forked from OSchip/llvm-project
2780 lines
115 KiB
C++
2780 lines
115 KiB
C++
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is the internal per-function state used for llvm translation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
|
|
#define CLANG_CODEGEN_CODEGENFUNCTION_H
|
|
|
|
#include "CGBuilder.h"
|
|
#include "CGDebugInfo.h"
|
|
#include "CGLoopInfo.h"
|
|
#include "CGValue.h"
|
|
#include "CodeGenModule.h"
|
|
#include "CodeGenPGO.h"
|
|
#include "EHScopeStack.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/Basic/ABI.h"
|
|
#include "clang/Basic/CapturedStmt.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
namespace llvm {
|
|
class BasicBlock;
|
|
class LLVMContext;
|
|
class MDNode;
|
|
class Module;
|
|
class SwitchInst;
|
|
class Twine;
|
|
class Value;
|
|
class CallSite;
|
|
}
|
|
|
|
namespace clang {
|
|
class ASTContext;
|
|
class BlockDecl;
|
|
class CXXDestructorDecl;
|
|
class CXXForRangeStmt;
|
|
class CXXTryStmt;
|
|
class Decl;
|
|
class LabelDecl;
|
|
class EnumConstantDecl;
|
|
class FunctionDecl;
|
|
class FunctionProtoType;
|
|
class LabelStmt;
|
|
class ObjCContainerDecl;
|
|
class ObjCInterfaceDecl;
|
|
class ObjCIvarDecl;
|
|
class ObjCMethodDecl;
|
|
class ObjCImplementationDecl;
|
|
class ObjCPropertyImplDecl;
|
|
class TargetInfo;
|
|
class TargetCodeGenInfo;
|
|
class VarDecl;
|
|
class ObjCForCollectionStmt;
|
|
class ObjCAtTryStmt;
|
|
class ObjCAtThrowStmt;
|
|
class ObjCAtSynchronizedStmt;
|
|
class ObjCAutoreleasePoolStmt;
|
|
|
|
namespace CodeGen {
|
|
class CodeGenTypes;
|
|
class CGFunctionInfo;
|
|
class CGRecordLayout;
|
|
class CGBlockInfo;
|
|
class CGCXXABI;
|
|
class BlockFlags;
|
|
class BlockFieldFlags;
|
|
|
|
/// The kind of evaluation to perform on values of a particular
|
|
/// type. Basically, is the code in CGExprScalar, CGExprComplex, or
|
|
/// CGExprAgg?
|
|
///
|
|
/// TODO: should vectors maybe be split out into their own thing?
|
|
enum TypeEvaluationKind {
|
|
TEK_Scalar,
|
|
TEK_Complex,
|
|
TEK_Aggregate
|
|
};
|
|
|
|
class SuppressDebugLocation {
|
|
llvm::DebugLoc CurLoc;
|
|
llvm::IRBuilderBase &Builder;
|
|
public:
|
|
SuppressDebugLocation(llvm::IRBuilderBase &Builder)
|
|
: CurLoc(Builder.getCurrentDebugLocation()), Builder(Builder) {
|
|
Builder.SetCurrentDebugLocation(llvm::DebugLoc());
|
|
}
|
|
~SuppressDebugLocation() {
|
|
Builder.SetCurrentDebugLocation(CurLoc);
|
|
}
|
|
};
|
|
|
|
/// CodeGenFunction - This class organizes the per-function state that is used
|
|
/// while generating LLVM code.
|
|
class CodeGenFunction : public CodeGenTypeCache {
|
|
CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
|
|
void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
|
|
|
|
friend class CGCXXABI;
|
|
public:
|
|
/// A jump destination is an abstract label, branching to which may
|
|
/// require a jump out through normal cleanups.
|
|
struct JumpDest {
|
|
JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
|
|
JumpDest(llvm::BasicBlock *Block,
|
|
EHScopeStack::stable_iterator Depth,
|
|
unsigned Index)
|
|
: Block(Block), ScopeDepth(Depth), Index(Index) {}
|
|
|
|
bool isValid() const { return Block != nullptr; }
|
|
llvm::BasicBlock *getBlock() const { return Block; }
|
|
EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
|
|
unsigned getDestIndex() const { return Index; }
|
|
|
|
// This should be used cautiously.
|
|
void setScopeDepth(EHScopeStack::stable_iterator depth) {
|
|
ScopeDepth = depth;
|
|
}
|
|
|
|
private:
|
|
llvm::BasicBlock *Block;
|
|
EHScopeStack::stable_iterator ScopeDepth;
|
|
unsigned Index;
|
|
};
|
|
|
|
CodeGenModule &CGM; // Per-module state.
|
|
const TargetInfo &Target;
|
|
|
|
typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
|
|
LoopInfoStack LoopStack;
|
|
CGBuilderTy Builder;
|
|
|
|
/// \brief CGBuilder insert helper. This function is called after an
|
|
/// instruction is created using Builder.
|
|
void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
|
|
llvm::BasicBlock *BB,
|
|
llvm::BasicBlock::iterator InsertPt) const;
|
|
|
|
/// CurFuncDecl - Holds the Decl for the current outermost
|
|
/// non-closure context.
|
|
const Decl *CurFuncDecl;
|
|
/// CurCodeDecl - This is the inner-most code context, which includes blocks.
|
|
const Decl *CurCodeDecl;
|
|
const CGFunctionInfo *CurFnInfo;
|
|
QualType FnRetTy;
|
|
llvm::Function *CurFn;
|
|
|
|
/// CurGD - The GlobalDecl for the current function being compiled.
|
|
GlobalDecl CurGD;
|
|
|
|
/// PrologueCleanupDepth - The cleanup depth enclosing all the
|
|
/// cleanups associated with the parameters.
|
|
EHScopeStack::stable_iterator PrologueCleanupDepth;
|
|
|
|
/// ReturnBlock - Unified return block.
|
|
JumpDest ReturnBlock;
|
|
|
|
/// ReturnValue - The temporary alloca to hold the return value. This is null
|
|
/// iff the function has no return value.
|
|
llvm::Value *ReturnValue;
|
|
|
|
/// AllocaInsertPoint - This is an instruction in the entry block before which
|
|
/// we prefer to insert allocas.
|
|
llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
|
|
|
|
/// \brief API for captured statement code generation.
|
|
class CGCapturedStmtInfo {
|
|
public:
|
|
explicit CGCapturedStmtInfo(const CapturedStmt &S,
|
|
CapturedRegionKind K = CR_Default)
|
|
: Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
|
|
|
|
RecordDecl::field_iterator Field =
|
|
S.getCapturedRecordDecl()->field_begin();
|
|
for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
|
|
E = S.capture_end();
|
|
I != E; ++I, ++Field) {
|
|
if (I->capturesThis())
|
|
CXXThisFieldDecl = *Field;
|
|
else
|
|
CaptureFields[I->getCapturedVar()] = *Field;
|
|
}
|
|
}
|
|
|
|
virtual ~CGCapturedStmtInfo();
|
|
|
|
CapturedRegionKind getKind() const { return Kind; }
|
|
|
|
void setContextValue(llvm::Value *V) { ThisValue = V; }
|
|
// \brief Retrieve the value of the context parameter.
|
|
llvm::Value *getContextValue() const { return ThisValue; }
|
|
|
|
/// \brief Lookup the captured field decl for a variable.
|
|
const FieldDecl *lookup(const VarDecl *VD) const {
|
|
return CaptureFields.lookup(VD);
|
|
}
|
|
|
|
bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != nullptr; }
|
|
FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
|
|
|
|
/// \brief Emit the captured statement body.
|
|
virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
|
|
RegionCounter Cnt = CGF.getPGORegionCounter(S);
|
|
Cnt.beginRegion(CGF.Builder);
|
|
CGF.EmitStmt(S);
|
|
}
|
|
|
|
/// \brief Get the name of the capture helper.
|
|
virtual StringRef getHelperName() const { return "__captured_stmt"; }
|
|
|
|
private:
|
|
/// \brief The kind of captured statement being generated.
|
|
CapturedRegionKind Kind;
|
|
|
|
/// \brief Keep the map between VarDecl and FieldDecl.
|
|
llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
|
|
|
|
/// \brief The base address of the captured record, passed in as the first
|
|
/// argument of the parallel region function.
|
|
llvm::Value *ThisValue;
|
|
|
|
/// \brief Captured 'this' type.
|
|
FieldDecl *CXXThisFieldDecl;
|
|
};
|
|
CGCapturedStmtInfo *CapturedStmtInfo;
|
|
|
|
/// BoundsChecking - Emit run-time bounds checks. Higher values mean
|
|
/// potentially higher performance penalties.
|
|
unsigned char BoundsChecking;
|
|
|
|
/// \brief Sanitizer options to use for this function.
|
|
const SanitizerOptions *SanOpts;
|
|
|
|
/// \brief True if CodeGen currently emits code implementing sanitizer checks.
|
|
bool IsSanitizerScope;
|
|
|
|
/// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
|
|
class SanitizerScope {
|
|
CodeGenFunction *CGF;
|
|
public:
|
|
SanitizerScope(CodeGenFunction *CGF);
|
|
~SanitizerScope();
|
|
};
|
|
|
|
/// In ARC, whether we should autorelease the return value.
|
|
bool AutoreleaseResult;
|
|
|
|
const CodeGen::CGBlockInfo *BlockInfo;
|
|
llvm::Value *BlockPointer;
|
|
|
|
llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
|
|
FieldDecl *LambdaThisCaptureField;
|
|
|
|
/// \brief A mapping from NRVO variables to the flags used to indicate
|
|
/// when the NRVO has been applied to this variable.
|
|
llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
|
|
|
|
EHScopeStack EHStack;
|
|
llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
|
|
|
|
/// Header for data within LifetimeExtendedCleanupStack.
|
|
struct LifetimeExtendedCleanupHeader {
|
|
/// The size of the following cleanup object.
|
|
size_t Size : 29;
|
|
/// The kind of cleanup to push: a value from the CleanupKind enumeration.
|
|
unsigned Kind : 3;
|
|
|
|
size_t getSize() const { return Size; }
|
|
CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
|
|
};
|
|
|
|
/// i32s containing the indexes of the cleanup destinations.
|
|
llvm::AllocaInst *NormalCleanupDest;
|
|
|
|
unsigned NextCleanupDestIndex;
|
|
|
|
/// FirstBlockInfo - The head of a singly-linked-list of block layouts.
|
|
CGBlockInfo *FirstBlockInfo;
|
|
|
|
/// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
|
|
llvm::BasicBlock *EHResumeBlock;
|
|
|
|
/// The exception slot. All landing pads write the current exception pointer
|
|
/// into this alloca.
|
|
llvm::Value *ExceptionSlot;
|
|
|
|
/// The selector slot. Under the MandatoryCleanup model, all landing pads
|
|
/// write the current selector value into this alloca.
|
|
llvm::AllocaInst *EHSelectorSlot;
|
|
|
|
/// Emits a landing pad for the current EH stack.
|
|
llvm::BasicBlock *EmitLandingPad();
|
|
|
|
llvm::BasicBlock *getInvokeDestImpl();
|
|
|
|
template <class T>
|
|
typename DominatingValue<T>::saved_type saveValueInCond(T value) {
|
|
return DominatingValue<T>::save(*this, value);
|
|
}
|
|
|
|
public:
|
|
/// ObjCEHValueStack - Stack of Objective-C exception values, used for
|
|
/// rethrows.
|
|
SmallVector<llvm::Value*, 8> ObjCEHValueStack;
|
|
|
|
/// A class controlling the emission of a finally block.
|
|
class FinallyInfo {
|
|
/// Where the catchall's edge through the cleanup should go.
|
|
JumpDest RethrowDest;
|
|
|
|
/// A function to call to enter the catch.
|
|
llvm::Constant *BeginCatchFn;
|
|
|
|
/// An i1 variable indicating whether or not the @finally is
|
|
/// running for an exception.
|
|
llvm::AllocaInst *ForEHVar;
|
|
|
|
/// An i8* variable into which the exception pointer to rethrow
|
|
/// has been saved.
|
|
llvm::AllocaInst *SavedExnVar;
|
|
|
|
public:
|
|
void enter(CodeGenFunction &CGF, const Stmt *Finally,
|
|
llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
|
|
llvm::Constant *rethrowFn);
|
|
void exit(CodeGenFunction &CGF);
|
|
};
|
|
|
|
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
|
|
/// current full-expression. Safe against the possibility that
|
|
/// we're currently inside a conditionally-evaluated expression.
|
|
template <class T, class A0>
|
|
void pushFullExprCleanup(CleanupKind kind, A0 a0) {
|
|
// If we're not in a conditional branch, or if none of the
|
|
// arguments requires saving, then use the unconditional cleanup.
|
|
if (!isInConditionalBranch())
|
|
return EHStack.pushCleanup<T>(kind, a0);
|
|
|
|
typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
|
|
|
|
typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
|
|
EHStack.pushCleanup<CleanupType>(kind, a0_saved);
|
|
initFullExprCleanup();
|
|
}
|
|
|
|
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
|
|
/// current full-expression. Safe against the possibility that
|
|
/// we're currently inside a conditionally-evaluated expression.
