x6A, "EXTLH $RA,$L,$RC", []>; //Extract longword high
|
||
//def EXTLL : OForm< 0x12, 0x26, "EXTLL $RA,$RB,$RC", []>; //Extract longword low
|
||
//def EXTLLi : OFormL<0x12, 0x26, "EXTLL $RA,$L,$RC", []>; //Extract longword low
|
||
//def EXTQH : OForm< 0x12, 0x7A, "EXTQH $RA,$RB,$RC", []>; //Extract quadword high
|
||
//def EXTQHi : OFormL<0x12, 0x7A, "EXTQH $RA,$L,$RC", []>; //Extract quadword high
|
||
//def EXTQ : OForm< 0x12, 0x36, "EXTQ $RA,$RB,$RC", []>; //Extract quadword low
|
||
//def EXTQi : OFormL<0x12, 0x36, "EXTQ $RA,$L,$RC", []>; //Extract quadword low
|
||
//def EXTWH : OForm< 0x12, 0x5A, "EXTWH $RA,$RB,$RC", []>; //Extract word high
|
||
//def EXTWHi : OFormL<0x12, 0x5A, "EXTWH $RA,$L,$RC", []>; //Extract word high
|
||
//def EXTWL : OForm< 0x12, 0x16, "EXTWL $RA,$RB,$RC", []>; //Extract word low
|
||
//def EXTWLi : OFormL<0x12, 0x16, "EXTWL $RA,$L,$RC", []>; //Extract word low
|
||
//def IMPLVER : OForm< 0x11, 0x6C, "IMPLVER $RA,$RB,$RC", []>; //Implementation version
|
||
//def IMPLVERi : OFormL<0x11, 0x6C, "IMPLVER $RA,$L,$RC", []>; //Implementation version
|
||
//def INSBL : OForm< 0x12, 0x0B, "INSBL $RA,$RB,$RC", []>; //Insert byte low
|
||
//def INSBLi : OFormL<0x12, 0x0B, "INSBL $RA,$L,$RC", []>; //Insert byte low
|
||
//def INSLH : OForm< 0x12, 0x67, "INSLH $RA,$RB,$RC", []>; //Insert longword high
|
||
//def INSLHi : OFormL<0x12, 0x67, "INSLH $RA,$L,$RC", []>; //Insert longword high
|
||
//def INSLL : OForm< 0x12, 0x2B, "INSLL $RA,$RB,$RC", []>; //Insert longword low
|
||
//def INSLLi : OFormL<0x12, 0x2B, "INSLL $RA,$L,$RC", []>; //Insert longword low
|
||
//def INSQH : OForm< 0x12, 0x77, "INSQH $RA,$RB,$RC", []>; //Insert quadword high
|
||
//def INSQHi : OFormL<0x12, 0x77, "INSQH $RA,$L,$RC", []>; //Insert quadword high
|
||
//def INSQL : OForm< 0x12, 0x3B, "INSQL $RA,$RB,$RC", []>; //Insert quadword low
|
||
//def INSQLi : OFormL<0x12, 0x3B, "INSQL $RA,$L,$RC", []>; //Insert quadword low
|
||
//def INSWH : OForm< 0x12, 0x57, "INSWH $RA,$RB,$RC", []>; //Insert word high
|
||
//def INSWHi : OFormL<0x12, 0x57, "INSWH $RA,$L,$RC", []>; //Insert word high
|
||
//def INSWL : OForm< 0x12, 0x1B, "INSWL $RA,$RB,$RC", []>; //Insert word low
|
||
//def INSWLi : OFormL<0x12, 0x1B, "INSWL $RA,$L,$RC", []>; //Insert word low
|
||
//def MSKBL : OForm< 0x12, 0x02, "MSKBL $RA,$RB,$RC", []>; //Mask byte low
|
||
//def MSKBLi : OFormL<0x12, 0x02, "MSKBL $RA,$L,$RC", []>; //Mask byte low
|
||
//def MSKLH : OForm< 0x12, 0x62, "MSKLH $RA,$RB,$RC", []>; //Mask longword high
|
||
//def MSKLHi : OFormL<0x12, 0x62, "MSKLH $RA,$L,$RC", []>; //Mask longword high
|
||
//def MSKLL : OForm< 0x12, 0x22, "MSKLL $RA,$RB,$RC", []>; //Mask longword low
|
||
//def MSKLLi : OFormL<0x12, 0x22, "MSKLL $RA,$L,$RC", []>; //Mask longword low
|
||
//def MSKQH : OForm< 0x12, 0x72, "MSKQH $RA,$RB,$RC", []>; //Mask quadword high
|
||
//def MSKQHi : OFormL<0x12, 0x72, "MSKQH $RA,$L,$RC", []>; //Mask quadword high
|
||
//def MSKQL : OForm< 0x12, 0x32, "MSKQL $RA,$RB,$RC", []>; //Mask quadword low
|
||
//def MSKQLi : OFormL<0x12, 0x32, "MSKQL $RA,$L,$RC", []>; //Mask quadword low
|
||
//def MSKWH : OForm< 0x12, 0x52, "MSKWH $RA,$RB,$RC", []>; //Mask word high
|
||
//def MSKWHi : OFormL<0x12, 0x52, "MSKWH $RA,$L,$RC", []>; //Mask word high
|
||
//def MSKWL : OForm< 0x12, 0x12, "MSKWL $RA,$RB,$RC", []>; //Mask word low
|
||
//def MSKWLi : OFormL<0x12, 0x12, "MSKWL $RA,$L,$RC", []>; //Mask word low
|
||
|
||
