llvm-project/clang/lib/Sema/SemaOpenMP.cpp

22898 lines
906 KiB
C++

//===--- SemaOpenMP.cpp - Semantic Analysis for OpenMP constructs ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements semantic analysis for OpenMP directives and
/// clauses.
///
//===----------------------------------------------------------------------===//
#include "TreeTransform.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/PointerEmbeddedInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Frontend/OpenMP/OMPAssume.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include <set>
using namespace clang;
using namespace llvm::omp;
//===----------------------------------------------------------------------===//
// Stack of data-sharing attributes for variables
//===----------------------------------------------------------------------===//
static const Expr *checkMapClauseExpressionBase(
Sema &SemaRef, Expr *E,
OMPClauseMappableExprCommon::MappableExprComponentList &CurComponents,
OpenMPClauseKind CKind, OpenMPDirectiveKind DKind, bool NoDiagnose);
namespace {
/// Default data sharing attributes, which can be applied to directive.
enum DefaultDataSharingAttributes {
DSA_unspecified = 0, /// Data sharing attribute not specified.
DSA_none = 1 << 0, /// Default data sharing attribute 'none'.
DSA_shared = 1 << 1, /// Default data sharing attribute 'shared'.
DSA_firstprivate = 1 << 2, /// Default data sharing attribute 'firstprivate'.
};
/// Stack for tracking declarations used in OpenMP directives and
/// clauses and their data-sharing attributes.
class DSAStackTy {
public:
struct DSAVarData {
OpenMPDirectiveKind DKind = OMPD_unknown;
OpenMPClauseKind CKind = OMPC_unknown;
unsigned Modifier = 0;
const Expr *RefExpr = nullptr;
DeclRefExpr *PrivateCopy = nullptr;
SourceLocation ImplicitDSALoc;
bool AppliedToPointee = false;
DSAVarData() = default;
DSAVarData(OpenMPDirectiveKind DKind, OpenMPClauseKind CKind,
const Expr *RefExpr, DeclRefExpr *PrivateCopy,
SourceLocation ImplicitDSALoc, unsigned Modifier,
bool AppliedToPointee)
: DKind(DKind), CKind(CKind), Modifier(Modifier), RefExpr(RefExpr),
PrivateCopy(PrivateCopy), ImplicitDSALoc(ImplicitDSALoc),
AppliedToPointee(AppliedToPointee) {}
};
using OperatorOffsetTy =
llvm::SmallVector<std::pair<Expr *, OverloadedOperatorKind>, 4>;
using DoacrossDependMapTy =
llvm::DenseMap<OMPDependClause *, OperatorOffsetTy>;
/// Kind of the declaration used in the uses_allocators clauses.
enum class UsesAllocatorsDeclKind {
/// Predefined allocator
PredefinedAllocator,
/// User-defined allocator
UserDefinedAllocator,
/// The declaration that represent allocator trait
AllocatorTrait,
};
private:
struct DSAInfo {
OpenMPClauseKind Attributes = OMPC_unknown;
unsigned Modifier = 0;
/// Pointer to a reference expression and a flag which shows that the
/// variable is marked as lastprivate(true) or not (false).
llvm::PointerIntPair<const Expr *, 1, bool> RefExpr;
DeclRefExpr *PrivateCopy = nullptr;
/// true if the attribute is applied to the pointee, not the variable
/// itself.
bool AppliedToPointee = false;
};
using DeclSAMapTy = llvm::SmallDenseMap<const ValueDecl *, DSAInfo, 8>;
using UsedRefMapTy = llvm::SmallDenseMap<const ValueDecl *, const Expr *, 8>;
using LCDeclInfo = std::pair<unsigned, VarDecl *>;
using LoopControlVariablesMapTy =
llvm::SmallDenseMap<const ValueDecl *, LCDeclInfo, 8>;
/// Struct that associates a component with the clause kind where they are
/// found.
struct MappedExprComponentTy {
OMPClauseMappableExprCommon::MappableExprComponentLists Components;
OpenMPClauseKind Kind = OMPC_unknown;
};
using MappedExprComponentsTy =
llvm::DenseMap<const ValueDecl *, MappedExprComponentTy>;
using CriticalsWithHintsTy =
llvm::StringMap<std::pair<const OMPCriticalDirective *, llvm::APSInt>>;
struct ReductionData {
using BOKPtrType = llvm::PointerEmbeddedInt<BinaryOperatorKind, 16>;
SourceRange ReductionRange;
llvm::PointerUnion<const Expr *, BOKPtrType> ReductionOp;
ReductionData() = default;
void set(BinaryOperatorKind BO, SourceRange RR) {
ReductionRange = RR;
ReductionOp = BO;
}
void set(const Expr *RefExpr, SourceRange RR) {
ReductionRange = RR;
ReductionOp = RefExpr;
}
};
using DeclReductionMapTy =
llvm::SmallDenseMap<const ValueDecl *, ReductionData, 4>;
struct DefaultmapInfo {
OpenMPDefaultmapClauseModifier ImplicitBehavior =
OMPC_DEFAULTMAP_MODIFIER_unknown;
SourceLocation SLoc;
DefaultmapInfo() = default;
DefaultmapInfo(OpenMPDefaultmapClauseModifier M, SourceLocation Loc)
: ImplicitBehavior(M), SLoc(Loc) {}
};
struct SharingMapTy {
DeclSAMapTy SharingMap;
DeclReductionMapTy ReductionMap;
UsedRefMapTy AlignedMap;
UsedRefMapTy NontemporalMap;
MappedExprComponentsTy MappedExprComponents;
LoopControlVariablesMapTy LCVMap;
DefaultDataSharingAttributes DefaultAttr = DSA_unspecified;
SourceLocation DefaultAttrLoc;
DefaultmapInfo DefaultmapMap[OMPC_DEFAULTMAP_unknown];
OpenMPDirectiveKind Directive = OMPD_unknown;
DeclarationNameInfo DirectiveName;
Scope *CurScope = nullptr;
DeclContext *Context = nullptr;
SourceLocation ConstructLoc;
/// Set of 'depend' clauses with 'sink|source' dependence kind. Required to
/// get the data (loop counters etc.) about enclosing loop-based construct.
/// This data is required during codegen.
DoacrossDependMapTy DoacrossDepends;
/// First argument (Expr *) contains optional argument of the
/// 'ordered' clause, the second one is true if the regions has 'ordered'
/// clause, false otherwise.
llvm::Optional<std::pair<const Expr *, OMPOrderedClause *>> OrderedRegion;
unsigned AssociatedLoops = 1;
bool HasMutipleLoops = false;
const Decl *PossiblyLoopCounter = nullptr;
bool NowaitRegion = false;
bool UntiedRegion = false;
bool CancelRegion = false;
bool LoopStart = false;
bool BodyComplete = false;
SourceLocation PrevScanLocation;
SourceLocation PrevOrderedLocation;
SourceLocation InnerTeamsRegionLoc;
/// Reference to the taskgroup task_reduction reference expression.
Expr *TaskgroupReductionRef = nullptr;
llvm::DenseSet<QualType> MappedClassesQualTypes;
SmallVector<Expr *, 4> InnerUsedAllocators;
llvm::DenseSet<CanonicalDeclPtr<Decl>> ImplicitTaskFirstprivates;
/// List of globals marked as declare target link in this target region
/// (isOpenMPTargetExecutionDirective(Directive) == true).
llvm::SmallVector<DeclRefExpr *, 4> DeclareTargetLinkVarDecls;
/// List of decls used in inclusive/exclusive clauses of the scan directive.
llvm::DenseSet<CanonicalDeclPtr<Decl>> UsedInScanDirective;
llvm::DenseMap<CanonicalDeclPtr<const Decl>, UsesAllocatorsDeclKind>
UsesAllocatorsDecls;
Expr *DeclareMapperVar = nullptr;
SharingMapTy(OpenMPDirectiveKind DKind, DeclarationNameInfo Name,
Scope *CurScope, SourceLocation Loc)
: Directive(DKind), DirectiveName(Name), CurScope(CurScope),
ConstructLoc(Loc) {}
SharingMapTy() = default;
};
using StackTy = SmallVector<SharingMapTy, 4>;
/// Stack of used declaration and their data-sharing attributes.
DeclSAMapTy Threadprivates;
const FunctionScopeInfo *CurrentNonCapturingFunctionScope = nullptr;
SmallVector<std::pair<StackTy, const FunctionScopeInfo *>, 4> Stack;
/// true, if check for DSA must be from parent directive, false, if
/// from current directive.
OpenMPClauseKind ClauseKindMode = OMPC_unknown;
Sema &SemaRef;
bool ForceCapturing = false;
/// true if all the variables in the target executable directives must be
/// captured by reference.
bool ForceCaptureByReferenceInTargetExecutable = false;
CriticalsWithHintsTy Criticals;
unsigned IgnoredStackElements = 0;
/// Iterators over the stack iterate in order from innermost to outermost
/// directive.
using const_iterator = StackTy::const_reverse_iterator;
const_iterator begin() const {
return Stack.empty() ? const_iterator()
: Stack.back().first.rbegin() + IgnoredStackElements;
}
const_iterator end() const {
return Stack.empty() ? const_iterator() : Stack.back().first.rend();
}
using iterator = StackTy::reverse_iterator;
iterator begin() {
return Stack.empty() ? iterator()
: Stack.back().first.rbegin() + IgnoredStackElements;
}
iterator end() {
return Stack.empty() ? iterator() : Stack.back().first.rend();
}
// Convenience operations to get at the elements of the stack.
bool isStackEmpty() const {
return Stack.empty() ||
Stack.back().second != CurrentNonCapturingFunctionScope ||
Stack.back().first.size() <= IgnoredStackElements;
}
size_t getStackSize() const {
return isStackEmpty() ? 0
: Stack.back().first.size() - IgnoredStackElements;
}
SharingMapTy *getTopOfStackOrNull() {
size_t Size = getStackSize();
if (Size == 0)
return nullptr;
return &Stack.back().first[Size - 1];
}
const SharingMapTy *getTopOfStackOrNull() const {
return const_cast<DSAStackTy &>(*this).getTopOfStackOrNull();
}
SharingMapTy &getTopOfStack() {
assert(!isStackEmpty() && "no current directive");
return *getTopOfStackOrNull();
}
const SharingMapTy &getTopOfStack() const {
return const_cast<DSAStackTy &>(*this).getTopOfStack();
}
SharingMapTy *getSecondOnStackOrNull() {
size_t Size = getStackSize();
if (Size <= 1)
return nullptr;
return &Stack.back().first[Size - 2];
}
const SharingMapTy *getSecondOnStackOrNull() const {
return const_cast<DSAStackTy &>(*this).getSecondOnStackOrNull();
}
/// Get the stack element at a certain level (previously returned by
/// \c getNestingLevel).
///
/// Note that nesting levels count from outermost to innermost, and this is
/// the reverse of our iteration order where new inner levels are pushed at
/// the front of the stack.