|
|
template <class T, class A0, class A1>
|
|
void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
|
|
// If we're not in a conditional branch, or if none of the
|
|
// arguments requires saving, then use the unconditional cleanup.
|
|
if (!isInConditionalBranch())
|
|
return EHStack.pushCleanup<T>(kind, a0, a1);
|
|
|
|
typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
|
|
typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
|
|
|
|
typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
|
|
EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
|
|
initFullExprCleanup();
|
|
}
|
|
|
|
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
|
|
/// current full-expression. Safe against the possibility that
|
|
/// we're currently inside a conditionally-evaluated expression.
|
|
template <class T, class A0, class A1, class A2>
|
|
void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
|
|
// If we're not in a conditional branch, or if none of the
|
|
// arguments requires saving, then use the unconditional cleanup.
|
|
if (!isInConditionalBranch()) {
|
|
return EHStack.pushCleanup<T>(kind, a0, a1, a2);
|
|
}
|
|
|
|
typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
|
|
typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
|
|
typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
|
|
|
|
typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
|
|
EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
|
|
initFullExprCleanup();
|
|
}
|
|
|
|
/// pushFullExprCleanup - Push a cleanup to be run at the end of the
|
|
/// current full-expression. Safe against the possibility that
|
|
/// we're currently inside a conditionally-evaluated expression.
|
|
template <class T, class A0, class A1, class A2, class A3>
|
|
void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
|
|
// If we're not in a conditional branch, or if none of the
|
|
// arguments requires saving, then use the unconditional cleanup.
|
|
if (!isInConditionalBranch()) {
|
|
return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
|
|
}
|
|
|
|
typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
|
|
typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
|
|
typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
|
|
typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
|
|
|
|
typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
|
|
EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
|
|
a2_saved, a3_saved);
|
|
initFullExprCleanup();
|
|
}
|
|
|
|
/// \brief Queue a cleanup to be pushed after finishing the current
|
|
/// full-expression.
|
|
template <class T, class A0, class A1, class A2, class A3>
|
|
void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
|
|
assert(!isInConditionalBranch() && "can't defer conditional cleanup");
|
|
|
|
LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
|
|
|
|
size_t OldSize = LifetimeExtendedCleanupStack.size();
|
|
LifetimeExtendedCleanupStack.resize(
|
|
LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
|
|
|
|
char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
|
|
new (Buffer) LifetimeExtendedCleanupHeader(Header);
|
|
new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
|
|
}
|
|
|
|
/// Set up the last cleaup that was pushed as a conditional
|
|
/// full-expression cleanup.
|
|
void initFullExprCleanup();
|
|
|
|
/// PushDestructorCleanup - Push a cleanup to call the
|
|
/// complete-object destructor of an object of the given type at the
|
|
/// given address. Does nothing if T is not a C++ class type with a
|
|
/// non-trivial destructor.
|
|
void PushDestructorCleanup(QualType T, llvm::Value *Addr);
|
|
|
|
/// PushDestructorCleanup - Push a cleanup to call the
|
|
/// complete-object variant of the given destructor on the object at
|
|
/// the given address.
|
|
void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
|
|
llvm::Value *Addr);
|
|
|
|
/// PopCleanupBlock - Will pop the cleanup entry on the stack and
|
|
/// process all branch fixups.
|
|
void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
|
|
|
|
/// DeactivateCleanupBlock - Deactivates the given cleanup block.
|
|
/// The block cannot be reactivated. Pops it if it's the top of the
|
|
/// stack.
|
|
///
|
|
/// \param DominatingIP - An instruction which is known to
|
|
/// dominate the current IP (if set) and which lies along
|
|
/// all paths of execution between the current IP and the
|
|
/// the point at which the cleanup comes into scope.
|
|
void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
|
|
llvm::Instruction *DominatingIP);
|
|
|
|
/// ActivateCleanupBlock - Activates an initially-inactive cleanup.
|
|
/// Cannot be used to resurrect a deactivated cleanup.
|
|
///
|
|
/// \param DominatingIP - An instruction which is known to
|
|
/// dominate the current IP (if set) and which lies along
|
|
/// all paths of execution between the current IP and the
|
|
/// the point at which the cleanup comes into scope.
|
|
void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
|
|
llvm::Instruction *DominatingIP);
|
|
|
|
/// \brief Enters a new scope for capturing cleanups, all of which
|
|
/// will be executed once the scope is exited.
|
|
class RunCleanupsScope {
|
|
EHScopeStack::stable_iterator CleanupStackDepth;
|
|
size_t LifetimeExtendedCleanupStackSize;
|
|
bool OldDidCallStackSave;
|
|
protected:
|
|
bool PerformCleanup;
|
|
private:
|
|
|
|
RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
|
|
void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
|
|
|
|
protected:
|
|
CodeGenFunction& CGF;
|
|
|
|
public:
|
|
/// \brief Enter a new cleanup scope.
|
|
explicit RunCleanupsScope(CodeGenFunction &CGF)
|
|
: PerformCleanup(true), CGF(CGF)
|
|
{
|
|
CleanupStackDepth = CGF.EHStack.stable_begin();
|
|
LifetimeExtendedCleanupStackSize =
|
|
CGF.LifetimeExtendedCleanupStack.size();
|
|
OldDidCallStackSave = CGF.DidCallStackSave;
|
|
CGF.DidCallStackSave = false;
|
|
}
|
|
|
|
/// \brief Exit this cleanup scope, emitting any accumulated
|
|
/// cleanups.
|
|
~RunCleanupsScope() {
|
|
if (PerformCleanup) {
|
|
CGF.DidCallStackSave = OldDidCallStackSave;
|
|
CGF.PopCleanupBlocks(CleanupStackDepth,
|
|
LifetimeExtendedCleanupStackSize);
|
|
}
|
|
}
|
|
|
|
/// \brief Determine whether this scope requires any cleanups.
|
|
bool requiresCleanups() const {
|
|
return CGF.EHStack.stable_begin() != CleanupStackDepth;
|
|
}
|
|
|
|
/// \brief Force the emission of cleanups now, instead of waiting
|
|
/// until this object is destroyed.
|
|
void ForceCleanup() {
|
|
assert(PerformCleanup && "Already forced cleanup");
|
|
CGF.DidCallStackSave = OldDidCallStackSave;
|
|
CGF.PopCleanupBlocks(CleanupStackDepth,
|
|
LifetimeExtendedCleanupStackSize);
|
|
PerformCleanup = false;
|
|
}
|
|
};
|
|
|
|
class LexicalScope: protected RunCleanupsScope {
|
|
SourceRange Range;
|
|
SmallVector<const LabelDecl*, 4> Labels;
|
|
LexicalScope *ParentScope;
|
|
|
|
LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
|
|
void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
|
|
|
|
public:
|
|
/// \brief Enter a new cleanup scope.
|
|
explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
|
|
: RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
|
|
CGF.CurLexicalScope = this;
|
|
if (CGDebugInfo *DI = CGF.getDebugInfo())
|
|
DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
|
|
}
|
|
|
|
void addLabel(const LabelDecl *label) {
|
|
assert(PerformCleanup && "adding label to dead scope?");
|
|
Labels.push_back(label);
|
|
}
|
|
|
|
/// \brief Exit this cleanup scope, emitting any accumulated
|
|
/// cleanups.
|
|
~LexicalScope() {
|
|
if (CGDebugInfo *DI = CGF.getDebugInfo())
|
|
DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
|
|
|
|
// If we should perform a cleanup, force them now. Note that
|
|
// this ends the cleanup scope before rescoping any labels.
|
|
if (PerformCleanup) ForceCleanup();
|
|
}
|
|
|
|
/// \brief Force the emission of cleanups now, instead of waiting
|
|
/// until this object is destroyed.
|
|
void ForceCleanup() {
|
|
CGF.CurLexicalScope = ParentScope;
|
|
RunCleanupsScope::ForceCleanup();
|
|
|
|
if (!Labels.empty())
|
|
rescopeLabels();
|
|
}
|
|
|
|
void rescopeLabels();
|
|
};
|
|
|
|
|
|
/// \brief Takes the old cleanup stack size and emits the cleanup blocks
|
|
/// that have been added.
|
|
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
|
|
|
|
/// \brief Takes the old cleanup stack size and emits the cleanup blocks
|
|
/// that have been added, then adds all lifetime-extended cleanups from
|
|
/// the given position to the stack.
|
|
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
|
|
size_t OldLifetimeExtendedStackSize);
|
|
|
|
void ResolveBranchFixups(llvm::BasicBlock *Target);
|
|
|
|
/// The given basic block lies in the current EH scope, but may be a
|
|
/// target of a potentially scope-crossing jump; get a stable handle
|
|
/// to which we can perform this jump later.
|
|
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
|
|
return JumpDest(Target,
|
|
EHStack.getInnermostNormalCleanup(),
|
|
NextCleanupDestIndex++);
|
|
}
|
|
|
|
/// The given basic block lies in the current EH scope, but may be a
|
|
/// target of a potentially scope-crossing jump; get a stable handle
|
|
/// to which we can perform this jump later.
|
|
JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
|
|
return getJumpDestInCurrentScope(createBasicBlock(Name));
|
|
}
|
|
|
|
/// EmitBranchThroughCleanup - Emit a branch from the current insert
|
|
/// block through the normal cleanup handling code (if any) and then
|
|
/// on to \arg Dest.
|
|
void EmitBranchThroughCleanup(JumpDest Dest);
|
|
|
|
/// isObviouslyBranchWithoutCleanups - Return true if a branch to the
|
|
/// specified destination obviously has no cleanups to run. 'false' is always
|
|
/// a conservatively correct answer for this method.
|
|
bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
|
|
|
|
/// popCatchScope - Pops the catch scope at the top of the EHScope
|
|
/// stack, emitting any required code (other than the catch handlers
|
|
/// themselves).
|
|
void popCatchScope();
|
|
|
|
llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
|
|
llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
|
|
|
|
/// An object to manage conditionally-evaluated expressions.
|
|
class ConditionalEvaluation {
|
|
llvm::BasicBlock *StartBB;
|
|
|
|
public:
|
|
ConditionalEvaluation(CodeGenFunction &CGF)
|
|
: StartBB(CGF.Builder.GetInsertBlock()) {}
|
|
|
|
void begin(CodeGenFunction &CGF) {
|
|
assert(CGF.OutermostConditional != this);
|
|
if (!CGF.OutermostConditional)
|
|
CGF.OutermostConditional = this;
|
|
}
|
|
|
|
void end(CodeGenFunction &CGF) {
|
|
assert(CGF.OutermostConditional != nullptr);
|
|
if (CGF.OutermostConditional == this)
|
|
CGF.OutermostConditional = nullptr;
|
|
}
|
|
|
|
/// Returns a block which will be executed prior to each
|
|
/// evaluation of the conditional code.
|
|
llvm::BasicBlock *getStartingBlock() const {
|
|
return StartBB;
|
|
}
|
|
};
|
|
|
|
/// isInConditionalBranch - Return true if we're currently emitting
|
|
/// one branch or the other of a conditional expression.
|
|
bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
|
|
|
|
void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
|
|
assert(isInConditionalBranch());
|
|
llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
|
|
new llvm::StoreInst(value, addr, &block->back());
|
|
}
|
|
|
|
/// An RAII object to record that we're evaluating a statement
|
|
/// expression.
|
|
class StmtExprEvaluation {
|
|
CodeGenFunction &CGF;
|
|
|
|
/// We have to save the outermost conditional: cleanups in a
|
|
/// statement expression aren't conditional just because the
|
|
/// StmtExpr is.
|
|
ConditionalEvaluation *SavedOutermostConditional;
|
|
|
|
public:
|
|
StmtExprEvaluation(CodeGenFunction &CGF)
|
|
: CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
|
|
CGF.OutermostConditional = nullptr;
|
|
}
|
|
|
|
~StmtExprEvaluation() {
|
|
CGF.OutermostConditional = SavedOutermostConditional;
|
|
CGF.EnsureInsertPoint();
|
|
}
|
|
};
|
|
|
|
/// An object which temporarily prevents a value from being
|
|
/// destroyed by aggressive peephole optimizations that assume that
|
|
/// all uses of a value have been realized in the IR.
|
|
class PeepholeProtection {
|
|
llvm::Instruction *Inst;
|
|
friend class CodeGenFunction;
|
|
|
|
public:
|
|
PeepholeProtection() : Inst(nullptr) {}
|
|
};
|
|
|
|
/// A non-RAII class containing all the information about a bound
|
|
/// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
|
|
/// this which makes individual mappings very simple; using this
|
|
/// class directly is useful when you have a variable number of
|
|
/// opaque values or don't want the RAII functionality for some
|
|
/// reason.