def MULL : OForm< 0x13, 0x00, "mull $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (intop (mul GPRC:$RA, GPRC:$RB)))]>;
|
||
def MULLi : OFormL<0x13, 0x00, "mull $RA,$L,$RC",
|
||
[(set GPRC:$RC, (intop (mul GPRC:$RA, immUExt8:$L)))]>;
|
||
def MULQ : OForm< 0x13, 0x20, "mulq $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (mul GPRC:$RA, GPRC:$RB))]>;
|
||
def MULQi : OFormL<0x13, 0x20, "mulq $RA,$L,$RC",
|
||
[(set GPRC:$RC, (mul GPRC:$RA, immUExt8:$L))]>;
|
||
def ORNOT : OForm< 0x11, 0x28, "ornot $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (or GPRC:$RA, (not GPRC:$RB)))]>;
|
||
def ORNOTi : OFormL<0x11, 0x28, "ornot $RA,$L,$RC",
|
||
[(set GPRC:$RC, (or GPRC:$RA, immUExt8inv:$L))]>;
|
||
def S4ADDL : OForm< 0x10, 0x02, "s4addl $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (intop (add4 GPRC:$RA, GPRC:$RB)))]>;
|
||
def S4ADDLi : OFormL<0x10, 0x02, "s4addl $RA,$L,$RC",
|
||
[(set GPRC:$RC, (intop (add4 GPRC:$RA, immUExt8:$L)))]>;
|
||
def S4ADDQ : OForm< 0x10, 0x22, "s4addq $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (add4 GPRC:$RA, GPRC:$RB))]>;
|
||
def S4ADDQi : OFormL<0x10, 0x22, "s4addq $RA,$L,$RC",
|
||
[(set GPRC:$RC, (add4 GPRC:$RA, immUExt8:$L))]>;
|
||
def S4SUBL : OForm< 0x10, 0x0B, "s4subl $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (intop (sub4 GPRC:$RA, GPRC:$RB)))]>;
|
||
def S4SUBLi : OFormL<0x10, 0x0B, "s4subl $RA,$L,$RC",
|
||
[(set GPRC:$RC, (intop (sub4 GPRC:$RA, immUExt8:$L)))]>;
|
||
def S4SUBQ : OForm< 0x10, 0x2B, "s4subq $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (sub4 GPRC:$RA, GPRC:$RB))]>;
|
||
def S4SUBQi : OFormL<0x10, 0x2B, "s4subq $RA,$L,$RC",
|
||
[(set GPRC:$RC, (sub4 GPRC:$RA, immUExt8:$L))]>;
|
||
def S8ADDL : OForm< 0x10, 0x12, "s8addl $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (intop (add8 GPRC:$RA, GPRC:$RB)))]>;
|
||
def S8ADDLi : OFormL<0x10, 0x12, "s8addl $RA,$L,$RC",
|
||
[(set GPRC:$RC, (intop (add8 GPRC:$RA, immUExt8:$L)))]>;
|
||
def S8ADDQ : OForm< 0x10, 0x32, "s8addq $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (add8 GPRC:$RA, GPRC:$RB))]>;
|
||
def S8ADDQi : OFormL<0x10, 0x32, "s8addq $RA,$L,$RC",
|
||
[(set GPRC:$RC, (add8 GPRC:$RA, immUExt8:$L))]>;
|
||
def S8SUBL : OForm< 0x10, 0x1B, "s8subl $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (intop (sub8 GPRC:$RA, GPRC:$RB)))]>;
|
||
def S8SUBLi : OFormL<0x10, 0x1B, "s8subl $RA,$L,$RC",
|
||
[(set GPRC:$RC, (intop (sub8 GPRC:$RA, immUExt8:$L)))]>;
|
||
def S8SUBQ : OForm< 0x10, 0x3B, "s8subq $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (sub8 GPRC:$RA, GPRC:$RB))]>;
|
||
def S8SUBQi : OFormL<0x10, 0x3B, "s8subq $RA,$L,$RC",
|
||
[(set GPRC:$RC, (sub8 GPRC:$RA, immUExt8:$L))]>;
|
||
def SEXTB : OForm2<0x1C, 0x00, "sextb $RB,$RC",
|
||
[(set GPRC:$RC, (sext_inreg GPRC:$RB, i8))]>;
|
||
def SEXTW : OForm2<0x1C, 0x01, "sextw $RB,$RC",
|
||
[(set GPRC:$RC, (sext_inreg GPRC:$RB, i16))]>;
|
||
def SL : OForm< 0x12, 0x39, "sll $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (shl GPRC:$RA, GPRC:$RB))]>;
|
||
def SLi : OFormL<0x12, 0x39, "sll $RA,$L,$RC",
|
||
[(set GPRC:$RC, (shl GPRC:$RA, immUExt8:$L))]>;
|
||
def SRA : OForm< 0x12, 0x3C, "sra $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (sra GPRC:$RA, GPRC:$RB))]>;
|
||
def SRAi : OFormL<0x12, 0x3C, "sra $RA,$L,$RC",
|
||
[(set GPRC:$RC, (sra GPRC:$RA, immUExt8:$L))]>;
|
||
def SRL : OForm< 0x12, 0x34, "srl $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (srl GPRC:$RA, GPRC:$RB))]>;