SharingMapTy &getStackElemAtLevel(unsigned Level) {
assert(Level < getStackSize() && "no such stack element");
return Stack.back().first[Level];
}
const SharingMapTy &getStackElemAtLevel(unsigned Level) const {
return const_cast<DSAStackTy &>(*this).getStackElemAtLevel(Level);
}
DSAVarData getDSA(const_iterator &Iter, ValueDecl *D) const;
/// Checks if the variable is a local for OpenMP region.
bool isOpenMPLocal(VarDecl *D, const_iterator Iter) const;
/// Vector of previously declared requires directives
SmallVector<const OMPRequiresDecl *, 2> RequiresDecls;
/// omp_allocator_handle_t type.
QualType OMPAllocatorHandleT;
/// omp_depend_t type.
QualType OMPDependT;
/// omp_event_handle_t type.
QualType OMPEventHandleT;
/// omp_alloctrait_t type.
QualType OMPAlloctraitT;
/// Expression for the predefined allocators.
Expr *OMPPredefinedAllocators[OMPAllocateDeclAttr::OMPUserDefinedMemAlloc] = {
nullptr};
/// Vector of previously encountered target directives
SmallVector<SourceLocation, 2> TargetLocations;
SourceLocation AtomicLocation;
/// Vector of declare variant construct traits.
SmallVector<llvm::omp::TraitProperty, 8> ConstructTraits;
public:
explicit DSAStackTy(Sema &S) : SemaRef(S) {}
/// Sets omp_allocator_handle_t type.
void setOMPAllocatorHandleT(QualType Ty) { OMPAllocatorHandleT = Ty; }
/// Gets omp_allocator_handle_t type.
QualType getOMPAllocatorHandleT() const { return OMPAllocatorHandleT; }
/// Sets omp_alloctrait_t type.
void setOMPAlloctraitT(QualType Ty) { OMPAlloctraitT = Ty; }
/// Gets omp_alloctrait_t type.
QualType getOMPAlloctraitT() const { return OMPAlloctraitT; }
/// Sets the given default allocator.
void setAllocator(OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind,
Expr *Allocator) {
OMPPredefinedAllocators[AllocatorKind] = Allocator;
}
/// Returns the specified default allocator.
Expr *getAllocator(OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind) const {
return OMPPredefinedAllocators[AllocatorKind];
}
/// Sets omp_depend_t type.
void setOMPDependT(QualType Ty) { OMPDependT = Ty; }
/// Gets omp_depend_t type.
QualType getOMPDependT() const { return OMPDependT; }
/// Sets omp_event_handle_t type.
void setOMPEventHandleT(QualType Ty) { OMPEventHandleT = Ty; }
/// Gets omp_event_handle_t type.
QualType getOMPEventHandleT() const { return OMPEventHandleT; }
bool isClauseParsingMode() const { return ClauseKindMode != OMPC_unknown; }
OpenMPClauseKind getClauseParsingMode() const {
assert(isClauseParsingMode() && "Must be in clause parsing mode.");
return ClauseKindMode;
}
void setClauseParsingMode(OpenMPClauseKind K) { ClauseKindMode = K; }
bool isBodyComplete() const {
const SharingMapTy *Top = getTopOfStackOrNull();
return Top && Top->BodyComplete;
}
void setBodyComplete() { getTopOfStack().BodyComplete = true; }
bool isForceVarCapturing() const { return ForceCapturing; }
void setForceVarCapturing(bool V) { ForceCapturing = V; }
void setForceCaptureByReferenceInTargetExecutable(bool V) {
ForceCaptureByReferenceInTargetExecutable = V;
}
bool isForceCaptureByReferenceInTargetExecutable() const {
return ForceCaptureByReferenceInTargetExecutable;
}
void push(OpenMPDirectiveKind DKind, const DeclarationNameInfo &DirName,
Scope *CurScope, SourceLocation Loc) {
assert(!IgnoredStackElements &&
"cannot change stack while ignoring elements");
if (Stack.empty() ||
Stack.back().second != CurrentNonCapturingFunctionScope)
Stack.emplace_back(StackTy(), CurrentNonCapturingFunctionScope);
Stack.back().first.emplace_back(DKind, DirName, CurScope, Loc);
Stack.back().first.back().DefaultAttrLoc = Loc;
}
void pop() {
assert(!IgnoredStackElements &&
"cannot change stack while ignoring elements");
assert(!Stack.back().first.empty() &&
"Data-sharing attributes stack is empty!");
Stack.back().first.pop_back();
}
/// RAII object to temporarily leave the scope of a directive when we want to
/// logically operate in its parent.
class ParentDirectiveScope {
DSAStackTy &Self;
bool Active;
public:
ParentDirectiveScope(DSAStackTy &Self, bool Activate)
: Self(Self), Active(false) {
if (Activate)
enable();
}
~ParentDirectiveScope() { disable(); }
void disable() {
if (Active) {
--Self.IgnoredStackElements;
Active = false;
}
}
void enable() {
if (!Active) {
++Self.IgnoredStackElements;
Active = true;
}
}
};
/// Marks that we're started loop parsing.
void loopInit() {
assert(isOpenMPLoopDirective(getCurrentDirective()) &&
"Expected loop-based directive.");
getTopOfStack().LoopStart = true;
}
/// Start capturing of the variables in the loop context.
void loopStart() {
assert(isOpenMPLoopDirective(getCurrentDirective()) &&
"Expected loop-based directive.");
getTopOfStack().LoopStart = false;
}
/// true, if variables are captured, false otherwise.
bool isLoopStarted() const {
assert(isOpenMPLoopDirective(getCurrentDirective()) &&
"Expected loop-based directive.");
return !getTopOfStack().LoopStart;
}
/// Marks (or clears) declaration as possibly loop counter.
void resetPossibleLoopCounter(const Decl *D = nullptr) {
getTopOfStack().PossiblyLoopCounter = D ? D->getCanonicalDecl() : D;
}
/// Gets the possible loop counter decl.
const Decl *getPossiblyLoopCunter() const {
return getTopOfStack().PossiblyLoopCounter;
}
/// Start new OpenMP region stack in new non-capturing function.
void pushFunction() {
assert(!IgnoredStackElements &&
"cannot change stack while ignoring elements");
const FunctionScopeInfo *CurFnScope = SemaRef.getCurFunction();
assert(!isa<CapturingScopeInfo>(CurFnScope));
CurrentNonCapturingFunctionScope = CurFnScope;
}
/// Pop region stack for non-capturing function.
void popFunction(const FunctionScopeInfo *OldFSI) {
assert(!IgnoredStackElements &&
"cannot change stack while ignoring elements");
if (!Stack.empty() && Stack.back().second == OldFSI) {
assert(Stack.back().first.empty());
Stack.pop_back();
}
CurrentNonCapturingFunctionScope = nullptr;
for (const FunctionScopeInfo *FSI : llvm::reverse(SemaRef.FunctionScopes)) {
if (!isa<CapturingScopeInfo>(FSI)) {
CurrentNonCapturingFunctionScope = FSI;
break;
}
}
}
void addCriticalWithHint(const OMPCriticalDirective *D, llvm::APSInt Hint) {
Criticals.try_emplace(D->getDirectiveName().getAsString(), D, Hint);
}
const std::pair<const OMPCriticalDirective *, llvm::APSInt>
getCriticalWithHint(const DeclarationNameInfo &Name) const {
auto I = Criticals.find(Name.getAsString());
if (I != Criticals.end())
return I->second;
return std::make_pair(nullptr, llvm::APSInt());
}
/// If 'aligned' declaration for given variable \a D was not seen yet,
/// add it and return NULL; otherwise return previous occurrence's expression
/// for diagnostics.
const Expr *addUniqueAligned(const ValueDecl *D, const Expr *NewDE);
/// If 'nontemporal' declaration for given variable \a D was not seen yet,
/// add it and return NULL; otherwise return previous occurrence's expression
/// for diagnostics.
const Expr *addUniqueNontemporal(const ValueDecl *D, const Expr *NewDE);
/// Register specified variable as loop control variable.
void addLoopControlVariable(const ValueDecl *D, VarDecl *Capture);
/// Check if the specified variable is a loop control variable for
/// current region.
/// \return The index of the loop control variable in the list of associated
/// for-loops (from outer to inner).
const LCDeclInfo isLoopControlVariable(const ValueDecl *D) const;
/// Check if the specified variable is a loop control variable for
/// parent region.
/// \return The index of the loop control variable in the list of associated
/// for-loops (from outer to inner).
const LCDeclInfo isParentLoopControlVariable(const ValueDecl *D) const;
/// Check if the specified variable is a loop control variable for
/// current region.
/// \return The index of the loop control variable in the list of associated
/// for-loops (from outer to inner).
const LCDeclInfo isLoopControlVariable(const ValueDecl *D,
unsigned Level) const;
/// Get the loop control variable for the I-th loop (or nullptr) in
/// parent directive.
const ValueDecl *getParentLoopControlVariable(unsigned I) const;
/// Marks the specified decl \p D as used in scan directive.
void markDeclAsUsedInScanDirective(ValueDecl *D) {
if (SharingMapTy *Stack = getSecondOnStackOrNull())
Stack->UsedInScanDirective.insert(D);
}
/// Checks if the specified declaration was used in the inner scan directive.
bool isUsedInScanDirective(ValueDecl *D) const {
if (const SharingMapTy *Stack = getTopOfStackOrNull())
return Stack->UsedInScanDirective.contains(D);
return false;
}
/// Adds explicit data sharing attribute to the specified declaration.
void addDSA(const ValueDecl *D, const Expr *E, OpenMPClauseKind A,
DeclRefExpr *PrivateCopy = nullptr, unsigned Modifier = 0,
bool AppliedToPointee = false);
/// Adds additional information for the reduction items with the reduction id
/// represented as an operator.
void addTaskgroupReductionData(const ValueDecl *D, SourceRange SR,
BinaryOperatorKind BOK);
/// Adds additional information for the reduction items with the reduction id
/// represented as reduction identifier.
void addTaskgroupReductionData(const ValueDecl *D, SourceRange SR,
const Expr *ReductionRef);
/// Returns the location and reduction operation from the innermost parent
/// region for the given \p D.
const DSAVarData
getTopMostTaskgroupReductionData(const ValueDecl *D, SourceRange &SR,
BinaryOperatorKind &BOK,
Expr *&TaskgroupDescriptor) const;
/// Returns the location and reduction operation from the innermost parent
/// region for the given \p D.
const DSAVarData
getTopMostTaskgroupReductionData(const ValueDecl *D, SourceRange &SR,
const Expr *&ReductionRef,
Expr *&TaskgroupDescriptor) const;
/// Return reduction reference expression for the current taskgroup or
/// parallel/worksharing directives with task reductions.
