llvm-project/clang/lib/Sema/SemaStmt.cpp

4832 lines
182 KiB
C++

//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for statements.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/IgnoreExpr.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Ownership.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
using namespace clang;
using namespace sema;
StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
if (FE.isInvalid())
return StmtError();
FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
if (FE.isInvalid())
return StmtError();
// C99 6.8.3p2: The expression in an expression statement is evaluated as a
// void expression for its side effects. Conversion to void allows any
// operand, even incomplete types.
// Same thing in for stmt first clause (when expr) and third clause.
return StmtResult(FE.getAs<Stmt>());
}
StmtResult Sema::ActOnExprStmtError() {
DiscardCleanupsInEvaluationContext();
return StmtError();
}
StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
bool HasLeadingEmptyMacro) {
return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
}
StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
SourceLocation EndLoc) {
DeclGroupRef DG = dg.get();
// If we have an invalid decl, just return an error.
if (DG.isNull()) return StmtError();
return new (Context) DeclStmt(DG, StartLoc, EndLoc);
}
void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
DeclGroupRef DG = dg.get();
// If we don't have a declaration, or we have an invalid declaration,
// just return.
if (DG.isNull() || !DG.isSingleDecl())
return;
Decl *decl = DG.getSingleDecl();
if (!decl || decl->isInvalidDecl())
return;
// Only variable declarations are permitted.
VarDecl *var = dyn_cast<VarDecl>(decl);
if (!var) {
Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
decl->setInvalidDecl();
return;
}
// foreach variables are never actually initialized in the way that
// the parser came up with.
var->setInit(nullptr);
// In ARC, we don't need to retain the iteration variable of a fast
// enumeration loop. Rather than actually trying to catch that
// during declaration processing, we remove the consequences here.
if (getLangOpts().ObjCAutoRefCount) {
QualType type = var->getType();
// Only do this if we inferred the lifetime. Inferred lifetime
// will show up as a local qualifier because explicit lifetime
// should have shown up as an AttributedType instead.
if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
// Add 'const' and mark the variable as pseudo-strong.
var->setType(type.withConst());
var->setARCPseudoStrong(true);
}
}
}
/// Diagnose unused comparisons, both builtin and overloaded operators.
/// For '==' and '!=', suggest fixits for '=' or '|='.
///
/// Adding a cast to void (or other expression wrappers) will prevent the
/// warning from firing.
static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
SourceLocation Loc;
bool CanAssign;
enum { Equality, Inequality, Relational, ThreeWay } Kind;
if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
if (!Op->isComparisonOp())
return false;
if (Op->getOpcode() == BO_EQ)
Kind = Equality;
else if (Op->getOpcode() == BO_NE)
Kind = Inequality;
else if (Op->getOpcode() == BO_Cmp)
Kind = ThreeWay;
else {
assert(Op->isRelationalOp());
Kind = Relational;
}
Loc = Op->getOperatorLoc();
CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
} else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
switch (Op->getOperator()) {
case OO_EqualEqual:
Kind = Equality;
break;
case OO_ExclaimEqual:
Kind = Inequality;
break;
case OO_Less:
case OO_Greater:
case OO_GreaterEqual:
case OO_LessEqual:
Kind = Relational;
break;
case OO_Spaceship:
Kind = ThreeWay;
break;
default:
return false;
}
Loc = Op->getOperatorLoc();
CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
} else {
// Not a typo-prone comparison.
return false;
}
// Suppress warnings when the operator, suspicious as it may be, comes from
// a macro expansion.
if (S.SourceMgr.isMacroBodyExpansion(Loc))
return false;
S.Diag(Loc, diag::warn_unused_comparison)
<< (unsigned)Kind << E->getSourceRange();
// If the LHS is a plausible entity to assign to, provide a fixit hint to
// correct common typos.
if (CanAssign) {
if (Kind == Inequality)
S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
<< FixItHint::CreateReplacement(Loc, "|=");
else if (Kind == Equality)
S.Diag(Loc, diag::note_equality_comparison_to_assign)
<< FixItHint::CreateReplacement(Loc, "=");
}
return true;
}
static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
SourceLocation Loc, SourceRange R1,
SourceRange R2, bool IsCtor) {
if (!A)
return false;
StringRef Msg = A->getMessage();
if (Msg.empty()) {
if (IsCtor)
return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
}
if (IsCtor)
return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
<< R2;
return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
}
void Sema::DiagnoseUnusedExprResult(const Stmt *S, unsigned DiagID) {
if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
return DiagnoseUnusedExprResult(Label->getSubStmt(), DiagID);
const Expr *E = dyn_cast_or_null<Expr>(S);
if (!E)
return;
// If we are in an unevaluated expression context, then there can be no unused
// results because the results aren't expected to be used in the first place.
if (isUnevaluatedContext())
return;
SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
// In most cases, we don't want to warn if the expression is written in a
// macro body, or if the macro comes from a system header. If the offending
// expression is a call to a function with the warn_unused_result attribute,
// we warn no matter the location. Because of the order in which the various
// checks need to happen, we factor out the macro-related test here.
bool ShouldSuppress =
SourceMgr.isMacroBodyExpansion(ExprLoc) ||
SourceMgr.isInSystemMacro(ExprLoc);
const Expr *WarnExpr;
SourceLocation Loc;
SourceRange R1, R2;
if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
return;
// If this is a GNU statement expression expanded from a macro, it is probably
// unused because it is a function-like macro that can be used as either an
// expression or statement. Don't warn, because it is almost certainly a
// false positive.
if (isa<StmtExpr>(E) && Loc.isMacroID())
return;
// Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
// That macro is frequently used to suppress "unused parameter" warnings,
// but its implementation makes clang's -Wunused-value fire. Prevent this.
if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
SourceLocation SpellLoc = Loc;
if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
return;
}
// Okay, we have an unused result. Depending on what the base expression is,
// we might want to make a more specific diagnostic. Check for one of these
// cases now.
if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
E = Temps->getSubExpr();
if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
E = TempExpr->getSubExpr();
if (DiagnoseUnusedComparison(*this, E))
return;
E = WarnExpr;
if (const auto *Cast = dyn_cast<CastExpr>(E))
if (Cast->getCastKind() == CK_NoOp ||
Cast->getCastKind() == CK_ConstructorConversion)
E = Cast->getSubExpr()->IgnoreImpCasts();
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
if (E->getType()->isVoidType())
return;
if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
CE->getUnusedResultAttr(Context)),
Loc, R1, R2, /*isCtor=*/false))
return;
// If the callee has attribute pure, const, or warn_unused_result, warn with
// a more specific message to make it clear what is happening. If the call
// is written in a macro body, only warn if it has the warn_unused_result
// attribute.
if (const Decl *FD = CE->getCalleeDecl()) {
if (ShouldSuppress)
return;
if (FD->hasAttr<PureAttr>()) {
Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
return;
}
if (FD->hasAttr<ConstAttr>()) {
Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
return;
}
}
} else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
return;
}
} else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
R2, /*isCtor=*/false))
return;
}
} else if (ShouldSuppress)
return;
E = WarnExpr;
if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
Diag(Loc, diag::err_arc_unused_init_message) << R1;
return;
}
const ObjCMethodDecl *MD = ME->getMethodDecl();
if (MD) {
if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
R2, /*isCtor=*/false))
return;
}
} else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
const Expr *Source = POE->getSyntacticForm();
// Handle the actually selected call of an OpenMP specialized call.
if (LangOpts.OpenMP && isa<CallExpr>(Source) &&
POE->getNumSemanticExprs() == 1 &&
isa<CallExpr>(POE->getSemanticExpr(0)))
return DiagnoseUnusedExprResult(POE->getSemanticExpr(0), DiagID);
if (isa<ObjCSubscriptRefExpr>(Source))
DiagID = diag::warn_unused_container_subscript_expr;
else
DiagID = diag::warn_unused_property_expr;
} else if (const CXXFunctionalCastExpr *FC
= dyn_cast<CXXFunctionalCastExpr>(E)) {
const Expr *E = FC->getSubExpr();
if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
E = TE->getSubExpr();
if (isa<CXXTemporaryObjectExpr>(E))
return;
if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
if (!RD->getAttr<WarnUnusedAttr>())
return;
}
// Diagnose "(void*) blah" as a typo for "(void) blah".
else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
QualType T = TI->getType();
// We really do want to use the non-canonical type here.
if (T == Context.VoidPtrTy) {
PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
Diag(Loc, diag::warn_unused_voidptr)
<< FixItHint::CreateRemoval(TL.getStarLoc());
return;
}
}
// Tell the user to assign it into a variable to force a volatile load if this
// isn't an array.
if (E->isGLValue() && E->getType().isVolatileQualified() &&
!E->getType()->isArrayType()) {
Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
return;
}
// Do not diagnose use of a comma operator in a SFINAE context because the
// type of the left operand could be used for SFINAE, so technically it is
// *used*.
if (DiagID != diag::warn_unused_comma_left_operand || !isSFINAEContext())
DiagIfReachable(Loc, S ? llvm::makeArrayRef(S) : llvm::None,
PDiag(DiagID) << R1 << R2);
}
void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
PushCompoundScope(IsStmtExpr);
}
void Sema::ActOnAfterCompoundStatementLeadingPragmas() {
if (getCurFPFeatures().isFPConstrained()) {
FunctionScopeInfo *FSI = getCurFunction();
assert(FSI);
FSI->setUsesFPIntrin();
}
}
void Sema::ActOnFinishOfCompoundStmt() {
PopCompoundScope();
}
sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
return getCurFunction()->CompoundScopes.back();
}
StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
ArrayRef<Stmt *> Elts, bool isStmtExpr) {
const unsigned NumElts = Elts.size();
// If we're in C mode, check that we don't have any decls after stmts. If
// so, emit an extension diagnostic in C89 and potentially a warning in later
// versions.
const unsigned MixedDeclsCodeID = getLangOpts().C99
? diag::warn_mixed_decls_code
: diag::ext_mixed_decls_code;
if (!getLangOpts().CPlusPlus && !Diags.isIgnored(MixedDeclsCodeID, L)) {
// Note that __extension__ can be around a decl.
unsigned i = 0;
// Skip over all declarations.
for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
/*empty*/;
// We found the end of the list or a statement. Scan for another declstmt.
for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
/*empty*/;
if (i != NumElts) {
Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
Diag(D->getLocation(), MixedDeclsCodeID);
}
}
// Check for suspicious empty body (null statement) in `for' and `while'
// statements. Don't do anything for template instantiations, this just adds
// noise.
if (NumElts != 0 && !CurrentInstantiationScope &&
getCurCompoundScope().HasEmptyLoopBodies) {
for (unsigned i = 0; i != NumElts - 1; ++i)
DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
}
return CompoundStmt::Create(Context, Elts, L, R);
}
ExprResult
Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
if (!Val.get())
return Val;
if (DiagnoseUnexpandedParameterPack(Val.get()))
return ExprError();
// If we're not inside a switch, let the 'case' statement handling diagnose
// this. Just clean up after the expression as best we can.
if (getCurFunction()->SwitchStack.empty())
return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
getLangOpts().CPlusPlus11);
Expr *CondExpr =
getCurFunction()->SwitchStack.back().getPointer()->getCond();
if (!CondExpr)
return ExprError();
QualType CondType = CondExpr->getType();
auto CheckAndFinish = [&](Expr *E) {
if (CondType->isDependentType() || E->isTypeDependent())
return ExprResult(E);
if (getLangOpts().CPlusPlus11) {
// C++11 [stmt.switch]p2: the constant-expression shall be a converted
// constant expression of the promoted type of the switch condition.
llvm::APSInt TempVal;
return CheckConvertedConstantExpression(E, CondType, TempVal,
CCEK_CaseValue);
}
ExprResult ER = E;
if (!E->isValueDependent())
ER = VerifyIntegerConstantExpression(E, AllowFold);
if (!ER.isInvalid())
ER = DefaultLvalueConversion(ER.get());
if (!ER.isInvalid())
ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
if (!ER.isInvalid())
ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
return ER;
};
ExprResult Converted = CorrectDelayedTyposInExpr(
Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
CheckAndFinish);
if (Converted.get() == Val.get())
Converted = CheckAndFinish(Val.get());
return Converted;
}
StmtResult
Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
SourceLocation DotDotDotLoc, ExprResult RHSVal,
SourceLocation ColonLoc) {
assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
: RHSVal.isInvalid() || RHSVal.get()) &&
"missing RHS value");
if (getCurFunction()->SwitchStack.empty()) {
Diag(CaseLoc, diag::err_case_not_in_switch);
return StmtError();
}
if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
getCurFunction()->SwitchStack.back().setInt(true);
return StmtError();
}
auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
CaseLoc, DotDotDotLoc, ColonLoc);
getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
return CS;
}
/// ActOnCaseStmtBody - This installs a statement as the body of a case.
void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
cast<CaseStmt>(S)->setSubStmt(SubStmt);
}
StmtResult
Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
Stmt *SubStmt, Scope *CurScope) {
if (getCurFunction()->SwitchStack.empty()) {
Diag(DefaultLoc, diag::err_default_not_in_switch);
return SubStmt;
}
DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
return DS;
}
StmtResult
Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
SourceLocation ColonLoc, Stmt *SubStmt) {
// If the label was multiply defined, reject it now.
if (TheDecl->getStmt()) {
Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
Diag(TheDecl->getLocation(), diag::note_previous_definition);
return SubStmt;
}
ReservedIdentifierStatus Status = TheDecl->isReserved(getLangOpts());
if (isReservedInAllContexts(Status) &&
!Context.getSourceManager().isInSystemHeader(IdentLoc))
Diag(IdentLoc, diag::warn_reserved_extern_symbol)
<< TheDecl << static_cast<int>(Status);
// Otherwise, things are good. Fill in the declaration and return it.
LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
TheDecl->setStmt(LS);
if (!TheDecl->isGnuLocal()) {
TheDecl->setLocStart(IdentLoc);
if (!TheDecl->isMSAsmLabel()) {
// Don't update the location of MS ASM labels. These will result in
// a diagnostic, and changing the location here will mess that up.
TheDecl->setLocation(IdentLoc);
}
}
return LS;
}
StmtResult Sema::BuildAttributedStmt(SourceLocation AttrsLoc,
ArrayRef<const Attr *> Attrs,
Stmt *SubStmt) {
// FIXME: this code should move when a planned refactoring around statement
// attributes lands.
for (const auto *A : Attrs) {
if (A->getKind() == attr::MustTail) {
if (!checkAndRewriteMustTailAttr(SubStmt, *A)) {
return SubStmt;
}
setFunctionHasMustTail();
}
}
return AttributedStmt::Create(Context, AttrsLoc, Attrs, SubStmt);
}
StmtResult Sema::ActOnAttributedStmt(const ParsedAttributes &Attrs,
Stmt *SubStmt) {
SmallVector<const Attr *, 1> SemanticAttrs;
ProcessStmtAttributes(SubStmt, Attrs, SemanticAttrs);
if (!SemanticAttrs.empty())
return BuildAttributedStmt(Attrs.Range.getBegin(), SemanticAttrs, SubStmt);
// If none of the attributes applied, that's fine, we can recover by
// returning the substatement directly instead of making an AttributedStmt
// with no attributes on it.
return SubStmt;
}
bool Sema::checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA) {
ReturnStmt *R = cast<ReturnStmt>(St);
Expr *E = R->getRetValue();
if (CurContext->isDependentContext() || (E && E->isInstantiationDependent()))
// We have to suspend our check until template instantiation time.
return true;
if (!checkMustTailAttr(St, MTA))
return false;
// FIXME: Replace Expr::IgnoreImplicitAsWritten() with this function.
// Currently it does not skip implicit constructors in an initialization
// context.
auto IgnoreImplicitAsWritten = [](Expr *E) -> Expr * {
return IgnoreExprNodes(E, IgnoreImplicitAsWrittenSingleStep,
IgnoreElidableImplicitConstructorSingleStep);
};
// Now that we have verified that 'musttail' is valid here, rewrite the
// return value to remove all implicit nodes, but retain parentheses.