|
||
def SRLi : OFormL<0x12, 0x34, "srl $RA,$L,$RC",
|
||
[(set GPRC:$RC, (srl GPRC:$RA, immUExt8:$L))]>;
|
||
def SUBL : OForm< 0x10, 0x09, "subl $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (intop (sub GPRC:$RA, GPRC:$RB)))]>;
|
||
def SUBLi : OFormL<0x10, 0x09, "subl $RA,$L,$RC",
|
||
[(set GPRC:$RC, (intop (sub GPRC:$RA, immUExt8:$L)))]>;
|
||
def SUBQ : OForm< 0x10, 0x29, "subq $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (sub GPRC:$RA, GPRC:$RB))]>;
|
||
def SUBQi : OFormL<0x10, 0x29, "subq $RA,$L,$RC",
|
||
[(set GPRC:$RC, (sub GPRC:$RA, immUExt8:$L))]>;
|
||
def UMULH : OForm< 0x13, 0x30, "umulh $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (mulhu GPRC:$RA, GPRC:$RB))]>;
|
||
def UMULHi : OFormL<0x13, 0x30, "umulh $RA,$L,$RC",
|
||
[(set GPRC:$RC, (mulhu GPRC:$RA, immUExt8:$L))]>;
|
||
def XOR : OForm< 0x11, 0x40, "xor $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (xor GPRC:$RA, GPRC:$RB))]>;
|
||
def XORi : OFormL<0x11, 0x40, "xor $RA,$L,$RC",
|
||
[(set GPRC:$RC, (xor GPRC:$RA, immUExt8:$L))]>;
|
||
//FIXME: what to do about zap? the cases it catches are very complex
|
||
def ZAP : OForm< 0x12, 0x30, "zap $RA,$RB,$RC", []>; //Zero bytes
|
||
//ZAPi is useless give ZAPNOTi
|
||
def ZAPi : OFormL<0x12, 0x30, "zap $RA,$L,$RC", []>; //Zero bytes
|
||
//FIXME: what to do about zapnot? see ZAP :)
|
||
def ZAPNOT : OForm< 0x12, 0x31, "zapnot $RA,$RB,$RC", []>; //Zero bytes not
|
||
def ZAPNOTi : OFormL<0x12, 0x31, "zapnot $RA,$L,$RC",
|
||
[(set GPRC:$RC, (and GPRC:$RA, immZAP:$L))]>;
|
||
|
||
//Comparison, int
|
||
//So this is a waste of what this instruction can do, but it still saves something
|
||
def CMPBGE : OForm< 0x10, 0x0F, "cmpbge $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (setuge (and GPRC:$RA, 255), (and GPRC:$RB, 255)))]>;
|
||
def CMPBGEi : OFormL<0x10, 0x0F, "cmpbge $RA,$L,$RC",
|
||
[(set GPRC:$RC, (setuge (and GPRC:$RA, 255), immUExt8:$L))]>;
|
||
def CMPEQ : OForm< 0x10, 0x2D, "cmpeq $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (seteq GPRC:$RA, GPRC:$RB))]>;
|
||
def CMPEQi : OFormL<0x10, 0x2D, "cmpeq $RA,$L,$RC",
|
||
[(set GPRC:$RC, (seteq GPRC:$RA, immUExt8:$L))]>;
|
||
def CMPLE : OForm< 0x10, 0x6D, "cmple $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (setle GPRC:$RA, GPRC:$RB))]>;
|
||
def CMPLEi : OFormL<0x10, 0x6D, "cmple $RA,$L,$RC",
|
||
[(set GPRC:$RC, (setle GPRC:$RA, immUExt8:$L))]>;
|
||
def CMPLT : OForm< 0x10, 0x4D, "cmplt $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (setlt GPRC:$RA, GPRC:$RB))]>;
|
||
def CMPLTi : OFormL<0x10, 0x4D, "cmplt $RA,$L,$RC",
|
||
[(set GPRC:$RC, (setlt GPRC:$RA, immUExt8:$L))]>;
|
||
def CMPULE : OForm< 0x10, 0x3D, "cmpule $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (setule GPRC:$RA, GPRC:$RB))]>;
|
||
def CMPULEi : OFormL<0x10, 0x3D, "cmpule $RA,$L,$RC",
|
||
[(set GPRC:$RC, (setule GPRC:$RA, immUExt8:$L))]>;
|
||
def CMPULT : OForm< 0x10, 0x1D, "cmpult $RA,$RB,$RC",
|
||
[(set GPRC:$RC, (setult GPRC:$RA, GPRC:$RB))]>;
|
||
def CMPULTi : OFormL<0x10, 0x1D, "cmpult $RA,$L,$RC",
|
||
[(set GPRC:$RC, (setult GPRC:$RA, immUExt8:$L))]>;
|
||
|
||
//Patterns for unsupported int comparisons
|
||
def : Pat<(setueq GPRC:$X, GPRC:$Y), (CMPEQ GPRC:$X, GPRC:$Y)>;
|
||
def : Pat<(setueq GPRC:$X, immUExt8:$Y), (CMPEQi GPRC:$X, immUExt8:$Y)>;
|
||
|
||
def : Pat<(setugt GPRC:$X, GPRC:$Y), (CMPULT GPRC:$Y, GPRC:$X)>;
|
||