Expr *getTaskgroupReductionRef() const {
assert((getTopOfStack().Directive == OMPD_taskgroup ||
((isOpenMPParallelDirective(getTopOfStack().Directive) ||
isOpenMPWorksharingDirective(getTopOfStack().Directive)) &&
!isOpenMPSimdDirective(getTopOfStack().Directive))) &&
"taskgroup reference expression requested for non taskgroup or "
"parallel/worksharing directive.");
return getTopOfStack().TaskgroupReductionRef;
}
/// Checks if the given \p VD declaration is actually a taskgroup reduction
/// descriptor variable at the \p Level of OpenMP regions.
bool isTaskgroupReductionRef(const ValueDecl *VD, unsigned Level) const {
return getStackElemAtLevel(Level).TaskgroupReductionRef &&
cast<DeclRefExpr>(getStackElemAtLevel(Level).TaskgroupReductionRef)
->getDecl() == VD;
}
/// Returns data sharing attributes from top of the stack for the
/// specified declaration.
const DSAVarData getTopDSA(ValueDecl *D, bool FromParent);
/// Returns data-sharing attributes for the specified declaration.
const DSAVarData getImplicitDSA(ValueDecl *D, bool FromParent) const;
/// Returns data-sharing attributes for the specified declaration.
const DSAVarData getImplicitDSA(ValueDecl *D, unsigned Level) const;
/// Checks if the specified variables has data-sharing attributes which
/// match specified \a CPred predicate in any directive which matches \a DPred
/// predicate.
const DSAVarData
hasDSA(ValueDecl *D,
const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred,
const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred,
bool FromParent) const;
/// Checks if the specified variables has data-sharing attributes which
/// match specified \a CPred predicate in any innermost directive which
/// matches \a DPred predicate.
const DSAVarData
hasInnermostDSA(ValueDecl *D,
const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred,
const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred,
bool FromParent) const;
/// Checks if the specified variables has explicit data-sharing
/// attributes which match specified \a CPred predicate at the specified
/// OpenMP region.
bool
hasExplicitDSA(const ValueDecl *D,
const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred,
unsigned Level, bool NotLastprivate = false) const;
/// Returns true if the directive at level \Level matches in the
/// specified \a DPred predicate.
bool hasExplicitDirective(
const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred,
unsigned Level) const;
/// Finds a directive which matches specified \a DPred predicate.
bool hasDirective(
const llvm::function_ref<bool(
OpenMPDirectiveKind, const DeclarationNameInfo &, SourceLocation)>
DPred,
bool FromParent) const;
/// Returns currently analyzed directive.
OpenMPDirectiveKind getCurrentDirective() const {
const SharingMapTy *Top = getTopOfStackOrNull();
return Top ? Top->Directive : OMPD_unknown;
}
/// Returns directive kind at specified level.
OpenMPDirectiveKind getDirective(unsigned Level) const {
assert(!isStackEmpty() && "No directive at specified level.");
return getStackElemAtLevel(Level).Directive;
}
/// Returns the capture region at the specified level.
OpenMPDirectiveKind getCaptureRegion(unsigned Level,
unsigned OpenMPCaptureLevel) const {
SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
getOpenMPCaptureRegions(CaptureRegions, getDirective(Level));
return CaptureRegions[OpenMPCaptureLevel];
}
/// Returns parent directive.
OpenMPDirectiveKind getParentDirective() const {
const SharingMapTy *Parent = getSecondOnStackOrNull();
return Parent ? Parent->Directive : OMPD_unknown;
}
/// Add requires decl to internal vector
void addRequiresDecl(OMPRequiresDecl *RD) { RequiresDecls.push_back(RD); }
/// Checks if the defined 'requires' directive has specified type of clause.
template <typename ClauseType> bool hasRequiresDeclWithClause() const {
return llvm::any_of(RequiresDecls, [](const OMPRequiresDecl *D) {
return llvm::any_of(D->clauselists(), [](const OMPClause *C) {
return isa<ClauseType>(C);
});
});
}
/// Checks for a duplicate clause amongst previously declared requires
/// directives
bool hasDuplicateRequiresClause(ArrayRef<OMPClause *> ClauseList) const {
bool IsDuplicate = false;
for (OMPClause *CNew : ClauseList) {
for (const OMPRequiresDecl *D : RequiresDecls) {
for (const OMPClause *CPrev : D->clauselists()) {
if (CNew->getClauseKind() == CPrev->getClauseKind()) {
SemaRef.Diag(CNew->getBeginLoc(),
diag::err_omp_requires_clause_redeclaration)
<< getOpenMPClauseName(CNew->getClauseKind());
SemaRef.Diag(CPrev->getBeginLoc(),
diag::note_omp_requires_previous_clause)
<< getOpenMPClauseName(CPrev->getClauseKind());
IsDuplicate = true;
}
}
}
}
return IsDuplicate;
}
/// Add location of previously encountered target to internal vector
void addTargetDirLocation(SourceLocation LocStart) {
TargetLocations.push_back(LocStart);
}
/// Add location for the first encountered atomicc directive.
void addAtomicDirectiveLoc(SourceLocation Loc) {
if (AtomicLocation.isInvalid())
AtomicLocation = Loc;
}
/// Returns the location of the first encountered atomic directive in the
/// module.
SourceLocation getAtomicDirectiveLoc() const { return AtomicLocation; }
// Return previously encountered target region locations.
ArrayRef<SourceLocation> getEncounteredTargetLocs() const {
return TargetLocations;
}
/// Set default data sharing attribute to none.
void setDefaultDSANone(SourceLocation Loc) {
getTopOfStack().DefaultAttr = DSA_none;
getTopOfStack().DefaultAttrLoc = Loc;
}
/// Set default data sharing attribute to shared.
void setDefaultDSAShared(SourceLocation Loc) {
getTopOfStack().DefaultAttr = DSA_shared;
getTopOfStack().DefaultAttrLoc = Loc;
}
/// Set default data sharing attribute to firstprivate.
void setDefaultDSAFirstPrivate(SourceLocation Loc) {
getTopOfStack().DefaultAttr = DSA_firstprivate;
getTopOfStack().DefaultAttrLoc = Loc;
}
/// Set default data mapping attribute to Modifier:Kind
void setDefaultDMAAttr(OpenMPDefaultmapClauseModifier M,
OpenMPDefaultmapClauseKind Kind, SourceLocation Loc) {
DefaultmapInfo &DMI = getTopOfStack().DefaultmapMap[Kind];
DMI.ImplicitBehavior = M;
DMI.SLoc = Loc;
}
/// Check whether the implicit-behavior has been set in defaultmap
bool checkDefaultmapCategory(OpenMPDefaultmapClauseKind VariableCategory) {
if (VariableCategory == OMPC_DEFAULTMAP_unknown)
return getTopOfStack()
.DefaultmapMap[OMPC_DEFAULTMAP_aggregate]
.ImplicitBehavior != OMPC_DEFAULTMAP_MODIFIER_unknown ||
getTopOfStack()
.DefaultmapMap[OMPC_DEFAULTMAP_scalar]
.ImplicitBehavior != OMPC_DEFAULTMAP_MODIFIER_unknown ||
getTopOfStack()
.DefaultmapMap[OMPC_DEFAULTMAP_pointer]
.ImplicitBehavior != OMPC_DEFAULTMAP_MODIFIER_unknown;
return getTopOfStack().DefaultmapMap[VariableCategory].ImplicitBehavior !=
OMPC_DEFAULTMAP_MODIFIER_unknown;
}
ArrayRef<llvm::omp::TraitProperty> getConstructTraits() {
return ConstructTraits;
}
void handleConstructTrait(ArrayRef<llvm::omp::TraitProperty> Traits,
bool ScopeEntry) {
if (ScopeEntry)
ConstructTraits.append(Traits.begin(), Traits.end());
else
for (llvm::omp::TraitProperty Trait : llvm::reverse(Traits)) {
llvm::omp::TraitProperty Top = ConstructTraits.pop_back_val();
assert(Top == Trait && "Something left a trait on the stack!");
(void)Trait;
(void)Top;
}
}
DefaultDataSharingAttributes getDefaultDSA(unsigned Level) const {
return getStackSize() <= Level ? DSA_unspecified
: getStackElemAtLevel(Level).DefaultAttr;
}
DefaultDataSharingAttributes getDefaultDSA() const {
return isStackEmpty() ? DSA_unspecified : getTopOfStack().DefaultAttr;
}
SourceLocation getDefaultDSALocation() const {
return isStackEmpty() ? SourceLocation() : getTopOfStack().DefaultAttrLoc;
}
OpenMPDefaultmapClauseModifier
getDefaultmapModifier(OpenMPDefaultmapClauseKind Kind) const {
return isStackEmpty()
? OMPC_DEFAULTMAP_MODIFIER_unknown
: getTopOfStack().DefaultmapMap[Kind].ImplicitBehavior;
}
OpenMPDefaultmapClauseModifier
getDefaultmapModifierAtLevel(unsigned Level,
OpenMPDefaultmapClauseKind Kind) const {
return getStackElemAtLevel(Level).DefaultmapMap[Kind].ImplicitBehavior;
}
bool isDefaultmapCapturedByRef(unsigned Level,
OpenMPDefaultmapClauseKind Kind) const {
OpenMPDefaultmapClauseModifier M =
getDefaultmapModifierAtLevel(Level, Kind);
if (Kind == OMPC_DEFAULTMAP_scalar || Kind == OMPC_DEFAULTMAP_pointer) {
return (M == OMPC_DEFAULTMAP_MODIFIER_alloc) ||
(M == OMPC_DEFAULTMAP_MODIFIER_to) ||
(M == OMPC_DEFAULTMAP_MODIFIER_from) ||
(M == OMPC_DEFAULTMAP_MODIFIER_tofrom);
}
return true;
}
static bool mustBeFirstprivateBase(OpenMPDefaultmapClauseModifier M,
OpenMPDefaultmapClauseKind Kind) {
switch (Kind) {
case OMPC_DEFAULTMAP_scalar:
case OMPC_DEFAULTMAP_pointer:
return (M == OMPC_DEFAULTMAP_MODIFIER_unknown) ||
(M == OMPC_DEFAULTMAP_MODIFIER_firstprivate) ||
(M == OMPC_DEFAULTMAP_MODIFIER_default);
case OMPC_DEFAULTMAP_aggregate:
return M == OMPC_DEFAULTMAP_MODIFIER_firstprivate;
default:
break;
}
llvm_unreachable("Unexpected OpenMPDefaultmapClauseKind enum");
}
bool mustBeFirstprivateAtLevel(unsigned Level,
OpenMPDefaultmapClauseKind Kind) const {
OpenMPDefaultmapClauseModifier M =
getDefaultmapModifierAtLevel(Level, Kind);
return mustBeFirstprivateBase(M, Kind);
}
bool mustBeFirstprivate(OpenMPDefaultmapClauseKind Kind) const {
OpenMPDefaultmapClauseModifier M = getDefaultmapModifier(Kind);
return mustBeFirstprivateBase(M, Kind);
}
/// Checks if the specified variable is a threadprivate.