R->setRetValue(IgnoreImplicitAsWritten(E));
return true;
}
bool Sema::checkMustTailAttr(const Stmt *St, const Attr &MTA) {
assert(!CurContext->isDependentContext() &&
"musttail cannot be checked from a dependent context");
// FIXME: Add Expr::IgnoreParenImplicitAsWritten() with this definition.
auto IgnoreParenImplicitAsWritten = [](const Expr *E) -> const Expr * {
return IgnoreExprNodes(const_cast<Expr *>(E), IgnoreParensSingleStep,
IgnoreImplicitAsWrittenSingleStep,
IgnoreElidableImplicitConstructorSingleStep);
};
const Expr *E = cast<ReturnStmt>(St)->getRetValue();
const auto *CE = dyn_cast_or_null<CallExpr>(IgnoreParenImplicitAsWritten(E));
if (!CE) {
Diag(St->getBeginLoc(), diag::err_musttail_needs_call) << &MTA;
return false;
}
if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) {
if (EWC->cleanupsHaveSideEffects()) {
Diag(St->getBeginLoc(), diag::err_musttail_needs_trivial_args) << &MTA;
return false;
}
}
// We need to determine the full function type (including "this" type, if any)
// for both caller and callee.
struct FuncType {
enum {
ft_non_member,
ft_static_member,
ft_non_static_member,
ft_pointer_to_member,
} MemberType = ft_non_member;
QualType This;
const FunctionProtoType *Func;
const CXXMethodDecl *Method = nullptr;
} CallerType, CalleeType;
auto GetMethodType = [this, St, MTA](const CXXMethodDecl *CMD, FuncType &Type,
bool IsCallee) -> bool {
if (isa<CXXConstructorDecl, CXXDestructorDecl>(CMD)) {
Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
<< IsCallee << isa<CXXDestructorDecl>(CMD);
if (IsCallee)
Diag(CMD->getBeginLoc(), diag::note_musttail_structors_forbidden)
<< isa<CXXDestructorDecl>(CMD);
Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
return false;
}
if (CMD->isStatic())
Type.MemberType = FuncType::ft_static_member;
else {
Type.This = CMD->getThisType()->getPointeeType();
Type.MemberType = FuncType::ft_non_static_member;
}
Type.Func = CMD->getType()->castAs<FunctionProtoType>();
return true;
};
const auto *CallerDecl = dyn_cast<FunctionDecl>(CurContext);
// Find caller function signature.
if (!CallerDecl) {
int ContextType;
if (isa<BlockDecl>(CurContext))
ContextType = 0;
else if (isa<ObjCMethodDecl>(CurContext))
ContextType = 1;
else
ContextType = 2;
Diag(St->getBeginLoc(), diag::err_musttail_forbidden_from_this_context)
<< &MTA << ContextType;
return false;
} else if (const auto *CMD = dyn_cast<CXXMethodDecl>(CurContext)) {
// Caller is a class/struct method.
if (!GetMethodType(CMD, CallerType, false))
return false;
} else {
// Caller is a non-method function.
CallerType.Func = CallerDecl->getType()->getAs<FunctionProtoType>();
}
const Expr *CalleeExpr = CE->getCallee()->IgnoreParens();
const auto *CalleeBinOp = dyn_cast<BinaryOperator>(CalleeExpr);
SourceLocation CalleeLoc = CE->getCalleeDecl()
? CE->getCalleeDecl()->getBeginLoc()
: St->getBeginLoc();
// Find callee function signature.
if (const CXXMethodDecl *CMD =
dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) {
// Call is: obj.method(), obj->method(), functor(), etc.
if (!GetMethodType(CMD, CalleeType, true))
return false;
} else if (CalleeBinOp && CalleeBinOp->isPtrMemOp()) {
// Call is: obj->*method_ptr or obj.*method_ptr
const auto *MPT =
CalleeBinOp->getRHS()->getType()->castAs<MemberPointerType>();
CalleeType.This = QualType(MPT->getClass(), 0);
CalleeType.Func = MPT->getPointeeType()->castAs<FunctionProtoType>();
CalleeType.MemberType = FuncType::ft_pointer_to_member;
} else if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) {
Diag(St->getBeginLoc(), diag::err_musttail_structors_forbidden)
<< /* IsCallee = */ 1 << /* IsDestructor = */ 1;
Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
return false;
} else {
// Non-method function.
CalleeType.Func =
CalleeExpr->getType()->getPointeeType()->getAs<FunctionProtoType>();
}
// Both caller and callee must have a prototype (no K&R declarations).
if (!CalleeType.Func || !CallerType.Func) {
Diag(St->getBeginLoc(), diag::err_musttail_needs_prototype) << &MTA;
if (!CalleeType.Func && CE->getDirectCallee()) {
Diag(CE->getDirectCallee()->getBeginLoc(),
diag::note_musttail_fix_non_prototype);
}
if (!CallerType.Func)
Diag(CallerDecl->getBeginLoc(), diag::note_musttail_fix_non_prototype);
return false;
}
// Caller and callee must have matching calling conventions.
//
// Some calling conventions are physically capable of supporting tail calls
// even if the function types don't perfectly match. LLVM is currently too
// strict to allow this, but if LLVM added support for this in the future, we
// could exit early here and skip the remaining checks if the functions are
// using such a calling convention.
if (CallerType.Func->getCallConv() != CalleeType.Func->getCallConv()) {
if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch)
<< true << ND->getDeclName();
else
Diag(St->getBeginLoc(), diag::err_musttail_callconv_mismatch) << false;
Diag(CalleeLoc, diag::note_musttail_callconv_mismatch)
<< FunctionType::getNameForCallConv(CallerType.Func->getCallConv())
<< FunctionType::getNameForCallConv(CalleeType.Func->getCallConv());
Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
return false;
}
if (CalleeType.Func->isVariadic() || CallerType.Func->isVariadic()) {
Diag(St->getBeginLoc(), diag::err_musttail_no_variadic) << &MTA;
return false;
}
// Caller and callee must match in whether they have a "this" parameter.
if (CallerType.This.isNull() != CalleeType.This.isNull()) {
if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
<< CallerType.MemberType << CalleeType.MemberType << true
<< ND->getDeclName();
Diag(CalleeLoc, diag::note_musttail_callee_defined_here)
<< ND->getDeclName();
} else
Diag(St->getBeginLoc(), diag::err_musttail_member_mismatch)
<< CallerType.MemberType << CalleeType.MemberType << false;
Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
return false;
}
auto CheckTypesMatch = [this](FuncType CallerType, FuncType CalleeType,
PartialDiagnostic &PD) -> bool {
enum {
ft_different_class,
ft_parameter_arity,
ft_parameter_mismatch,
ft_return_type,
};
auto DoTypesMatch = [this, &PD](QualType A, QualType B,
unsigned Select) -> bool {
if (!Context.hasSimilarType(A, B)) {
PD << Select << A.getUnqualifiedType() << B.getUnqualifiedType();
return false;
}
return true;
};
if (!CallerType.This.isNull() &&
!DoTypesMatch(CallerType.This, CalleeType.This, ft_different_class))
return false;
if (!DoTypesMatch(CallerType.Func->getReturnType(),
CalleeType.Func->getReturnType(), ft_return_type))
return false;
if (CallerType.Func->getNumParams() != CalleeType.Func->getNumParams()) {
PD << ft_parameter_arity << CallerType.Func->getNumParams()
<< CalleeType.Func->getNumParams();
return false;
}
ArrayRef<QualType> CalleeParams = CalleeType.Func->getParamTypes();
ArrayRef<QualType> CallerParams = CallerType.Func->getParamTypes();
size_t N = CallerType.Func->getNumParams();
for (size_t I = 0; I < N; I++) {
if (!DoTypesMatch(CalleeParams[I], CallerParams[I],
ft_parameter_mismatch)) {
PD << static_cast<int>(I) + 1;
return false;
}
}
return true;
};
PartialDiagnostic PD = PDiag(diag::note_musttail_mismatch);
if (!CheckTypesMatch(CallerType, CalleeType, PD)) {
if (const auto *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl()))
Diag(St->getBeginLoc(), diag::err_musttail_mismatch)
<< true << ND->getDeclName();
else
Diag(St->getBeginLoc(), diag::err_musttail_mismatch) << false;
Diag(CalleeLoc, PD);
Diag(MTA.getLocation(), diag::note_tail_call_required) << &MTA;
return false;
}
return true;
}
namespace {
class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
Sema &SemaRef;
public:
CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
void VisitBinaryOperator(BinaryOperator *E) {
if (E->getOpcode() == BO_Comma)
SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
}
};
}
StmtResult Sema::ActOnIfStmt(SourceLocation IfLoc,
IfStatementKind StatementKind,
SourceLocation LParenLoc, Stmt *InitStmt,
ConditionResult Cond, SourceLocation RParenLoc,
Stmt *thenStmt, SourceLocation ElseLoc,
Stmt *elseStmt) {
if (Cond.isInvalid())
return StmtError();
bool ConstevalOrNegatedConsteval =
StatementKind == IfStatementKind::ConstevalNonNegated ||
StatementKind == IfStatementKind::ConstevalNegated;
Expr *CondExpr = Cond.get().second;
assert((CondExpr || ConstevalOrNegatedConsteval) &&
"If statement: missing condition");
// Only call the CommaVisitor when not C89 due to differences in scope flags.
if (CondExpr && (getLangOpts().C99 || getLangOpts().CPlusPlus) &&
!Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
CommaVisitor(*this).Visit(CondExpr);
if (!ConstevalOrNegatedConsteval && !elseStmt)
DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), thenStmt,
diag::warn_empty_if_body);
if (ConstevalOrNegatedConsteval ||
StatementKind == IfStatementKind::Constexpr) {
auto DiagnoseLikelihood = [&](const Stmt *S) {
if (const Attr *A = Stmt::getLikelihoodAttr(S)) {
Diags.Report(A->getLocation(),
diag::warn_attribute_has_no_effect_on_compile_time_if)
<< A << ConstevalOrNegatedConsteval << A->getRange();
Diags.Report(IfLoc,
diag::note_attribute_has_no_effect_on_compile_time_if_here)
<< ConstevalOrNegatedConsteval
<< SourceRange(IfLoc, (ConstevalOrNegatedConsteval
? thenStmt->getBeginLoc()
: LParenLoc)
.getLocWithOffset(-1));
}
};
DiagnoseLikelihood(thenStmt);
DiagnoseLikelihood(elseStmt);
} else {
std::tuple<bool, const Attr *, const Attr *> LHC =
Stmt::determineLikelihoodConflict(thenStmt, elseStmt);
if (std::get<0>(LHC)) {
const Attr *ThenAttr = std::get<1>(LHC);
const Attr *ElseAttr = std::get<2>(LHC);
Diags.Report(ThenAttr->getLocation(),
diag::warn_attributes_likelihood_ifstmt_conflict)
<< ThenAttr << ThenAttr->getRange();
Diags.Report(ElseAttr->getLocation(), diag::note_conflicting_attribute)
<< ElseAttr << ElseAttr->getRange();
}
}
if (ConstevalOrNegatedConsteval) {
bool Immediate = isImmediateFunctionContext();
if (CurContext->isFunctionOrMethod()) {
const auto *FD =
dyn_cast<FunctionDecl>(Decl::castFromDeclContext(CurContext));
if (FD && FD->isConsteval())
Immediate = true;
}
if (isUnevaluatedContext() || Immediate)
Diags.Report(IfLoc, diag::warn_consteval_if_always_true) << Immediate;
}
return BuildIfStmt(IfLoc, StatementKind, LParenLoc, InitStmt, Cond, RParenLoc,
thenStmt, ElseLoc, elseStmt);
}
StmtResult Sema::BuildIfStmt(SourceLocation IfLoc,
IfStatementKind StatementKind,
SourceLocation LParenLoc, Stmt *InitStmt,
ConditionResult Cond, SourceLocation RParenLoc,
Stmt *thenStmt, SourceLocation ElseLoc,
Stmt *elseStmt) {
if (Cond.isInvalid())
return StmtError();
if (StatementKind != IfStatementKind::Ordinary ||
isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
setFunctionHasBranchProtectedScope();
return IfStmt::Create(Context, IfLoc, StatementKind, InitStmt,
Cond.get().first, Cond.get().second, LParenLoc,
RParenLoc, thenStmt, ElseLoc, elseStmt);
}
namespace {
struct CaseCompareFunctor {
bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
const llvm::APSInt &RHS) {
return LHS.first < RHS;
}
bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
return LHS.first < RHS.first;
}
bool operator()(const llvm::APSInt &LHS,
const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
return LHS < RHS.first;
}
};
}
/// CmpCaseVals - Comparison predicate for sorting case values.
///
static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
if (lhs.first < rhs.first)
return true;
if (lhs.first == rhs.first &&
lhs.second->getCaseLoc() < rhs.second->getCaseLoc())
return true;
return false;
}
/// CmpEnumVals - Comparison predicate for sorting enumeration values.
///
static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
{
return lhs.first < rhs.first;
}
/// EqEnumVals - Comparison preficate for uniqing enumeration values.
///
static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
{
return lhs.first == rhs.first;
}
/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
/// potentially integral-promoted expression @p expr.
static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
if (const auto *FE = dyn_cast<FullExpr>(E))
E = FE->getSubExpr();
while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
if (ImpCast->getCastKind() != CK_IntegralCast) break;
E = ImpCast->getSubExpr();
}
return E->getType();
}
ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
Expr *Cond;
public:
SwitchConvertDiagnoser(Expr *Cond)
: ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
Cond(Cond) {}
SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
}
SemaDiagnosticBuilder diagnoseIncomplete(
Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_switch_incomplete_class_type)
<< T << Cond->getSourceRange();
}
SemaDiagnosticBuilder diagnoseExplicitConv(
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
}
SemaDiagnosticBuilder noteExplicitConv(
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
}
SemaDiagnosticBuilder noteAmbiguous(
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaDiagnosticBuilder diagnoseConversion(
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
llvm_unreachable("conversion functions are permitted");
}
} SwitchDiagnoser(Cond);
ExprResult CondResult =
PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
if (CondResult.isInvalid())
return ExprError();
// FIXME: PerformContextualImplicitConversion doesn't always tell us if it
// failed and produced a diagnostic.
Cond = CondResult.get();
if (!Cond->isTypeDependent() &&
!Cond->getType()->isIntegralOrEnumerationType())
return ExprError();
// C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
return UsualUnaryConversions(Cond);
}
StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
SourceLocation LParenLoc,
Stmt *InitStmt, ConditionResult Cond,
SourceLocation RParenLoc) {
Expr *CondExpr = Cond.get().second;
assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
if (CondExpr && !CondExpr->isTypeDependent()) {
// We have already converted the expression to an integral or enumeration
// type, when we parsed the switch condition. There are cases where we don't
// have an appropriate type, e.g. a typo-expr Cond was corrected to an
// inappropriate-type expr, we just return an error.
if (!CondExpr->getType()->isIntegralOrEnumerationType())
return StmtError();
if (CondExpr->isKnownToHaveBooleanValue()) {
// switch(bool_expr) {...} is often a programmer error, e.g.
// switch(n && mask) { ... } // Doh - should be "n & mask".
// One can always use an if statement instead of switch(bool_expr).
Diag(SwitchLoc, diag::warn_bool_switch_condition)
<< CondExpr->getSourceRange();
}
}
setFunctionHasBranchIntoScope();
auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr,
LParenLoc, RParenLoc);
getCurFunction()->SwitchStack.push_back(
FunctionScopeInfo::SwitchInfo(SS, false));
return SS;
}
static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
Val = Val.extOrTrunc(BitWidth);
Val.setIsSigned(IsSigned);
}
/// Check the specified case value is in range for the given unpromoted switch
/// type.
static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
unsigned UnpromotedWidth, bool UnpromotedSign) {
// In C++11 onwards, this is checked by the language rules.
if (S.getLangOpts().CPlusPlus11)
return;
// If the case value was signed and negative and the switch expression is
// unsigned, don't bother to warn: this is implementation-defined behavior.
// FIXME: Introduce a second, default-ignored warning for this case?
if (UnpromotedWidth < Val.getBitWidth()) {
llvm::APSInt ConvVal(Val);
AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
// FIXME: Use different diagnostics for overflow in conversion to promoted
// type versus "switch expression cannot have this value". Use proper
// IntRange checking rather than just looking at the unpromoted type here.
if (ConvVal != Val)
S.Diag(Loc, diag::warn_case_value_overflow) << toString(Val, 10)
<< toString(ConvVal, 10);
}
}
typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
/// Returns true if we should emit a diagnostic about this case expression not
/// being a part of the enum used in the switch controlling expression.
static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
const EnumDecl *ED,
const Expr *CaseExpr,
EnumValsTy::iterator &EI,
EnumValsTy::iterator &EIEnd,
const llvm::APSInt &Val) {
if (!ED->isClosed())
return false;
if (const DeclRefExpr *DRE =
dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
QualType VarType = VD->getType();
QualType EnumType = S.Context.getTypeDeclType(ED);
if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
S.Context.hasSameUnqualifiedType(EnumType, VarType))
return false;
}
}
if (ED->hasAttr<FlagEnumAttr>())
return !S.IsValueInFlagEnum(ED, Val, false);
while (EI != EIEnd && EI->first < Val)
EI++;
if (EI != EIEnd && EI->first == Val)
return false;
return true;
}
static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
const Expr *Case) {
QualType CondType = Cond->getType();
QualType CaseType = Case->getType();
const EnumType *CondEnumType = CondType->getAs<EnumType>();
const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
if (!CondEnumType || !CaseEnumType)
return;
// Ignore anonymous enums.
if (!CondEnumType->getDecl()->getIdentifier() &&
!CondEnumType->getDecl()->getTypedefNameForAnonDecl())
return;
if (!CaseEnumType->getDecl()->getIdentifier() &&
!CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
return;
if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
return;
S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
<< CondType << CaseType << Cond->getSourceRange()
<< Case->getSourceRange();
}
StmtResult
Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
Stmt *BodyStmt) {
SwitchStmt *SS = cast<SwitchStmt>(Switch);
bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
"switch stack missing push/pop!");
getCurFunction()->SwitchStack.pop_back();
if (!BodyStmt) return StmtError();
SS->setBody(BodyStmt, SwitchLoc);
Expr *CondExpr = SS->getCond();
if (!CondExpr) return StmtError();
QualType CondType = CondExpr->getType();
// C++ 6.4.2.p2:
// Integral promotions are performed (on the switch condition).