def : Pat<(setugt immUExt8:$X, GPRC:$Y), (CMPULTi GPRC:$Y, immUExt8:$X)>;
|
||
|
||
def : Pat<(setuge GPRC:$X, GPRC:$Y), (CMPULE GPRC:$Y, GPRC:$X)>;
|
||
def : Pat<(setuge immUExt8:$X, GPRC:$Y), (CMPULEi GPRC:$Y, immUExt8:$X)>;
|
||
|
||
def : Pat<(setgt GPRC:$X, GPRC:$Y), (CMPLT GPRC:$Y, GPRC:$X)>;
|
||
def : Pat<(setgt immUExt8:$X, GPRC:$Y), (CMPLTi GPRC:$Y, immUExt8:$X)>;
|
||
|
||
def : Pat<(setge GPRC:$X, GPRC:$Y), (CMPLE GPRC:$Y, GPRC:$X)>;
|
||
def : Pat<(setge immUExt8:$X, GPRC:$Y), (CMPLEi GPRC:$Y, immUExt8:$X)>;
|
||
|
||
def : Pat<(setne GPRC:$X, GPRC:$Y), (CMPEQi (CMPEQ GPRC:$X, GPRC:$Y), 0)>;
|
||
def : Pat<(setne GPRC:$X, immUExt8:$Y), (CMPEQi (CMPEQi GPRC:$X, immUExt8:$Y), 0)>;
|
||
|
||
def : Pat<(setune GPRC:$X, GPRC:$Y), (CMPEQi (CMPEQ GPRC:$X, GPRC:$Y), 0)>;
|
||
def : Pat<(setune GPRC:$X, immUExt8:$Y), (CMPEQi (CMPEQ GPRC:$X, immUExt8:$Y), 0)>;
|
||
|
||
|
||
let isReturn = 1, isTerminator = 1 in
|
||
def RET : MbrForm< 0x1A, 0x02, (ops GPRC:$RD, GPRC:$RS, s64imm:$DISP), "ret $RD,($RS),$DISP">; //Return from subroutine
|
||
//DAG Version:
|
||
let isReturn = 1, isTerminator = 1, Ra = 31, Rb = 26, disp = 1, Uses = [R26] in
|
||
def RETDAG : MbrForm< 0x1A, 0x02, (ops), "ret $$31,($$26),1">; //Return from subroutine
|
||
|
||
def JMP : MbrForm< 0x1A, 0x00, (ops GPRC:$RD, GPRC:$RS, GPRC:$DISP), "jmp $RD,($RS),$DISP">; //Jump
|
||
let isCall = 1,
|
||
Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R16, R17, R18, R19,
|
||
R20, R21, R22, R23, R24, R25, R27, R28, R29,
|
||
F0, F1,
|
||
F10, F11, F12, F13, F14, F15, F16, F17, F18, F19,
|
||
F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30], Uses = [R29] in {
|
||
def JSR : MbrForm< 0x1A, 0x01, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr $RD,($RS),$DISP">; //Jump to subroutine
|
||
def BSR : BForm<0x34, "bsr $RA,$DISP">; //Branch to subroutine
|
||
}
|
||
let isCall = 1,
|
||
Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R16, R17, R18, R19,
|
||
R20, R21, R22, R23, R24, R25, R26, R27, R28, R29,
|
||
F0, F1,
|
||
F10, F11, F12, F13, F14, F15, F16, F17, F18, F19,
|
||
F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30], Uses = [R27, R29] in {
|
||
def JSRDAG : MbrForm< 0x1A, 0x01, (ops ), "jsr $$26,($$27),0">; //Jump to subroutine
|
||
}
|
||
let isCall = 1, Defs = [R24, R25, R27, R28], Uses = [R24, R25] in
|
||
def JSRs : MbrForm< 0x1A, 0x01, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr $RD,($RS),$DISP">; //Jump to div or rem
|
||
|
||
def JSR_COROUTINE : MbrForm< 0x1A, 0x03, (ops GPRC:$RD, GPRC:$RS, s14imm:$DISP), "jsr_coroutine $RD,($RS),$DISP">; //Jump to subroutine return
|
||
def BR : BForm<0x30, "br $RA,$DISP">; //Branch
|
||
|
||
def BR_DAG : BFormD<0x30, "br $$31,$DISP">; //Branch
|
||
|
||
//Stores, int
|
||
def STB : MForm<0x0E, "stb $RA,$DISP($RB)">; // Store byte
|
||
def STW : MForm<0x0D, "stw $RA,$DISP($RB)">; // Store word
|
||
def STL : MForm<0x2C, "stl $RA,$DISP($RB)">; // Store longword
|
||
def STQ : MForm<0x2D, "stq $RA,$DISP($RB)">; //Store quadword
|
||
|
||
//Loads, int
|
||
def LDL : MForm<0x28, "ldl $RA,$DISP($RB)">; // Load sign-extended longword
|
||
def LDQ : MForm<0x29, "ldq $RA,$DISP($RB)">; //Load quadword
|
||
def LDBU : MForm<0x0A, "ldbu $RA,$DISP($RB)">; //Load zero-extended byte
|
||
def LDWU : MForm<0x0C, "ldwu $RA,$DISP($RB)">; //Load zero-extended word
|
||
|
||
//Stores, float
|
||
let OperandList = (ops F4RC:$RA, s16imm:$DISP, GPRC:$RB) in
|
||