bool isThreadPrivate(VarDecl *D) {
const DSAVarData DVar = getTopDSA(D, false);
return isOpenMPThreadPrivate(DVar.CKind);
}
/// Marks current region as ordered (it has an 'ordered' clause).
void setOrderedRegion(bool IsOrdered, const Expr *Param,
OMPOrderedClause *Clause) {
if (IsOrdered)
getTopOfStack().OrderedRegion.emplace(Param, Clause);
else
getTopOfStack().OrderedRegion.reset();
}
/// Returns true, if region is ordered (has associated 'ordered' clause),
/// false - otherwise.
bool isOrderedRegion() const {
if (const SharingMapTy *Top = getTopOfStackOrNull())
return Top->OrderedRegion.hasValue();
return false;
}
/// Returns optional parameter for the ordered region.
std::pair<const Expr *, OMPOrderedClause *> getOrderedRegionParam() const {
if (const SharingMapTy *Top = getTopOfStackOrNull())
if (Top->OrderedRegion.hasValue())
return Top->OrderedRegion.getValue();
return std::make_pair(nullptr, nullptr);
}
/// Returns true, if parent region is ordered (has associated
/// 'ordered' clause), false - otherwise.
bool isParentOrderedRegion() const {
if (const SharingMapTy *Parent = getSecondOnStackOrNull())
return Parent->OrderedRegion.hasValue();
return false;
}
/// Returns optional parameter for the ordered region.
std::pair<const Expr *, OMPOrderedClause *>
getParentOrderedRegionParam() const {
if (const SharingMapTy *Parent = getSecondOnStackOrNull())
if (Parent->OrderedRegion.hasValue())
return Parent->OrderedRegion.getValue();
return std::make_pair(nullptr, nullptr);
}
/// Marks current region as nowait (it has a 'nowait' clause).
void setNowaitRegion(bool IsNowait = true) {
getTopOfStack().NowaitRegion = IsNowait;
}
/// Returns true, if parent region is nowait (has associated
/// 'nowait' clause), false - otherwise.
bool isParentNowaitRegion() const {
if (const SharingMapTy *Parent = getSecondOnStackOrNull())
return Parent->NowaitRegion;
return false;
}
/// Marks current region as untied (it has a 'untied' clause).
void setUntiedRegion(bool IsUntied = true) {
getTopOfStack().UntiedRegion = IsUntied;
}
/// Return true if current region is untied.
bool isUntiedRegion() const {
const SharingMapTy *Top = getTopOfStackOrNull();
return Top ? Top->UntiedRegion : false;
}
/// Marks parent region as cancel region.
void setParentCancelRegion(bool Cancel = true) {
if (SharingMapTy *Parent = getSecondOnStackOrNull())
Parent->CancelRegion |= Cancel;
}
/// Return true if current region has inner cancel construct.
bool isCancelRegion() const {
const SharingMapTy *Top = getTopOfStackOrNull();
return Top ? Top->CancelRegion : false;
}
/// Mark that parent region already has scan directive.
void setParentHasScanDirective(SourceLocation Loc) {
if (SharingMapTy *Parent = getSecondOnStackOrNull())
Parent->PrevScanLocation = Loc;
}
/// Return true if current region has inner cancel construct.
bool doesParentHasScanDirective() const {
const SharingMapTy *Top = getSecondOnStackOrNull();
return Top ? Top->PrevScanLocation.isValid() : false;
}
/// Return true if current region has inner cancel construct.
SourceLocation getParentScanDirectiveLoc() const {
const SharingMapTy *Top = getSecondOnStackOrNull();
return Top ? Top->PrevScanLocation : SourceLocation();
}
/// Mark that parent region already has ordered directive.
void setParentHasOrderedDirective(SourceLocation Loc) {
if (SharingMapTy *Parent = getSecondOnStackOrNull())
Parent->PrevOrderedLocation = Loc;
}
/// Return true if current region has inner ordered construct.
bool doesParentHasOrderedDirective() const {
const SharingMapTy *Top = getSecondOnStackOrNull();
return Top ? Top->PrevOrderedLocation.isValid() : false;
}
/// Returns the location of the previously specified ordered directive.
SourceLocation getParentOrderedDirectiveLoc() const {
const SharingMapTy *Top = getSecondOnStackOrNull();
return Top ? Top->PrevOrderedLocation : SourceLocation();
}
/// Set collapse value for the region.
void setAssociatedLoops(unsigned Val) {
getTopOfStack().AssociatedLoops = Val;
if (Val > 1)
getTopOfStack().HasMutipleLoops = true;
}
/// Return collapse value for region.
unsigned getAssociatedLoops() const {
const SharingMapTy *Top = getTopOfStackOrNull();
return Top ? Top->AssociatedLoops : 0;
}
/// Returns true if the construct is associated with multiple loops.
bool hasMutipleLoops() const {
const SharingMapTy *Top = getTopOfStackOrNull();
return Top ? Top->HasMutipleLoops : false;
}
/// Marks current target region as one with closely nested teams
/// region.
void setParentTeamsRegionLoc(SourceLocation TeamsRegionLoc) {
if (SharingMapTy *Parent = getSecondOnStackOrNull())
Parent->InnerTeamsRegionLoc = TeamsRegionLoc;
}
/// Returns true, if current region has closely nested teams region.
bool hasInnerTeamsRegion() const {
return getInnerTeamsRegionLoc().isValid();
}
/// Returns location of the nested teams region (if any).
SourceLocation getInnerTeamsRegionLoc() const {
const SharingMapTy *Top = getTopOfStackOrNull();
return Top ? Top->InnerTeamsRegionLoc : SourceLocation();
}
Scope *getCurScope() const {
const SharingMapTy *Top = getTopOfStackOrNull();
return Top ? Top->CurScope : nullptr;
}
void setContext(DeclContext *DC) { getTopOfStack().Context = DC; }
SourceLocation getConstructLoc() const {
const SharingMapTy *Top = getTopOfStackOrNull();
return Top ? Top->ConstructLoc : SourceLocation();
}
/// Do the check specified in \a Check to all component lists and return true
/// if any issue is found.
bool checkMappableExprComponentListsForDecl(
const ValueDecl *VD, bool CurrentRegionOnly,
const llvm::function_ref<
bool(OMPClauseMappableExprCommon::MappableExprComponentListRef,
OpenMPClauseKind)>
Check) const {
if (isStackEmpty())
return false;
auto SI = begin();
auto SE = end();
if (SI == SE)
return false;
if (CurrentRegionOnly)
SE = std::next(SI);
else
std::advance(SI, 1);
for (; SI != SE; ++SI) {
auto MI = SI->MappedExprComponents.find(VD);
if (MI != SI->MappedExprComponents.end())
for (OMPClauseMappableExprCommon::MappableExprComponentListRef L :
MI->second.Components)
if (Check(L, MI->second.Kind))
return true;
}
return false;
}
/// Do the check specified in \a Check to all component lists at a given level
/// and return true if any issue is found.
bool checkMappableExprComponentListsForDeclAtLevel(
const ValueDecl *VD, unsigned Level,
const llvm::function_ref<
bool(OMPClauseMappableExprCommon::MappableExprComponentListRef,
OpenMPClauseKind)>
Check) const {
if (getStackSize() <= Level)
return false;
const SharingMapTy &StackElem = getStackElemAtLevel(Level);
auto MI = StackElem.MappedExprComponents.find(VD);
if (MI != StackElem.MappedExprComponents.end())
for (OMPClauseMappableExprCommon::MappableExprComponentListRef L :
MI->second.Components)
if (Check(L, MI->second.Kind))
return true;
return false;
}
/// Create a new mappable expression component list associated with a given
/// declaration and initialize it with the provided list of components.
void addMappableExpressionComponents(
const ValueDecl *VD,
OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
OpenMPClauseKind WhereFoundClauseKind) {
MappedExprComponentTy &MEC = getTopOfStack().MappedExprComponents[VD];
// Create new entry and append the new components there.
MEC.Components.resize(MEC.Components.size() + 1);
MEC.Components.back().append(Components.begin(), Components.end());
MEC.Kind = WhereFoundClauseKind;
}
unsigned getNestingLevel() const {
assert(!isStackEmpty());
return getStackSize() - 1;
}
void addDoacrossDependClause(OMPDependClause *C,
const OperatorOffsetTy &OpsOffs) {
SharingMapTy *Parent = getSecondOnStackOrNull();
assert(Parent && isOpenMPWorksharingDirective(Parent->Directive));
Parent->DoacrossDepends.try_emplace(C, OpsOffs);
}
llvm::iterator_range<DoacrossDependMapTy::const_iterator>
getDoacrossDependClauses() const {
const SharingMapTy &StackElem = getTopOfStack();
if (isOpenMPWorksharingDirective(StackElem.Directive)) {
const DoacrossDependMapTy &Ref = StackElem.DoacrossDepends;
return llvm::make_range(Ref.begin(), Ref.end());
}
return llvm::make_range(StackElem.DoacrossDepends.end(),
StackElem.DoacrossDepends.end());
}
// Store types of classes which have been explicitly mapped
void addMappedClassesQualTypes(QualType QT) {
SharingMapTy &StackElem = getTopOfStack();
StackElem.MappedClassesQualTypes.insert(QT);
}
// Return set of mapped classes types
bool isClassPreviouslyMapped(QualType QT) const {
const SharingMapTy &StackElem = getTopOfStack();
return StackElem.MappedClassesQualTypes.contains(QT);
}
/// Adds global declare target to the parent target region.
void addToParentTargetRegionLinkGlobals(DeclRefExpr *E) {
assert(*OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
E->getDecl()) == OMPDeclareTargetDeclAttr::MT_Link &&
"Expected declare target link global.");
for (auto &Elem : *this) {
if (isOpenMPTargetExecutionDirective(Elem.Directive)) {
Elem.DeclareTargetLinkVarDecls.push_back(E);
return;
}
}
}
/// Returns the list of globals with declare target link if current directive
/// is target.
ArrayRef<DeclRefExpr *> getLinkGlobals() const {
assert(isOpenMPTargetExecutionDirective(getCurrentDirective()) &&
"Expected target executable directive.");
return getTopOfStack().DeclareTargetLinkVarDecls;
}
/// Adds list of allocators expressions.
void addInnerAllocatorExpr(Expr *E) {
getTopOfStack().InnerUsedAllocators.push_back(E);
}
/// Return list of used allocators.