|
|
class OpaqueValueMappingData {
|
|
const OpaqueValueExpr *OpaqueValue;
|
|
bool BoundLValue;
|
|
CodeGenFunction::PeepholeProtection Protection;
|
|
|
|
OpaqueValueMappingData(const OpaqueValueExpr *ov,
|
|
bool boundLValue)
|
|
: OpaqueValue(ov), BoundLValue(boundLValue) {}
|
|
public:
|
|
OpaqueValueMappingData() : OpaqueValue(nullptr) {}
|
|
|
|
static bool shouldBindAsLValue(const Expr *expr) {
|
|
// gl-values should be bound as l-values for obvious reasons.
|
|
// Records should be bound as l-values because IR generation
|
|
// always keeps them in memory. Expressions of function type
|
|
// act exactly like l-values but are formally required to be
|
|
// r-values in C.
|
|
return expr->isGLValue() ||
|
|
expr->getType()->isFunctionType() ||
|
|
hasAggregateEvaluationKind(expr->getType());
|
|
}
|
|
|
|
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
|
|
const OpaqueValueExpr *ov,
|
|
const Expr *e) {
|
|
if (shouldBindAsLValue(ov))
|
|
return bind(CGF, ov, CGF.EmitLValue(e));
|
|
return bind(CGF, ov, CGF.EmitAnyExpr(e));
|
|
}
|
|
|
|
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
|
|
const OpaqueValueExpr *ov,
|
|
const LValue &lv) {
|
|
assert(shouldBindAsLValue(ov));
|
|
CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
|
|
return OpaqueValueMappingData(ov, true);
|
|
}
|
|
|
|
static OpaqueValueMappingData bind(CodeGenFunction &CGF,
|
|
const OpaqueValueExpr *ov,
|
|
const RValue &rv) {
|
|
assert(!shouldBindAsLValue(ov));
|
|
CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
|
|
|
|
OpaqueValueMappingData data(ov, false);
|
|
|
|
// Work around an extremely aggressive peephole optimization in
|
|
// EmitScalarConversion which assumes that all other uses of a
|
|
// value are extant.
|
|
data.Protection = CGF.protectFromPeepholes(rv);
|
|
|
|
return data;
|
|
}
|
|
|
|
bool isValid() const { return OpaqueValue != nullptr; }
|
|
void clear() { OpaqueValue = nullptr; }
|
|
|
|
void unbind(CodeGenFunction &CGF) {
|
|
assert(OpaqueValue && "no data to unbind!");
|
|
|
|
if (BoundLValue) {
|
|
CGF.OpaqueLValues.erase(OpaqueValue);
|
|
} else {
|
|
CGF.OpaqueRValues.erase(OpaqueValue);
|
|
CGF.unprotectFromPeepholes(Protection);
|
|
}
|
|
}
|
|
};
|
|
|
|
/// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
|
|
class OpaqueValueMapping {
|
|
CodeGenFunction &CGF;
|
|
OpaqueValueMappingData Data;
|
|
|
|
public:
|
|
static bool shouldBindAsLValue(const Expr *expr) {
|
|
return OpaqueValueMappingData::shouldBindAsLValue(expr);
|
|
}
|
|
|
|
/// Build the opaque value mapping for the given conditional
|
|
/// operator if it's the GNU ?: extension. This is a common
|
|
/// enough pattern that the convenience operator is really
|
|
/// helpful.
|
|
///
|
|
OpaqueValueMapping(CodeGenFunction &CGF,
|
|
const AbstractConditionalOperator *op) : CGF(CGF) {
|
|
if (isa<ConditionalOperator>(op))
|
|
// Leave Data empty.
|
|
return;
|
|
|
|
const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
|
|
Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
|
|
e->getCommon());
|
|
}
|
|
|
|
OpaqueValueMapping(CodeGenFunction &CGF,
|
|
const OpaqueValueExpr *opaqueValue,
|
|
LValue lvalue)
|
|
: CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
|
|
}
|
|
|
|
OpaqueValueMapping(CodeGenFunction &CGF,
|
|
const OpaqueValueExpr *opaqueValue,
|
|
RValue rvalue)
|
|
: CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
|
|
}
|
|
|
|
void pop() {
|
|
Data.unbind(CGF);
|
|
Data.clear();
|
|
}
|
|
|
|
~OpaqueValueMapping() {
|
|
if (Data.isValid()) Data.unbind(CGF);
|
|
}
|
|
};
|
|
|
|
/// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
|
|
/// number that holds the value.
|
|
unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
|
|
|
|
/// BuildBlockByrefAddress - Computes address location of the
|
|
/// variable which is declared as __block.
|
|
llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
|
|
const VarDecl *V);
|
|
private:
|
|
CGDebugInfo *DebugInfo;
|
|
bool DisableDebugInfo;
|
|
|
|
/// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
|
|
/// calling llvm.stacksave for multiple VLAs in the same scope.
|
|
bool DidCallStackSave;
|
|
|
|
/// IndirectBranch - The first time an indirect goto is seen we create a block
|
|
/// with an indirect branch. Every time we see the address of a label taken,
|
|
/// we add the label to the indirect goto. Every subsequent indirect goto is
|
|
/// codegen'd as a jump to the IndirectBranch's basic block.
|
|
llvm::IndirectBrInst *IndirectBranch;
|
|
|
|
/// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
|
|
/// decls.
|
|
typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
|
|
DeclMapTy LocalDeclMap;
|
|
|
|
/// LabelMap - This keeps track of the LLVM basic block for each C label.
|
|
llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
|
|
|
|
// BreakContinueStack - This keeps track of where break and continue
|
|
// statements should jump to.
|
|
struct BreakContinue {
|
|
BreakContinue(JumpDest Break, JumpDest Continue)
|
|
: BreakBlock(Break), ContinueBlock(Continue) {}
|
|
|
|
JumpDest BreakBlock;
|
|
JumpDest ContinueBlock;
|
|
};
|
|
SmallVector<BreakContinue, 8> BreakContinueStack;
|
|
|
|
CodeGenPGO PGO;
|
|
|
|
public:
|
|
/// Get a counter for instrumentation of the region associated with the given
|
|
/// statement.
|
|
RegionCounter getPGORegionCounter(const Stmt *S) {
|
|
return RegionCounter(PGO, S);
|
|
}
|
|
private:
|
|
|
|
/// SwitchInsn - This is nearest current switch instruction. It is null if
|
|
/// current context is not in a switch.
|
|
llvm::SwitchInst *SwitchInsn;
|
|
/// The branch weights of SwitchInsn when doing instrumentation based PGO.
|
|
SmallVector<uint64_t, 16> *SwitchWeights;
|
|
|
|
/// CaseRangeBlock - This block holds if condition check for last case
|
|
/// statement range in current switch instruction.
|
|
llvm::BasicBlock *CaseRangeBlock;
|
|
|
|
/// OpaqueLValues - Keeps track of the current set of opaque value
|
|
/// expressions.
|
|
llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
|
|
llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
|
|
|
|
// VLASizeMap - This keeps track of the associated size for each VLA type.
|
|
// We track this by the size expression rather than the type itself because
|
|
// in certain situations, like a const qualifier applied to an VLA typedef,
|
|
// multiple VLA types can share the same size expression.
|
|
// FIXME: Maybe this could be a stack of maps that is pushed/popped as we
|
|
// enter/leave scopes.
|
|
llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
|
|
|
|
/// A block containing a single 'unreachable' instruction. Created
|
|
/// lazily by getUnreachableBlock().
|
|
llvm::BasicBlock *UnreachableBlock;
|
|
|
|
/// Counts of the number return expressions in the function.
|
|
unsigned NumReturnExprs;
|
|
|
|
/// Count the number of simple (constant) return expressions in the function.
|
|
unsigned NumSimpleReturnExprs;
|
|
|
|
/// The last regular (non-return) debug location (breakpoint) in the function.
|
|
SourceLocation LastStopPoint;
|
|
|
|
public:
|
|
/// A scope within which we are constructing the fields of an object which
|
|
/// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
|
|
/// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
|
|
class FieldConstructionScope {
|
|
public:
|
|
FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
|
|
: CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
|
|
CGF.CXXDefaultInitExprThis = This;
|
|
}
|
|
~FieldConstructionScope() {
|
|
CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
|
|
}
|
|
|
|
private:
|
|
CodeGenFunction &CGF;
|
|
llvm::Value *OldCXXDefaultInitExprThis;
|
|
};
|
|
|
|
/// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
|
|
/// is overridden to be the object under construction.
|
|
class CXXDefaultInitExprScope {
|
|
public:
|
|
CXXDefaultInitExprScope(CodeGenFunction &CGF)
|
|
: CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
|
|
CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
|
|
}
|
|
~CXXDefaultInitExprScope() {
|
|
CGF.CXXThisValue = OldCXXThisValue;
|
|
}
|
|
|
|
public:
|
|
CodeGenFunction &CGF;
|
|
llvm::Value *OldCXXThisValue;
|
|
};
|
|
|
|
private:
|
|
/// CXXThisDecl - When generating code for a C++ member function,
|
|
/// this will hold the implicit 'this' declaration.
|
|
ImplicitParamDecl *CXXABIThisDecl;
|
|
llvm::Value *CXXABIThisValue;
|
|
llvm::Value *CXXThisValue;
|
|
|
|
/// The value of 'this' to use when evaluating CXXDefaultInitExprs within
|
|
/// this expression.
|
|
llvm::Value *CXXDefaultInitExprThis;
|
|
|
|
/// CXXStructorImplicitParamDecl - When generating code for a constructor or
|
|
/// destructor, this will hold the implicit argument (e.g. VTT).
|
|
ImplicitParamDecl *CXXStructorImplicitParamDecl;
|
|
llvm::Value *CXXStructorImplicitParamValue;
|
|
|
|
/// OutermostConditional - Points to the outermost active
|
|
/// conditional control. This is used so that we know if a
|
|
/// temporary should be destroyed conditionally.
|
|
ConditionalEvaluation *OutermostConditional;
|
|
|
|
/// The current lexical scope.
|
|
LexicalScope *CurLexicalScope;
|
|
|
|
/// The current source location that should be used for exception
|
|
/// handling code.
|
|
SourceLocation CurEHLocation;
|
|
|
|
/// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
|
|
/// type as well as the field number that contains the actual data.
|
|
llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
|
|
unsigned> > ByRefValueInfo;
|
|
|
|
llvm::BasicBlock *TerminateLandingPad;
|
|
llvm::BasicBlock *TerminateHandler;
|
|
llvm::BasicBlock *TrapBB;
|
|
|
|
/// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
|
|
/// In the kernel metadata node, reference the kernel function and metadata
|
|
/// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
|
|
/// - A node for the vec_type_hint(<type>) qualifier contains string
|
|
/// "vec_type_hint", an undefined value of the <type> data type,
|
|
/// and a Boolean that is true if the <type> is integer and signed.
|
|
/// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
|
|
/// "work_group_size_hint", and three 32-bit integers X, Y and Z.
|
|
/// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
|
|
/// "reqd_work_group_size", and three 32-bit integers X, Y and Z.
|
|
void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
|
|
llvm::Function *Fn);
|
|
|
|
public:
|
|
CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
|
|
~CodeGenFunction();
|
|
|
|
CodeGenTypes &getTypes() const { return CGM.getTypes(); }
|
|
ASTContext &getContext() const { return CGM.getContext(); }
|
|
CGDebugInfo *getDebugInfo() {
|
|
if (DisableDebugInfo)
|
|
return nullptr;
|
|
return DebugInfo;
|
|
}
|
|
void disableDebugInfo() { DisableDebugInfo = true; }
|
|
void enableDebugInfo() { DisableDebugInfo = false; }
|
|
|
|
bool shouldUseFusedARCCalls() {
|
|
return CGM.getCodeGenOpts().OptimizationLevel == 0;
|
|
}
|
|
|
|
const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
|
|
|
|
/// Returns a pointer to the function's exception object and selector slot,
|
|
/// which is assigned in every landing pad.
|
|
llvm::Value *getExceptionSlot();
|
|
llvm::Value *getEHSelectorSlot();
|
|
|
|
/// Returns the contents of the function's exception object and selector
|
|
/// slots.
|
|
llvm::Value *getExceptionFromSlot();
|
|
llvm::Value *getSelectorFromSlot();
|
|
|
|
llvm::Value *getNormalCleanupDestSlot();
|
|
|
|
llvm::BasicBlock *getUnreachableBlock() {
|
|
if (!UnreachableBlock) {
|
|
UnreachableBlock = createBasicBlock("unreachable");
|
|
new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
|
|
}
|
|
return UnreachableBlock;
|
|
}
|
|
|
|
llvm::BasicBlock *getInvokeDest() {
|
|
if (!EHStack.requiresLandingPad()) return nullptr;
|
|
return getInvokeDestImpl();
|
|
}
|
|
|
|
const TargetInfo &getTarget() const { return Target; }
|
|
llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Cleanups
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
|
|
|
|
void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
|
|
llvm::Value *arrayEndPointer,
|
|
QualType elementType,
|
|
Destroyer *destroyer);
|
|
void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
|
|
llvm::Value *arrayEnd,
|
|
QualType elementType,
|
|
Destroyer *destroyer);
|
|
|
|
void pushDestroy(QualType::DestructionKind dtorKind,
|
|
llvm::Value *addr, QualType type);
|
|
void pushEHDestroy(QualType::DestructionKind dtorKind,
|
|
llvm::Value *addr, QualType type);
|
|
void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
|
|
Destroyer *destroyer, bool useEHCleanupForArray);
|
|
void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
|
|
QualType type, Destroyer *destroyer,
|
|
bool useEHCleanupForArray);
|
|
void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
|
|
void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
|
|
bool useEHCleanupForArray);
|
|
llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
|
|
Destroyer *destroyer,
|
|
bool useEHCleanupForArray,
|
|
const VarDecl *VD);
|
|
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
|
|
QualType type, Destroyer *destroyer,
|
|
bool checkZeroLength, bool useEHCleanup);
|
|
|
|
Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
|
|
|
|
/// Determines whether an EH cleanup is required to destroy a type
|
|
/// with the given destruction kind.