def STS : MFormAlt<0x26, "sts $RA,$DISP($RB)">; //Store S_floating
|
||
let OperandList = (ops F8RC:$RA, s16imm:$DISP, GPRC:$RB) in
|
||
def STT : MFormAlt<0x27, "stt $RA,$DISP($RB)">; //Store T_floating
|
||
|
||
//Loads, float
|
||
let OperandList = (ops F4RC:$RA, s16imm:$DISP, GPRC:$RB) in
|
||
def LDS : MFormAlt<0x22, "lds $RA,$DISP($RB)">; //Load S_floating
|
||
let OperandList = (ops F8RC:$RA, s16imm:$DISP, GPRC:$RB) in
|
||
def LDT : MFormAlt<0x23, "ldt $RA,$DISP($RB)">; //Load T_floating
|
||
|
||
//Load address
|
||
def LDA : MForm<0x08, "lda $RA,$DISP($RB)">; //Load address
|
||
def LDAH : MForm<0x09, "ldah $RA,$DISP($RB)">; //Load address high
|
||
|
||
|
||
//Loads, int, Rellocated Low form
|
||
def LDLr : MForm<0x28, "ldl $RA,$DISP($RB)\t\t!gprellow">; // Load sign-extended longword
|
||
def LDQr : MForm<0x29, "ldq $RA,$DISP($RB)\t\t!gprellow">; //Load quadword
|
||
def LDBUr : MForm<0x0A, "ldbu $RA,$DISP($RB)\t\t!gprellow">; //Load zero-extended byte
|
||
def LDWUr : MForm<0x0C, "ldwu $RA,$DISP($RB)\t\t!gprellow">; //Load zero-extended word
|
||
|
||
//Loads, float, Rellocated Low form
|
||
let OperandList = (ops F4RC:$RA, s16imm:$DISP, GPRC:$RB) in
|
||
def LDSr : MFormAlt<0x22, "lds $RA,$DISP($RB)\t\t!gprellow">; //Load S_floating
|
||
let OperandList = (ops F8RC:$RA, s16imm:$DISP, GPRC:$RB) in
|
||
def LDTr : MFormAlt<0x23, "ldt $RA,$DISP($RB)\t\t!gprellow">; //Load T_floating
|
||
|
||
//Load address, rellocated low and high form
|
||
def LDAr : MForm<0x08, "lda $RA,$DISP($RB)\t\t!gprellow">; //Load address
|
||
def LDAHr : MForm<0x09, "ldah $RA,$DISP($RB)\t\t!gprelhigh">; //Load address high
|
||
|
||
//load address, rellocated gpdist form
|
||
def LDAg : MgForm<0x08, "lda $RA,0($RB)\t\t!gpdisp!$NUM">; //Load address
|
||
def LDAHg : MgForm<0x09, "ldah $RA,0($RB)\t\t!gpdisp!$NUM">; //Load address
|
||
|
||
|
||
//Load quad, rellocated literal form
|
||
def LDQl : MForm<0x29, "ldq $RA,$DISP($RB)\t\t!literal">; //Load quadword
|
||
|
||
//Stores, int
|
||
def STBr : MForm<0x0E, "stb $RA,$DISP($RB)\t\t!gprellow">; // Store byte
|
||
def STWr : MForm<0x0D, "stw $RA,$DISP($RB)\t\t!gprellow">; // Store word
|
||
def STLr : MForm<0x2C, "stl $RA,$DISP($RB)\t\t!gprellow">; // Store longword
|
||
def STQr : MForm<0x2D, "stq $RA,$DISP($RB)\t\t!gprellow">; //Store quadword
|
||
|
||
//Stores, float
|
||
let OperandList = (ops F4RC:$RA, s16imm:$DISP, GPRC:$RB) in
|
||
def STSr : MFormAlt<0x26, "sts $RA,$DISP($RB)\t\t!gprellow">; //Store S_floating
|
||
let OperandList = (ops F8RC:$RA, s16imm:$DISP, GPRC:$RB) in
|
||
def STTr : MFormAlt<0x27, "stt $RA,$DISP($RB)\t\t!gprellow">; //Store T_floating
|
||
|
||
|
||
//Branches, int
|
||
def BEQ : BForm<0x39, "beq $RA,$DISP">; //Branch if = zero
|
||
def BGE : BForm<0x3E, "bge $RA,$DISP">; //Branch if >= zero
|
||
def BGT : BForm<0x3F, "bgt $RA,$DISP">; //Branch if > zero
|
||
def BLBC : BForm<0x38, "blbc $RA,$DISP">; //Branch if low bit clear
|
||
def BLBS : BForm<0x3C, "blbs $RA,$DISP">; //Branch if low bit set
|
||
def BLE : BForm<0x3B, "ble $RA,$DISP">; //Branch if <= zero
|
||
def BLT : BForm<0x3A, "blt $RA,$DISP">; //Branch if < zero
|
||
def BNE : BForm<0x3D, "bne $RA,$DISP">; //Branch if != zero
|
||
|
||
//Branches, float
|
||
def FBEQ : FBForm<0x31, "fbeq $RA,$DISP">; //Floating branch if = zero
|
||
def FBGE : FBForm<0x36, "fbge $RA,$DISP">; //Floating branch if >= zero
|
||
def FBGT : FBForm<0x37, "fbgt $RA,$DISP">; //Floating branch if > zero