ArrayRef<Expr *> getInnerAllocators() const {
return getTopOfStack().InnerUsedAllocators;
}
/// Marks the declaration as implicitly firstprivate nin the task-based
/// regions.
void addImplicitTaskFirstprivate(unsigned Level, Decl *D) {
getStackElemAtLevel(Level).ImplicitTaskFirstprivates.insert(D);
}
/// Checks if the decl is implicitly firstprivate in the task-based region.
bool isImplicitTaskFirstprivate(Decl *D) const {
return getTopOfStack().ImplicitTaskFirstprivates.contains(D);
}
/// Marks decl as used in uses_allocators clause as the allocator.
void addUsesAllocatorsDecl(const Decl *D, UsesAllocatorsDeclKind Kind) {
getTopOfStack().UsesAllocatorsDecls.try_emplace(D, Kind);
}
/// Checks if specified decl is used in uses allocator clause as the
/// allocator.
Optional<UsesAllocatorsDeclKind> isUsesAllocatorsDecl(unsigned Level,
const Decl *D) const {
const SharingMapTy &StackElem = getTopOfStack();
auto I = StackElem.UsesAllocatorsDecls.find(D);
if (I == StackElem.UsesAllocatorsDecls.end())
return None;
return I->getSecond();
}
Optional<UsesAllocatorsDeclKind> isUsesAllocatorsDecl(const Decl *D) const {
const SharingMapTy &StackElem = getTopOfStack();
auto I = StackElem.UsesAllocatorsDecls.find(D);
if (I == StackElem.UsesAllocatorsDecls.end())
return None;
return I->getSecond();
}
void addDeclareMapperVarRef(Expr *Ref) {
SharingMapTy &StackElem = getTopOfStack();
StackElem.DeclareMapperVar = Ref;
}
const Expr *getDeclareMapperVarRef() const {
const SharingMapTy *Top = getTopOfStackOrNull();
return Top ? Top->DeclareMapperVar : nullptr;
}
};
bool isImplicitTaskingRegion(OpenMPDirectiveKind DKind) {
return isOpenMPParallelDirective(DKind) || isOpenMPTeamsDirective(DKind);
}
bool isImplicitOrExplicitTaskingRegion(OpenMPDirectiveKind DKind) {
return isImplicitTaskingRegion(DKind) || isOpenMPTaskingDirective(DKind) ||
DKind == OMPD_unknown;
}
} // namespace
static const Expr *getExprAsWritten(const Expr *E) {
if (const auto *FE = dyn_cast<FullExpr>(E))
E = FE->getSubExpr();
if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
E = MTE->getSubExpr();
while (const auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
E = Binder->getSubExpr();
if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
E = ICE->getSubExprAsWritten();
return E->IgnoreParens();
}
static Expr *getExprAsWritten(Expr *E) {
return const_cast<Expr *>(getExprAsWritten(const_cast<const Expr *>(E)));
}
static const ValueDecl *getCanonicalDecl(const ValueDecl *D) {
if (const auto *CED = dyn_cast<OMPCapturedExprDecl>(D))
if (const auto *ME = dyn_cast<MemberExpr>(getExprAsWritten(CED->getInit())))
D = ME->getMemberDecl();
const auto *VD = dyn_cast<VarDecl>(D);
const auto *FD = dyn_cast<FieldDecl>(D);
if (VD != nullptr) {
VD = VD->getCanonicalDecl();
D = VD;
} else {
assert(FD);
FD = FD->getCanonicalDecl();
D = FD;
}
return D;
}
static ValueDecl *getCanonicalDecl(ValueDecl *D) {
return const_cast<ValueDecl *>(
getCanonicalDecl(const_cast<const ValueDecl *>(D)));
}
DSAStackTy::DSAVarData DSAStackTy::getDSA(const_iterator &Iter,
ValueDecl *D) const {
D = getCanonicalDecl(D);
auto *VD = dyn_cast<VarDecl>(D);
const auto *FD = dyn_cast<FieldDecl>(D);
DSAVarData DVar;
if (Iter == end()) {
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a region but not in construct]
// File-scope or namespace-scope variables referenced in called routines
// in the region are shared unless they appear in a threadprivate
// directive.
if (VD && !VD->isFunctionOrMethodVarDecl() && !isa<ParmVarDecl>(VD))
DVar.CKind = OMPC_shared;
// OpenMP [2.9.1.2, Data-sharing Attribute Rules for Variables Referenced
// in a region but not in construct]
// Variables with static storage duration that are declared in called
// routines in the region are shared.
if (VD && VD->hasGlobalStorage())
DVar.CKind = OMPC_shared;
// Non-static data members are shared by default.
if (FD)
DVar.CKind = OMPC_shared;
return DVar;
}
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct, C/C++, predetermined, p.1]
// Variables with automatic storage duration that are declared in a scope
// inside the construct are private.
if (VD && isOpenMPLocal(VD, Iter) && VD->isLocalVarDecl() &&
(VD->getStorageClass() == SC_Auto || VD->getStorageClass() == SC_None)) {
DVar.CKind = OMPC_private;
return DVar;
}
DVar.DKind = Iter->Directive;
// Explicitly specified attributes and local variables with predetermined
// attributes.
if (Iter->SharingMap.count(D)) {
const DSAInfo &Data = Iter->SharingMap.lookup(D);
DVar.RefExpr = Data.RefExpr.getPointer();
DVar.PrivateCopy = Data.PrivateCopy;
DVar.CKind = Data.Attributes;
DVar.ImplicitDSALoc = Iter->DefaultAttrLoc;
DVar.Modifier = Data.Modifier;
DVar.AppliedToPointee = Data.AppliedToPointee;
return DVar;
}
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct, C/C++, implicitly determined, p.1]
// In a parallel or task construct, the data-sharing attributes of these
// variables are determined by the default clause, if present.
switch (Iter->DefaultAttr) {
case DSA_shared:
DVar.CKind = OMPC_shared;
DVar.ImplicitDSALoc = Iter->DefaultAttrLoc;
return DVar;
case DSA_none:
return DVar;
case DSA_firstprivate:
if (VD->getStorageDuration() == SD_Static &&
VD->getDeclContext()->isFileContext()) {
DVar.CKind = OMPC_unknown;
} else {
DVar.CKind = OMPC_firstprivate;
}
DVar.ImplicitDSALoc = Iter->DefaultAttrLoc;
return DVar;
case DSA_unspecified:
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct, implicitly determined, p.2]
// In a parallel construct, if no default clause is present, these
// variables are shared.
DVar.ImplicitDSALoc = Iter->DefaultAttrLoc;
if ((isOpenMPParallelDirective(DVar.DKind) &&
!isOpenMPTaskLoopDirective(DVar.DKind)) ||
isOpenMPTeamsDirective(DVar.DKind)) {
DVar.CKind = OMPC_shared;
return DVar;
}
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct, implicitly determined, p.4]
// In a task construct, if no default clause is present, a variable that in
// the enclosing context is determined to be shared by all implicit tasks
// bound to the current team is shared.
if (isOpenMPTaskingDirective(DVar.DKind)) {
DSAVarData DVarTemp;
const_iterator I = Iter, E = end();
do {
++I;
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables
// Referenced in a Construct, implicitly determined, p.6]
// In a task construct, if no default clause is present, a variable
// whose data-sharing attribute is not determined by the rules above is
// firstprivate.
DVarTemp = getDSA(I, D);
if (DVarTemp.CKind != OMPC_shared) {
DVar.RefExpr = nullptr;
DVar.CKind = OMPC_firstprivate;
return DVar;
}
} while (I != E && !isImplicitTaskingRegion(I->Directive));
DVar.CKind =
(DVarTemp.CKind == OMPC_unknown) ? OMPC_firstprivate : OMPC_shared;
return DVar;
}
}
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct, implicitly determined, p.3]
// For constructs other than task, if no default clause is present, these
// variables inherit their data-sharing attributes from the enclosing
// context.
return getDSA(++Iter, D);
}
const Expr *DSAStackTy::addUniqueAligned(const ValueDecl *D,
const Expr *NewDE) {
assert(!isStackEmpty() && "Data sharing attributes stack is empty");
D = getCanonicalDecl(D);
SharingMapTy &StackElem = getTopOfStack();
auto It = StackElem.AlignedMap.find(D);
if (It == StackElem.AlignedMap.end()) {
assert(NewDE && "Unexpected nullptr expr to be added into aligned map");
StackElem.AlignedMap[D] = NewDE;
return nullptr;
}
assert(It->second && "Unexpected nullptr expr in the aligned map");
return It->second;
}
const Expr *DSAStackTy::addUniqueNontemporal(const ValueDecl *D,
const Expr *NewDE) {
assert(!isStackEmpty() && "Data sharing attributes stack is empty");
D = getCanonicalDecl(D);
SharingMapTy &StackElem = getTopOfStack();
auto It = StackElem.NontemporalMap.find(D);
if (It == StackElem.NontemporalMap.end()) {
assert(NewDE && "Unexpected nullptr expr to be added into aligned map");
StackElem.NontemporalMap[D] = NewDE;
return nullptr;
}
assert(It->second && "Unexpected nullptr expr in the aligned map");
return It->second;
}
void DSAStackTy::addLoopControlVariable(const ValueDecl *D, VarDecl *Capture) {
assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
D = getCanonicalDecl(D);
SharingMapTy &StackElem = getTopOfStack();
StackElem.LCVMap.try_emplace(
D, LCDeclInfo(StackElem.LCVMap.size() + 1, Capture));
}
const DSAStackTy::LCDeclInfo
DSAStackTy::isLoopControlVariable(const ValueDecl *D) const {
assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
D = getCanonicalDecl(D);
const SharingMapTy &StackElem = getTopOfStack();
auto It = StackElem.LCVMap.find(D);
if (It != StackElem.LCVMap.end())
return It->second;
return {0, nullptr};
}
const DSAStackTy::LCDeclInfo
DSAStackTy::isLoopControlVariable(const ValueDecl *D, unsigned Level) const {
assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
D = getCanonicalDecl(D);
for (unsigned I = Level + 1; I > 0; --I) {
const SharingMapTy &StackElem = getStackElemAtLevel(I - 1);
auto It = StackElem.LCVMap.find(D);
if (It != StackElem.LCVMap.end())
return It->second;
}
return {0, nullptr};
}
const DSAStackTy::LCDeclInfo
DSAStackTy::isParentLoopControlVariable(const ValueDecl *D) const {
const SharingMapTy *Parent = getSecondOnStackOrNull();
assert(Parent && "Data-sharing attributes stack is empty");
D = getCanonicalDecl(D);
auto It = Parent->LCVMap.find(D);
if (It != Parent->LCVMap.end())
return It->second;
return {0, nullptr};
}
const ValueDecl *DSAStackTy::getParentLoopControlVariable(unsigned I) const {
const SharingMapTy *Parent = getSecondOnStackOrNull();
assert(Parent && "Data-sharing attributes stack is empty");
if (Parent->LCVMap.size() < I)
return nullptr;
for (const auto &Pair : Parent->LCVMap)
if (Pair.second.first == I)
return Pair.first;
return nullptr;
}
void DSAStackTy::addDSA(const ValueDecl *D, const Expr *E, OpenMPClauseKind A,
DeclRefExpr *PrivateCopy, unsigned Modifier,
bool AppliedToPointee) {
D = getCanonicalDecl(D);
if (A == OMPC_threadprivate) {
DSAInfo &Data = Threadprivates[D];
Data.Attributes = A;
Data.RefExpr.setPointer(E);
Data.PrivateCopy = nullptr;
Data.Modifier = Modifier;
} else {
DSAInfo &Data = getTopOfStack().SharingMap[D];
assert(Data.Attributes == OMPC_unknown || (A == Data.Attributes) ||
(A == OMPC_firstprivate && Data.Attributes == OMPC_lastprivate) ||
(A == OMPC_lastprivate && Data.Attributes == OMPC_firstprivate) ||
(isLoopControlVariable(D).first && A == OMPC_private));
Data.Modifier = Modifier;
if (A == OMPC_lastprivate && Data.Attributes == OMPC_firstprivate) {
Data.RefExpr.setInt(/*IntVal=*/true);
return;
}
const bool IsLastprivate =
A == OMPC_lastprivate || Data.Attributes == OMPC_lastprivate;
Data.Attributes = A;
Data.RefExpr.setPointerAndInt(E, IsLastprivate);
Data.PrivateCopy = PrivateCopy;
Data.AppliedToPointee = AppliedToPointee;
if (PrivateCopy) {
DSAInfo &Data = getTopOfStack().SharingMap[PrivateCopy->getDecl()];
Data.Modifier = Modifier;
Data.Attributes = A;
Data.RefExpr.setPointerAndInt(PrivateCopy, IsLastprivate);
Data.PrivateCopy = nullptr;
Data.AppliedToPointee = AppliedToPointee;
}
}
}
/// Build a variable declaration for OpenMP loop iteration variable.