|
|
bool needsEHCleanup(QualType::DestructionKind kind) {
|
|
switch (kind) {
|
|
case QualType::DK_none:
|
|
return false;
|
|
case QualType::DK_cxx_destructor:
|
|
case QualType::DK_objc_weak_lifetime:
|
|
return getLangOpts().Exceptions;
|
|
case QualType::DK_objc_strong_lifetime:
|
|
return getLangOpts().Exceptions &&
|
|
CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
|
|
}
|
|
llvm_unreachable("bad destruction kind");
|
|
}
|
|
|
|
CleanupKind getCleanupKind(QualType::DestructionKind kind) {
|
|
return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Objective-C
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void GenerateObjCMethod(const ObjCMethodDecl *OMD);
|
|
|
|
void StartObjCMethod(const ObjCMethodDecl *MD,
|
|
const ObjCContainerDecl *CD,
|
|
SourceLocation StartLoc);
|
|
|
|
/// GenerateObjCGetter - Synthesize an Objective-C property getter function.
|
|
void GenerateObjCGetter(ObjCImplementationDecl *IMP,
|
|
const ObjCPropertyImplDecl *PID);
|
|
void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
|
|
const ObjCPropertyImplDecl *propImpl,
|
|
const ObjCMethodDecl *GetterMothodDecl,
|
|
llvm::Constant *AtomicHelperFn);
|
|
|
|
void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
|
|
ObjCMethodDecl *MD, bool ctor);
|
|
|
|
/// GenerateObjCSetter - Synthesize an Objective-C property setter function
|
|
/// for the given property.
|
|
void GenerateObjCSetter(ObjCImplementationDecl *IMP,
|
|
const ObjCPropertyImplDecl *PID);
|
|
void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
|
|
const ObjCPropertyImplDecl *propImpl,
|
|
llvm::Constant *AtomicHelperFn);
|
|
bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
|
|
bool IvarTypeWithAggrGCObjects(QualType Ty);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Block Bits
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
llvm::Value *EmitBlockLiteral(const BlockExpr *);
|
|
llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
|
|
static void destroyBlockInfos(CGBlockInfo *info);
|
|
llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
|
|
const CGBlockInfo &Info,
|
|
llvm::StructType *,
|
|
llvm::Constant *BlockVarLayout);
|
|
|
|
llvm::Function *GenerateBlockFunction(GlobalDecl GD,
|
|
const CGBlockInfo &Info,
|
|
const DeclMapTy &ldm,
|
|
bool IsLambdaConversionToBlock);
|
|
|
|
llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
|
|
llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
|
|
llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
|
|
const ObjCPropertyImplDecl *PID);
|
|
llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
|
|
const ObjCPropertyImplDecl *PID);
|
|
llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
|
|
|
|
void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
|
|
|
|
class AutoVarEmission;
|
|
|
|
void emitByrefStructureInit(const AutoVarEmission &emission);
|
|
void enterByrefCleanup(const AutoVarEmission &emission);
|
|
|
|
llvm::Value *LoadBlockStruct() {
|
|
assert(BlockPointer && "no block pointer set!");
|
|
return BlockPointer;
|
|
}
|
|
|
|
void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
|
|
void AllocateBlockDecl(const DeclRefExpr *E);
|
|
llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
|
|
llvm::Type *BuildByRefType(const VarDecl *var);
|
|
|
|
void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
|
|
const CGFunctionInfo &FnInfo);
|
|
/// \brief Emit code for the start of a function.
|
|
/// \param Loc The location to be associated with the function.
|
|
/// \param StartLoc The location of the function body.
|
|
void StartFunction(GlobalDecl GD,
|
|
QualType RetTy,
|
|
llvm::Function *Fn,
|
|
const CGFunctionInfo &FnInfo,
|
|
const FunctionArgList &Args,
|
|
SourceLocation Loc = SourceLocation(),
|
|
SourceLocation StartLoc = SourceLocation());
|
|
|
|
void EmitConstructorBody(FunctionArgList &Args);
|
|
void EmitDestructorBody(FunctionArgList &Args);
|
|
void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
|
|
void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
|
|
void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt);
|
|
|
|
void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
|
|
CallArgList &CallArgs);
|
|
void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
|
|
void EmitLambdaBlockInvokeBody();
|
|
void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
|
|
void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
|
|
|
|
/// EmitReturnBlock - Emit the unified return block, trying to avoid its
|
|
/// emission when possible.
|
|
void EmitReturnBlock();
|
|
|
|
/// FinishFunction - Complete IR generation of the current function. It is
|
|
/// legal to call this function even if there is no current insertion point.
|
|
void FinishFunction(SourceLocation EndLoc=SourceLocation());
|
|
|
|
void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo);
|
|
|
|
void EmitCallAndReturnForThunk(GlobalDecl GD, llvm::Value *Callee,
|
|
const ThunkInfo *Thunk);
|
|
|
|
/// GenerateThunk - Generate a thunk for the given method.
|
|
void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
|
|
GlobalDecl GD, const ThunkInfo &Thunk);
|
|
|
|
void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
|
|
GlobalDecl GD, const ThunkInfo &Thunk);
|
|
|
|
void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
|
|
FunctionArgList &Args);
|
|
|
|
void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
|
|
ArrayRef<VarDecl *> ArrayIndexes);
|
|
|
|
/// InitializeVTablePointer - Initialize the vtable pointer of the given
|
|
/// subobject.
|
|
///
|
|
void InitializeVTablePointer(BaseSubobject Base,
|
|
const CXXRecordDecl *NearestVBase,
|
|
CharUnits OffsetFromNearestVBase,
|
|
const CXXRecordDecl *VTableClass);
|
|
|
|
typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
|
|
void InitializeVTablePointers(BaseSubobject Base,
|
|
const CXXRecordDecl *NearestVBase,
|
|
CharUnits OffsetFromNearestVBase,
|
|
bool BaseIsNonVirtualPrimaryBase,
|
|
const CXXRecordDecl *VTableClass,
|
|
VisitedVirtualBasesSetTy& VBases);
|
|
|
|
void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
|
|
|
|
/// GetVTablePtr - Return the Value of the vtable pointer member pointed
|
|
/// to by This.
|
|
llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
|
|
|
|
|
|
/// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
|
|
/// expr can be devirtualized.
|
|
bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
|
|
const CXXMethodDecl *MD);
|
|
|
|
/// EnterDtorCleanups - Enter the cleanups necessary to complete the
|
|
/// given phase of destruction for a destructor. The end result
|
|
/// should call destructors on members and base classes in reverse
|
|
/// order of their construction.
|
|
void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
|
|
|
|
/// ShouldInstrumentFunction - Return true if the current function should be
|
|
/// instrumented with __cyg_profile_func_* calls
|
|
bool ShouldInstrumentFunction();
|
|
|
|
/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
|
|
/// instrumentation function with the current function and the call site, if
|
|
/// function instrumentation is enabled.
|
|
void EmitFunctionInstrumentation(const char *Fn);
|
|
|
|
/// EmitMCountInstrumentation - Emit call to .mcount.
|
|
void EmitMCountInstrumentation();
|
|
|
|
/// EmitFunctionProlog - Emit the target specific LLVM code to load the
|
|
/// arguments for the given function. This is also responsible for naming the
|
|
/// LLVM function arguments.
|
|
void EmitFunctionProlog(const CGFunctionInfo &FI,
|
|
llvm::Function *Fn,
|
|
const FunctionArgList &Args);
|
|
|
|
/// EmitFunctionEpilog - Emit the target specific LLVM code to return the
|
|
/// given temporary.
|
|
void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
|
|
SourceLocation EndLoc);
|
|
|
|
/// EmitStartEHSpec - Emit the start of the exception spec.
|
|
void EmitStartEHSpec(const Decl *D);
|
|
|
|
/// EmitEndEHSpec - Emit the end of the exception spec.
|
|
void EmitEndEHSpec(const Decl *D);
|
|
|
|
/// getTerminateLandingPad - Return a landing pad that just calls terminate.
|
|
llvm::BasicBlock *getTerminateLandingPad();
|
|
|
|
/// getTerminateHandler - Return a handler (not a landing pad, just
|
|
/// a catch handler) that just calls terminate. This is used when
|
|
/// a terminate scope encloses a try.
|
|
llvm::BasicBlock *getTerminateHandler();
|
|
|
|
llvm::Type *ConvertTypeForMem(QualType T);
|
|
llvm::Type *ConvertType(QualType T);
|
|
llvm::Type *ConvertType(const TypeDecl *T) {
|
|
return ConvertType(getContext().getTypeDeclType(T));
|
|
}
|
|
|
|
/// LoadObjCSelf - Load the value of self. This function is only valid while
|
|
/// generating code for an Objective-C method.
|
|
llvm::Value *LoadObjCSelf();
|
|
|
|
/// TypeOfSelfObject - Return type of object that this self represents.
|
|
QualType TypeOfSelfObject();
|
|
|
|
/// hasAggregateLLVMType - Return true if the specified AST type will map into
|
|
/// an aggregate LLVM type or is void.
|
|
static TypeEvaluationKind getEvaluationKind(QualType T);
|
|
|
|
static bool hasScalarEvaluationKind(QualType T) {
|
|
return getEvaluationKind(T) == TEK_Scalar;
|
|
}
|
|
|
|
static bool hasAggregateEvaluationKind(QualType T) {
|
|
return getEvaluationKind(T) == TEK_Aggregate;
|
|
}
|
|
|
|
/// createBasicBlock - Create an LLVM basic block.
|
|
llvm::BasicBlock *createBasicBlock(const Twine &name = "",
|
|
llvm::Function *parent = nullptr,
|
|
llvm::BasicBlock *before = nullptr) {
|
|
#ifdef NDEBUG
|
|
return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
|
|
#else
|
|
return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
|
|
#endif
|
|
}
|
|
|
|
/// getBasicBlockForLabel - Return the LLVM basicblock that the specified
|
|
/// label maps to.
|
|
JumpDest getJumpDestForLabel(const LabelDecl *S);
|
|
|
|
/// SimplifyForwardingBlocks - If the given basic block is only a branch to
|
|
/// another basic block, simplify it. This assumes that no other code could
|
|
/// potentially reference the basic block.
|
|
void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
|
|
|
|
/// EmitBlock - Emit the given block \arg BB and set it as the insert point,
|
|
/// adding a fall-through branch from the current insert block if
|
|
/// necessary. It is legal to call this function even if there is no current
|
|
/// insertion point.
|
|
///
|
|
/// IsFinished - If true, indicates that the caller has finished emitting
|
|
/// branches to the given block and does not expect to emit code into it. This
|
|
/// means the block can be ignored if it is unreachable.
|
|
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
|
|
|
|
/// EmitBlockAfterUses - Emit the given block somewhere hopefully
|
|
/// near its uses, and leave the insertion point in it.
|
|
void EmitBlockAfterUses(llvm::BasicBlock *BB);
|
|
|
|
/// EmitBranch - Emit a branch to the specified basic block from the current
|
|
/// insert block, taking care to avoid creation of branches from dummy
|
|
/// blocks. It is legal to call this function even if there is no current
|
|
/// insertion point.
|
|
///
|
|
/// This function clears the current insertion point. The caller should follow
|
|
/// calls to this function with calls to Emit*Block prior to generation new
|
|
/// code.
|
|
void EmitBranch(llvm::BasicBlock *Block);
|
|
|
|
/// HaveInsertPoint - True if an insertion point is defined. If not, this
|
|
/// indicates that the current code being emitted is unreachable.
|
|
bool HaveInsertPoint() const {
|
|
return Builder.GetInsertBlock() != nullptr;
|
|
}
|
|
|
|
/// EnsureInsertPoint - Ensure that an insertion point is defined so that
|
|
/// emitted IR has a place to go. Note that by definition, if this function
|
|
/// creates a block then that block is unreachable; callers may do better to
|
|
/// detect when no insertion point is defined and simply skip IR generation.
|
|
void EnsureInsertPoint() {
|
|
if (!HaveInsertPoint())
|
|
EmitBlock(createBasicBlock());
|
|
}
|
|
|
|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
|
|
/// specified stmt yet.