|
||
def FBLE : FBForm<0x33, "fble $RA,$DISP">; //Floating branch if <= zero
|
||
def FBLT : FBForm<0x32, "fblt $RA,$DISP">; //Floating branch if < zero
|
||
def FBNE : FBForm<0x35, "fbne $RA,$DISP">; //Floating branch if != zero
|
||
|
||
def RPCC : MfcForm<0x18, 0xC000, "rpcc $RA">; //Read process cycle counter
|
||
|
||
//Basic Floating point ops
|
||
|
||
//Floats
|
||
|
||
let OperandList = (ops F4RC:$RC, F4RC:$RB), Fa = 31 in
|
||
def SQRTS : FPForm<0x14, 0x58B, "sqrts/su $RB,$RC",
|
||
[(set F4RC:$RC, (fsqrt F4RC:$RB))]>;
|
||
|
||
let OperandList = (ops F4RC:$RC, F4RC:$RA, F4RC:$RB) in {
|
||
def ADDS : FPForm<0x16, 0x580, "adds/su $RA,$RB,$RC",
|
||
[(set F4RC:$RC, (fadd F4RC:$RA, F4RC:$RB))]>;
|
||
def SUBS : FPForm<0x16, 0x581, "subs/su $RA,$RB,$RC",
|
||
[(set F4RC:$RC, (fsub F4RC:$RA, F4RC:$RB))]>;
|
||
def DIVS : FPForm<0x16, 0x583, "divs/su $RA,$RB,$RC",
|
||
[(set F4RC:$RC, (fdiv F4RC:$RA, F4RC:$RB))]>;
|
||
def MULS : FPForm<0x16, 0x582, "muls/su $RA,$RB,$RC",
|
||
[(set F4RC:$RC, (fmul F4RC:$RA, F4RC:$RB))]>;
|
||
|
||
def CPYSS : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC",[]>; //Copy sign
|
||
def CPYSES : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC",[]>; //Copy sign and exponent
|
||
def CPYSNS : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC",[]>; //Copy sign negate
|
||
}
|
||
|
||
//Doubles
|
||
|
||
let OperandList = (ops F8RC:$RC, F8RC:$RB), Fa = 31 in
|
||
def SQRTT : FPForm<0x14, 0x5AB, "sqrtt/su $RB,$RC",
|
||
[(set F8RC:$RC, (fsqrt F8RC:$RB))]>;
|
||
|
||
let OperandList = (ops F8RC:$RC, F8RC:$RA, F8RC:$RB) in {
|
||
def ADDT : FPForm<0x16, 0x5A0, "addt/su $RA,$RB,$RC",
|
||
[(set F8RC:$RC, (fadd F8RC:$RA, F8RC:$RB))]>;
|
||
def SUBT : FPForm<0x16, 0x5A1, "subt/su $RA,$RB,$RC",
|
||
[(set F8RC:$RC, (fsub F8RC:$RA, F8RC:$RB))]>;
|
||
def DIVT : FPForm<0x16, 0x5A3, "divt/su $RA,$RB,$RC",
|
||
[(set F8RC:$RC, (fdiv F8RC:$RA, F8RC:$RB))]>;
|
||
def MULT : FPForm<0x16, 0x5A2, "mult/su $RA,$RB,$RC",
|
||
[(set F8RC:$RC, (fmul F8RC:$RA, F8RC:$RB))]>;
|
||
|
||
def CPYST : FPForm<0x17, 0x020, "cpys $RA,$RB,$RC",[]>; //Copy sign
|
||
def CPYSET : FPForm<0x17, 0x022, "cpyse $RA,$RB,$RC",[]>; //Copy sign and exponent
|
||
def CPYSNT : FPForm<0x17, 0x021, "cpysn $RA,$RB,$RC",[]>; //Copy sign negate
|
||
|
||
def CMPTEQ : FPForm<0x16, 0x5A5, "cmpteq/su $RA,$RB,$RC", []>;
|
||
// [(set F8RC:$RC, (seteq F8RC:$RA, F8RC:$RB))]>;
|
||
def CMPTLE : FPForm<0x16, 0x5A7, "cmptle/su $RA,$RB,$RC", []>;
|
||
// [(set F8RC:$RC, (setle F8RC:$RA, F8RC:$RB))]>;
|
||
def CMPTLT : FPForm<0x16, 0x5A6, "cmptlt/su $RA,$RB,$RC", []>;
|
||
// [(set F8RC:$RC, (setlt F8RC:$RA, F8RC:$RB))]>;
|
||
def CMPTUN : FPForm<0x16, 0x5A4, "cmptun/su $RA,$RB,$RC", []>;
|
||
// [(set F8RC:$RC, (setuo F8RC:$RA, F8RC:$RB))]>;
|
||
}
|
||
//TODO: Add lots more FP patterns
|
||
|
||
//conditional moves, floats
|
||
let OperandList = (ops F4RC:$RDEST, F4RC:$RSRC2, F4RC:$RSRC, F8RC:$RCOND),
|
||
isTwoAddress = 1 in {
|
||
def FCMOVEQS : FPForm<0x17, 0x02A, "fcmoveq $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if = zero
|
||
def FCMOVGES : FPForm<0x17, 0x02D, "fcmovge $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if >= zero
|
||
def FCMOVGTS : FPForm<0x17, 0x02F, "fcmovgt $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if > zero
|
||
def FCMOVLES : FPForm<0x17, 0x02E, "fcmovle $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if <= zero
|
||