static VarDecl *buildVarDecl(Sema &SemaRef, SourceLocation Loc, QualType Type,
StringRef Name, const AttrVec *Attrs = nullptr,
DeclRefExpr *OrigRef = nullptr) {
DeclContext *DC = SemaRef.CurContext;
IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
auto *Decl =
VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type, TInfo, SC_None);
if (Attrs) {
for (specific_attr_iterator<AlignedAttr> I(Attrs->begin()), E(Attrs->end());
I != E; ++I)
Decl->addAttr(*I);
}
Decl->setImplicit();
if (OrigRef) {
Decl->addAttr(
OMPReferencedVarAttr::CreateImplicit(SemaRef.Context, OrigRef));
}
return Decl;
}
static DeclRefExpr *buildDeclRefExpr(Sema &S, VarDecl *D, QualType Ty,
SourceLocation Loc,
bool RefersToCapture = false) {
D->setReferenced();
D->markUsed(S.Context);
return DeclRefExpr::Create(S.getASTContext(), NestedNameSpecifierLoc(),
SourceLocation(), D, RefersToCapture, Loc, Ty,
VK_LValue);
}
void DSAStackTy::addTaskgroupReductionData(const ValueDecl *D, SourceRange SR,
BinaryOperatorKind BOK) {
D = getCanonicalDecl(D);
assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
assert(
getTopOfStack().SharingMap[D].Attributes == OMPC_reduction &&
"Additional reduction info may be specified only for reduction items.");
ReductionData &ReductionData = getTopOfStack().ReductionMap[D];
assert(ReductionData.ReductionRange.isInvalid() &&
(getTopOfStack().Directive == OMPD_taskgroup ||
((isOpenMPParallelDirective(getTopOfStack().Directive) ||
isOpenMPWorksharingDirective(getTopOfStack().Directive)) &&
!isOpenMPSimdDirective(getTopOfStack().Directive))) &&
"Additional reduction info may be specified only once for reduction "
"items.");
ReductionData.set(BOK, SR);
Expr *&TaskgroupReductionRef = getTopOfStack().TaskgroupReductionRef;
if (!TaskgroupReductionRef) {
VarDecl *VD = buildVarDecl(SemaRef, SR.getBegin(),
SemaRef.Context.VoidPtrTy, ".task_red.");
TaskgroupReductionRef =
buildDeclRefExpr(SemaRef, VD, SemaRef.Context.VoidPtrTy, SR.getBegin());
}
}
void DSAStackTy::addTaskgroupReductionData(const ValueDecl *D, SourceRange SR,
const Expr *ReductionRef) {
D = getCanonicalDecl(D);
assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
assert(
getTopOfStack().SharingMap[D].Attributes == OMPC_reduction &&
"Additional reduction info may be specified only for reduction items.");
ReductionData &ReductionData = getTopOfStack().ReductionMap[D];
assert(ReductionData.ReductionRange.isInvalid() &&
(getTopOfStack().Directive == OMPD_taskgroup ||
((isOpenMPParallelDirective(getTopOfStack().Directive) ||
isOpenMPWorksharingDirective(getTopOfStack().Directive)) &&
!isOpenMPSimdDirective(getTopOfStack().Directive))) &&
"Additional reduction info may be specified only once for reduction "
"items.");
ReductionData.set(ReductionRef, SR);
Expr *&TaskgroupReductionRef = getTopOfStack().TaskgroupReductionRef;
if (!TaskgroupReductionRef) {
VarDecl *VD = buildVarDecl(SemaRef, SR.getBegin(),
SemaRef.Context.VoidPtrTy, ".task_red.");
TaskgroupReductionRef =
buildDeclRefExpr(SemaRef, VD, SemaRef.Context.VoidPtrTy, SR.getBegin());
}
}
const DSAStackTy::DSAVarData DSAStackTy::getTopMostTaskgroupReductionData(
const ValueDecl *D, SourceRange &SR, BinaryOperatorKind &BOK,
Expr *&TaskgroupDescriptor) const {
D = getCanonicalDecl(D);
assert(!isStackEmpty() && "Data-sharing attributes stack is empty.");
for (const_iterator I = begin() + 1, E = end(); I != E; ++I) {
const DSAInfo &Data = I->SharingMap.lookup(D);
if (Data.Attributes != OMPC_reduction ||
Data.Modifier != OMPC_REDUCTION_task)
continue;
const ReductionData &ReductionData = I->ReductionMap.lookup(D);
if (!ReductionData.ReductionOp ||
ReductionData.ReductionOp.is<const Expr *>())
return DSAVarData();
SR = ReductionData.ReductionRange;
BOK = ReductionData.ReductionOp.get<ReductionData::BOKPtrType>();
assert(I->TaskgroupReductionRef && "taskgroup reduction reference "
"expression for the descriptor is not "
"set.");
TaskgroupDescriptor = I->TaskgroupReductionRef;
return DSAVarData(I->Directive, OMPC_reduction, Data.RefExpr.getPointer(),
Data.PrivateCopy, I->DefaultAttrLoc, OMPC_REDUCTION_task,
/*AppliedToPointee=*/false);
}
return DSAVarData();
}
const DSAStackTy::DSAVarData DSAStackTy::getTopMostTaskgroupReductionData(
const ValueDecl *D, SourceRange &SR, const Expr *&ReductionRef,
Expr *&TaskgroupDescriptor) const {
D = getCanonicalDecl(D);
assert(!isStackEmpty() && "Data-sharing attributes stack is empty.");
for (const_iterator I = begin() + 1, E = end(); I != E; ++I) {
const DSAInfo &Data = I->SharingMap.lookup(D);
if (Data.Attributes != OMPC_reduction ||
Data.Modifier != OMPC_REDUCTION_task)
continue;
const ReductionData &ReductionData = I->ReductionMap.lookup(D);
if (!ReductionData.ReductionOp ||
!ReductionData.ReductionOp.is<const Expr *>())
return DSAVarData();
SR = ReductionData.ReductionRange;
ReductionRef = ReductionData.ReductionOp.get<const Expr *>();
assert(I->TaskgroupReductionRef && "taskgroup reduction reference "
"expression for the descriptor is not "
"set.");
TaskgroupDescriptor = I->TaskgroupReductionRef;
return DSAVarData(I->Directive, OMPC_reduction, Data.RefExpr.getPointer(),
Data.PrivateCopy, I->DefaultAttrLoc, OMPC_REDUCTION_task,
/*AppliedToPointee=*/false);
}
return DSAVarData();
}
bool DSAStackTy::isOpenMPLocal(VarDecl *D, const_iterator I) const {
D = D->getCanonicalDecl();
for (const_iterator E = end(); I != E; ++I) {
if (isImplicitOrExplicitTaskingRegion(I->Directive) ||
isOpenMPTargetExecutionDirective(I->Directive)) {
if (I->CurScope) {
Scope *TopScope = I->CurScope->getParent();
Scope *CurScope = getCurScope();
while (CurScope && CurScope != TopScope && !CurScope->isDeclScope(D))
CurScope = CurScope->getParent();
return CurScope != TopScope;
}
for (DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent())
if (I->Context == DC)
return true;
return false;
}
}
return false;
}
static bool isConstNotMutableType(Sema &SemaRef, QualType Type,
bool AcceptIfMutable = true,
bool *IsClassType = nullptr) {
ASTContext &Context = SemaRef.getASTContext();
Type = Type.getNonReferenceType().getCanonicalType();
bool IsConstant = Type.isConstant(Context);
Type = Context.getBaseElementType(Type);
const CXXRecordDecl *RD = AcceptIfMutable && SemaRef.getLangOpts().CPlusPlus
? Type->getAsCXXRecordDecl()
: nullptr;
if (const auto *CTSD = dyn_cast_or_null<ClassTemplateSpecializationDecl>(RD))
if (const ClassTemplateDecl *CTD = CTSD->getSpecializedTemplate())
RD = CTD->getTemplatedDecl();
if (IsClassType)
*IsClassType = RD;
return IsConstant && !(SemaRef.getLangOpts().CPlusPlus && RD &&
RD->hasDefinition() && RD->hasMutableFields());
}
static bool rejectConstNotMutableType(Sema &SemaRef, const ValueDecl *D,
QualType Type, OpenMPClauseKind CKind,
SourceLocation ELoc,
bool AcceptIfMutable = true,
bool ListItemNotVar = false) {
ASTContext &Context = SemaRef.getASTContext();
bool IsClassType;
if (isConstNotMutableType(SemaRef, Type, AcceptIfMutable, &IsClassType)) {
unsigned Diag = ListItemNotVar ? diag::err_omp_const_list_item
: IsClassType ? diag::err_omp_const_not_mutable_variable
: diag::err_omp_const_variable;
SemaRef.Diag(ELoc, Diag) << getOpenMPClauseName(CKind);
if (!ListItemNotVar && D) {
const VarDecl *VD = dyn_cast<VarDecl>(D);
bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
VarDecl::DeclarationOnly;
SemaRef.Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
}
return true;
}
return false;
}
const DSAStackTy::DSAVarData DSAStackTy::getTopDSA(ValueDecl *D,
bool FromParent) {
D = getCanonicalDecl(D);
DSAVarData DVar;
auto *VD = dyn_cast<VarDecl>(D);
auto TI = Threadprivates.find(D);
if (TI != Threadprivates.end()) {
DVar.RefExpr = TI->getSecond().RefExpr.getPointer();
DVar.CKind = OMPC_threadprivate;
DVar.Modifier = TI->getSecond().Modifier;
return DVar;
}
if (VD && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
DVar.RefExpr = buildDeclRefExpr(
SemaRef, VD, D->getType().getNonReferenceType(),
VD->getAttr<OMPThreadPrivateDeclAttr>()->getLocation());
DVar.CKind = OMPC_threadprivate;
addDSA(D, DVar.RefExpr, OMPC_threadprivate);
return DVar;
}
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct, C/C++, predetermined, p.1]
// Variables appearing in threadprivate directives are threadprivate.