|
|
void ErrorUnsupported(const Stmt *S, const char *Type);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Helpers
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
LValue MakeAddrLValue(llvm::Value *V, QualType T,
|
|
CharUnits Alignment = CharUnits()) {
|
|
return LValue::MakeAddr(V, T, Alignment, getContext(),
|
|
CGM.getTBAAInfo(T));
|
|
}
|
|
|
|
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
|
|
CharUnits Alignment;
|
|
if (!T->isIncompleteType())
|
|
Alignment = getContext().getTypeAlignInChars(T);
|
|
return LValue::MakeAddr(V, T, Alignment, getContext(),
|
|
CGM.getTBAAInfo(T));
|
|
}
|
|
|
|
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
|
|
/// block. The caller is responsible for setting an appropriate alignment on
|
|
/// the alloca.
|
|
llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
|
|
const Twine &Name = "tmp");
|
|
|
|
/// InitTempAlloca - Provide an initial value for the given alloca.
|
|
void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
|
|
|
|
/// CreateIRTemp - Create a temporary IR object of the given type, with
|
|
/// appropriate alignment. This routine should only be used when an temporary
|
|
/// value needs to be stored into an alloca (for example, to avoid explicit
|
|
/// PHI construction), but the type is the IR type, not the type appropriate
|
|
/// for storing in memory.
|
|
llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
|
|
|
|
/// CreateMemTemp - Create a temporary memory object of the given type, with
|
|
/// appropriate alignment.
|
|
llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
|
|
|
|
/// CreateAggTemp - Create a temporary memory object for the given
|
|
/// aggregate type.
|
|
AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
|
|
CharUnits Alignment = getContext().getTypeAlignInChars(T);
|
|
return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
|
|
T.getQualifiers(),
|
|
AggValueSlot::IsNotDestructed,
|
|
AggValueSlot::DoesNotNeedGCBarriers,
|
|
AggValueSlot::IsNotAliased);
|
|
}
|
|
|
|
/// CreateInAllocaTmp - Create a temporary memory object for the given
|
|
/// aggregate type.
|
|
AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
|
|
|
|
/// Emit a cast to void* in the appropriate address space.
|
|
llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
|
|
|
|
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
|
|
/// expression and compare the result against zero, returning an Int1Ty value.
|
|
llvm::Value *EvaluateExprAsBool(const Expr *E);
|
|
|
|
/// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
|
|
void EmitIgnoredExpr(const Expr *E);
|
|
|
|
/// EmitAnyExpr - Emit code to compute the specified expression which can have
|
|
/// any type. The result is returned as an RValue struct. If this is an
|
|
/// aggregate expression, the aggloc/agglocvolatile arguments indicate where
|
|
/// the result should be returned.
|
|
///
|
|
/// \param ignoreResult True if the resulting value isn't used.
|
|
RValue EmitAnyExpr(const Expr *E,
|
|
AggValueSlot aggSlot = AggValueSlot::ignored(),
|
|
bool ignoreResult = false);
|
|
|
|
// EmitVAListRef - Emit a "reference" to a va_list; this is either the address
|
|
// or the value of the expression, depending on how va_list is defined.
|
|
llvm::Value *EmitVAListRef(const Expr *E);
|
|
|
|
/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
|
|
/// always be accessible even if no aggregate location is provided.
|
|
RValue EmitAnyExprToTemp(const Expr *E);
|
|
|
|
/// EmitAnyExprToMem - Emits the code necessary to evaluate an
|
|
/// arbitrary expression into the given memory location.
|
|
void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
|
|
Qualifiers Quals, bool IsInitializer);
|
|
|
|
/// EmitExprAsInit - Emits the code necessary to initialize a
|
|
/// location in memory with the given initializer.
|
|
void EmitExprAsInit(const Expr *init, const ValueDecl *D,
|
|
LValue lvalue, bool capturedByInit);
|
|
|
|
/// hasVolatileMember - returns true if aggregate type has a volatile
|
|
/// member.
|
|
bool hasVolatileMember(QualType T) {
|
|
if (const RecordType *RT = T->getAs<RecordType>()) {
|
|
const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
|
|
return RD->hasVolatileMember();
|
|
}
|
|
return false;
|
|
}
|
|
/// EmitAggregateCopy - Emit an aggregate assignment.
|
|
///
|
|
/// The difference to EmitAggregateCopy is that tail padding is not copied.
|
|
/// This is required for correctness when assigning non-POD structures in C++.
|
|
void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
|
|
QualType EltTy) {
|
|
bool IsVolatile = hasVolatileMember(EltTy);
|
|
EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
|
|
true);
|
|
}
|
|
|
|
/// EmitAggregateCopy - Emit an aggregate copy.
|
|
///
|
|
/// \param isVolatile - True iff either the source or the destination is
|
|
/// volatile.
|
|
/// \param isAssignment - If false, allow padding to be copied. This often
|
|
/// yields more efficient.
|
|
void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
|
|
QualType EltTy, bool isVolatile=false,
|
|
CharUnits Alignment = CharUnits::Zero(),
|
|
bool isAssignment = false);
|
|
|
|
/// StartBlock - Start new block named N. If insert block is a dummy block
|
|
/// then reuse it.
|
|
void StartBlock(const char *N);
|
|
|
|
/// GetAddrOfLocalVar - Return the address of a local variable.
|
|
llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
|
|
llvm::Value *Res = LocalDeclMap[VD];
|
|
assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
|
|
return Res;
|
|
}
|
|
|
|
/// getOpaqueLValueMapping - Given an opaque value expression (which
|
|
/// must be mapped to an l-value), return its mapping.
|
|
const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
|
|
assert(OpaqueValueMapping::shouldBindAsLValue(e));
|
|
|
|
llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
|
|
it = OpaqueLValues.find(e);
|
|
assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
|
|
return it->second;
|
|
}
|
|
|
|
/// getOpaqueRValueMapping - Given an opaque value expression (which
|
|
/// must be mapped to an r-value), return its mapping.
|
|
const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
|
|
assert(!OpaqueValueMapping::shouldBindAsLValue(e));
|
|
|
|
llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
|
|
it = OpaqueRValues.find(e);
|
|
assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
|
|
return it->second;
|
|
}
|
|
|
|
/// getAccessedFieldNo - Given an encoded value and a result number, return
|
|
/// the input field number being accessed.
|
|
static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
|
|
|
|
llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
|
|
llvm::BasicBlock *GetIndirectGotoBlock();
|
|
|
|
/// EmitNullInitialization - Generate code to set a value of the given type to
|
|
/// null, If the type contains data member pointers, they will be initialized
|
|
/// to -1 in accordance with the Itanium C++ ABI.
|
|
void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
|
|
|
|
// EmitVAArg - Generate code to get an argument from the passed in pointer
|
|
// and update it accordingly. The return value is a pointer to the argument.
|
|
// FIXME: We should be able to get rid of this method and use the va_arg
|
|
// instruction in LLVM instead once it works well enough.
|
|
llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
|
|
|
|
/// emitArrayLength - Compute the length of an array, even if it's a
|
|
/// VLA, and drill down to the base element type.
|
|
llvm::Value *emitArrayLength(const ArrayType *arrayType,
|
|
QualType &baseType,
|
|
llvm::Value *&addr);
|
|
|
|
/// EmitVLASize - Capture all the sizes for the VLA expressions in
|
|
/// the given variably-modified type and store them in the VLASizeMap.
|
|
///
|
|
/// This function can be called with a null (unreachable) insert point.
|
|
void EmitVariablyModifiedType(QualType Ty);
|
|
|
|
/// getVLASize - Returns an LLVM value that corresponds to the size,
|
|
/// in non-variably-sized elements, of a variable length array type,
|
|
/// plus that largest non-variably-sized element type. Assumes that
|
|
/// the type has already been emitted with EmitVariablyModifiedType.
|
|
std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
|
|
std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
|
|
|
|
/// LoadCXXThis - Load the value of 'this'. This function is only valid while
|
|
/// generating code for an C++ member function.
|
|
llvm::Value *LoadCXXThis() {
|
|
assert(CXXThisValue && "no 'this' value for this function");
|
|
return CXXThisValue;
|
|
}
|
|
|
|
/// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
|
|
/// virtual bases.
|
|
// FIXME: Every place that calls LoadCXXVTT is something
|
|
// that needs to be abstracted properly.
|
|
llvm::Value *LoadCXXVTT() {
|
|
assert(CXXStructorImplicitParamValue && "no VTT value for this function");
|
|
return CXXStructorImplicitParamValue;
|
|
}
|
|
|
|
/// LoadCXXStructorImplicitParam - Load the implicit parameter
|
|
/// for a constructor/destructor.
|
|
llvm::Value *LoadCXXStructorImplicitParam() {
|
|
assert(CXXStructorImplicitParamValue &&
|
|
"no implicit argument value for this function");
|
|
return CXXStructorImplicitParamValue;
|
|
}
|
|
|
|
/// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
|
|
/// complete class to the given direct base.
|
|
llvm::Value *
|
|
GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
|
|
const CXXRecordDecl *Derived,
|
|
const CXXRecordDecl *Base,
|
|
bool BaseIsVirtual);
|
|
|
|
/// GetAddressOfBaseClass - This function will add the necessary delta to the
|
|
/// load of 'this' and returns address of the base class.
|
|
llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
|
|
const CXXRecordDecl *Derived,
|
|
CastExpr::path_const_iterator PathBegin,
|
|
CastExpr::path_const_iterator PathEnd,
|
|
bool NullCheckValue);
|
|
|
|
llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
|
|
const CXXRecordDecl *Derived,
|
|
CastExpr::path_const_iterator PathBegin,
|
|
CastExpr::path_const_iterator PathEnd,
|
|
bool NullCheckValue);
|
|
|
|
/// GetVTTParameter - Return the VTT parameter that should be passed to a
|
|
/// base constructor/destructor with virtual bases.
|
|
/// FIXME: VTTs are Itanium ABI-specific, so the definition should move
|
|
/// to ItaniumCXXABI.cpp together with all the references to VTT.
|
|
llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
|
|
bool Delegating);
|
|
|
|
void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
|
|
CXXCtorType CtorType,
|
|
const FunctionArgList &Args,
|
|
SourceLocation Loc);
|
|
// It's important not to confuse this and the previous function. Delegating
|
|
// constructors are the C++0x feature. The constructor delegate optimization
|
|
// is used to reduce duplication in the base and complete consturctors where
|
|
// they are substantially the same.
|
|
void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
|
|
const FunctionArgList &Args);
|
|
void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
|
|
bool ForVirtualBase, bool Delegating,
|
|
llvm::Value *This,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd);
|
|
|
|
void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
|
|
llvm::Value *This, llvm::Value *Src,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd);
|
|
|
|
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
|
|
const ConstantArrayType *ArrayTy,
|
|
llvm::Value *ArrayPtr,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd,
|
|
bool ZeroInitialization = false);
|
|
|
|
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
|
|
llvm::Value *NumElements,
|
|
llvm::Value *ArrayPtr,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd,
|
|
bool ZeroInitialization = false);
|
|
|
|
static Destroyer destroyCXXObject;
|
|
|
|
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
|
|
bool ForVirtualBase, bool Delegating,
|
|
llvm::Value *This);
|
|
|
|
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
|
|
llvm::Value *NewPtr, llvm::Value *NumElements,
|
|
llvm::Value *AllocSizeWithoutCookie);
|
|
|
|
void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
|
|
llvm::Value *Ptr);
|
|
|
|
llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
|
|
void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
|
|
|
|
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
|
|
QualType DeleteTy);
|
|
|
|
RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
|
|
const Expr *Arg, bool IsDelete);
|
|
|
|
llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
|
|
llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
|
|
llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
|
|
|
|
/// \brief Situations in which we might emit a check for the suitability of a
|
|
/// pointer or glvalue.
|
|
enum TypeCheckKind {
|
|
/// Checking the operand of a load. Must be suitably sized and aligned.
|
|
TCK_Load,
|
|
/// Checking the destination of a store. Must be suitably sized and aligned.
|
|
TCK_Store,
|
|
/// Checking the bound value in a reference binding. Must be suitably sized
|
|
/// and aligned, but is not required to refer to an object (until the
|
|
/// reference is used), per core issue 453.
|
|
TCK_ReferenceBinding,
|
|
/// Checking the object expression in a non-static data member access. Must
|
|
/// be an object within its lifetime.
|
|
TCK_MemberAccess,
|
|
/// Checking the 'this' pointer for a call to a non-static member function.
|
|
/// Must be an object within its lifetime.
|
|
TCK_MemberCall,
|
|
/// Checking the 'this' pointer for a constructor call.
|
|
TCK_ConstructorCall,
|
|
/// Checking the operand of a static_cast to a derived pointer type. Must be
|
|
/// null or an object within its lifetime.
|
|
TCK_DowncastPointer,
|
|
/// Checking the operand of a static_cast to a derived reference type. Must
|
|
/// be an object within its lifetime.
|
|
TCK_DowncastReference
|
|
};
|
|
|
|
/// \brief Whether any type-checking sanitizers are enabled. If \c false,
|
|
/// calls to EmitTypeCheck can be skipped.
|
|
bool sanitizePerformTypeCheck() const;
|
|
|
|
/// \brief Emit a check that \p V is the address of storage of the
|
|
/// appropriate size and alignment for an object of type \p Type.