//
// A case value unrepresentable by the original switch condition
// type (before the promotion) doesn't make sense, even when it can
// be represented by the promoted type. Therefore we need to find
// the pre-promotion type of the switch condition.
const Expr *CondExprBeforePromotion = CondExpr;
QualType CondTypeBeforePromotion =
GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
// Get the bitwidth of the switched-on value after promotions. We must
// convert the integer case values to this width before comparison.
bool HasDependentValue
= CondExpr->isTypeDependent() || CondExpr->isValueDependent();
unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
// Get the width and signedness that the condition might actually have, for
// warning purposes.
// FIXME: Grab an IntRange for the condition rather than using the unpromoted
// type.
unsigned CondWidthBeforePromotion
= HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
bool CondIsSignedBeforePromotion
= CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
// Accumulate all of the case values in a vector so that we can sort them
// and detect duplicates. This vector contains the APInt for the case after
// it has been converted to the condition type.
typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
CaseValsTy CaseVals;
// Keep track of any GNU case ranges we see. The APSInt is the low value.
typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
CaseRangesTy CaseRanges;
DefaultStmt *TheDefaultStmt = nullptr;
bool CaseListIsErroneous = false;
for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
SC = SC->getNextSwitchCase()) {
if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
if (TheDefaultStmt) {
Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
// FIXME: Remove the default statement from the switch block so that
// we'll return a valid AST. This requires recursing down the AST and
// finding it, not something we are set up to do right now. For now,
// just lop the entire switch stmt out of the AST.
CaseListIsErroneous = true;
}
TheDefaultStmt = DS;
} else {
CaseStmt *CS = cast<CaseStmt>(SC);
Expr *Lo = CS->getLHS();
if (Lo->isValueDependent()) {
HasDependentValue = true;
break;
}
// We already verified that the expression has a constant value;
// get that value (prior to conversions).
const Expr *LoBeforePromotion = Lo;
GetTypeBeforeIntegralPromotion(LoBeforePromotion);
llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
// Check the unconverted value is within the range of possible values of
// the switch expression.
checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
CondIsSignedBeforePromotion);
// FIXME: This duplicates the check performed for warn_not_in_enum below.
checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
LoBeforePromotion);
// Convert the value to the same width/sign as the condition.
AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
// If this is a case range, remember it in CaseRanges, otherwise CaseVals.
if (CS->getRHS()) {
if (CS->getRHS()->isValueDependent()) {
HasDependentValue = true;
break;
}
CaseRanges.push_back(std::make_pair(LoVal, CS));
} else
CaseVals.push_back(std::make_pair(LoVal, CS));
}
}
if (!HasDependentValue) {
// If we don't have a default statement, check whether the
// condition is constant.
llvm::APSInt ConstantCondValue;
bool HasConstantCond = false;
if (!TheDefaultStmt) {
Expr::EvalResult Result;
HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
Expr::SE_AllowSideEffects);
if (Result.Val.isInt())
ConstantCondValue = Result.Val.getInt();
assert(!HasConstantCond ||
(ConstantCondValue.getBitWidth() == CondWidth &&
ConstantCondValue.isSigned() == CondIsSigned));
}
bool ShouldCheckConstantCond = HasConstantCond;
// Sort all the scalar case values so we can easily detect duplicates.
llvm::stable_sort(CaseVals, CmpCaseVals);
if (!CaseVals.empty()) {
for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
if (ShouldCheckConstantCond &&
CaseVals[i].first == ConstantCondValue)
ShouldCheckConstantCond = false;
if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
// If we have a duplicate, report it.
// First, determine if either case value has a name
StringRef PrevString, CurrString;
Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
PrevString = DeclRef->getDecl()->getName();
}
if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
CurrString = DeclRef->getDecl()->getName();
}
SmallString<16> CaseValStr;
CaseVals[i-1].first.toString(CaseValStr);
if (PrevString == CurrString)
Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
diag::err_duplicate_case)
<< (PrevString.empty() ? CaseValStr.str() : PrevString);
else
Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
diag::err_duplicate_case_differing_expr)
<< (PrevString.empty() ? CaseValStr.str() : PrevString)
<< (CurrString.empty() ? CaseValStr.str() : CurrString)
<< CaseValStr;
Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
diag::note_duplicate_case_prev);
// FIXME: We really want to remove the bogus case stmt from the
// substmt, but we have no way to do this right now.
CaseListIsErroneous = true;
}
}
}
// Detect duplicate case ranges, which usually don't exist at all in
// the first place.
if (!CaseRanges.empty()) {
// Sort all the case ranges by their low value so we can easily detect
// overlaps between ranges.
llvm::stable_sort(CaseRanges);
// Scan the ranges, computing the high values and removing empty ranges.
std::vector<llvm::APSInt> HiVals;
for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
llvm::APSInt &LoVal = CaseRanges[i].first;
CaseStmt *CR = CaseRanges[i].second;
Expr *Hi = CR->getRHS();
const Expr *HiBeforePromotion = Hi;
GetTypeBeforeIntegralPromotion(HiBeforePromotion);
llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
// Check the unconverted value is within the range of possible values of
// the switch expression.
checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
CondWidthBeforePromotion, CondIsSignedBeforePromotion);
// Convert the value to the same width/sign as the condition.
AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
// If the low value is bigger than the high value, the case is empty.
if (LoVal > HiVal) {
Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
<< SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
CaseRanges.erase(CaseRanges.begin()+i);
--i;
--e;
continue;
}
if (ShouldCheckConstantCond &&
LoVal <= ConstantCondValue &&
ConstantCondValue <= HiVal)
ShouldCheckConstantCond = false;
HiVals.push_back(HiVal);
}
// Rescan the ranges, looking for overlap with singleton values and other
// ranges. Since the range list is sorted, we only need to compare case
// ranges with their neighbors.
for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
llvm::APSInt &CRLo = CaseRanges[i].first;
llvm::APSInt &CRHi = HiVals[i];
CaseStmt *CR = CaseRanges[i].second;
// Check to see whether the case range overlaps with any
// singleton cases.
CaseStmt *OverlapStmt = nullptr;
llvm::APSInt OverlapVal(32);
// Find the smallest value >= the lower bound. If I is in the
// case range, then we have overlap.
CaseValsTy::iterator I =
llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
if (I != CaseVals.end() && I->first < CRHi) {
OverlapVal = I->first; // Found overlap with scalar.
OverlapStmt = I->second;
}
// Find the smallest value bigger than the upper bound.
I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
OverlapVal = (I-1)->first; // Found overlap with scalar.
OverlapStmt = (I-1)->second;
}
// Check to see if this case stmt overlaps with the subsequent
// case range.
if (i && CRLo <= HiVals[i-1]) {
OverlapVal = HiVals[i-1]; // Found overlap with range.
OverlapStmt = CaseRanges[i-1].second;
}
if (OverlapStmt) {
// If we have a duplicate, report it.
Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
<< toString(OverlapVal, 10);
Diag(OverlapStmt->getLHS()->getBeginLoc(),
diag::note_duplicate_case_prev);
// FIXME: We really want to remove the bogus case stmt from the
// substmt, but we have no way to do this right now.
CaseListIsErroneous = true;
}
}
}
// Complain if we have a constant condition and we didn't find a match.
if (!CaseListIsErroneous && !CaseListIsIncomplete &&
ShouldCheckConstantCond) {
// TODO: it would be nice if we printed enums as enums, chars as
// chars, etc.
Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
<< toString(ConstantCondValue, 10)
<< CondExpr->getSourceRange();
}
// Check to see if switch is over an Enum and handles all of its
// values. We only issue a warning if there is not 'default:', but
// we still do the analysis to preserve this information in the AST
// (which can be used by flow-based analyes).
//
const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
// If switch has default case, then ignore it.
if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
ET && ET->getDecl()->isCompleteDefinition() &&
!empty(ET->getDecl()->enumerators())) {
const EnumDecl *ED = ET->getDecl();
EnumValsTy EnumVals;
// Gather all enum values, set their type and sort them,
// allowing easier comparison with CaseVals.
for (auto *EDI : ED->enumerators()) {
llvm::APSInt Val = EDI->getInitVal();
AdjustAPSInt(Val, CondWidth, CondIsSigned);
EnumVals.push_back(std::make_pair(Val, EDI));
}
llvm::stable_sort(EnumVals, CmpEnumVals);
auto EI = EnumVals.begin(), EIEnd =
std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
// See which case values aren't in enum.
for (CaseValsTy::const_iterator CI = CaseVals.begin();
CI != CaseVals.end(); CI++) {
Expr *CaseExpr = CI->second->getLHS();
if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
CI->first))
Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
<< CondTypeBeforePromotion;
}
// See which of case ranges aren't in enum
EI = EnumVals.begin();
for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
RI != CaseRanges.end(); RI++) {
Expr *CaseExpr = RI->second->getLHS();
if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
RI->first))
Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
<< CondTypeBeforePromotion;
llvm::APSInt Hi =
RI->second->getRHS()->EvaluateKnownConstInt(Context);
AdjustAPSInt(Hi, CondWidth, CondIsSigned);
CaseExpr = RI->second->getRHS();
if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
Hi))
Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
<< CondTypeBeforePromotion;
}
// Check which enum vals aren't in switch
auto CI = CaseVals.begin();
auto RI = CaseRanges.begin();
bool hasCasesNotInSwitch = false;
SmallVector<DeclarationName,8> UnhandledNames;
for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
// Don't warn about omitted unavailable EnumConstantDecls.
switch (EI->second->getAvailability()) {
case AR_Deprecated:
// Omitting a deprecated constant is ok; it should never materialize.
case AR_Unavailable:
continue;
case AR_NotYetIntroduced:
// Partially available enum constants should be present. Note that we
// suppress -Wunguarded-availability diagnostics for such uses.
case AR_Available:
break;
}
if (EI->second->hasAttr<UnusedAttr>())
continue;
// Drop unneeded case values
while (CI != CaseVals.end() && CI->first < EI->first)
CI++;
if (CI != CaseVals.end() && CI->first == EI->first)
continue;
// Drop unneeded case ranges
for (; RI != CaseRanges.end(); RI++) {
llvm::APSInt Hi =
RI->second->getRHS()->EvaluateKnownConstInt(Context);
AdjustAPSInt(Hi, CondWidth, CondIsSigned);
if (EI->first <= Hi)
break;
}
if (RI == CaseRanges.end() || EI->first < RI->first) {
hasCasesNotInSwitch = true;
UnhandledNames.push_back(EI->second->getDeclName());
}
}
if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
// Produce a nice diagnostic if multiple values aren't handled.
if (!UnhandledNames.empty()) {
auto DB = Diag(CondExpr->getExprLoc(), TheDefaultStmt
? diag::warn_def_missing_case
: diag::warn_missing_case)
<< CondExpr->getSourceRange() << (int)UnhandledNames.size();
for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
I != E; ++I)
DB << UnhandledNames[I];
}
if (!hasCasesNotInSwitch)
SS->setAllEnumCasesCovered();
}
}
if (BodyStmt)
DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
diag::warn_empty_switch_body);
// FIXME: If the case list was broken is some way, we don't have a good system
// to patch it up. Instead, just return the whole substmt as broken.
if (CaseListIsErroneous)
return StmtError();
return SS;
}
void
Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
Expr *SrcExpr) {
if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
return;
if (const EnumType *ET = DstType->getAs<EnumType>())
if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
SrcType->isIntegerType()) {
if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
SrcExpr->isIntegerConstantExpr(Context)) {
// Get the bitwidth of the enum value before promotions.
unsigned DstWidth = Context.getIntWidth(DstType);
bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
const EnumDecl *ED = ET->getDecl();
if (!ED->isClosed())
return;
if (ED->hasAttr<FlagEnumAttr>()) {
if (!IsValueInFlagEnum(ED, RhsVal, true))
Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
<< DstType.getUnqualifiedType();
} else {
typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
EnumValsTy;
EnumValsTy EnumVals;
// Gather all enum values, set their type and sort them,
// allowing easier comparison with rhs constant.
for (auto *EDI : ED->enumerators()) {
llvm::APSInt Val = EDI->getInitVal();
AdjustAPSInt(Val, DstWidth, DstIsSigned);
EnumVals.push_back(std::make_pair(Val, EDI));
}
if (EnumVals.empty())
return;
llvm::stable_sort(EnumVals, CmpEnumVals);
EnumValsTy::iterator EIend =
std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
// See which values aren't in the enum.
EnumValsTy::const_iterator EI = EnumVals.begin();
while (EI != EIend && EI->first < RhsVal)
EI++;
if (EI == EIend || EI->first != RhsVal) {
Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
<< DstType.getUnqualifiedType();
}
}
}
}
}
StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc,
SourceLocation LParenLoc, ConditionResult Cond,
SourceLocation RParenLoc, Stmt *Body) {
if (Cond.isInvalid())
return StmtError();
auto CondVal = Cond.get();
CheckBreakContinueBinding(CondVal.second);
if (CondVal.second &&
!Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
CommaVisitor(*this).Visit(CondVal.second);
if (isa<NullStmt>(Body))
getCurCompoundScope().setHasEmptyLoopBodies();
return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
WhileLoc, LParenLoc, RParenLoc);
}
StmtResult
Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
SourceLocation WhileLoc, SourceLocation CondLParen,
Expr *Cond, SourceLocation CondRParen) {
assert(Cond && "ActOnDoStmt(): missing expression");
CheckBreakContinueBinding(Cond);
ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
if (CondResult.isInvalid())
return StmtError();
Cond = CondResult.get();
CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
if (CondResult.isInvalid())
return StmtError();
Cond = CondResult.get();
// Only call the CommaVisitor for C89 due to differences in scope flags.
if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
!Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
CommaVisitor(*this).Visit(Cond);
return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
}
namespace {
// Use SetVector since the diagnostic cares about the ordering of the Decl's.
using DeclSetVector =
llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>,
llvm::SmallPtrSet<VarDecl *, 8>>;
// This visitor will traverse a conditional statement and store all
// the evaluated decls into a vector. Simple is set to true if none
// of the excluded constructs are used.
class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
DeclSetVector &Decls;
SmallVectorImpl<SourceRange> &Ranges;
bool Simple;
public:
typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
DeclExtractor(Sema &S, DeclSetVector &Decls,
SmallVectorImpl<SourceRange> &Ranges) :
Inherited(S.Context),
Decls(Decls),
Ranges(Ranges),
Simple(true) {}
bool isSimple() { return Simple; }
// Replaces the method in EvaluatedExprVisitor.
void VisitMemberExpr(MemberExpr* E) {
Simple = false;
}
// Any Stmt not explicitly listed will cause the condition to be marked
// complex.
void VisitStmt(Stmt *S) { Simple = false; }
void VisitBinaryOperator(BinaryOperator *E) {
Visit(E->getLHS());
Visit(E->getRHS());
}
void VisitCastExpr(CastExpr *E) {
Visit(E->getSubExpr());
}
void VisitUnaryOperator(UnaryOperator *E) {
// Skip checking conditionals with derefernces.
if (E->getOpcode() == UO_Deref)
Simple = false;
else
Visit(E->getSubExpr());
}
void VisitConditionalOperator(ConditionalOperator *E) {
Visit(E->getCond());
Visit(E->getTrueExpr());
Visit(E->getFalseExpr());
}
void VisitParenExpr(ParenExpr *E) {
Visit(E->getSubExpr());
}
void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
Visit(E->getOpaqueValue()->getSourceExpr());
Visit(E->getFalseExpr());
}
void VisitIntegerLiteral(IntegerLiteral *E) { }
void VisitFloatingLiteral(FloatingLiteral *E) { }
void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
void VisitCharacterLiteral(CharacterLiteral *E) { }
void VisitGNUNullExpr(GNUNullExpr *E) { }
void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
void VisitDeclRefExpr(DeclRefExpr *E) {
VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
if (!VD) {
// Don't allow unhandled Decl types.