if ((VD && VD->getTLSKind() != VarDecl::TLS_None &&
!(VD->hasAttr<OMPThreadPrivateDeclAttr>() &&
SemaRef.getLangOpts().OpenMPUseTLS &&
SemaRef.getASTContext().getTargetInfo().isTLSSupported())) ||
(VD && VD->getStorageClass() == SC_Register &&
VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())) {
DVar.RefExpr = buildDeclRefExpr(
SemaRef, VD, D->getType().getNonReferenceType(), D->getLocation());
DVar.CKind = OMPC_threadprivate;
addDSA(D, DVar.RefExpr, OMPC_threadprivate);
return DVar;
}
if (SemaRef.getLangOpts().OpenMPCUDAMode && VD &&
VD->isLocalVarDeclOrParm() && !isStackEmpty() &&
!isLoopControlVariable(D).first) {
const_iterator IterTarget =
std::find_if(begin(), end(), [](const SharingMapTy &Data) {
return isOpenMPTargetExecutionDirective(Data.Directive);
});
if (IterTarget != end()) {
const_iterator ParentIterTarget = IterTarget + 1;
for (const_iterator Iter = begin(); Iter != ParentIterTarget; ++Iter) {
if (isOpenMPLocal(VD, Iter)) {
DVar.RefExpr =
buildDeclRefExpr(SemaRef, VD, D->getType().getNonReferenceType(),
D->getLocation());
DVar.CKind = OMPC_threadprivate;
return DVar;
}
}
if (!isClauseParsingMode() || IterTarget != begin()) {
auto DSAIter = IterTarget->SharingMap.find(D);
if (DSAIter != IterTarget->SharingMap.end() &&
isOpenMPPrivate(DSAIter->getSecond().Attributes)) {
DVar.RefExpr = DSAIter->getSecond().RefExpr.getPointer();
DVar.CKind = OMPC_threadprivate;
return DVar;
}
const_iterator End = end();
if (!SemaRef.isOpenMPCapturedByRef(D,
std::distance(ParentIterTarget, End),
/*OpenMPCaptureLevel=*/0)) {
DVar.RefExpr =
buildDeclRefExpr(SemaRef, VD, D->getType().getNonReferenceType(),
IterTarget->ConstructLoc);
DVar.CKind = OMPC_threadprivate;
return DVar;
}
}
}
}
if (isStackEmpty())
// Not in OpenMP execution region and top scope was already checked.
return DVar;
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct, C/C++, predetermined, p.4]
// Static data members are shared.
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct, C/C++, predetermined, p.7]
// Variables with static storage duration that are declared in a scope
// inside the construct are shared.
if (VD && VD->isStaticDataMember()) {
// Check for explicitly specified attributes.
const_iterator I = begin();
const_iterator EndI = end();
if (FromParent && I != EndI)
++I;
if (I != EndI) {
auto It = I->SharingMap.find(D);
if (It != I->SharingMap.end()) {
const DSAInfo &Data = It->getSecond();
DVar.RefExpr = Data.RefExpr.getPointer();
DVar.PrivateCopy = Data.PrivateCopy;
DVar.CKind = Data.Attributes;
DVar.ImplicitDSALoc = I->DefaultAttrLoc;
DVar.DKind = I->Directive;
DVar.Modifier = Data.Modifier;
DVar.AppliedToPointee = Data.AppliedToPointee;
return DVar;
}
}
DVar.CKind = OMPC_shared;
return DVar;
}
auto &&MatchesAlways = [](OpenMPDirectiveKind) { return true; };
// The predetermined shared attribute for const-qualified types having no
// mutable members was removed after OpenMP 3.1.
if (SemaRef.LangOpts.OpenMP <= 31) {
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct, C/C++, predetermined, p.6]
// Variables with const qualified type having no mutable member are
// shared.
if (isConstNotMutableType(SemaRef, D->getType())) {
// Variables with const-qualified type having no mutable member may be
// listed in a firstprivate clause, even if they are static data members.
DSAVarData DVarTemp = hasInnermostDSA(
D,
[](OpenMPClauseKind C, bool) {
return C == OMPC_firstprivate || C == OMPC_shared;
},
MatchesAlways, FromParent);
if (DVarTemp.CKind != OMPC_unknown && DVarTemp.RefExpr)
return DVarTemp;
DVar.CKind = OMPC_shared;
return DVar;
}
}
// Explicitly specified attributes and local variables with predetermined
// attributes.
const_iterator I = begin();
const_iterator EndI = end();
if (FromParent && I != EndI)
++I;
if (I == EndI)
return DVar;
auto It = I->SharingMap.find(D);
if (It != I->SharingMap.end()) {
const DSAInfo &Data = It->getSecond();
DVar.RefExpr = Data.RefExpr.getPointer();
DVar.PrivateCopy = Data.PrivateCopy;
DVar.CKind = Data.Attributes;
DVar.ImplicitDSALoc = I->DefaultAttrLoc;
DVar.DKind = I->Directive;
DVar.Modifier = Data.Modifier;
DVar.AppliedToPointee = Data.AppliedToPointee;
}
return DVar;
}
const DSAStackTy::DSAVarData DSAStackTy::getImplicitDSA(ValueDecl *D,
bool FromParent) const {
if (isStackEmpty()) {
const_iterator I;
return getDSA(I, D);
}
D = getCanonicalDecl(D);
const_iterator StartI = begin();
const_iterator EndI = end();
if (FromParent && StartI != EndI)
++StartI;
return getDSA(StartI, D);
}
const DSAStackTy::DSAVarData DSAStackTy::getImplicitDSA(ValueDecl *D,
unsigned Level) const {
if (getStackSize() <= Level)
return DSAVarData();
D = getCanonicalDecl(D);
const_iterator StartI = std::next(begin(), getStackSize() - 1 - Level);
return getDSA(StartI, D);
}
const DSAStackTy::DSAVarData
DSAStackTy::hasDSA(ValueDecl *D,
const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred,
const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred,
bool FromParent) const {
if (isStackEmpty())
return {};
D = getCanonicalDecl(D);
const_iterator I = begin();
const_iterator EndI = end();
if (FromParent && I != EndI)
++I;
for (; I != EndI; ++I) {
if (!DPred(I->Directive) &&
!isImplicitOrExplicitTaskingRegion(I->Directive))
continue;
const_iterator NewI = I;
DSAVarData DVar = getDSA(NewI, D);
if (I == NewI && CPred(DVar.CKind, DVar.AppliedToPointee))
return DVar;
}
return {};
}
const DSAStackTy::DSAVarData DSAStackTy::hasInnermostDSA(
ValueDecl *D, const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred,
const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred,
bool FromParent) const {
if (isStackEmpty())
return {};
D = getCanonicalDecl(D);
const_iterator StartI = begin();
const_iterator EndI = end();
if (FromParent && StartI != EndI)
++StartI;
if (StartI == EndI || !DPred(StartI->Directive))
return {};
const_iterator NewI = StartI;
DSAVarData DVar = getDSA(NewI, D);
return (NewI == StartI && CPred(DVar.CKind, DVar.AppliedToPointee))
? DVar
: DSAVarData();
}
bool DSAStackTy::hasExplicitDSA(
const ValueDecl *D,
const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred,
unsigned Level, bool NotLastprivate) const {
if (getStackSize() <= Level)
return false;
D = getCanonicalDecl(D);
const SharingMapTy &StackElem = getStackElemAtLevel(Level);
auto I = StackElem.SharingMap.find(D);
if (I != StackElem.SharingMap.end() && I->getSecond().RefExpr.getPointer() &&
CPred(I->getSecond().Attributes, I->getSecond().AppliedToPointee) &&
(!NotLastprivate || !I->getSecond().RefExpr.getInt()))
return true;
// Check predetermined rules for the loop control variables.
auto LI = StackElem.LCVMap.find(D);
if (LI != StackElem.LCVMap.end())
return CPred(OMPC_private, /*AppliedToPointee=*/false);
return false;
}
bool DSAStackTy::hasExplicitDirective(
const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred,
unsigned Level) const {
if (getStackSize() <= Level)
return false;
const SharingMapTy &StackElem = getStackElemAtLevel(Level);
return DPred(StackElem.Directive);
}
bool DSAStackTy::hasDirective(
const llvm::function_ref<bool(OpenMPDirectiveKind,
const DeclarationNameInfo &, SourceLocation)>
DPred,
bool FromParent) const {
// We look only in the enclosing region.
size_t Skip = FromParent ? 2 : 1;
for (const_iterator I = begin() + std::min(Skip, getStackSize()), E = end();
I != E; ++I) {
if (DPred(I->Directive, I->DirectiveName, I->ConstructLoc))
return true;
}
return false;
}
void Sema::InitDataSharingAttributesStack() {
VarDataSharingAttributesStack = new DSAStackTy(*this);
}
#define DSAStack static_cast<DSAStackTy *>(VarDataSharingAttributesStack)
void Sema::pushOpenMPFunctionRegion() { DSAStack->pushFunction(); }
void Sema::popOpenMPFunctionRegion(const FunctionScopeInfo *OldFSI) {
DSAStack->popFunction(OldFSI);
}
static bool isOpenMPDeviceDelayedContext(Sema &S) {
assert(S.LangOpts.OpenMP && S.LangOpts.OpenMPIsDevice &&
"Expected OpenMP device compilation.");
return !S.isInOpenMPTargetExecutionDirective();
}
namespace {
/// Status of the function emission on the host/device.
enum class FunctionEmissionStatus {
Emitted,
Discarded,
Unknown,
};
} // anonymous namespace
Sema::SemaDiagnosticBuilder Sema::diagIfOpenMPDeviceCode(SourceLocation Loc,
unsigned DiagID,
FunctionDecl *FD) {
assert(LangOpts.OpenMP && LangOpts.OpenMPIsDevice &&
"Expected OpenMP device compilation.");
SemaDiagnosticBuilder::Kind Kind = SemaDiagnosticBuilder::K_Nop;
if (FD) {
FunctionEmissionStatus FES = getEmissionStatus(FD);
switch (FES) {
case FunctionEmissionStatus::Emitted:
Kind = SemaDiagnosticBuilder::K_Immediate;
break;
case FunctionEmissionStatus::Unknown:
// TODO: We should always delay diagnostics here in case a target
// region is in a function we do not emit. However, as the
// current diagnostics are associated with the function containing
// the target region and we do not emit that one, we would miss out
// on diagnostics for the target region itself. We need to anchor
// the diagnostics with the new generated function *or* ensure we
// emit diagnostics associated with the surrounding function.