|
|
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
|
|
QualType Type, CharUnits Alignment = CharUnits::Zero());
|
|
|
|
/// \brief Emit a check that \p Base points into an array object, which
|
|
/// we can access at index \p Index. \p Accessed should be \c false if we
|
|
/// this expression is used as an lvalue, for instance in "&Arr[Idx]".
|
|
void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
|
|
QualType IndexType, bool Accessed);
|
|
|
|
llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
|
|
bool isInc, bool isPre);
|
|
ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
|
|
bool isInc, bool isPre);
|
|
//===--------------------------------------------------------------------===//
|
|
// Declaration Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// EmitDecl - Emit a declaration.
|
|
///
|
|
/// This function can be called with a null (unreachable) insert point.
|
|
void EmitDecl(const Decl &D);
|
|
|
|
/// EmitVarDecl - Emit a local variable declaration.
|
|
///
|
|
/// This function can be called with a null (unreachable) insert point.
|
|
void EmitVarDecl(const VarDecl &D);
|
|
|
|
void EmitScalarInit(const Expr *init, const ValueDecl *D,
|
|
LValue lvalue, bool capturedByInit);
|
|
void EmitScalarInit(llvm::Value *init, LValue lvalue);
|
|
|
|
typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
|
|
llvm::Value *Address);
|
|
|
|
/// EmitAutoVarDecl - Emit an auto variable declaration.
|
|
///
|
|
/// This function can be called with a null (unreachable) insert point.
|
|
void EmitAutoVarDecl(const VarDecl &D);
|
|
|
|
class AutoVarEmission {
|
|
friend class CodeGenFunction;
|
|
|
|
const VarDecl *Variable;
|
|
|
|
/// The alignment of the variable.
|
|
CharUnits Alignment;
|
|
|
|
/// The address of the alloca. Null if the variable was emitted
|
|
/// as a global constant.
|
|
llvm::Value *Address;
|
|
|
|
llvm::Value *NRVOFlag;
|
|
|
|
/// True if the variable is a __block variable.
|
|
bool IsByRef;
|
|
|
|
/// True if the variable is of aggregate type and has a constant
|
|
/// initializer.
|
|
bool IsConstantAggregate;
|
|
|
|
/// Non-null if we should use lifetime annotations.
|
|
llvm::Value *SizeForLifetimeMarkers;
|
|
|
|
struct Invalid {};
|
|
AutoVarEmission(Invalid) : Variable(nullptr) {}
|
|
|
|
AutoVarEmission(const VarDecl &variable)
|
|
: Variable(&variable), Address(nullptr), NRVOFlag(nullptr),
|
|
IsByRef(false), IsConstantAggregate(false),
|
|
SizeForLifetimeMarkers(nullptr) {}
|
|
|
|
bool wasEmittedAsGlobal() const { return Address == nullptr; }
|
|
|
|
public:
|
|
static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
|
|
|
|
bool useLifetimeMarkers() const {
|
|
return SizeForLifetimeMarkers != nullptr;
|
|
}
|
|
llvm::Value *getSizeForLifetimeMarkers() const {
|
|
assert(useLifetimeMarkers());
|
|
return SizeForLifetimeMarkers;
|
|
}
|
|
|
|
/// Returns the raw, allocated address, which is not necessarily
|
|
/// the address of the object itself.
|
|
llvm::Value *getAllocatedAddress() const {
|
|
return Address;
|
|
}
|
|
|
|
/// Returns the address of the object within this declaration.
|
|
/// Note that this does not chase the forwarding pointer for
|
|
/// __block decls.
|
|
llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
|
|
if (!IsByRef) return Address;
|
|
|
|
return CGF.Builder.CreateStructGEP(Address,
|
|
CGF.getByRefValueLLVMField(Variable),
|
|
Variable->getNameAsString());
|
|
}
|
|
};
|
|
AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
|
|
void EmitAutoVarInit(const AutoVarEmission &emission);
|
|
void EmitAutoVarCleanups(const AutoVarEmission &emission);
|
|
void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
|
|
QualType::DestructionKind dtorKind);
|
|
|
|
void EmitStaticVarDecl(const VarDecl &D,
|
|
llvm::GlobalValue::LinkageTypes Linkage);
|
|
|
|
/// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
|
|
void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
|
|
unsigned ArgNo);
|
|
|
|
/// protectFromPeepholes - Protect a value that we're intending to
|
|
/// store to the side, but which will probably be used later, from
|
|
/// aggressive peepholing optimizations that might delete it.
|
|
///
|
|
/// Pass the result to unprotectFromPeepholes to declare that
|
|
/// protection is no longer required.
|
|
///
|
|
/// There's no particular reason why this shouldn't apply to
|
|
/// l-values, it's just that no existing peepholes work on pointers.
|
|
PeepholeProtection protectFromPeepholes(RValue rvalue);
|
|
void unprotectFromPeepholes(PeepholeProtection protection);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Statement Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
|
|
void EmitStopPoint(const Stmt *S);
|
|
|
|
/// EmitStmt - Emit the code for the statement \arg S. It is legal to call
|
|
/// this function even if there is no current insertion point.
|
|
///
|
|
/// This function may clear the current insertion point; callers should use
|
|
/// EnsureInsertPoint if they wish to subsequently generate code without first
|
|
/// calling EmitBlock, EmitBranch, or EmitStmt.
|
|
void EmitStmt(const Stmt *S);
|
|
|
|
/// EmitSimpleStmt - Try to emit a "simple" statement which does not
|
|
/// necessarily require an insertion point or debug information; typically
|
|
/// because the statement amounts to a jump or a container of other
|
|
/// statements.
|
|
///
|
|
/// \return True if the statement was handled.
|
|
bool EmitSimpleStmt(const Stmt *S);
|
|
|
|
llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
|
|
AggValueSlot AVS = AggValueSlot::ignored());
|
|
llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
|
|
bool GetLast = false,
|
|
AggValueSlot AVS =
|
|
AggValueSlot::ignored());
|
|
|
|
/// EmitLabel - Emit the block for the given label. It is legal to call this
|
|
/// function even if there is no current insertion point.
|
|
void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
|
|
|
|
void EmitLabelStmt(const LabelStmt &S);
|
|
void EmitAttributedStmt(const AttributedStmt &S);
|
|
void EmitGotoStmt(const GotoStmt &S);
|
|
void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
|
|
void EmitIfStmt(const IfStmt &S);
|
|
|
|
void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr,
|
|
const ArrayRef<const Attr *> &Attrs);
|
|
void EmitWhileStmt(const WhileStmt &S,
|
|
const ArrayRef<const Attr *> &Attrs = None);
|
|
void EmitDoStmt(const DoStmt &S, const ArrayRef<const Attr *> &Attrs = None);
|
|
void EmitForStmt(const ForStmt &S,
|
|
const ArrayRef<const Attr *> &Attrs = None);
|
|
void EmitReturnStmt(const ReturnStmt &S);
|
|
void EmitDeclStmt(const DeclStmt &S);
|
|
void EmitBreakStmt(const BreakStmt &S);
|
|
void EmitContinueStmt(const ContinueStmt &S);
|
|
void EmitSwitchStmt(const SwitchStmt &S);
|
|
void EmitDefaultStmt(const DefaultStmt &S);
|
|
void EmitCaseStmt(const CaseStmt &S);
|
|
void EmitCaseStmtRange(const CaseStmt &S);
|
|
void EmitAsmStmt(const AsmStmt &S);
|
|
|
|
void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
|
|
void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
|
|
void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
|
|
void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
|
|
void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
|
|
|
|
void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
|
|
void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
|
|
|
|
void EmitCXXTryStmt(const CXXTryStmt &S);
|
|
void EmitSEHTryStmt(const SEHTryStmt &S);
|
|
void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
|
|
void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
|
|
const ArrayRef<const Attr *> &Attrs = None);
|
|
|
|
llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
|
|
llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
|
|
llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S);
|
|
|
|
void EmitOMPParallelDirective(const OMPParallelDirective &S);
|
|
void EmitOMPSimdDirective(const OMPSimdDirective &S);
|
|
void EmitOMPForDirective(const OMPForDirective &S);
|
|
void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
|
|
void EmitOMPSectionDirective(const OMPSectionDirective &S);
|
|
void EmitOMPSingleDirective(const OMPSingleDirective &S);
|
|
void EmitOMPMasterDirective(const OMPMasterDirective &S);
|
|
void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
|
|
void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
|
|
void EmitOMPTaskDirective(const OMPTaskDirective &S);
|
|
void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
|
|
void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
|
|
void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// LValue Expression Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
|
|
RValue GetUndefRValue(QualType Ty);
|
|
|
|
/// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
|
|
/// and issue an ErrorUnsupported style diagnostic (using the
|
|
/// provided Name).
|
|
RValue EmitUnsupportedRValue(const Expr *E,
|
|
const char *Name);
|
|
|
|
/// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
|
|
/// an ErrorUnsupported style diagnostic (using the provided Name).
|
|
LValue EmitUnsupportedLValue(const Expr *E,
|
|
const char *Name);
|
|
|
|
/// EmitLValue - Emit code to compute a designator that specifies the location
|
|
/// of the expression.
|
|
///
|
|
/// This can return one of two things: a simple address or a bitfield
|
|
/// reference. In either case, the LLVM Value* in the LValue structure is
|
|
/// guaranteed to be an LLVM pointer type.
|
|
///
|
|
/// If this returns a bitfield reference, nothing about the pointee type of
|
|
/// the LLVM value is known: For example, it may not be a pointer to an
|
|
/// integer.
|
|
///
|
|
/// If this returns a normal address, and if the lvalue's C type is fixed
|
|
/// size, this method guarantees that the returned pointer type will point to
|
|
/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
|
|
/// variable length type, this is not possible.
|
|
///
|
|
LValue EmitLValue(const Expr *E);
|
|
|
|
/// \brief Same as EmitLValue but additionally we generate checking code to
|
|
/// guard against undefined behavior. This is only suitable when we know
|
|
/// that the address will be used to access the object.
|
|
LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
|
|
|
|
RValue convertTempToRValue(llvm::Value *addr, QualType type,
|
|
SourceLocation Loc);
|
|
|
|
void EmitAtomicInit(Expr *E, LValue lvalue);
|
|
|
|
RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
|
|
AggValueSlot slot = AggValueSlot::ignored());
|
|
|
|
void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
|
|
|
|
/// EmitToMemory - Change a scalar value from its value
|
|
/// representation to its in-memory representation.
|
|
llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
|
|
|
|
/// EmitFromMemory - Change a scalar value from its memory
|
|
/// representation to its value representation.
|
|
llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
|
|
|
|
/// EmitLoadOfScalar - Load a scalar value from an address, taking
|
|
/// care to appropriately convert from the memory representation to
|
|
/// the LLVM value representation.
|
|
llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
|
|
unsigned Alignment, QualType Ty,
|
|
SourceLocation Loc,
|
|
llvm::MDNode *TBAAInfo = nullptr,
|
|
QualType TBAABaseTy = QualType(),
|
|
uint64_t TBAAOffset = 0);
|
|
|
|
/// EmitLoadOfScalar - Load a scalar value from an address, taking
|
|
/// care to appropriately convert from the memory representation to
|
|
/// the LLVM value representation. The l-value must be a simple
|
|
/// l-value.
|
|
llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
|
|
|
|
/// EmitStoreOfScalar - Store a scalar value to an address, taking
|
|
/// care to appropriately convert from the memory representation to
|
|
/// the LLVM value representation.
|
|
void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
|
|
bool Volatile, unsigned Alignment, QualType Ty,
|
|
llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
|
|
QualType TBAABaseTy = QualType(),
|
|
uint64_t TBAAOffset = 0);
|
|
|
|
/// EmitStoreOfScalar - Store a scalar value to an address, taking
|
|
/// care to appropriately convert from the memory representation to
|
|
/// the LLVM value representation. The l-value must be a simple
|
|
/// l-value. The isInit flag indicates whether this is an initialization.
|
|
/// If so, atomic qualifiers are ignored and the store is always non-atomic.
|
|
void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
|
|
|
|
/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
|
|
/// this method emits the address of the lvalue, then loads the result as an
|
|
/// rvalue, returning the rvalue.
|
|
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
|
|
RValue EmitLoadOfExtVectorElementLValue(LValue V);
|
|
RValue EmitLoadOfBitfieldLValue(LValue LV);
|
|
RValue EmitLoadOfGlobalRegLValue(LValue LV);
|
|
|
|
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
|
|
/// lvalue, where both are guaranteed to the have the same type, and that type
|
|
/// is 'Ty'.
|
|
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
|
|
void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
|
|
void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
|
|
|
|
/// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
|
|
/// as EmitStoreThroughLValue.
|
|
///
|
|
/// \param Result [out] - If non-null, this will be set to a Value* for the
|
|
/// bit-field contents after the store, appropriate for use as the result of
|
|
/// an assignment to the bit-field.
|
|
void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
|
|
llvm::Value **Result=nullptr);
|
|
|
|
/// Emit an l-value for an assignment (simple or compound) of complex type.