Simple = false;
return;
}
Ranges.push_back(E->getSourceRange());
Decls.insert(VD);
}
}; // end class DeclExtractor
// DeclMatcher checks to see if the decls are used in a non-evaluated
// context.
class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
DeclSetVector &Decls;
bool FoundDecl;
public:
typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
Inherited(S.Context), Decls(Decls), FoundDecl(false) {
if (!Statement) return;
Visit(Statement);
}
void VisitReturnStmt(ReturnStmt *S) {
FoundDecl = true;
}
void VisitBreakStmt(BreakStmt *S) {
FoundDecl = true;
}
void VisitGotoStmt(GotoStmt *S) {
FoundDecl = true;
}
void VisitCastExpr(CastExpr *E) {
if (E->getCastKind() == CK_LValueToRValue)
CheckLValueToRValueCast(E->getSubExpr());
else
Visit(E->getSubExpr());
}
void CheckLValueToRValueCast(Expr *E) {
E = E->IgnoreParenImpCasts();
if (isa<DeclRefExpr>(E)) {
return;
}
if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
Visit(CO->getCond());
CheckLValueToRValueCast(CO->getTrueExpr());
CheckLValueToRValueCast(CO->getFalseExpr());
return;
}
if (BinaryConditionalOperator *BCO =
dyn_cast<BinaryConditionalOperator>(E)) {
CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
CheckLValueToRValueCast(BCO->getFalseExpr());
return;
}
Visit(E);
}
void VisitDeclRefExpr(DeclRefExpr *E) {
if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
if (Decls.count(VD))
FoundDecl = true;
}
void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
// Only need to visit the semantics for POE.
// SyntaticForm doesn't really use the Decal.
for (auto *S : POE->semantics()) {
if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
// Look past the OVE into the expression it binds.
Visit(OVE->getSourceExpr());
else
Visit(S);
}
}
bool FoundDeclInUse() { return FoundDecl; }
}; // end class DeclMatcher
void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
Expr *Third, Stmt *Body) {
// Condition is empty
if (!Second) return;
if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
Second->getBeginLoc()))
return;
PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
DeclSetVector Decls;
SmallVector<SourceRange, 10> Ranges;
DeclExtractor DE(S, Decls, Ranges);
DE.Visit(Second);
// Don't analyze complex conditionals.
if (!DE.isSimple()) return;
// No decls found.
if (Decls.size() == 0) return;
// Don't warn on volatile, static, or global variables.
for (auto *VD : Decls)
if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
return;
if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
DeclMatcher(S, Decls, Body).FoundDeclInUse())
return;
// Load decl names into diagnostic.
if (Decls.size() > 4) {
PDiag << 0;
} else {
PDiag << (unsigned)Decls.size();
for (auto *VD : Decls)
PDiag << VD->getDeclName();
}
for (auto Range : Ranges)
PDiag << Range;
S.Diag(Ranges.begin()->getBegin(), PDiag);
}
// If Statement is an incemement or decrement, return true and sets the
// variables Increment and DRE.
bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
DeclRefExpr *&DRE) {
if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
if (!Cleanups->cleanupsHaveSideEffects())
Statement = Cleanups->getSubExpr();
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
switch (UO->getOpcode()) {
default: return false;
case UO_PostInc:
case UO_PreInc:
Increment = true;
break;
case UO_PostDec:
case UO_PreDec:
Increment = false;
break;
}
DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
return DRE;
}
if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
FunctionDecl *FD = Call->getDirectCallee();
if (!FD || !FD->isOverloadedOperator()) return false;
switch (FD->getOverloadedOperator()) {
default: return false;
case OO_PlusPlus:
Increment = true;
break;
case OO_MinusMinus:
Increment = false;
break;
}
DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
return DRE;
}
return false;
}
// A visitor to determine if a continue or break statement is a
// subexpression.
class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
SourceLocation BreakLoc;
SourceLocation ContinueLoc;
bool InSwitch = false;
public:
BreakContinueFinder(Sema &S, const Stmt* Body) :
Inherited(S.Context) {
Visit(Body);
}
typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;
void VisitContinueStmt(const ContinueStmt* E) {
ContinueLoc = E->getContinueLoc();
}
void VisitBreakStmt(const BreakStmt* E) {
if (!InSwitch)
BreakLoc = E->getBreakLoc();
}
void VisitSwitchStmt(const SwitchStmt* S) {
if (const Stmt *Init = S->getInit())
Visit(Init);
if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
Visit(CondVar);
if (const Stmt *Cond = S->getCond())
Visit(Cond);
// Don't return break statements from the body of a switch.
InSwitch = true;
if (const Stmt *Body = S->getBody())
Visit(Body);
InSwitch = false;
}
void VisitForStmt(const ForStmt *S) {
// Only visit the init statement of a for loop; the body
// has a different break/continue scope.
if (const Stmt *Init = S->getInit())
Visit(Init);
}
void VisitWhileStmt(const WhileStmt *) {
// Do nothing; the children of a while loop have a different
// break/continue scope.
}
void VisitDoStmt(const DoStmt *) {
// Do nothing; the children of a while loop have a different
// break/continue scope.
}
void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
// Only visit the initialization of a for loop; the body
// has a different break/continue scope.
if (const Stmt *Init = S->getInit())
Visit(Init);
if (const Stmt *Range = S->getRangeStmt())
Visit(Range);
if (const Stmt *Begin = S->getBeginStmt())
Visit(Begin);
if (const Stmt *End = S->getEndStmt())
Visit(End);
}
void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
// Only visit the initialization of a for loop; the body
// has a different break/continue scope.
if (const Stmt *Element = S->getElement())
Visit(Element);
if (const Stmt *Collection = S->getCollection())
Visit(Collection);
}
bool ContinueFound() { return ContinueLoc.isValid(); }
bool BreakFound() { return BreakLoc.isValid(); }
SourceLocation GetContinueLoc() { return ContinueLoc; }
SourceLocation GetBreakLoc() { return BreakLoc; }
}; // end class BreakContinueFinder
// Emit a warning when a loop increment/decrement appears twice per loop
// iteration. The conditions which trigger this warning are:
// 1) The last statement in the loop body and the third expression in the
// for loop are both increment or both decrement of the same variable
// 2) No continue statements in the loop body.
void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
// Return when there is nothing to check.
if (!Body || !Third) return;
if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
Third->getBeginLoc()))
return;
// Get the last statement from the loop body.
CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
if (!CS || CS->body_empty()) return;
Stmt *LastStmt = CS->body_back();
if (!LastStmt) return;
bool LoopIncrement, LastIncrement;
DeclRefExpr *LoopDRE, *LastDRE;
if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
// Check that the two statements are both increments or both decrements
// on the same variable.
if (LoopIncrement != LastIncrement ||
LoopDRE->getDecl() != LastDRE->getDecl()) return;
if (BreakContinueFinder(S, Body).ContinueFound()) return;
S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
<< LastDRE->getDecl() << LastIncrement;
S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
<< LoopIncrement;
}
} // end namespace
void Sema::CheckBreakContinueBinding(Expr *E) {
if (!E || getLangOpts().CPlusPlus)
return;
BreakContinueFinder BCFinder(*this, E);
Scope *BreakParent = CurScope->getBreakParent();
if (BCFinder.BreakFound() && BreakParent) {
if (BreakParent->getFlags() & Scope::SwitchScope) {
Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
} else {
Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
<< "break";
}
} else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
<< "continue";
}
}
StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
Stmt *First, ConditionResult Second,
FullExprArg third, SourceLocation RParenLoc,
Stmt *Body) {
if (Second.isInvalid())
return StmtError();
if (!getLangOpts().CPlusPlus) {
if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
// C99 6.8.5p3: The declaration part of a 'for' statement shall only
// declare identifiers for objects having storage class 'auto' or
// 'register'.
const Decl *NonVarSeen = nullptr;
bool VarDeclSeen = false;
for (auto *DI : DS->decls()) {
if (VarDecl *VD = dyn_cast<VarDecl>(DI)) {
VarDeclSeen = true;
if (VD->isLocalVarDecl() && !VD->hasLocalStorage()) {
Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
DI->setInvalidDecl();
}
} else if (!NonVarSeen) {
// Keep track of the first non-variable declaration we saw so that
// we can diagnose if we don't see any variable declarations. This
// covers a case like declaring a typedef, function, or structure
// type rather than a variable.
NonVarSeen = DI;
}
}
// Diagnose if we saw a non-variable declaration but no variable
// declarations.
if (NonVarSeen && !VarDeclSeen)
Diag(NonVarSeen->getLocation(), diag::err_non_variable_decl_in_for);
}
}
CheckBreakContinueBinding(Second.get().second);
CheckBreakContinueBinding(third.get());
if (!Second.get().first)
CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
Body);
CheckForRedundantIteration(*this, third.get(), Body);
if (Second.get().second &&
!Diags.isIgnored(diag::warn_comma_operator,
Second.get().second->getExprLoc()))
CommaVisitor(*this).Visit(Second.get().second);
Expr *Third = third.release().getAs<Expr>();
if (isa<NullStmt>(Body))
getCurCompoundScope().setHasEmptyLoopBodies();
return new (Context)
ForStmt(Context, First, Second.get().second, Second.get().first, Third,
Body, ForLoc, LParenLoc, RParenLoc);
}
/// In an Objective C collection iteration statement:
/// for (x in y)
/// x can be an arbitrary l-value expression. Bind it up as a
/// full-expression.
StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
// Reduce placeholder expressions here. Note that this rejects the
// use of pseudo-object l-values in this position.
ExprResult result = CheckPlaceholderExpr(E);
if (result.isInvalid()) return StmtError();
E = result.get();
ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
if (FullExpr.isInvalid())
return StmtError();
return StmtResult(static_cast<Stmt*>(FullExpr.get()));
}
ExprResult
Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
if (!collection)
return ExprError();
ExprResult result = CorrectDelayedTyposInExpr(collection);
if (!result.isUsable())
return ExprError();
collection = result.get();
// Bail out early if we've got a type-dependent expression.
if (collection->isTypeDependent()) return collection;
// Perform normal l-value conversion.
result = DefaultFunctionArrayLvalueConversion(collection);
if (result.isInvalid())
return ExprError();
collection = result.get();
// The operand needs to have object-pointer type.
// TODO: should we do a contextual conversion?
const ObjCObjectPointerType *pointerType =
collection->getType()->getAs<ObjCObjectPointerType>();
if (!pointerType)
return Diag(forLoc, diag::err_collection_expr_type)
<< collection->getType() << collection->getSourceRange();
// Check that the operand provides
// - countByEnumeratingWithState:objects:count:
const ObjCObjectType *objectType = pointerType->getObjectType();
ObjCInterfaceDecl *iface = objectType->getInterface();
// If we have a forward-declared type, we can't do this check.
// Under ARC, it is an error not to have a forward-declared class.
if (iface &&
(getLangOpts().ObjCAutoRefCount
? RequireCompleteType(forLoc, QualType(objectType, 0),
diag::err_arc_collection_forward, collection)
: !isCompleteType(forLoc, QualType(objectType, 0)))) {
// Otherwise, if we have any useful type information, check that
// the type declares the appropriate method.
} else if (iface || !objectType->qual_empty()) {
IdentifierInfo *selectorIdents[] = {
&Context.Idents.get("countByEnumeratingWithState"),
&Context.Idents.get("objects"),
&Context.Idents.get("count")
};
Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
ObjCMethodDecl *method = nullptr;
// If there's an interface, look in both the public and private APIs.
if (iface) {
method = iface->lookupInstanceMethod(selector);
if (!method) method = iface->lookupPrivateMethod(selector);
}
// Also check protocol qualifiers.
if (!method)
method = LookupMethodInQualifiedType(selector, pointerType,
/*instance*/ true);
// If we didn't find it anywhere, give up.
if (!method) {
Diag(forLoc, diag::warn_collection_expr_type)
<< collection->getType() << selector << collection->getSourceRange();
}
// TODO: check for an incompatible signature?
}
// Wrap up any cleanups in the expression.
return collection;
}
StmtResult
Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
Stmt *First, Expr *collection,
SourceLocation RParenLoc) {
setFunctionHasBranchProtectedScope();
ExprResult CollectionExprResult =
CheckObjCForCollectionOperand(ForLoc, collection);
if (First) {
QualType FirstType;
if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
if (!DS->isSingleDecl())
return StmtError(Diag((*DS->decl_begin())->getLocation(),
diag::err_toomany_element_decls));
VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
if (!D || D->isInvalidDecl())
return StmtError();
FirstType = D->getType();
// C99 6.8.5p3: The declaration part of a 'for' statement shall only
// declare identifiers for objects having storage class 'auto' or
// 'register'.
if (!D->hasLocalStorage())
return StmtError(Diag(D->getLocation(),
diag::err_non_local_variable_decl_in_for));
// If the type contained 'auto', deduce the 'auto' to 'id'.
if (FirstType->getContainedAutoType()) {
OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
VK_PRValue);
Expr *DeducedInit = &OpaqueId;
if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
DAR_Failed)
DiagnoseAutoDeductionFailure(D, DeducedInit);
if (FirstType.isNull()) {
D->setInvalidDecl();
return StmtError();
}
D->setType(FirstType);
if (!inTemplateInstantiation()) {
SourceLocation Loc =
D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
Diag(Loc, diag::warn_auto_var_is_id)
<< D->getDeclName();
}
}
} else {
Expr *FirstE = cast<Expr>(First);
if (!FirstE->isTypeDependent() && !FirstE->isLValue())
return StmtError(
Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
<< First->getSourceRange());
FirstType = static_cast<Expr*>(First)->getType();
if (FirstType.isConstQualified())
Diag(ForLoc, diag::err_selector_element_const_type)
<< FirstType << First->getSourceRange();
}
if (!FirstType->isDependentType() &&
!FirstType->isObjCObjectPointerType() &&
!FirstType->isBlockPointerType())
return StmtError(Diag(ForLoc, diag::err_selector_element_type)
<< FirstType << First->getSourceRange());
}
if (CollectionExprResult.isInvalid())
return StmtError();
CollectionExprResult =
ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
if (CollectionExprResult.isInvalid())
return StmtError();
return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
nullptr, ForLoc, RParenLoc);
}
/// Finish building a variable declaration for a for-range statement.
/// \return true if an error occurs.
static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
SourceLocation Loc, int DiagID) {
if (Decl->getType()->isUndeducedType()) {
ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
if (!Res.isUsable()) {
Decl->setInvalidDecl();
return true;
}
Init = Res.get();
}
// Deduce the type for the iterator variable now rather than leaving it to
// AddInitializerToDecl, so we can produce a more suitable diagnostic.
QualType InitType;
if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
Sema::DAR_Failed)
SemaRef.Diag(Loc, DiagID) << Init->getType();
if (InitType.isNull()) {
Decl->setInvalidDecl();
return true;
}
Decl->setType(InitType);
// In ARC, infer lifetime.
// FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
// we're doing the equivalent of fast iteration.
if (SemaRef.getLangOpts().ObjCAutoRefCount &&
SemaRef.inferObjCARCLifetime(Decl))
Decl->setInvalidDecl();
SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
SemaRef.FinalizeDeclaration(Decl);
SemaRef.CurContext->addHiddenDecl(Decl);
return false;
}
namespace {
// An enum to represent whether something is dealing with a call to begin()
// or a call to end() in a range-based for loop.
enum BeginEndFunction {
BEF_begin,
BEF_end
};
/// Produce a note indicating which begin/end function was implicitly called
/// by a C++11 for-range statement. This is often not obvious from the code,
/// nor from the diagnostics produced when analysing the implicit expressions
/// required in a for-range statement.
void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
BeginEndFunction BEF) {
CallExpr *CE = dyn_cast<CallExpr>(E);
if (!CE)
return;
FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
if (!D)
return;
SourceLocation Loc = D->getLocation();
std::string Description;
bool IsTemplate = false;
if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
Description = SemaRef.getTemplateArgumentBindingsText(
FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
IsTemplate = true;
}
SemaRef.Diag(Loc, diag::note_for_range_begin_end)
<< BEF << IsTemplate << Description << E->getType();
}
/// Build a variable declaration for a for-range statement.
VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
QualType Type, StringRef Name) {
DeclContext *DC = SemaRef.CurContext;
IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
TInfo, SC_None);
Decl->setImplicit();
return Decl;
}
}
static bool ObjCEnumerationCollection(Expr *Collection) {
return !Collection->isTypeDependent()
&& Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
}
/// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
///
/// C++11 [stmt.ranged]:
/// A range-based for statement is equivalent to
///
/// {
/// auto && __range = range-init;
/// for ( auto __begin = begin-expr,
/// __end = end-expr;
/// __begin != __end;
/// ++__begin ) {
/// for-range-declaration = *__begin;
/// statement
/// }
/// }
///
/// The body of the loop is not available yet, since it cannot be analysed until
/// we have determined the type of the for-range-declaration.
StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
SourceLocation CoawaitLoc, Stmt *InitStmt,
Stmt *First, SourceLocation ColonLoc,
Expr *Range, SourceLocation RParenLoc,
BuildForRangeKind Kind) {
// FIXME: recover in order to allow the body to be parsed.
if (!First)
return StmtError();
if (Range && ObjCEnumerationCollection(Range)) {
// FIXME: Support init-statements in Objective-C++20 ranged for statement.
if (InitStmt)
return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
<< InitStmt->getSourceRange();
return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
}
DeclStmt *DS = dyn_cast<DeclStmt>(First);
assert(DS && "first part of for range not a decl stmt");
if (!DS->isSingleDecl()) {
Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
return StmtError();
}
// This function is responsible for attaching an initializer to LoopVar. We
// must call ActOnInitializerError if we fail to do so.