def FCMOVLTS : FPForm<0x17, 0x02C, "fcmovlt $RCOND,$RSRC,$RDEST",[]>; // FCMOVE if < zero
|
||
def FCMOVNES : FPForm<0x17, 0x02B, "fcmovne $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if != zero
|
||
}
|
||
//conditional moves, doubles
|
||
let OperandList = (ops F8RC:$RDEST, F8RC:$RSRC2, F8RC:$RSRC, F8RC:$RCOND),
|
||
isTwoAddress = 1 in {
|
||
def FCMOVEQT : FPForm<0x17, 0x02A, "fcmoveq $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if = zero
|
||
def FCMOVGET : FPForm<0x17, 0x02D, "fcmovge $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if >= zero
|
||
def FCMOVGTT : FPForm<0x17, 0x02F, "fcmovgt $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if > zero
|
||
def FCMOVLET : FPForm<0x17, 0x02E, "fcmovle $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if <= zero
|
||
def FCMOVLTT : FPForm<0x17, 0x02C, "fcmovlt $RCOND,$RSRC,$RDEST",[]>; // FCMOVE if < zero
|
||
def FCMOVNET : FPForm<0x17, 0x02B, "fcmovne $RCOND,$RSRC,$RDEST",[]>; //FCMOVE if != zero
|
||
}
|
||
|
||
|
||
|
||
let OperandList = (ops GPRC:$RC, F4RC:$RA), Fb = 31 in
|
||
def FTOIS : FPForm<0x1C, 0x078, "ftois $RA,$RC",[]>; //Floating to integer move, S_floating
|
||
let OperandList = (ops GPRC:$RC, F8RC:$RA), Fb = 31 in
|
||
def FTOIT : FPForm<0x1C, 0x070, "ftoit $RA,$RC",
|
||
[(set GPRC:$RC, (Alpha_ftoit F8RC:$RA))]>; //Floating to integer move
|
||
let OperandList = (ops F4RC:$RC, GPRC:$RA), Fb = 31 in
|
||
def ITOFS : FPForm<0x14, 0x004, "itofs $RA,$RC",[]>; //Integer to floating move, S_floating
|
||
let OperandList = (ops F8RC:$RC, GPRC:$RA), Fb = 31 in
|
||
def ITOFT : FPForm<0x14, 0x024, "itoft $RA,$RC",
|
||
[(set F8RC:$RC, (Alpha_itoft GPRC:$RA))]>; //Integer to floating move
|
||
|
||
|
||
let OperandList = (ops F4RC:$RC, F8RC:$RB), Fa = 31 in
|
||
def CVTQS : FPForm<0x16, 0x7BC, "cvtqs/sui $RB,$RC",
|
||
[(set F4RC:$RC, (Alpha_cvtqs F8RC:$RB))]>;
|
||
let OperandList = (ops F8RC:$RC, F8RC:$RB), Fa = 31 in
|
||
def CVTQT : FPForm<0x16, 0x7BE, "cvtqt/sui $RB,$RC",
|
||
[(set F8RC:$RC, (Alpha_cvtqt F8RC:$RB))]>;
|
||
let OperandList = (ops F8RC:$RC, F8RC:$RB), Fa = 31 in
|
||
def CVTTQ : FPForm<0x16, 0x52F, "cvttq/svc $RB,$RC",
|
||
[(set F8RC:$RC, (Alpha_cvttq F8RC:$RB))]>;
|
||
let OperandList = (ops F8RC:$RC, F4RC:$RB), Fa = 31 in
|
||
def CVTST : FPForm<0x16, 0x6AC, "cvtst/s $RB,$RC",
|
||
[(set F8RC:$RC, (fextend F4RC:$RB))]>;
|
||
let OperandList = (ops F4RC:$RC, F8RC:$RB), Fa = 31 in
|
||
def CVTTS : FPForm<0x16, 0x7AC, "cvtts/sui $RB,$RC",
|
||
[(set F4RC:$RC, (fround F8RC:$RB))]>;
|
||
|
||
//S_floating : IEEE Single
|
||
//T_floating : IEEE Double
|
||
|
||
//Unused instructions
|
||
//Mnemonic Format Opcode Description
|
||
//CALL_PAL Pcd 00 Trap to PALcode
|
||
//ECB Mfc 18.E800 Evict cache block
|
||
//EXCB Mfc 18.0400 Exception barrier
|
||
//FETCH Mfc 18.8000 Prefetch data
|
||
//FETCH_M Mfc 18.A000 Prefetch data, modify intent
|
||
//LDL_L Mem 2A Load sign-extended longword locked
|
||
//LDQ_L Mem 2B Load quadword locked
|
||
//LDQ_U Mem 0B Load unaligned quadword
|
||
//MB Mfc 18.4000 Memory barrier
|
||
//STL_C Mem 2E Store longword conditional
|
||
//STQ_C Mem 2F Store quadword conditional
|
||
//STQ_U Mem 0F Store unaligned quadword
|
||
//TRAPB Mfc 18.0000 Trap barrier
|
||
//WH64 Mfc 18.F800 Write hint 64 bytes
|
||
//WMB Mfc 18.4400 Write memory barrier
|
||
//MF_FPCR F-P 17.025 Move from FPCR
|
||
//MT_FPCR F-P 17.024 Move to FPCR
|
||
//There are in the Multimedia extentions, so let's not use them yet