|
|
LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
|
|
LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
|
|
LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
|
|
llvm::Value *&Result);
|
|
|
|
// Note: only available for agg return types
|
|
LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
|
|
LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
|
|
// Note: only available for agg return types
|
|
LValue EmitCallExprLValue(const CallExpr *E);
|
|
// Note: only available for agg return types
|
|
LValue EmitVAArgExprLValue(const VAArgExpr *E);
|
|
LValue EmitDeclRefLValue(const DeclRefExpr *E);
|
|
LValue EmitReadRegister(const VarDecl *VD);
|
|
LValue EmitStringLiteralLValue(const StringLiteral *E);
|
|
LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
|
|
LValue EmitPredefinedLValue(const PredefinedExpr *E);
|
|
LValue EmitUnaryOpLValue(const UnaryOperator *E);
|
|
LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
|
|
bool Accessed = false);
|
|
LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
|
|
LValue EmitMemberExpr(const MemberExpr *E);
|
|
LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
|
|
LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
|
|
LValue EmitInitListLValue(const InitListExpr *E);
|
|
LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
|
|
LValue EmitCastLValue(const CastExpr *E);
|
|
LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
|
|
LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
|
|
|
|
RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
|
|
|
|
class ConstantEmission {
|
|
llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
|
|
ConstantEmission(llvm::Constant *C, bool isReference)
|
|
: ValueAndIsReference(C, isReference) {}
|
|
public:
|
|
ConstantEmission() {}
|
|
static ConstantEmission forReference(llvm::Constant *C) {
|
|
return ConstantEmission(C, true);
|
|
}
|
|
static ConstantEmission forValue(llvm::Constant *C) {
|
|
return ConstantEmission(C, false);
|
|
}
|
|
|
|
LLVM_EXPLICIT operator bool() const {
|
|
return ValueAndIsReference.getOpaqueValue() != nullptr;
|
|
}
|
|
|
|
bool isReference() const { return ValueAndIsReference.getInt(); }
|
|
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
|
|
assert(isReference());
|
|
return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
|
|
refExpr->getType());
|
|
}
|
|
|
|
llvm::Constant *getValue() const {
|
|
assert(!isReference());
|
|
return ValueAndIsReference.getPointer();
|
|
}
|
|
};
|
|
|
|
ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
|
|
|
|
RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
|
|
AggValueSlot slot = AggValueSlot::ignored());
|
|
LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
|
|
|
|
llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
|
|
const ObjCIvarDecl *Ivar);
|
|
LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
|
|
LValue EmitLValueForLambdaField(const FieldDecl *Field);
|
|
|
|
/// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
|
|
/// if the Field is a reference, this will return the address of the reference
|
|
/// and not the address of the value stored in the reference.
|
|
LValue EmitLValueForFieldInitialization(LValue Base,
|
|
const FieldDecl* Field);
|
|
|
|
LValue EmitLValueForIvar(QualType ObjectTy,
|
|
llvm::Value* Base, const ObjCIvarDecl *Ivar,
|
|
unsigned CVRQualifiers);
|
|
|
|
LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
|
|
LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
|
|
LValue EmitLambdaLValue(const LambdaExpr *E);
|
|
LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
|
|
LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
|
|
|
|
LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
|
|
LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
|
|
LValue EmitStmtExprLValue(const StmtExpr *E);
|
|
LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
|
|
LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
|
|
void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Scalar Expression Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// EmitCall - Generate a call of the given function, expecting the given
|
|
/// result type, and using the given argument list which specifies both the
|
|
/// LLVM arguments and the types they were derived from.
|
|
///
|
|
/// \param TargetDecl - If given, the decl of the function in a direct call;
|
|
/// used to set attributes on the call (noreturn, etc.).
|
|
RValue EmitCall(const CGFunctionInfo &FnInfo,
|
|
llvm::Value *Callee,
|
|
ReturnValueSlot ReturnValue,
|
|
const CallArgList &Args,
|
|
const Decl *TargetDecl = nullptr,
|
|
llvm::Instruction **callOrInvoke = nullptr);
|
|
|
|
RValue EmitCall(QualType FnType, llvm::Value *Callee,
|
|
SourceLocation CallLoc,
|
|
ReturnValueSlot ReturnValue,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd,
|
|
const Decl *TargetDecl = nullptr);
|
|
RValue EmitCallExpr(const CallExpr *E,
|
|
ReturnValueSlot ReturnValue = ReturnValueSlot());
|
|
|
|
llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
|
|
const Twine &name = "");
|
|
llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
|
|
ArrayRef<llvm::Value*> args,
|
|
const Twine &name = "");
|
|
llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
|
|
const Twine &name = "");
|
|
llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
|
|
ArrayRef<llvm::Value*> args,
|
|
const Twine &name = "");
|
|
|
|
llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
|
|
ArrayRef<llvm::Value *> Args,
|
|
const Twine &Name = "");
|
|
llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
|
|
const Twine &Name = "");
|
|
llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
|
|
ArrayRef<llvm::Value*> args,
|
|
const Twine &name = "");
|
|
llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
|
|
const Twine &name = "");
|
|
void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
|
|
ArrayRef<llvm::Value*> args);
|
|
|
|
llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
|
|
NestedNameSpecifier *Qual,
|
|
llvm::Type *Ty);
|
|
|
|
llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
|
|
CXXDtorType Type,
|
|
const CXXRecordDecl *RD);
|
|
|
|
RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
|
|
SourceLocation CallLoc,
|
|
llvm::Value *Callee,
|
|
ReturnValueSlot ReturnValue,
|
|
llvm::Value *This,
|
|
llvm::Value *ImplicitParam,
|
|
QualType ImplicitParamTy,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd);
|
|
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
|
|
ReturnValueSlot ReturnValue);
|
|
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
|
|
ReturnValueSlot ReturnValue);
|
|
|
|
llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
|
|
const CXXMethodDecl *MD,
|
|
llvm::Value *This);
|
|
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
|
|
const CXXMethodDecl *MD,
|
|
ReturnValueSlot ReturnValue);
|
|
|
|
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
|
|
ReturnValueSlot ReturnValue);
|
|
|
|
|
|
RValue EmitBuiltinExpr(const FunctionDecl *FD,
|
|
unsigned BuiltinID, const CallExpr *E);
|
|
|
|
RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
|
|
|
|
/// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
|
|
/// is unhandled by the current target.
|
|
llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
|
|
|
|
llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
|
|
const llvm::CmpInst::Predicate Fp,
|
|
const llvm::CmpInst::Predicate Ip,
|
|
const llvm::Twine &Name = "");
|
|
llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
|
|
|
|
llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
|
|
unsigned LLVMIntrinsic,
|
|
unsigned AltLLVMIntrinsic,
|
|
const char *NameHint,
|
|
unsigned Modifier,
|
|
const CallExpr *E,
|
|
SmallVectorImpl<llvm::Value *> &Ops,
|
|
llvm::Value *Align = nullptr);
|
|
llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
|
|
unsigned Modifier, llvm::Type *ArgTy,
|
|
const CallExpr *E);
|
|
llvm::Value *EmitNeonCall(llvm::Function *F,
|
|
SmallVectorImpl<llvm::Value*> &O,
|
|
const char *name,
|
|
unsigned shift = 0, bool rightshift = false);
|
|
llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
|
|
llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
|
|
bool negateForRightShift);
|
|
llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
|
|
llvm::Type *Ty, bool usgn, const char *name);
|
|
// Helper functions for EmitAArch64BuiltinExpr.
|
|
llvm::Value *vectorWrapScalar8(llvm::Value *Op);
|
|
llvm::Value *vectorWrapScalar16(llvm::Value *Op);
|
|
llvm::Value *emitVectorWrappedScalar8Intrinsic(
|
|
unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
|
|
llvm::Value *emitVectorWrappedScalar16Intrinsic(
|
|
unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
|
|
llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
|
|
llvm::Value *EmitNeon64Call(llvm::Function *F,
|
|
llvm::SmallVectorImpl<llvm::Value *> &O,
|
|
const char *name);
|
|
|
|
llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
|
|
llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
|
|
llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
|
|
llvm::Value *EmitR600BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
|
|
|
|
llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
|
|
llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
|
|
llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
|
|
llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
|
|
llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
|
|
llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
|
|
const ObjCMethodDecl *MethodWithObjects);
|
|
llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
|
|
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
|
|
ReturnValueSlot Return = ReturnValueSlot());
|
|
|
|
/// Retrieves the default cleanup kind for an ARC cleanup.
|
|
/// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
|
|
CleanupKind getARCCleanupKind() {
|
|
return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
|
|
? NormalAndEHCleanup : NormalCleanup;
|
|
}
|
|
|
|
// ARC primitives.
|
|
void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
|
|
void EmitARCDestroyWeak(llvm::Value *addr);
|
|
llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
|
|
llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
|
|
llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
|
|
bool ignored);
|
|
void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
|
|
void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
|
|
llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
|
|
llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
|
|
llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
|
|
bool resultIgnored);
|
|
llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
|
|
bool resultIgnored);
|
|
llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
|
|
llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
|
|
llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
|
|
void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
|
|
void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
|
|
llvm::Value *EmitARCAutorelease(llvm::Value *value);
|
|
llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
|
|
llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
|
|
llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
|
|
|
|
std::pair<LValue,llvm::Value*>
|
|
EmitARCStoreAutoreleasing(const BinaryOperator *e);
|
|
std::pair<LValue,llvm::Value*>
|
|
EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
|
|
|
|
llvm::Value *EmitObjCThrowOperand(const Expr *expr);
|
|
|
|
llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
|
|
llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
|
|
llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
|
|
|
|
llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
|
|
llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
|
|
llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
|
|
|
|
void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
|
|
|
|
static Destroyer destroyARCStrongImprecise;
|
|
static Destroyer destroyARCStrongPrecise;
|
|
static Destroyer destroyARCWeak;
|
|
|
|
void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
|
|
llvm::Value *EmitObjCAutoreleasePoolPush();
|
|
llvm::Value *EmitObjCMRRAutoreleasePoolPush();
|
|
void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
|
|
void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
|
|
|
|
/// \brief Emits a reference binding to the passed in expression.
|
|
RValue EmitReferenceBindingToExpr(const Expr *E);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Expression Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Expressions are broken into three classes: scalar, complex, aggregate.
|
|
|
|
/// EmitScalarExpr - Emit the computation of the specified expression of LLVM
|
|
/// scalar type, returning the result.
|
|
llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
|
|
|
|
/// EmitScalarConversion - Emit a conversion from the specified type to the
|
|
/// specified destination type, both of which are LLVM scalar types.
|
|
llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
|
|
QualType DstTy);
|
|
|
|
/// EmitComplexToScalarConversion - Emit a conversion from the specified
|
|
/// complex type to the specified destination type, where the destination type
|
|
/// is an LLVM scalar type.
|
|
llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
|
|
QualType DstTy);
|
|
|
|
|
|
/// EmitAggExpr - Emit the computation of the specified expression
|
|
/// of aggregate type. The result is computed into the given slot,
|
|
/// which may be null to indicate that the value is not needed.
|
|
void EmitAggExpr(const Expr *E, AggValueSlot AS);
|
|
|
|
/// EmitAggExprToLValue - Emit the computation of the specified expression of
|
|
/// aggregate type into a temporary LValue.
|
|
LValue EmitAggExprToLValue(const Expr *E);
|
|
|
|
/// EmitGCMemmoveCollectable - Emit special API for structs with object
|
|
/// pointers.
|
|
void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
|
|
QualType Ty);
|
|
|
|
/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
|
|
/// make sure it survives garbage collection until this point.
|
|
void EmitExtendGCLifetime(llvm::Value *object);
|
|
|
|
/// EmitComplexExpr - Emit the computation of the specified expression of
|
|
/// complex type, returning the result.
|
|
ComplexPairTy EmitComplexExpr(const Expr *E,
|
|
bool IgnoreReal = false,
|
|
bool IgnoreImag = false);
|
|
|
|
/// EmitComplexExprIntoLValue - Emit the given expression of complex
|
|
/// type and place its result into the specified l-value.
|
|
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
|
|
|
|
/// EmitStoreOfComplex - Store a complex number into the specified l-value.
|
|
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
|
|
|
|
/// EmitLoadOfComplex - Load a complex number from the specified l-value.
|
|
ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
|
|
|
|
/// CreateStaticVarDecl - Create a zero-initialized LLVM global for
|
|
/// a static local variable.
|
|
llvm::Constant *CreateStaticVarDecl(const VarDecl &D,
|
|
const char *Separator,
|
|
llvm::GlobalValue::LinkageTypes Linkage);
|
|
|
|
/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
|
|
/// global variable that has already been created for it. If the initializer
|
|
/// has a different type than GV does, this may free GV and return a different
|
|
/// one. Otherwise it just returns GV.