Decl *LoopVar = DS->getSingleDecl();
if (LoopVar->isInvalidDecl() || !Range ||
DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
ActOnInitializerError(LoopVar);
return StmtError();
}
// Build the coroutine state immediately and not later during template
// instantiation
if (!CoawaitLoc.isInvalid()) {
if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) {
ActOnInitializerError(LoopVar);
return StmtError();
}
}
// Build auto && __range = range-init
// Divide by 2, since the variables are in the inner scope (loop body).
const auto DepthStr = std::to_string(S->getDepth() / 2);
SourceLocation RangeLoc = Range->getBeginLoc();
VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
Context.getAutoRRefDeductType(),
std::string("__range") + DepthStr);
if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
diag::err_for_range_deduction_failure)) {
ActOnInitializerError(LoopVar);
return StmtError();
}
// Claim the type doesn't contain auto: we've already done the checking.
DeclGroupPtrTy RangeGroup =
BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
if (RangeDecl.isInvalid()) {
ActOnInitializerError(LoopVar);
return StmtError();
}
StmtResult R = BuildCXXForRangeStmt(
ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
/*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
/*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
if (R.isInvalid()) {
ActOnInitializerError(LoopVar);
return StmtError();
}
return R;
}
/// Create the initialization, compare, and increment steps for
/// the range-based for loop expression.
/// This function does not handle array-based for loops,
/// which are created in Sema::BuildCXXForRangeStmt.
///
/// \returns a ForRangeStatus indicating success or what kind of error occurred.
/// BeginExpr and EndExpr are set and FRS_Success is returned on success;
/// CandidateSet and BEF are set and some non-success value is returned on
/// failure.
static Sema::ForRangeStatus
BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
SourceLocation ColonLoc, SourceLocation CoawaitLoc,
OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
ExprResult *EndExpr, BeginEndFunction *BEF) {
DeclarationNameInfo BeginNameInfo(
&SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
ColonLoc);
LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
Sema::LookupMemberName);
LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
auto BuildBegin = [&] {
*BEF = BEF_begin;
Sema::ForRangeStatus RangeStatus =
SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
BeginMemberLookup, CandidateSet,
BeginRange, BeginExpr);
if (RangeStatus != Sema::FRS_Success) {
if (RangeStatus == Sema::FRS_DiagnosticIssued)
SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
<< ColonLoc << BEF_begin << BeginRange->getType();
return RangeStatus;
}
if (!CoawaitLoc.isInvalid()) {
// FIXME: getCurScope() should not be used during template instantiation.
// We should pick up the set of unqualified lookup results for operator
// co_await during the initial parse.
*BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
BeginExpr->get());
if (BeginExpr->isInvalid())
return Sema::FRS_DiagnosticIssued;
}
if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
diag::err_for_range_iter_deduction_failure)) {
NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
return Sema::FRS_DiagnosticIssued;
}
return Sema::FRS_Success;
};
auto BuildEnd = [&] {
*BEF = BEF_end;
Sema::ForRangeStatus RangeStatus =
SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
EndMemberLookup, CandidateSet,
EndRange, EndExpr);
if (RangeStatus != Sema::FRS_Success) {
if (RangeStatus == Sema::FRS_DiagnosticIssued)
SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
<< ColonLoc << BEF_end << EndRange->getType();
return RangeStatus;
}
if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
diag::err_for_range_iter_deduction_failure)) {
NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
return Sema::FRS_DiagnosticIssued;
}
return Sema::FRS_Success;
};
if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
// - if _RangeT is a class type, the unqualified-ids begin and end are
// looked up in the scope of class _RangeT as if by class member access
// lookup (3.4.5), and if either (or both) finds at least one
// declaration, begin-expr and end-expr are __range.begin() and
// __range.end(), respectively;
SemaRef.LookupQualifiedName(BeginMemberLookup, D);
if (BeginMemberLookup.isAmbiguous())
return Sema::FRS_DiagnosticIssued;
SemaRef.LookupQualifiedName(EndMemberLookup, D);
if (EndMemberLookup.isAmbiguous())
return Sema::FRS_DiagnosticIssued;
if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
// Look up the non-member form of the member we didn't find, first.
// This way we prefer a "no viable 'end'" diagnostic over a "i found
// a 'begin' but ignored it because there was no member 'end'"
// diagnostic.
auto BuildNonmember = [&](
BeginEndFunction BEFFound, LookupResult &Found,
llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
LookupResult OldFound = std::move(Found);
Found.clear();
if (Sema::ForRangeStatus Result = BuildNotFound())
return Result;
switch (BuildFound()) {
case Sema::FRS_Success:
return Sema::FRS_Success;
case Sema::FRS_NoViableFunction:
CandidateSet->NoteCandidates(
PartialDiagnosticAt(BeginRange->getBeginLoc(),
SemaRef.PDiag(diag::err_for_range_invalid)
<< BeginRange->getType() << BEFFound),
SemaRef, OCD_AllCandidates, BeginRange);
LLVM_FALLTHROUGH;
case Sema::FRS_DiagnosticIssued:
for (NamedDecl *D : OldFound) {
SemaRef.Diag(D->getLocation(),
diag::note_for_range_member_begin_end_ignored)
<< BeginRange->getType() << BEFFound;
}
return Sema::FRS_DiagnosticIssued;
}
llvm_unreachable("unexpected ForRangeStatus");
};
if (BeginMemberLookup.empty())
return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
}
} else {
// - otherwise, begin-expr and end-expr are begin(__range) and
// end(__range), respectively, where begin and end are looked up with
// argument-dependent lookup (3.4.2). For the purposes of this name
// lookup, namespace std is an associated namespace.
}
if (Sema::ForRangeStatus Result = BuildBegin())
return Result;
return BuildEnd();
}
/// Speculatively attempt to dereference an invalid range expression.
/// If the attempt fails, this function will return a valid, null StmtResult
/// and emit no diagnostics.
static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
SourceLocation ForLoc,
SourceLocation CoawaitLoc,
Stmt *InitStmt,
Stmt *LoopVarDecl,
SourceLocation ColonLoc,
Expr *Range,
SourceLocation RangeLoc,
SourceLocation RParenLoc) {
// Determine whether we can rebuild the for-range statement with a
// dereferenced range expression.
ExprResult AdjustedRange;
{
Sema::SFINAETrap Trap(SemaRef);
AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
if (AdjustedRange.isInvalid())
return StmtResult();
StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
if (SR.isInvalid())
return StmtResult();
}
// The attempt to dereference worked well enough that it could produce a valid
// loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
// case there are any other (non-fatal) problems with it.
SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
<< Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
return SemaRef.ActOnCXXForRangeStmt(
S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
}
/// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc,
SourceLocation CoawaitLoc, Stmt *InitStmt,
SourceLocation ColonLoc, Stmt *RangeDecl,
Stmt *Begin, Stmt *End, Expr *Cond,
Expr *Inc, Stmt *LoopVarDecl,
SourceLocation RParenLoc,
BuildForRangeKind Kind) {
// FIXME: This should not be used during template instantiation. We should
// pick up the set of unqualified lookup results for the != and + operators
// in the initial parse.
//
// Testcase (accepts-invalid):
// template<typename T> void f() { for (auto x : T()) {} }
// namespace N { struct X { X begin(); X end(); int operator*(); }; }
// bool operator!=(N::X, N::X); void operator++(N::X);
// void g() { f<N::X>(); }
Scope *S = getCurScope();
DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
QualType RangeVarType = RangeVar->getType();
DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
StmtResult BeginDeclStmt = Begin;
StmtResult EndDeclStmt = End;
ExprResult NotEqExpr = Cond, IncrExpr = Inc;
if (RangeVarType->isDependentType()) {
// The range is implicitly used as a placeholder when it is dependent.
RangeVar->markUsed(Context);
// Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
// them in properly when we instantiate the loop.
if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
for (auto *Binding : DD->bindings())
Binding->setType(Context.DependentTy);
LoopVar->setType(SubstAutoTypeDependent(LoopVar->getType()));
}
} else if (!BeginDeclStmt.get()) {
SourceLocation RangeLoc = RangeVar->getLocation();
const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
VK_LValue, ColonLoc);
if (BeginRangeRef.isInvalid())
return StmtError();
ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
VK_LValue, ColonLoc);
if (EndRangeRef.isInvalid())
return StmtError();
QualType AutoType = Context.getAutoDeductType();
Expr *Range = RangeVar->getInit();
if (!Range)
return StmtError();
QualType RangeType = Range->getType();
if (RequireCompleteType(RangeLoc, RangeType,
diag::err_for_range_incomplete_type))
return StmtError();
// Build auto __begin = begin-expr, __end = end-expr.
// Divide by 2, since the variables are in the inner scope (loop body).
const auto DepthStr = std::to_string(S->getDepth() / 2);
VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
std::string("__begin") + DepthStr);
VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
std::string("__end") + DepthStr);
// Build begin-expr and end-expr and attach to __begin and __end variables.
ExprResult BeginExpr, EndExpr;
if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
// - if _RangeT is an array type, begin-expr and end-expr are __range and
// __range + __bound, respectively, where __bound is the array bound. If
// _RangeT is an array of unknown size or an array of incomplete type,
// the program is ill-formed;
// begin-expr is __range.
BeginExpr = BeginRangeRef;
if (!CoawaitLoc.isInvalid()) {
BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
if (BeginExpr.isInvalid())
return StmtError();
}
if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
diag::err_for_range_iter_deduction_failure)) {
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
return StmtError();
}
// Find the array bound.
ExprResult BoundExpr;
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
BoundExpr = IntegerLiteral::Create(
Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
else if (const VariableArrayType *VAT =
dyn_cast<VariableArrayType>(UnqAT)) {
// For a variably modified type we can't just use the expression within
// the array bounds, since we don't want that to be re-evaluated here.
// Rather, we need to determine what it was when the array was first
// created - so we resort to using sizeof(vla)/sizeof(element).
// For e.g.
// void f(int b) {
// int vla[b];
// b = -1; <-- This should not affect the num of iterations below
// for (int &c : vla) { .. }
// }
// FIXME: This results in codegen generating IR that recalculates the
// run-time number of elements (as opposed to just using the IR Value
// that corresponds to the run-time value of each bound that was
// generated when the array was created.) If this proves too embarrassing
// even for unoptimized IR, consider passing a magic-value/cookie to
// codegen that then knows to simply use that initial llvm::Value (that
// corresponds to the bound at time of array creation) within
// getelementptr. But be prepared to pay the price of increasing a
// customized form of coupling between the two components - which could
// be hard to maintain as the codebase evolves.
ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
EndVar->getLocation(), UETT_SizeOf,
/*IsType=*/true,
CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
VAT->desugar(), RangeLoc))
.getAsOpaquePtr(),
EndVar->getSourceRange());
if (SizeOfVLAExprR.isInvalid())
return StmtError();
ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
EndVar->getLocation(), UETT_SizeOf,
/*IsType=*/true,
CreateParsedType(VAT->desugar(),
Context.getTrivialTypeSourceInfo(
VAT->getElementType(), RangeLoc))
.getAsOpaquePtr(),
EndVar->getSourceRange());
if (SizeOfEachElementExprR.isInvalid())
return StmtError();
BoundExpr =
ActOnBinOp(S, EndVar->getLocation(), tok::slash,
SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
if (BoundExpr.isInvalid())
return StmtError();
} else {
// Can't be a DependentSizedArrayType or an IncompleteArrayType since
// UnqAT is not incomplete and Range is not type-dependent.
llvm_unreachable("Unexpected array type in for-range");
}
// end-expr is __range + __bound.
EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
BoundExpr.get());
if (EndExpr.isInvalid())
return StmtError();
if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
diag::err_for_range_iter_deduction_failure)) {
NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
return StmtError();
}
} else {
OverloadCandidateSet CandidateSet(RangeLoc,
OverloadCandidateSet::CSK_Normal);
BeginEndFunction BEFFailure;
ForRangeStatus RangeStatus = BuildNonArrayForRange(
*this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
&BEFFailure);
if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
BEFFailure == BEF_begin) {
// If the range is being built from an array parameter, emit a
// a diagnostic that it is being treated as a pointer.
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
QualType ArrayTy = PVD->getOriginalType();
QualType PointerTy = PVD->getType();
if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
<< RangeLoc << PVD << ArrayTy << PointerTy;
Diag(PVD->getLocation(), diag::note_declared_at);
return StmtError();
}
}
}
// If building the range failed, try dereferencing the range expression
// unless a diagnostic was issued or the end function is problematic.
StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
CoawaitLoc, InitStmt,
LoopVarDecl, ColonLoc,
Range, RangeLoc,
RParenLoc);
if (SR.isInvalid() || SR.isUsable())
return SR;
}
// Otherwise, emit diagnostics if we haven't already.
if (RangeStatus == FRS_NoViableFunction) {
Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
CandidateSet.NoteCandidates(
PartialDiagnosticAt(Range->getBeginLoc(),
PDiag(diag::err_for_range_invalid)
<< RangeLoc << Range->getType()
<< BEFFailure),
*this, OCD_AllCandidates, Range);
}
// Return an error if no fix was discovered.
if (RangeStatus != FRS_Success)
return StmtError();
}
assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
"invalid range expression in for loop");
// C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
// C++1z removes this restriction.
QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
if (!Context.hasSameType(BeginType, EndType)) {
Diag(RangeLoc, getLangOpts().CPlusPlus17
? diag::warn_for_range_begin_end_types_differ
: diag::ext_for_range_begin_end_types_differ)
<< BeginType << EndType;
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
}
BeginDeclStmt =
ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
EndDeclStmt =
ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
VK_LValue, ColonLoc);
if (BeginRef.isInvalid())
return StmtError();
ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
VK_LValue, ColonLoc);
if (EndRef.isInvalid())
return StmtError();
// Build and check __begin != __end expression.
NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
BeginRef.get(), EndRef.get());
if (!NotEqExpr.isInvalid())
NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
if (!NotEqExpr.isInvalid())
NotEqExpr =
ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
if (NotEqExpr.isInvalid()) {
Diag(RangeLoc, diag::note_for_range_invalid_iterator)
<< RangeLoc << 0 << BeginRangeRef.get()->getType();
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
if (!Context.hasSameType(BeginType, EndType))
NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
return StmtError();
}
// Build and check ++__begin expression.
BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
VK_LValue, ColonLoc);
if (BeginRef.isInvalid())
return StmtError();
IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
// FIXME: getCurScope() should not be used during template instantiation.
// We should pick up the set of unqualified lookup results for operator
// co_await during the initial parse.
IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
if (!IncrExpr.isInvalid())
IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
if (IncrExpr.isInvalid()) {
Diag(RangeLoc, diag::note_for_range_invalid_iterator)
<< RangeLoc << 2 << BeginRangeRef.get()->getType() ;
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
return StmtError();
}
// Build and check *__begin expression.
BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
VK_LValue, ColonLoc);
if (BeginRef.isInvalid())
return StmtError();
ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
if (DerefExpr.isInvalid()) {
Diag(RangeLoc, diag::note_for_range_invalid_iterator)
<< RangeLoc << 1 << BeginRangeRef.get()->getType();
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
return StmtError();
}
// Attach *__begin as initializer for VD. Don't touch it if we're just
// trying to determine whether this would be a valid range.
if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
if (LoopVar->isInvalidDecl() ||
(LoopVar->getInit() && LoopVar->getInit()->containsErrors()))
NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
}
}
// Don't bother to actually allocate the result if we're just trying to
// determine whether it would be valid.
if (Kind == BFRK_Check)
return StmtResult();
// In OpenMP loop region loop control variable must be private. Perform
// analysis of first part (if any).
if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
return new (Context) CXXForRangeStmt(
InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
ColonLoc, RParenLoc);
}
/// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
/// statement.
StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
if (!S || !B)
return StmtError();
ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
ForStmt->setBody(B);
return S;
}
// Warn when the loop variable is a const reference that creates a copy.
// Suggest using the non-reference type for copies. If a copy can be prevented
// suggest the const reference type that would do so.