|
||
//def MAXSB8 : OForm<0x1C, 0x3E, "MAXSB8 $RA,$RB,$RC">; //Vector signed byte maximum
|
||
//def MAXSW4 : OForm< 0x1C, 0x3F, "MAXSW4 $RA,$RB,$RC">; //Vector signed word maximum
|
||
//def MAXUB8 : OForm<0x1C, 0x3C, "MAXUB8 $RA,$RB,$RC">; //Vector unsigned byte maximum
|
||
//def MAXUW4 : OForm< 0x1C, 0x3D, "MAXUW4 $RA,$RB,$RC">; //Vector unsigned word maximum
|
||
//def MINSB8 : OForm< 0x1C, 0x38, "MINSB8 $RA,$RB,$RC">; //Vector signed byte minimum
|
||
//def MINSW4 : OForm< 0x1C, 0x39, "MINSW4 $RA,$RB,$RC">; //Vector signed word minimum
|
||
//def MINUB8 : OForm< 0x1C, 0x3A, "MINUB8 $RA,$RB,$RC">; //Vector unsigned byte minimum
|
||
//def MINUW4 : OForm< 0x1C, 0x3B, "MINUW4 $RA,$RB,$RC">; //Vector unsigned word minimum
|
||
//def PERR : OForm< 0x1C, 0x31, "PERR $RA,$RB,$RC">; //Pixel error
|
||
//def PKLB : OForm< 0x1C, 0x37, "PKLB $RA,$RB,$RC">; //Pack longwords to bytes
|
||
//def PKWB : OForm<0x1C, 0x36, "PKWB $RA,$RB,$RC">; //Pack words to bytes
|
||
//def UNPKBL : OForm< 0x1C, 0x35, "UNPKBL $RA,$RB,$RC">; //Unpack bytes to longwords
|
||
//def UNPKBW : OForm< 0x1C, 0x34, "UNPKBW $RA,$RB,$RC">; //Unpack bytes to words
|
||
//CVTLQ F-P 17.010 Convert longword to quadword
|
||
//CVTQL F-P 17.030 Convert quadword to longword
|
||
//def AMASK : OForm< 0x11, 0x61, "AMASK $RA,$RB,$RC", []>; //Architecture mask
|
||
//def AMASKi : OFormL<0x11, 0x61, "AMASK $RA,$L,$RC", []>; //Architecture mask
|
||
|
||
|
||
//Constant handling
|
||
|
||
def immConst2Part : PatLeaf<(imm), [{
|
||
// immZAP predicate - True if the immediate fits is suitable for use in a
|
||
// ZAP instruction
|
||
int64_t val = (int64_t)N->getValue();
|
||
return (val <= (int64_t)IMM_HIGH +(int64_t)IMM_HIGH* (int64_t)IMM_MULT &
|
||
val >= (int64_t)IMM_LOW + (int64_t)IMM_LOW * (int64_t)IMM_MULT);
|
||
}]>;
|
||
|
||
//TODO: factor this out
|
||
def LL16 : SDNodeXForm<imm, [{
|
||
int64_t l = N->getValue();
|
||
int64_t y = l / IMM_MULT;
|
||
if (l % IMM_MULT > IMM_HIGH)
|
||
++y;
|
||
return getI64Imm(l - y * IMM_MULT);
|
||
}]>;
|
||
//TODO: factor this out
|
||
def LH16 : SDNodeXForm<imm, [{
|
||
int64_t l = N->getValue();
|
||
int64_t y = l / IMM_MULT;
|
||
if (l % IMM_MULT > IMM_HIGH)
|
||
++y;
|
||
return getI64Imm(y);
|
||
}]>;
|
||
|
||
def : Pat<(i64 immConst2Part:$imm),
|
||
(LDA (LL16 immConst2Part:$imm), (LDAH (LH16 immConst2Part:$imm), R31))>;
|
||
|
||
def : Pat<(i64 immSExt16:$imm),
|
||
(LDA immSExt16:$imm, R31)>;
|
||
|
||
//TODO: I want to just define these like this!
|
||
//def : Pat<(i64 0),
|
||
// (R31)>;
|
||
//def : Pat<(f64 0.0),
|
||
// (F31)>;
|
||
//def : Pat<(f64 -0.0),
|
||
// (CPYSNT F31, F31)>;
|
||
//def : Pat<(f32 0.0),
|
||
// (F31)>;
|
||
//def : Pat<(f32 -0.0),
|
||
// (CPYSNS F31, F31)>;
|
||
|
||
//Misc Patterns:
|
||
|
||
def : Pat<(sext_inreg GPRC:$RB, i32),
|
||
(ADDLi GPRC:$RB, 0)>;
|
||
|
||
def : Pat<(select GPRC:$which, GPRC:$src1, GPRC:$src2),
|
||
(CMOVEQ GPRC:$src1, GPRC:$src2, GPRC:$which)>; //may be CMOVNE
|
||
|
||
def : Pat<(fabs F8RC:$RB),
|
||
(CPYST F31, F8RC:$RB)>;
|
||
def : Pat<(fabs F4RC:$RB),
|
||
(CPYSS F31, F4RC:$RB)>;
|
||
def : Pat<(fneg F8RC:$RB),
|
||
(CPYSNT F8RC:$RB, F8RC:$RB)>;
|
||
def : Pat<(fneg F4RC:$RB),
|
||
(CPYSNS F4RC:$RB, F4RC:$RB)>;
|
||
//Yes, signed multiply high is ugly
|
||
def : Pat<(mulhs GPRC:$RA, GPRC:$RB),
|
||
(SUBQ (UMULH GPRC:$RA, GPRC:$RB), (ADDQ (CMOVGE GPRC:$RB, R31, GPRC:$RA),
|
||
(CMOVGE GPRC:$RA, R31, GPRC:$RB)))>;
|