|
|
llvm::GlobalVariable *
|
|
AddInitializerToStaticVarDecl(const VarDecl &D,
|
|
llvm::GlobalVariable *GV);
|
|
|
|
|
|
/// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
|
|
/// variable with global storage.
|
|
void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
|
|
bool PerformInit);
|
|
|
|
/// Call atexit() with a function that passes the given argument to
|
|
/// the given function.
|
|
void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
|
|
llvm::Constant *addr);
|
|
|
|
/// Emit code in this function to perform a guarded variable
|
|
/// initialization. Guarded initializations are used when it's not
|
|
/// possible to prove that an initialization will be done exactly
|
|
/// once, e.g. with a static local variable or a static data member
|
|
/// of a class template.
|
|
void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
|
|
bool PerformInit);
|
|
|
|
/// GenerateCXXGlobalInitFunc - Generates code for initializing global
|
|
/// variables.
|
|
void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
|
|
ArrayRef<llvm::Constant *> Decls,
|
|
llvm::GlobalVariable *Guard = nullptr);
|
|
|
|
/// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
|
|
/// variables.
|
|
void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
|
|
const std::vector<std::pair<llvm::WeakVH,
|
|
llvm::Constant*> > &DtorsAndObjects);
|
|
|
|
void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
|
|
const VarDecl *D,
|
|
llvm::GlobalVariable *Addr,
|
|
bool PerformInit);
|
|
|
|
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
|
|
|
|
void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
|
|
const Expr *Exp);
|
|
|
|
void enterFullExpression(const ExprWithCleanups *E) {
|
|
if (E->getNumObjects() == 0) return;
|
|
enterNonTrivialFullExpression(E);
|
|
}
|
|
void enterNonTrivialFullExpression(const ExprWithCleanups *E);
|
|
|
|
void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
|
|
|
|
void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
|
|
|
|
RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Annotations Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Emit an annotation call (intrinsic or builtin).
|
|
llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
|
|
llvm::Value *AnnotatedVal,
|
|
StringRef AnnotationStr,
|
|
SourceLocation Location);
|
|
|
|
/// Emit local annotations for the local variable V, declared by D.
|
|
void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
|
|
|
|
/// Emit field annotations for the given field & value. Returns the
|
|
/// annotation result.
|
|
llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Internal Helpers
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// ContainsLabel - Return true if the statement contains a label in it. If
|
|
/// this statement is not executed normally, it not containing a label means
|
|
/// that we can just remove the code.
|
|
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
|
|
|
|
/// containsBreak - Return true if the statement contains a break out of it.
|
|
/// If the statement (recursively) contains a switch or loop with a break
|
|
/// inside of it, this is fine.
|
|
static bool containsBreak(const Stmt *S);
|
|
|
|
/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
|
|
/// to a constant, or if it does but contains a label, return false. If it
|
|
/// constant folds return true and set the boolean result in Result.
|
|
bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
|
|
|
|
/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
|
|
/// to a constant, or if it does but contains a label, return false. If it
|
|
/// constant folds return true and set the folded value.
|
|
bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
|
|
|
|
/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
|
|
/// if statement) to the specified blocks. Based on the condition, this might
|
|
/// try to simplify the codegen of the conditional based on the branch.
|
|
/// TrueCount should be the number of times we expect the condition to
|
|
/// evaluate to true based on PGO data.
|
|
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
|
|
llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
|
|
|
|
/// \brief Emit a description of a type in a format suitable for passing to
|
|
/// a runtime sanitizer handler.
|
|
llvm::Constant *EmitCheckTypeDescriptor(QualType T);
|
|
|
|
/// \brief Convert a value into a format suitable for passing to a runtime
|
|
/// sanitizer handler.
|
|
llvm::Value *EmitCheckValue(llvm::Value *V);
|
|
|
|
/// \brief Emit a description of a source location in a format suitable for
|
|
/// passing to a runtime sanitizer handler.
|
|
llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
|
|
|
|
/// \brief Specify under what conditions this check can be recovered
|
|
enum CheckRecoverableKind {
|
|
/// Always terminate program execution if this check fails
|
|
CRK_Unrecoverable,
|
|
/// Check supports recovering, allows user to specify which
|
|
CRK_Recoverable,
|
|
/// Runtime conditionally aborts, always need to support recovery.
|
|
CRK_AlwaysRecoverable
|
|
};
|
|
|
|
/// \brief Create a basic block that will call a handler function in a
|
|
/// sanitizer runtime with the provided arguments, and create a conditional
|
|
/// branch to it.
|
|
void EmitCheck(llvm::Value *Checked, StringRef CheckName,
|
|
ArrayRef<llvm::Constant *> StaticArgs,
|
|
ArrayRef<llvm::Value *> DynamicArgs,
|
|
CheckRecoverableKind Recoverable);
|
|
|
|
/// \brief Create a basic block that will call the trap intrinsic, and emit a
|
|
/// conditional branch to it, for the -ftrapv checks.
|
|
void EmitTrapCheck(llvm::Value *Checked);
|
|
|
|
/// EmitCallArg - Emit a single call argument.
|
|
void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
|
|
|
|
/// EmitDelegateCallArg - We are performing a delegate call; that
|
|
/// is, the current function is delegating to another one. Produce
|
|
/// a r-value suitable for passing the given parameter.
|
|
void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
|
|
SourceLocation loc);
|
|
|
|
/// SetFPAccuracy - Set the minimum required accuracy of the given floating
|
|
/// point operation, expressed as the maximum relative error in ulp.
|
|
void SetFPAccuracy(llvm::Value *Val, float Accuracy);
|
|
|
|
private:
|
|
llvm::MDNode *getRangeForLoadFromType(QualType Ty);
|
|
void EmitReturnOfRValue(RValue RV, QualType Ty);
|
|
|
|
void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
|
|
|
|
llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
|
|
DeferredReplacements;
|
|
|
|
/// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
|
|
/// from function arguments into \arg Dst. See ABIArgInfo::Expand.
|
|
///
|
|
/// \param AI - The first function argument of the expansion.
|
|
/// \return The argument following the last expanded function
|
|
/// argument.
|
|
llvm::Function::arg_iterator
|
|
ExpandTypeFromArgs(QualType Ty, LValue Dst,
|
|
llvm::Function::arg_iterator AI);
|
|
|
|
/// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
|
|
/// Ty, into individual arguments on the provided vector \arg Args. See
|
|
/// ABIArgInfo::Expand.
|
|
void ExpandTypeToArgs(QualType Ty, RValue Src,
|
|
SmallVectorImpl<llvm::Value *> &Args,
|
|
llvm::FunctionType *IRFuncTy);
|
|
|
|
llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
|
|
const Expr *InputExpr, std::string &ConstraintStr);
|
|
|
|
llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
|
|
LValue InputValue, QualType InputType,
|
|
std::string &ConstraintStr,
|
|
SourceLocation Loc);
|
|
|
|
public:
|
|
/// EmitCallArgs - Emit call arguments for a function.
|
|
template <typename T>
|
|
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd,
|
|
bool ForceColumnInfo = false) {
|
|
if (CallArgTypeInfo) {
|
|
EmitCallArgs(Args, CallArgTypeInfo->isVariadic(),
|
|
CallArgTypeInfo->param_type_begin(),
|
|
CallArgTypeInfo->param_type_end(), ArgBeg, ArgEnd,
|
|
ForceColumnInfo);
|
|
} else {
|
|
// T::param_type_iterator might not have a default ctor.
|
|
const QualType *NoIter = nullptr;
|
|
EmitCallArgs(Args, /*AllowExtraArguments=*/true, NoIter, NoIter, ArgBeg,
|
|
ArgEnd, ForceColumnInfo);
|
|
}
|
|
}
|
|
|
|
template<typename ArgTypeIterator>
|
|
void EmitCallArgs(CallArgList& Args,
|
|
bool AllowExtraArguments,
|
|
ArgTypeIterator ArgTypeBeg,
|
|
ArgTypeIterator ArgTypeEnd,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd,
|
|
bool ForceColumnInfo = false) {
|
|
SmallVector<QualType, 16> ArgTypes;
|
|
CallExpr::const_arg_iterator Arg = ArgBeg;
|
|
|
|
// First, use the argument types that the type info knows about
|
|
for (ArgTypeIterator I = ArgTypeBeg, E = ArgTypeEnd; I != E; ++I, ++Arg) {
|
|
assert(Arg != ArgEnd && "Running over edge of argument list!");
|
|
#ifndef NDEBUG
|
|
QualType ArgType = *I;
|
|
QualType ActualArgType = Arg->getType();
|
|
if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
|
|
QualType ActualBaseType =
|
|
ActualArgType->getAs<PointerType>()->getPointeeType();
|
|
QualType ArgBaseType =
|
|
ArgType->getAs<PointerType>()->getPointeeType();
|
|
if (ArgBaseType->isVariableArrayType()) {
|
|
if (const VariableArrayType *VAT =
|
|
getContext().getAsVariableArrayType(ActualBaseType)) {
|
|
if (!VAT->getSizeExpr())
|
|
ActualArgType = ArgType;
|
|
}
|
|
}
|
|
}
|
|
assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
|
|
getTypePtr() ==
|
|
getContext().getCanonicalType(ActualArgType).getTypePtr() &&
|
|
"type mismatch in call argument!");
|
|
#endif
|
|
ArgTypes.push_back(*I);
|
|
}
|
|
|
|
// Either we've emitted all the call args, or we have a call to variadic
|
|
// function or some other call that allows extra arguments.
|
|
assert((Arg == ArgEnd || AllowExtraArguments) &&
|
|
"Extra arguments in non-variadic function!");
|
|
|
|
// If we still have any arguments, emit them using the type of the argument.
|
|
for (; Arg != ArgEnd; ++Arg)
|
|
ArgTypes.push_back(Arg->getType());
|
|
|
|
EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, ForceColumnInfo);
|
|
}
|
|
|
|
void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
|
|
CallExpr::const_arg_iterator ArgBeg,
|
|
CallExpr::const_arg_iterator ArgEnd,
|
|
bool ForceColumnInfo = false);
|
|
|
|
private:
|
|
const TargetCodeGenInfo &getTargetHooks() const {
|
|
return CGM.getTargetCodeGenInfo();
|
|
}
|
|
|
|
void EmitDeclMetadata();
|
|
|
|
CodeGenModule::ByrefHelpers *
|
|
buildByrefHelpers(llvm::StructType &byrefType,
|
|
const AutoVarEmission &emission);
|
|
|
|
void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
|
|
|
|
/// GetPointeeAlignment - Given an expression with a pointer type, emit the
|
|
/// value and compute our best estimate of the alignment of the pointee.
|
|
std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
|
|
};
|
|
|
|
/// Helper class with most of the code for saving a value for a
|
|
/// conditional expression cleanup.
|
|
struct DominatingLLVMValue {
|
|
typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
|
|
|
|
/// Answer whether the given value needs extra work to be saved.
|
|
static bool needsSaving(llvm::Value *value) {
|
|
// If it's not an instruction, we don't need to save.
|
|
if (!isa<llvm::Instruction>(value)) return false;
|
|
|
|
// If it's an instruction in the entry block, we don't need to save.
|
|
llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
|
|
return (block != &block->getParent()->getEntryBlock());
|
|
}
|
|
|
|
/// Try to save the given value.
|
|
static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
|
|
if (!needsSaving(value)) return saved_type(value, false);
|
|
|
|
// Otherwise we need an alloca.
|
|
llvm::Value *alloca =
|
|
CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
|
|
CGF.Builder.CreateStore(value, alloca);
|
|
|
|
return saved_type(alloca, true);
|
|
}
|
|
|
|
static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
|
|
if (!value.getInt()) return value.getPointer();
|
|
return CGF.Builder.CreateLoad(value.getPointer());
|
|
}
|
|
};
|
|
|
|
/// A partial specialization of DominatingValue for llvm::Values that
|
|
/// might be llvm::Instructions.
|
|
template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
|
|
typedef T *type;
|
|
static type restore(CodeGenFunction &CGF, saved_type value) {
|
|
return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
|
|
}
|
|
};
|
|
|
|
/// A specialization of DominatingValue for RValue.
|
|
template <> struct DominatingValue<RValue> {
|
|
typedef RValue type;
|
|
class saved_type {
|
|
enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
|
|
AggregateAddress, ComplexAddress };
|
|
|
|
llvm::Value *Value;
|
|
Kind K;
|
|
saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
|
|
|
|
public:
|
|
static bool needsSaving(RValue value);
|
|
static saved_type save(CodeGenFunction &CGF, RValue value);
|
|
RValue restore(CodeGenFunction &CGF);
|
|
|
|
// implementations in CGExprCXX.cpp
|
|
};
|
|
|
|
static bool needsSaving(type value) {
|
|
return saved_type::needsSaving(value);
|
|
}
|
|
static saved_type save(CodeGenFunction &CGF, type value) {
|
|
return saved_type::save(CGF, value);
|
|
}
|
|
static type restore(CodeGenFunction &CGF, saved_type value) {
|
|
return value.restore(CGF);
|
|
}
|
|
};
|
|
|
|
} // end namespace CodeGen
|
|
} // end namespace clang
|
|
|
|
#endif
|