// For instance, given "for (const &Foo : Range)", suggest
// "for (const Foo : Range)" to denote a copy is made for the loop. If
// possible, also suggest "for (const &Bar : Range)" if this type prevents
// the copy altogether.
static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
const VarDecl *VD,
QualType RangeInitType) {
const Expr *InitExpr = VD->getInit();
if (!InitExpr)
return;
QualType VariableType = VD->getType();
if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
if (!Cleanups->cleanupsHaveSideEffects())
InitExpr = Cleanups->getSubExpr();
const MaterializeTemporaryExpr *MTE =
dyn_cast<MaterializeTemporaryExpr>(InitExpr);
// No copy made.
if (!MTE)
return;
const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();
// Searching for either UnaryOperator for dereference of a pointer or
// CXXOperatorCallExpr for handling iterators.
while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
E = CCE->getArg(0);
} else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
E = ME->getBase();
} else {
const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
E = MTE->getSubExpr();
}
E = E->IgnoreImpCasts();
}
QualType ReferenceReturnType;
if (isa<UnaryOperator>(E)) {
ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType());
} else {
const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
const FunctionDecl *FD = Call->getDirectCallee();
QualType ReturnType = FD->getReturnType();
if (ReturnType->isReferenceType())
ReferenceReturnType = ReturnType;
}
if (!ReferenceReturnType.isNull()) {
// Loop variable creates a temporary. Suggest either to go with
// non-reference loop variable to indicate a copy is made, or
// the correct type to bind a const reference.
SemaRef.Diag(VD->getLocation(),
diag::warn_for_range_const_ref_binds_temp_built_from_ref)
<< VD << VariableType << ReferenceReturnType;
QualType NonReferenceType = VariableType.getNonReferenceType();
NonReferenceType.removeLocalConst();
QualType NewReferenceType =
SemaRef.Context.getLValueReferenceType(E->getType().withConst());
SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
<< NonReferenceType << NewReferenceType << VD->getSourceRange()
<< FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
} else if (!VariableType->isRValueReferenceType()) {
// The range always returns a copy, so a temporary is always created.
// Suggest removing the reference from the loop variable.
// If the type is a rvalue reference do not warn since that changes the
// semantic of the code.
SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp)
<< VD << RangeInitType;
QualType NonReferenceType = VariableType.getNonReferenceType();
NonReferenceType.removeLocalConst();
SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
<< NonReferenceType << VD->getSourceRange()
<< FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
}
}
/// Determines whether the @p VariableType's declaration is a record with the
/// clang::trivial_abi attribute.
static bool hasTrivialABIAttr(QualType VariableType) {
if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
return RD->hasAttr<TrivialABIAttr>();
return false;
}
// Warns when the loop variable can be changed to a reference type to
// prevent a copy. For instance, if given "for (const Foo x : Range)" suggest
// "for (const Foo &x : Range)" if this form does not make a copy.
static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
const VarDecl *VD) {
const Expr *InitExpr = VD->getInit();
if (!InitExpr)
return;
QualType VariableType = VD->getType();
if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
if (!CE->getConstructor()->isCopyConstructor())
return;
} else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
if (CE->getCastKind() != CK_LValueToRValue)
return;
} else {
return;
}
// Small trivially copyable types are cheap to copy. Do not emit the
// diagnostic for these instances. 64 bytes is a common size of a cache line.
// (The function `getTypeSize` returns the size in bits.)
ASTContext &Ctx = SemaRef.Context;
if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
(VariableType.isTriviallyCopyableType(Ctx) ||
hasTrivialABIAttr(VariableType)))
return;
// Suggest changing from a const variable to a const reference variable
// if doing so will prevent a copy.
SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
<< VD << VariableType;
SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
<< SemaRef.Context.getLValueReferenceType(VariableType)
<< VD->getSourceRange()
<< FixItHint::CreateInsertion(VD->getLocation(), "&");
}
/// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
/// 1) for (const foo &x : foos) where foos only returns a copy. Suggest
/// using "const foo x" to show that a copy is made
/// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
/// Suggest either "const bar x" to keep the copying or "const foo& x" to
/// prevent the copy.
/// 3) for (const foo x : foos) where x is constructed from a reference foo.
/// Suggest "const foo &x" to prevent the copy.
static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
const CXXForRangeStmt *ForStmt) {
if (SemaRef.inTemplateInstantiation())
return;
if (SemaRef.Diags.isIgnored(
diag::warn_for_range_const_ref_binds_temp_built_from_ref,
ForStmt->getBeginLoc()) &&
SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp,
ForStmt->getBeginLoc()) &&
SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
ForStmt->getBeginLoc())) {
return;
}
const VarDecl *VD = ForStmt->getLoopVariable();
if (!VD)
return;
QualType VariableType = VD->getType();
if (VariableType->isIncompleteType())
return;
const Expr *InitExpr = VD->getInit();
if (!InitExpr)
return;
if (InitExpr->getExprLoc().isMacroID())
return;
if (VariableType->isReferenceType()) {
DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
ForStmt->getRangeInit()->getType());
} else if (VariableType.isConstQualified()) {
DiagnoseForRangeConstVariableCopies(SemaRef, VD);
}
}
/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
/// body cannot be performed until after the type of the range variable is
/// determined.
StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
if (!S || !B)
return StmtError();
if (isa<ObjCForCollectionStmt>(S))
return FinishObjCForCollectionStmt(S, B);
CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
ForStmt->setBody(B);
DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
diag::warn_empty_range_based_for_body);
DiagnoseForRangeVariableCopies(*this, ForStmt);
return S;
}
StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
SourceLocation LabelLoc,
LabelDecl *TheDecl) {
setFunctionHasBranchIntoScope();
TheDecl->markUsed(Context);
return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
}
StmtResult
Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
Expr *E) {
// Convert operand to void*
if (!E->isTypeDependent()) {
QualType ETy = E->getType();
QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
ExprResult ExprRes = E;
AssignConvertType ConvTy =
CheckSingleAssignmentConstraints(DestTy, ExprRes);
if (ExprRes.isInvalid())
return StmtError();
E = ExprRes.get();
if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
return StmtError();
}
ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
if (ExprRes.isInvalid())
return StmtError();
E = ExprRes.get();
setFunctionHasIndirectGoto();
return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
}
static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
const Scope &DestScope) {
if (!S.CurrentSEHFinally.empty() &&
DestScope.Contains(*S.CurrentSEHFinally.back())) {
S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
}
}
StmtResult
Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
Scope *S = CurScope->getContinueParent();
if (!S) {
// C99 6.8.6.2p1: A break shall appear only in or as a loop body.
return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
}
if (S->isConditionVarScope()) {
// We cannot 'continue;' from within a statement expression in the
// initializer of a condition variable because we would jump past the
// initialization of that variable.
return StmtError(Diag(ContinueLoc, diag::err_continue_from_cond_var_init));
}
CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
return new (Context) ContinueStmt(ContinueLoc);
}
StmtResult
Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
Scope *S = CurScope->getBreakParent();
if (!S) {
// C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
}
if (S->isOpenMPLoopScope())
return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
<< "break");
CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
return new (Context) BreakStmt(BreakLoc);
}
/// Determine whether the given expression might be move-eligible or
/// copy-elidable in either a (co_)return statement or throw expression,
/// without considering function return type, if applicable.
///
/// \param E The expression being returned from the function or block,
/// being thrown, or being co_returned from a coroutine. This expression
/// might be modified by the implementation.
///
/// \param Mode Overrides detection of current language mode
/// and uses the rules for C++2b.
///
/// \returns An aggregate which contains the Candidate and isMoveEligible
/// and isCopyElidable methods. If Candidate is non-null, it means
/// isMoveEligible() would be true under the most permissive language standard.
Sema::NamedReturnInfo Sema::getNamedReturnInfo(Expr *&E,
SimplerImplicitMoveMode Mode) {
if (!E)
return NamedReturnInfo();
// - in a return statement in a function [where] ...
// ... the expression is the name of a non-volatile automatic object ...
const auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
if (!DR || DR->refersToEnclosingVariableOrCapture())
return NamedReturnInfo();
const auto *VD = dyn_cast<VarDecl>(DR->getDecl());
if (!VD)
return NamedReturnInfo();
NamedReturnInfo Res = getNamedReturnInfo(VD);
if (Res.Candidate && !E->isXValue() &&
(Mode == SimplerImplicitMoveMode::ForceOn ||
(Mode != SimplerImplicitMoveMode::ForceOff &&
getLangOpts().CPlusPlus2b))) {
E = ImplicitCastExpr::Create(Context, VD->getType().getNonReferenceType(),
CK_NoOp, E, nullptr, VK_XValue,
FPOptionsOverride());
}
return Res;
}
/// Determine whether the given NRVO candidate variable is move-eligible or
/// copy-elidable, without considering function return type.
///
/// \param VD The NRVO candidate variable.
///
/// \returns An aggregate which contains the Candidate and isMoveEligible
/// and isCopyElidable methods. If Candidate is non-null, it means
/// isMoveEligible() would be true under the most permissive language standard.
Sema::NamedReturnInfo Sema::getNamedReturnInfo(const VarDecl *VD) {
NamedReturnInfo Info{VD, NamedReturnInfo::MoveEligibleAndCopyElidable};
// C++20 [class.copy.elision]p3:
// - in a return statement in a function with ...
// (other than a function ... parameter)
if (VD->getKind() == Decl::ParmVar)
Info.S = NamedReturnInfo::MoveEligible;
else if (VD->getKind() != Decl::Var)
return NamedReturnInfo();
// (other than ... a catch-clause parameter)
if (VD->isExceptionVariable())
Info.S = NamedReturnInfo::MoveEligible;
// ...automatic...
if (!VD->hasLocalStorage())
return NamedReturnInfo();
// We don't want to implicitly move out of a __block variable during a return
// because we cannot assume the variable will no longer be used.
if (VD->hasAttr<BlocksAttr>())
return NamedReturnInfo();
QualType VDType = VD->getType();
if (VDType->isObjectType()) {
// C++17 [class.copy.elision]p3:
// ...non-volatile automatic object...
if (VDType.isVolatileQualified())
return NamedReturnInfo();
} else if (VDType->isRValueReferenceType()) {
// C++20 [class.copy.elision]p3:
// ...either a non-volatile object or an rvalue reference to a non-volatile
// object type...
QualType VDReferencedType = VDType.getNonReferenceType();
if (VDReferencedType.isVolatileQualified() ||
!VDReferencedType->isObjectType())
return NamedReturnInfo();
Info.S = NamedReturnInfo::MoveEligible;
} else {
return NamedReturnInfo();
}
// Variables with higher required alignment than their type's ABI
// alignment cannot use NRVO.
if (!VD->hasDependentAlignment() &&
Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VDType))
Info.S = NamedReturnInfo::MoveEligible;
return Info;
}
/// Updates given NamedReturnInfo's move-eligible and
/// copy-elidable statuses, considering the function
/// return type criteria as applicable to return statements.
///
/// \param Info The NamedReturnInfo object to update.
///
/// \param ReturnType This is the return type of the function.
/// \returns The copy elision candidate, in case the initial return expression
/// was copy elidable, or nullptr otherwise.
const VarDecl *Sema::getCopyElisionCandidate(NamedReturnInfo &Info,
QualType ReturnType) {
if (!Info.Candidate)
return nullptr;
auto invalidNRVO = [&] {
Info = NamedReturnInfo();
return nullptr;
};
// If we got a non-deduced auto ReturnType, we are in a dependent context and
// there is no point in allowing copy elision since we won't have it deduced
// by the point the VardDecl is instantiated, which is the last chance we have
// of deciding if the candidate is really copy elidable.
if ((ReturnType->getTypeClass() == Type::TypeClass::Auto &&
ReturnType->isCanonicalUnqualified()) ||
ReturnType->isSpecificBuiltinType(BuiltinType::Dependent))
return invalidNRVO();
if (!ReturnType->isDependentType()) {
// - in a return statement in a function with ...
// ... a class return type ...
if (!ReturnType->isRecordType())
return invalidNRVO();
QualType VDType = Info.Candidate->getType();
// ... the same cv-unqualified type as the function return type ...
// When considering moving this expression out, allow dissimilar types.
if (!VDType->isDependentType() &&
!Context.hasSameUnqualifiedType(ReturnType, VDType))
Info.S = NamedReturnInfo::MoveEligible;
}
return Info.isCopyElidable() ? Info.Candidate : nullptr;
}
/// Verify that the initialization sequence that was picked for the
/// first overload resolution is permissible under C++98.
///
/// Reject (possibly converting) constructors not taking an rvalue reference,
/// or user conversion operators which are not ref-qualified.
static bool
VerifyInitializationSequenceCXX98(const Sema &S,
const InitializationSequence &Seq) {
const auto *Step = llvm::find_if(Seq.steps(), [](const auto &Step) {
return Step.Kind == InitializationSequence::SK_ConstructorInitialization ||
Step.Kind == InitializationSequence::SK_UserConversion;
});
if (Step != Seq.step_end()) {
const auto *FD = Step->Function.Function;
if (isa<CXXConstructorDecl>(FD)
? !FD->getParamDecl(0)->getType()->isRValueReferenceType()
: cast<CXXMethodDecl>(FD)->getRefQualifier() == RQ_None)
return false;
}
return true;
}
/// Perform the initialization of a potentially-movable value, which
/// is the result of return value.
///
/// This routine implements C++20 [class.copy.elision]p3, which attempts to
/// treat returned lvalues as rvalues in certain cases (to prefer move
/// construction), then falls back to treating them as lvalues if that failed.
ExprResult Sema::PerformMoveOrCopyInitialization(
const InitializedEntity &Entity, const NamedReturnInfo &NRInfo, Expr *Value,
bool SupressSimplerImplicitMoves) {
if (getLangOpts().CPlusPlus &&
(!getLangOpts().CPlusPlus2b || SupressSimplerImplicitMoves) &&
NRInfo.isMoveEligible()) {
ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
CK_NoOp, Value, VK_XValue, FPOptionsOverride());
Expr *InitExpr = &AsRvalue;
auto Kind = InitializationKind::CreateCopy(Value->getBeginLoc(),
Value->getBeginLoc());
InitializationSequence Seq(*this, Entity, Kind, InitExpr);
auto Res = Seq.getFailedOverloadResult();
if ((Res == OR_Success || Res == OR_Deleted) &&
(getLangOpts().CPlusPlus11 ||
VerifyInitializationSequenceCXX98(*this, Seq))) {
// Promote "AsRvalue" to the heap, since we now need this
// expression node to persist.
Value =
ImplicitCastExpr::Create(Context, Value->getType(), CK_NoOp, Value,
nullptr, VK_XValue, FPOptionsOverride());
// Complete type-checking the initialization of the return type
// using the constructor we found.
return Seq.Perform(*this, Entity, Kind, Value);
}
}
// Either we didn't meet the criteria for treating an lvalue as an rvalue,
// above, or overload resolution failed. Either way, we need to try
// (again) now with the return value expression as written.
return PerformCopyInitialization(Entity, SourceLocation(), Value);
}
/// Determine whether the declared return type of the specified function
/// contains 'auto'.
static bool hasDeducedReturnType(FunctionDecl *FD) {
const FunctionProtoType *FPT =
FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
return FPT->getReturnType()->isUndeducedType();
}
/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
/// for capturing scopes.
///
StmtResult Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,
Expr *RetValExp,
NamedReturnInfo &NRInfo,
bool SupressSimplerImplicitMoves) {
// If this is the first return we've seen, infer the return type.
// [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
QualType FnRetType = CurCap->ReturnType;
LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
bool HasDeducedReturnType =
CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
if (ExprEvalContexts.back().isDiscardedStatementContext() &&
(HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
if (RetValExp) {
ExprResult ER =
ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
if (ER.isInvalid())
return StmtError();
RetValExp = ER.get();
}
return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
/* NRVOCandidate=*/nullptr);
}
if (HasDeducedReturnType) {
FunctionDecl *FD = CurLambda->CallOperator;
// If we've already decided this lambda is invalid, e.g. because
// we saw a `return` whose expression had an error, don't keep
// trying to deduce its return type.
if (FD->isInvalidDecl())
return StmtError();
// In C++1y, the return type may involve 'auto'.
// FIXME: Blocks might have a return type of 'auto' explicitly specified.
if (CurCap->ReturnType.isNull())
CurCap->ReturnType = FD->getReturnType();
AutoType *AT = CurCap->ReturnType->getContainedAutoType();
assert(AT && "lost auto type from lambda return type");
if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
FD->setInvalidDecl();
// FIXME: preserve the ill-formed return expression.
return StmtError();
}
CurCap->ReturnType = FnRetType = FD->getReturnType();
} else if (CurCap->HasImplicitReturnType) {
// For blocks/lambdas with implicit return types, we check each return
// statement individually, and deduce the common return type when the block
// or lambda is completed.
// FIXME: Fold this into the 'auto' codepath above.
if (RetValExp && !isa<InitListExpr>(RetValExp)) {
ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
if (Result.isInvalid())
return StmtError();
RetValExp = Result.get();
// DR1048: even prior to C++14, we should use the 'auto' deduction rules
// when deducing a return type for a lambda-expression (or by extension
// for a block). These rules differ from the stated C++11 rules only in
// that they remove top-level cv-qualifiers.
if (!CurContext->isDependentContext())
FnRetType = RetValExp->getType().getUnqualifiedType();
else
FnRetType = CurCap->ReturnType = Context.DependentTy;
} else {
if (RetValExp) {
// C++11 [expr.lambda.prim]p4 bans inferring the result from an
// initializer list, because it is not an expression (even
// though we represent it as one). We still deduce 'void'.
Diag(ReturnLoc, diag::err_lambda_return_init_list)
<< RetValExp->getSourceRange();
}
FnRetType = Context.VoidTy;
}
// Although we'll properly infer the type of the block once it's completed,
// make sure we provide a return type now for better error recovery.
if (CurCap->ReturnType.isNull())
CurCap->ReturnType = FnRetType;
}
const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
return StmtError();
}
} else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
return StmtError();
} else {
assert(CurLambda && "unknown kind of captured scope");
if (CurLambda->CallOperator->getType()
->castAs<FunctionType>()
->getNoReturnAttr()) {
Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
return StmtError();
}
}
// Otherwise, verify that this result type matches the previous one. We are
// pickier with blocks than for normal functions because we don't have GCC
// compatibility to worry about here.
if (FnRetType->isDependentType()) {
// Delay processing for now. TODO: there are lots of dependent
// types we can conclusively prove aren't void.
} else if (FnRetType->isVoidType()) {
if (RetValExp && !isa<InitListExpr>(RetValExp) &&
!(getLangOpts().CPlusPlus &&
(RetValExp->isTypeDependent() ||
RetValExp->getType()->isVoidType()))) {
if (!getLangOpts().CPlusPlus &&
RetValExp->getType()->isVoidType())
Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
else {
Diag(ReturnLoc, diag::err_return_block_has_expr);
RetValExp = nullptr;
}
}
} else if (!RetValExp) {
return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
} else if (!RetValExp->isTypeDependent()) {
// we have a non-void block with an expression, continue checking
// C99 6.8.6.4p3(136): The return statement is not an assignment. The
// overlap restriction of subclause 6.5.16.1 does not apply to the case of
// function return.
// In C++ the return statement is handled via a copy initialization.
// the C version of which boils down to CheckSingleAssignmentConstraints.
InitializedEntity Entity =
InitializedEntity::InitializeResult(ReturnLoc, FnRetType);
ExprResult Res = PerformMoveOrCopyInitialization(
Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
if (Res.isInvalid()) {
// FIXME: Cleanup temporaries here, anyway?
return StmtError();
}
RetValExp = Res.get();
CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
}
if (RetValExp) {
ExprResult ER =
ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
if (ER.isInvalid())
return StmtError();
RetValExp = ER.get();
}
auto *Result =
ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
// If we need to check for the named return value optimization,
// or if we need to infer the return type,
// save the return statement in our scope for later processing.
if (CurCap->HasImplicitReturnType || NRVOCandidate)
FunctionScopes.back()->Returns.push_back(Result);
if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
return Result;
}
namespace {
/// Marks all typedefs in all local classes in a type referenced.
///
/// In a function like
/// auto f() {
/// struct S { typedef int a; };
/// return S();
/// }
///
/// the local type escapes and could be referenced in some TUs but not in
/// others. Pretend that all local typedefs are always referenced, to not warn
/// on this. This isn't necessary if f has internal linkage, or the typedef
/// is private.
class LocalTypedefNameReferencer
: public RecursiveASTVisitor<LocalTypedefNameReferencer> {
public:
LocalTypedefNameReferencer(Sema &S) : S(S) {}
bool VisitRecordType(const RecordType *RT);
private:
Sema &S;
};
bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
R->isDependentType())
return true;
for (auto *TmpD : R->decls())
if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
if (T->getAccess() != AS_private || R->hasFriends())
S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
return true;
}
}
TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
return FD->getTypeSourceInfo()
->getTypeLoc()
.getAsAdjusted<FunctionProtoTypeLoc>()
.getReturnLoc();
}
/// Deduce the return type for a function from a returned expression, per
/// C++1y [dcl.spec.auto]p6.
bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
SourceLocation ReturnLoc,
Expr *&RetExpr,
const AutoType *AT) {
// If this is the conversion function for a lambda, we choose to deduce its
// type from the corresponding call operator, not from the synthesized return
// statement within it. See Sema::DeduceReturnType.
if (isLambdaConversionOperator(FD))
return false;
TypeLoc OrigResultType = getReturnTypeLoc(FD);
QualType Deduced;
if (RetExpr && isa<InitListExpr>(RetExpr)) {
// If the deduction is for a return statement and the initializer is
// a braced-init-list, the program is ill-formed.
Diag(RetExpr->getExprLoc(),
getCurLambda() ? diag::err_lambda_return_init_list
: diag::err_auto_fn_return_init_list)
<< RetExpr->getSourceRange();
return true;
}
if (FD->isDependentContext()) {
// C++1y [dcl.spec.auto]p12:
// Return type deduction [...] occurs when the definition is
// instantiated even if the function body contains a return
// statement with a non-type-dependent operand.
assert(AT->isDeduced() && "should have deduced to dependent type");
return false;
}
if (RetExpr) {
// Otherwise, [...] deduce a value for U using the rules of template
// argument deduction.
DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
if (DAR == DAR_Failed && !FD->isInvalidDecl())
Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
<< OrigResultType.getType() << RetExpr->getType();
if (DAR != DAR_Succeeded)
return true;
// If a local type is part of the returned type, mark its fields as
// referenced.
LocalTypedefNameReferencer Referencer(*this);
Referencer.TraverseType(RetExpr->getType());
} else {
// For a function with a deduced result type to return void,
// the result type as written must be 'auto' or 'decltype(auto)',
// possibly cv-qualified or constrained, but not ref-qualified.
if (!OrigResultType.getType()->getAs<AutoType>()) {
Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
<< OrigResultType.getType();
return true;
}
// In the case of a return with no operand, the initializer is considered
// to be 'void()'.
Expr *Dummy = new (Context) CXXScalarValueInitExpr(
Context.VoidTy,
Context.getTrivialTypeSourceInfo(Context.VoidTy, ReturnLoc), ReturnLoc);
DeduceAutoResult DAR = DeduceAutoType(OrigResultType, Dummy, Deduced);
if (DAR == DAR_Failed && !FD->isInvalidDecl())
Diag(ReturnLoc, diag::err_auto_fn_deduction_failure)
<< OrigResultType.getType() << Dummy->getType();
if (DAR != DAR_Succeeded)
return true;
}
// CUDA: Kernel function must have 'void' return type.
if (getLangOpts().CUDA)
if (FD->hasAttr<CUDAGlobalAttr>() && !Deduced->isVoidType()) {
Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
<< FD->getType() << FD->getSourceRange();
return true;
}
// If a function with a declared return type that contains a placeholder type
// has multiple return statements, the return type is deduced for each return
// statement. [...] if the type deduced is not the same in each deduction,
// the program is ill-formed.
QualType DeducedT = AT->getDeducedType();
if (!DeducedT.isNull() && !FD->isInvalidDecl()) {
AutoType *NewAT = Deduced->getContainedAutoType();
// It is possible that NewAT->getDeducedType() is null. When that happens,
// we should not crash, instead we ignore this deduction.
if (NewAT->getDeducedType().isNull())
return false;
CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
DeducedT);
CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
NewAT->getDeducedType());
if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
const LambdaScopeInfo *LambdaSI = getCurLambda();
if (LambdaSI && LambdaSI->HasImplicitReturnType) {
Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
<< NewAT->getDeducedType() << DeducedT
<< true /*IsLambda*/;
} else {
Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
<< (AT->isDecltypeAuto() ? 1 : 0)
<< NewAT->getDeducedType() << DeducedT;
}
return true;
}
} else if (!FD->isInvalidDecl()) {
// Update all declarations of the function to have the deduced return type.
Context.adjustDeducedFunctionResultType(FD, Deduced);
}
return false;
}
StmtResult
Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
Scope *CurScope) {
// Correct typos, in case the containing function returns 'auto' and
// RetValExp should determine the deduced type.
ExprResult RetVal = CorrectDelayedTyposInExpr(
RetValExp, nullptr, /*RecoverUncorrectedTypos=*/true);
if (RetVal.isInvalid())
return StmtError();
StmtResult R =
BuildReturnStmt(ReturnLoc, RetVal.get(), /*AllowRecovery=*/true);
if (R.isInvalid() || ExprEvalContexts.back().isDiscardedStatementContext())
return R;
if (VarDecl *VD =
const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
CurScope->addNRVOCandidate(VD);
} else {
CurScope->setNoNRVO();
}
CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
return R;
}
static bool CheckSimplerImplicitMovesMSVCWorkaround(const Sema &S,
const Expr *E) {
if (!E || !S.getLangOpts().CPlusPlus2b || !S.getLangOpts().MSVCCompat)
return false;
const Decl *D = E->getReferencedDeclOfCallee();
if (!D || !S.SourceMgr.isInSystemHeader(D->getLocation()))
return false;
for (const DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) {
if (DC->isStdNamespace())
return true;
}
return false;
}
StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
bool AllowRecovery) {
// Check for unexpanded parameter packs.
if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
return StmtError();
// HACK: We suppress simpler implicit move here in msvc compatibility mode
// just as a temporary work around, as the MSVC STL has issues with
// this change.
bool SupressSimplerImplicitMoves =
CheckSimplerImplicitMovesMSVCWorkaround(*this, RetValExp);
NamedReturnInfo NRInfo = getNamedReturnInfo(
RetValExp, SupressSimplerImplicitMoves ? SimplerImplicitMoveMode::ForceOff
: SimplerImplicitMoveMode::Normal);
if (isa<CapturingScopeInfo>(getCurFunction()))
return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp, NRInfo,
SupressSimplerImplicitMoves);
QualType FnRetType;
QualType RelatedRetType;
const AttrVec *Attrs = nullptr;
bool isObjCMethod = false;
if (const FunctionDecl *FD = getCurFunctionDecl()) {
FnRetType = FD->getReturnType();
if (FD->hasAttrs())
Attrs = &FD->getAttrs();
if (FD->isNoReturn())
Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr) << FD;
if (FD->isMain() && RetValExp)
if (isa<CXXBoolLiteralExpr>(RetValExp))
Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
<< RetValExp->getSourceRange();
if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) {
if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) {
if (RT->getDecl()->isOrContainsUnion())
Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1;
}
}
} else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
FnRetType = MD->getReturnType();
isObjCMethod = true;
if (MD->hasAttrs())
Attrs = &MD->getAttrs();
if (MD->hasRelatedResultType() && MD->getClassInterface()) {
// In the implementation of a method with a related return type, the
// type used to type-check the validity of return statements within the
// method body is a pointer to the type of the class being implemented.
RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
}
} else // If we don't have a function/method context, bail.
return StmtError();
// C++1z: discarded return statements are not considered when deducing a
// return type.
if (ExprEvalContexts.back().isDiscardedStatementContext() &&
FnRetType->getContainedAutoType()) {
if (RetValExp) {
ExprResult ER =
ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
if (ER.isInvalid())
return StmtError();
RetValExp = ER.get();
}
return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
/* NRVOCandidate=*/nullptr);
}
// FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
// deduction.
if (getLangOpts().CPlusPlus14) {
if (AutoType *AT = FnRetType->getContainedAutoType()) {
FunctionDecl *FD = cast<FunctionDecl>(CurContext);
// If we've already decided this function is invalid, e.g. because
// we saw a `return` whose expression had an error, don't keep
// trying to deduce its return type.
// (Some return values may be needlessly wrapped in RecoveryExpr).
if (FD->isInvalidDecl() ||
DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
FD->setInvalidDecl();
if (!AllowRecovery)
return StmtError();
// The deduction failure is diagnosed and marked, try to recover.
if (RetValExp) {
// Wrap return value with a recovery expression of the previous type.
// If no deduction yet, use DependentTy.
auto Recovery = CreateRecoveryExpr(
RetValExp->getBeginLoc(), RetValExp->getEndLoc(), RetValExp,
AT->isDeduced() ? FnRetType : QualType());
if (Recovery.isInvalid())
return StmtError();
RetValExp = Recovery.get();
} else {
// Nothing to do: a ReturnStmt with no value is fine recovery.
}
} else {
FnRetType = FD->getReturnType();
}
}
}
const VarDecl *NRVOCandidate = getCopyElisionCandidate(NRInfo, FnRetType);
bool HasDependentReturnType = FnRetType->isDependentType();
ReturnStmt *Result = nullptr;
if (FnRetType->isVoidType()) {
if (RetValExp) {
if (auto *ILE = dyn_cast<InitListExpr>(RetValExp)) {
// We simply never allow init lists as the return value of void
// functions. This is compatible because this was never allowed before,
// so there's no legacy code to deal with.
NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
int FunctionKind = 0;
if (isa<ObjCMethodDecl>(CurDecl))
FunctionKind = 1;
else if (isa<CXXConstructorDecl>(CurDecl))
FunctionKind = 2;
else if (isa<CXXDestructorDecl>(CurDecl))
FunctionKind = 3;
Diag(ReturnLoc, diag::err_return_init_list)
<< CurDecl << FunctionKind << RetValExp->getSourceRange();
// Preserve the initializers in the AST.
RetValExp = AllowRecovery
? CreateRecoveryExpr(ILE->getLBraceLoc(),
ILE->getRBraceLoc(), ILE->inits())
.get()
: nullptr;
} else if (!RetValExp->isTypeDependent()) {
// C99 6.8.6.4p1 (ext_ since GCC warns)
unsigned D = diag::ext_return_has_expr;
if (RetValExp->getType()->isVoidType()) {
NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
if (isa<CXXConstructorDecl>(CurDecl) ||
isa<CXXDestructorDecl>(CurDecl))
D = diag::err_ctor_dtor_returns_void;
else
D = diag::ext_return_has_void_expr;
}
else {
ExprResult Result = RetValExp;
Result = IgnoredValueConversions(Result.get());
if (Result.isInvalid())
return StmtError();
RetValExp = Result.get();
RetValExp = ImpCastExprToType(RetValExp,
Context.VoidTy, CK_ToVoid).get();
}
// return of void in constructor/destructor is illegal in C++.
if (D == diag::err_ctor_dtor_returns_void) {
NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
Diag(ReturnLoc, D) << CurDecl << isa<CXXDestructorDecl>(CurDecl)
<< RetValExp->getSourceRange();
}
// return (some void expression); is legal in C++.
else if (D != diag::ext_return_has_void_expr ||
!getLangOpts().CPlusPlus) {
NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
int FunctionKind = 0;
if (isa<ObjCMethodDecl>(CurDecl))
FunctionKind = 1;
else if (isa<CXXConstructorDecl>(CurDecl))
FunctionKind = 2;
else if (isa<CXXDestructorDecl>(CurDecl))
FunctionKind = 3;
Diag(ReturnLoc, D)
<< CurDecl << FunctionKind << RetValExp->getSourceRange();
}
}
if (RetValExp) {
ExprResult ER =
ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
if (ER.isInvalid())
return StmtError();
RetValExp = ER.get();
}
}
Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
/* NRVOCandidate=*/nullptr);
} else if (!RetValExp && !HasDependentReturnType) {
FunctionDecl *FD = getCurFunctionDecl();
if ((FD && FD->isInvalidDecl()) || FnRetType->containsErrors()) {
// The intended return type might have been "void", so don't warn.
} else if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
// C++11 [stmt.return]p2
Diag(ReturnLoc, diag::err_constexpr_return_missing_expr)
<< FD << FD->isConsteval();
FD->setInvalidDecl();
} else {
// C99 6.8.6.4p1 (ext_ since GCC warns)
// C90 6.6.6.4p4
unsigned DiagID = getLangOpts().C99 ? diag::ext_return_missing_expr
: diag::warn_return_missing_expr;
// Note that at this point one of getCurFunctionDecl() or
// getCurMethodDecl() must be non-null (see above).
assert((getCurFunctionDecl() || getCurMethodDecl()) &&
"Not in a FunctionDecl or ObjCMethodDecl?");
bool IsMethod = FD == nullptr;
const NamedDecl *ND =
IsMethod ? cast<NamedDecl>(getCurMethodDecl()) : cast<NamedDecl>(FD);
Diag(ReturnLoc, DiagID) << ND << IsMethod;
}
Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
/* NRVOCandidate=*/nullptr);
} else {
assert(RetValExp || HasDependentReturnType);
QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
// C99 6.8.6.4p3(136): The return statement is not an assignment. The
// overlap restriction of subclause 6.5.16.1 does not apply to the case of
// function return.
// In C++ the return statement is handled via a copy initialization,
// the C version of which boils down to CheckSingleAssignmentConstraints.
if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
// we have a non-void function with an expression, continue checking
InitializedEntity Entity =
InitializedEntity::InitializeResult(ReturnLoc, RetType);
ExprResult Res = PerformMoveOrCopyInitialization(
Entity, NRInfo, RetValExp, SupressSimplerImplicitMoves);
if (Res.isInvalid() && AllowRecovery)
Res = CreateRecoveryExpr(RetValExp->getBeginLoc(),
RetValExp->getEndLoc(), RetValExp, RetType);
if (Res.isInvalid()) {
// FIXME: Clean up temporaries here anyway?
return StmtError();
}
RetValExp = Res.getAs<Expr>();
// If we have a related result type, we need to implicitly
// convert back to the formal result type. We can't pretend to
// initialize the result again --- we might end double-retaining
// --- so instead we initialize a notional temporary.
if (!RelatedRetType.isNull()) {
Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
FnRetType);
Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
if (Res.isInvalid()) {
// FIXME: Clean up temporaries here anyway?
return StmtError();
}
RetValExp = Res.getAs<Expr>();
}
CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
getCurFunctionDecl());
}
if (RetValExp) {
ExprResult ER =
ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
if (ER.isInvalid())
return StmtError();
RetValExp = ER.get();
}
Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
}
// If we need to check for the named return value optimization, save the
// return statement in our scope for later processing.
if (Result->getNRVOCandidate())
FunctionScopes.back()->Returns.push_back(Result);
if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
return Result;
}
StmtResult
Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
SourceLocation RParen, Decl *Parm,
Stmt *Body) {
VarDecl *Var = cast_or_null<VarDecl>(Parm);
if (Var && Var->isInvalidDecl())
return StmtError();
return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
}
StmtResult
Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
}
StmtResult
Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
MultiStmtArg CatchStmts, Stmt *Finally) {
if (!getLangOpts().ObjCExceptions)
Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
// Objective-C try is incompatible with SEH __try.
sema::FunctionScopeInfo *FSI = getCurFunction();
if (FSI->FirstSEHTryLoc.isValid()) {
Diag(AtLoc, diag::err_mixing_cxx_try_seh_try) << 1;
Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
}
FSI->setHasObjCTry(AtLoc);
unsigned NumCatchStmts = CatchStmts.size();
return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
NumCatchStmts, Finally);
}
StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
if (Throw) {
ExprResult Result = DefaultLvalueConversion(Throw);
if (Result.isInvalid())
return StmtError();
Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
if (Result.isInvalid())
return StmtError();
Throw = Result.get();
QualType ThrowType = Throw->getType();
// Make sure the expression type is an ObjC pointer or "void *".
if (!ThrowType->isDependentType() &&
!ThrowType->isObjCObjectPointerType()) {
const PointerType *PT = ThrowType->getAs<PointerType>();
if (!PT || !PT->getPointeeType()->isVoidType())
return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
<< Throw->getType() << Throw->getSourceRange());
}
}
return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
}
StmtResult
Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
Scope *CurScope) {
if (!getLangOpts().ObjCExceptions)
Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
if (!Throw) {
// @throw without an expression designates a rethrow (which must occur
// in the context of an @catch clause).
Scope *AtCatchParent = CurScope;
while (AtCatchParent && !AtCatchParent->isAtCatchScope())
AtCatchParent = AtCatchParent->getParent();
if (!AtCatchParent)
return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
}
return BuildObjCAtThrowStmt(AtLoc, Throw);
}
ExprResult
Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
ExprResult result = DefaultLvalueConversion(operand);
if (result.isInvalid())
return ExprError();
operand = result.get();
// Make sure the expression type is an ObjC pointer or "void *".
QualType type = operand->getType();
if (!type->isDependentType() &&
!type->isObjCObjectPointerType()) {
const PointerType *pointerType = type->getAs<PointerType>();
if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
if (getLangOpts().CPlusPlus) {
if (RequireCompleteType(atLoc, type,
diag::err_incomplete_receiver_type))
return Diag(atLoc, diag::err_objc_synchronized_expects_object)
<< type << operand->getSourceRange();
ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
if (result.isInvalid())
return ExprError();
if (!result.isUsable())
return Diag(atLoc, diag::err_objc_synchronized_expects_object)
<< type << operand->getSourceRange();
operand = result.get();
} else {
return Diag(atLoc, diag::err_objc_synchronized_expects_object)
<< type << operand->getSourceRange();
}
}
}
// The operand to @synchronized is a full-expression.
return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
}
StmtResult
Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
Stmt *SyncBody) {
// We can't jump into or indirect-jump out of a @synchronized block.
setFunctionHasBranchProtectedScope();
return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
}
/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
/// and creates a proper catch handler from them.
StmtResult
Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
Stmt *HandlerBlock) {
// There's nothing to test that ActOnExceptionDecl didn't already test.
return new (Context)
CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
}
StmtResult
Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
setFunctionHasBranchProtectedScope();
return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
}
namespace {
class CatchHandlerType {
QualType QT;
unsigned IsPointer : 1;
// This is a special constructor to be used only with DenseMapInfo's
// getEmptyKey() and getTombstoneKey() functions.
friend struct llvm::DenseMapInfo<CatchHandlerType>;
enum Unique { ForDenseMap };
CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
public:
/// Used when creating a CatchHandlerType from a handler type; will determine
/// whether the type is a pointer or reference and will strip off the top
/// level pointer and cv-qualifiers.
CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
if (QT->isPointerType())
IsPointer = true;
if (IsPointer || QT->isReferenceType())
QT = QT->getPointeeType();
QT = QT.getUnqualifiedType();
}
/// Used when creating a CatchHandlerType from a base class type; pretends the
/// type passed in had the pointer qualifier, does not need to get an
/// unqualified type.
CatchHandlerType(QualType QT, bool IsPointer)
: QT(QT), IsPointer(IsPointer) {}
QualType underlying() const { return QT; }
bool isPointer() const { return IsPointer; }
friend bool operator==(const CatchHandlerType &LHS,
const CatchHandlerType &RHS) {
// If the pointer qualification does not match, we can return early.
if (LHS.IsPointer != RHS.IsPointer)
return false;
// Otherwise, check the underlying type without cv-qualifiers.
return LHS.QT == RHS.QT;
}
};
} // namespace
namespace llvm {
template <> struct DenseMapInfo<CatchHandlerType> {
static CatchHandlerType getEmptyKey() {
return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
CatchHandlerType::ForDenseMap);
}
static CatchHandlerType getTombstoneKey() {
return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
CatchHandlerType::ForDenseMap);
}
static unsigned getHashValue(const CatchHandlerType &Base) {
return DenseMapInfo<QualType>::getHashValue(Base.underlying());
}
static bool isEqual(const CatchHandlerType &LHS,
const CatchHandlerType &RHS) {
return LHS == RHS;
}
};
}
namespace {
class CatchTypePublicBases {
ASTContext &Ctx;
const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
const bool CheckAgainstPointer;
CXXCatchStmt *FoundHandler;
CanQualType FoundHandlerType;
public:
CatchTypePublicBases(
ASTContext &Ctx,
const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
: Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
FoundHandler(nullptr) {}
CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
CanQualType getFoundHandlerType() const { return FoundHandlerType; }
bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
CatchHandlerType Check(S->getType(), CheckAgainstPointer);
const auto &M = TypesToCheck;
auto I = M.find(Check);
if (I != M.end()) {
FoundHandler = I->second;
FoundHandlerType = Ctx.getCanonicalType(S->getType());
return true;
}
}
return false;
}
};
}
/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
/// handlers and creates a try statement from them.
StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
ArrayRef<Stmt *> Handlers) {
// Don't report an error if 'try' is used in system headers.
if (!getLangOpts().CXXExceptions &&
!getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
// Delay error emission for the OpenMP device code.
targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
}
// Exceptions aren't allowed in CUDA device code.
if (getLangOpts().CUDA)
CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
<< "try" << CurrentCUDATarget();
if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
sema::FunctionScopeInfo *FSI = getCurFunction();
// C++ try is incompatible with SEH __try.
if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << 0;
Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
}
const unsigned NumHandlers = Handlers.size();
assert(!Handlers.empty() &&
"The parser shouldn't call this if there are no handlers.");
llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
for (unsigned i = 0; i < NumHandlers; ++i) {
CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
// Diagnose when the handler is a catch-all handler, but it isn't the last
// handler for the try block. [except.handle]p5. Also, skip exception
// declarations that are invalid, since we can't usefully report on them.
if (!H->getExceptionDecl()) {
if (i < NumHandlers - 1)
return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
continue;
} else if (H->getExceptionDecl()->isInvalidDecl())
continue;
// Walk the type hierarchy to diagnose when this type has already been
// handled (duplication), or cannot be handled (derivation inversion). We
// ignore top-level cv-qualifiers, per [except.handle]p3
CatchHandlerType HandlerCHT =
(QualType)Context.getCanonicalType(H->getCaughtType());
// We can ignore whether the type is a reference or a pointer; we need the
// underlying declaration type in order to get at the underlying record
// decl, if there is one.
QualType Underlying = HandlerCHT.underlying();
if (auto *RD = Underlying->getAsCXXRecordDecl()) {
if (!RD->hasDefinition())
continue;
// Check that none of the public, unambiguous base classes are in the
// map ([except.handle]p1). Give the base classes the same pointer
// qualification as the original type we are basing off of. This allows
// comparison against the handler type using the same top-level pointer
// as the original type.
CXXBasePaths Paths;
Paths.setOrigin(RD);
CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
if (RD->lookupInBases(CTPB, Paths)) {
const CXXCatchStmt *Problem = CTPB.getFoundHandler();
if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
diag::warn_exception_caught_by_earlier_handler)
<< H->getCaughtType();
Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
diag::note_previous_exception_handler)
<< Problem->getCaughtType();
}
}
}
// Add the type the list of ones we have handled; diagnose if we've already
// handled it.
auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
if (!R.second) {
const CXXCatchStmt *Problem = R.first->second;
Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
diag::warn_exception_caught_by_earlier_handler)
<< H->getCaughtType();
Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
diag::note_previous_exception_handler)
<< Problem->getCaughtType();
}
}
FSI->setHasCXXTry(TryLoc);
return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
}
StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
Stmt *TryBlock, Stmt *Handler) {
assert(TryBlock && Handler);
sema::FunctionScopeInfo *FSI = getCurFunction();
// SEH __try is incompatible with C++ try. Borland appears to support this,
// however.
if (!getLangOpts().Borland) {
if (FSI->FirstCXXOrObjCTryLoc.isValid()) {
Diag(TryLoc, diag::err_mixing_cxx_try_seh_try) << FSI->FirstTryType;
Diag(FSI->FirstCXXOrObjCTryLoc, diag::note_conflicting_try_here)
<< (FSI->FirstTryType == sema::FunctionScopeInfo::TryLocIsCXX
? "'try'"
: "'@try'");
}
}
FSI->setHasSEHTry(TryLoc);
// Reject __try in Obj-C methods, blocks, and captured decls, since we don't
// track if they use SEH.
DeclContext *DC = CurContext;
while (DC && !DC->isFunctionOrMethod())
DC = DC->getParent();
FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
if (FD)
FD->setUsesSEHTry(true);
else
Diag(TryLoc, diag::err_seh_try_outside_functions);
// Reject __try on unsupported targets.
if (!Context.getTargetInfo().isSEHTrySupported())
Diag(TryLoc, diag::err_seh_try_unsupported);
return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
}
StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
Stmt *Block) {
assert(FilterExpr && Block);
QualType FTy = FilterExpr->getType();
if (!FTy->isIntegerType() && !FTy->isDependentType()) {
return StmtError(
Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
<< FTy);
}
return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
}
void Sema::ActOnStartSEHFinallyBlock() {
CurrentSEHFinally.push_back(CurScope);
}
void Sema::ActOnAbortSEHFinallyBlock() {
CurrentSEHFinally.pop_back();
}
StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
assert(Block);
CurrentSEHFinally.pop_back();
return SEHFinallyStmt::Create(Context, Loc, Block);
}
StmtResult
Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
Scope *SEHTryParent = CurScope;
while (SEHTryParent && !SEHTryParent->isSEHTryScope())
SEHTryParent = SEHTryParent->getParent();
if (!SEHTryParent)
return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
return new (Context) SEHLeaveStmt(Loc);
}
StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
bool IsIfExists,
NestedNameSpecifierLoc QualifierLoc,
DeclarationNameInfo NameInfo,
Stmt *Nested)
{
return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
QualifierLoc, NameInfo,
cast<CompoundStmt>(Nested));
}
StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
bool IsIfExists,
CXXScopeSpec &SS,
UnqualifiedId &Name,
Stmt *Nested) {
return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
SS.getWithLocInContext(Context),
GetNameFromUnqualifiedId(Name),
Nested);
}
RecordDecl*
Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
unsigned NumParams) {
DeclContext *DC = CurContext;
while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
DC = DC->getParent();
RecordDecl *RD = nullptr;
if (getLangOpts().CPlusPlus)
RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
/*Id=*/nullptr);
else
RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
RD->setCapturedRecord();
DC->addDecl(RD);
RD->setImplicit();
RD->startDefinition();
assert(NumParams > 0 && "CapturedStmt requires context parameter");
CD = CapturedDecl::Create(Context, CurContext, NumParams);
DC->addDecl(CD);
return RD;
}
static bool
buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
SmallVectorImpl<CapturedStmt::Capture> &Captures,
SmallVectorImpl<Expr *> &CaptureInits) {
for (const sema::Capture &Cap : RSI->Captures) {
if (Cap.isInvalid())
continue;
// Form the initializer for the capture.
ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
RSI->CapRegionKind == CR_OpenMP);
// FIXME: Bail out now if the capture is not used and the initializer has
// no side-effects.
// Create a field for this capture.
FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
// Add the capture to our list of captures.
if (Cap.isThisCapture()) {
Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
CapturedStmt::VCK_This));
} else if (Cap.isVLATypeCapture()) {
Captures.push_back(
CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
} else {
assert(Cap.isVariableCapture() && "unknown kind of capture");
if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel);
Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
Cap.isReferenceCapture()
? CapturedStmt::VCK_ByRef
: CapturedStmt::VCK_ByCopy,
Cap.getVariable()));
}
CaptureInits.push_back(Init.get());
}
return false;
}
void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
CapturedRegionKind Kind,
unsigned NumParams) {
CapturedDecl *CD = nullptr;
RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
// Build the context parameter
DeclContext *DC = CapturedDecl::castToDeclContext(CD);
IdentifierInfo *ParamName = &Context.Idents.get("__context");
QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
auto *Param =
ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
ImplicitParamDecl::CapturedContext);
DC->addDecl(Param);
CD->setContextParam(0, Param);
// Enter the capturing scope for this captured region.
PushCapturedRegionScope(CurScope, CD, RD, Kind);
if (CurScope)
PushDeclContext(CurScope, CD);
else
CurContext = CD;
PushExpressionEvaluationContext(
ExpressionEvaluationContext::PotentiallyEvaluated);
}
void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
CapturedRegionKind Kind,
ArrayRef<CapturedParamNameType> Params,
unsigned OpenMPCaptureLevel) {
CapturedDecl *CD = nullptr;
RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
// Build the context parameter
DeclContext *DC = CapturedDecl::castToDeclContext(CD);
bool ContextIsFound = false;
unsigned ParamNum = 0;
for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
E = Params.end();
I != E; ++I, ++ParamNum) {
if (I->second.isNull()) {
assert(!ContextIsFound &&
"null type has been found already for '__context' parameter");
IdentifierInfo *ParamName = &Context.Idents.get("__context");
QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
.withConst()
.withRestrict();
auto *Param =
ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
ImplicitParamDecl::CapturedContext);
DC->addDecl(Param);
CD->setContextParam(ParamNum, Param);
ContextIsFound = true;
} else {
IdentifierInfo *ParamName = &Context.Idents.get(I->first);
auto *Param =
ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
ImplicitParamDecl::CapturedContext);
DC->addDecl(Param);
CD->setParam(ParamNum, Param);
}
}
assert(ContextIsFound && "no null type for '__context' parameter");
if (!ContextIsFound) {
// Add __context implicitly if it is not specified.
IdentifierInfo *ParamName = &Context.Idents.get("__context");
QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
auto *Param =
ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
ImplicitParamDecl::CapturedContext);
DC->addDecl(Param);
CD->setContextParam(ParamNum, Param);
}
// Enter the capturing scope for this captured region.
PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
if (CurScope)
PushDeclContext(CurScope, CD);
else
CurContext = CD;
PushExpressionEvaluationContext(
ExpressionEvaluationContext::PotentiallyEvaluated);
}
void Sema::ActOnCapturedRegionError() {
DiscardCleanupsInEvaluationContext();
PopExpressionEvaluationContext();
PopDeclContext();
PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
RecordDecl *Record = RSI->TheRecordDecl;
Record->setInvalidDecl();
SmallVector<Decl*, 4> Fields(Record->fields());
ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
SourceLocation(), SourceLocation(), ParsedAttributesView());
}
StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
// Leave the captured scope before we start creating captures in the
// enclosing scope.
DiscardCleanupsInEvaluationContext();
PopExpressionEvaluationContext();
PopDeclContext();
PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
SmallVector<CapturedStmt::Capture, 4> Captures;
SmallVector<Expr *, 4> CaptureInits;
if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
return StmtError();
CapturedDecl *CD = RSI->TheCapturedDecl;
RecordDecl *RD = RSI->TheRecordDecl;
CapturedStmt *Res = CapturedStmt::Create(
getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
Captures, CaptureInits, CD, RD);
CD->setBody(Res->getCapturedStmt());
RD->completeDefinition();
return Res;
}