Kind = isOpenMPDeviceDelayedContext(*this)
? SemaDiagnosticBuilder::K_Deferred
: SemaDiagnosticBuilder::K_Immediate;
break;
case FunctionEmissionStatus::TemplateDiscarded:
case FunctionEmissionStatus::OMPDiscarded:
Kind = SemaDiagnosticBuilder::K_Nop;
break;
case FunctionEmissionStatus::CUDADiscarded:
llvm_unreachable("CUDADiscarded unexpected in OpenMP device compilation");
break;
}
}
return SemaDiagnosticBuilder(Kind, Loc, DiagID, FD, *this);
}
Sema::SemaDiagnosticBuilder Sema::diagIfOpenMPHostCode(SourceLocation Loc,
unsigned DiagID,
FunctionDecl *FD) {
assert(LangOpts.OpenMP && !LangOpts.OpenMPIsDevice &&
"Expected OpenMP host compilation.");
SemaDiagnosticBuilder::Kind Kind = SemaDiagnosticBuilder::K_Nop;
if (FD) {
FunctionEmissionStatus FES = getEmissionStatus(FD);
switch (FES) {
case FunctionEmissionStatus::Emitted:
Kind = SemaDiagnosticBuilder::K_Immediate;
break;
case FunctionEmissionStatus::Unknown:
Kind = SemaDiagnosticBuilder::K_Deferred;
break;
case FunctionEmissionStatus::TemplateDiscarded:
case FunctionEmissionStatus::OMPDiscarded:
case FunctionEmissionStatus::CUDADiscarded:
Kind = SemaDiagnosticBuilder::K_Nop;
break;
}
}
return SemaDiagnosticBuilder(Kind, Loc, DiagID, FD, *this);
}
static OpenMPDefaultmapClauseKind
getVariableCategoryFromDecl(const LangOptions &LO, const ValueDecl *VD) {
if (LO.OpenMP <= 45) {
if (VD->getType().getNonReferenceType()->isScalarType())
return OMPC_DEFAULTMAP_scalar;
return OMPC_DEFAULTMAP_aggregate;
}
if (VD->getType().getNonReferenceType()->isAnyPointerType())
return OMPC_DEFAULTMAP_pointer;
if (VD->getType().getNonReferenceType()->isScalarType())
return OMPC_DEFAULTMAP_scalar;
return OMPC_DEFAULTMAP_aggregate;
}
bool Sema::isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level,
unsigned OpenMPCaptureLevel) const {
assert(LangOpts.OpenMP && "OpenMP is not allowed");
ASTContext &Ctx = getASTContext();
bool IsByRef = true;
// Find the directive that is associated with the provided scope.
D = cast<ValueDecl>(D->getCanonicalDecl());
QualType Ty = D->getType();
bool IsVariableUsedInMapClause = false;
if (DSAStack->hasExplicitDirective(isOpenMPTargetExecutionDirective, Level)) {
// This table summarizes how a given variable should be passed to the device
// given its type and the clauses where it appears. This table is based on
// the description in OpenMP 4.5 [2.10.4, target Construct] and
// OpenMP 4.5 [2.15.5, Data-mapping Attribute Rules and Clauses].
//
// =========================================================================
// | type | defaultmap | pvt | first | is_device_ptr | map | res. |
// | |(tofrom:scalar)| | pvt | | | |
// =========================================================================
// | scl | | | | - | | bycopy|
// | scl | | - | x | - | - | bycopy|
// | scl | | x | - | - | - | null |
// | scl | x | | | - | | byref |
// | scl | x | - | x | - | - | bycopy|
// | scl | x | x | - | - | - | null |
// | scl | | - | - | - | x | byref |
// | scl | x | - | - | - | x | byref |
//
// | agg | n.a. | | | - | | byref |
// | agg | n.a. | - | x | - | - | byref |
// | agg | n.a. | x | - | - | - | null |
// | agg | n.a. | - | - | - | x | byref |
// | agg | n.a. | - | - | - | x[] | byref |
//
// | ptr | n.a. | | | - | | bycopy|
// | ptr | n.a. | - | x | - | - | bycopy|
// | ptr | n.a. | x | - | - | - | null |
// | ptr | n.a. | - | - | - | x | byref |
// | ptr | n.a. | - | - | - | x[] | bycopy|
// | ptr | n.a. | - | - | x | | bycopy|
// | ptr | n.a. | - | - | x | x | bycopy|
// | ptr | n.a. | - | - | x | x[] | bycopy|
// =========================================================================
// Legend:
// scl - scalar
// ptr - pointer
// agg - aggregate
// x - applies
// - - invalid in this combination
// [] - mapped with an array section
// byref - should be mapped by reference
// byval - should be mapped by value
// null - initialize a local variable to null on the device
//
// Observations:
// - All scalar declarations that show up in a map clause have to be passed
// by reference, because they may have been mapped in the enclosing data
// environment.
// - If the scalar value does not fit the size of uintptr, it has to be
// passed by reference, regardless the result in the table above.
// - For pointers mapped by value that have either an implicit map or an
// array section, the runtime library may pass the NULL value to the
// device instead of the value passed to it by the compiler.
if (Ty->isReferenceType())
Ty = Ty->castAs<ReferenceType>()->getPointeeType();
// Locate map clauses and see if the variable being captured is referred to
// in any of those clauses. Here we only care about variables, not fields,
// because fields are part of aggregates.
bool IsVariableAssociatedWithSection = false;
DSAStack->checkMappableExprComponentListsForDeclAtLevel(
D, Level,
[&IsVariableUsedInMapClause, &IsVariableAssociatedWithSection,
D](OMPClauseMappableExprCommon::MappableExprComponentListRef
MapExprComponents,
OpenMPClauseKind WhereFoundClauseKind) {
// Only the map clause information influences how a variable is
// captured. E.g. is_device_ptr does not require changing the default
// behavior.
if (WhereFoundClauseKind != OMPC_map)
return false;
auto EI = MapExprComponents.rbegin();
auto EE = MapExprComponents.rend();
assert(EI != EE && "Invalid map expression!");
if (isa<DeclRefExpr>(EI->getAssociatedExpression()))
IsVariableUsedInMapClause |= EI->getAssociatedDeclaration() == D;
++EI;
if (EI == EE)
return false;
if (isa<ArraySubscriptExpr>(EI->getAssociatedExpression()) ||
isa<OMPArraySectionExpr>(EI->getAssociatedExpression()) ||
isa<MemberExpr>(EI->getAssociatedExpression()) ||
isa<OMPArrayShapingExpr>(EI->getAssociatedExpression())) {
IsVariableAssociatedWithSection = true;
// There is nothing more we need to know about this variable.
return true;
}
// Keep looking for more map info.
return false;
});
if (IsVariableUsedInMapClause) {
// If variable is identified in a map clause it is always captured by
// reference except if it is a pointer that is dereferenced somehow.
IsByRef = !(Ty->isPointerType() && IsVariableAssociatedWithSection);
} else {
// By default, all the data that has a scalar type is mapped by copy
// (except for reduction variables).
// Defaultmap scalar is mutual exclusive to defaultmap pointer
IsByRef = (DSAStack->isForceCaptureByReferenceInTargetExecutable() &&
!Ty->isAnyPointerType()) ||
!Ty->isScalarType() ||
DSAStack->isDefaultmapCapturedByRef(
Level, getVariableCategoryFromDecl(LangOpts, D)) ||
DSAStack->hasExplicitDSA(
D,
[](OpenMPClauseKind K, bool AppliedToPointee) {
return K == OMPC_reduction && !AppliedToPointee;
},
Level);
}
}
if (IsByRef && Ty.getNonReferenceType()->isScalarType()) {
IsByRef =
((IsVariableUsedInMapClause &&
DSAStack->getCaptureRegion(Level, OpenMPCaptureLevel) ==
OMPD_target) ||
!(DSAStack->hasExplicitDSA(
D,
[](OpenMPClauseKind K, bool AppliedToPointee) -> bool {
return K == OMPC_firstprivate ||
(K == OMPC_reduction && AppliedToPointee);
},
Level, /*NotLastprivate=*/true) ||
DSAStack->isUsesAllocatorsDecl(Level, D))) &&
// If the variable is artificial and must be captured by value - try to
// capture by value.
!(isa<OMPCapturedExprDecl>(D) && !D->hasAttr<OMPCaptureNoInitAttr>() &&
!cast<OMPCapturedExprDecl>(D)->getInit()->isGLValue()) &&
// If the variable is implicitly firstprivate and scalar - capture by
// copy
!(DSAStack->getDefaultDSA() == DSA_firstprivate &&
!DSAStack->hasExplicitDSA(
D, [](OpenMPClauseKind K, bool) { return K != OMPC_unknown; },
Level) &&
!DSAStack->isLoopControlVariable(D, Level).first);
}
// When passing data by copy, we need to make sure it fits the uintptr size
// and alignment, because the runtime library only deals with uintptr types.
// If it does not fit the uintptr size, we need to pass the data by reference
// instead.
if (!IsByRef &&
(Ctx.getTypeSizeInChars(Ty) >
Ctx.getTypeSizeInChars(Ctx.getUIntPtrType()) ||
Ctx.getDeclAlign(D) > Ctx.getTypeAlignInChars(Ctx.getUIntPtrType()))) {
IsByRef = true;
}
return IsByRef;
}
unsigned Sema::getOpenMPNestingLevel() const {
assert(getLangOpts().OpenMP);
return DSAStack->getNestingLevel();
}
bool Sema::isInOpenMPTaskUntiedContext() const {
return isOpenMPTaskingDirective(DSAStack->getCurrentDirective()) &&
DSAStack->isUntiedRegion();
}
bool Sema::isInOpenMPTargetExecutionDirective() const {
return (isOpenMPTargetExecutionDirective(DSAStack->getCurrentDirective()) &&
!DSAStack->isClauseParsingMode()) ||
DSAStack->hasDirective(
[](OpenMPDirectiveKind K, const DeclarationNameInfo &,
SourceLocation) -> bool {
return isOpenMPTargetExecutionDirective(K);
},
false);
}
VarDecl *Sema::isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo,
unsigned StopAt) {
assert(LangOpts.OpenMP && "OpenMP is not allowed");
D = getCanonicalDecl(D);
auto *VD = dyn_cast<VarDecl>(D);
// Do not capture constexpr variables.
if (VD && VD->isConstexpr())
return nullptr;
// If we want to determine whether the variable should be captured from the
// perspective of the current capturing scope, and we've already left all the
// capturing scopes of the top directive on the stack, check from the
// perspective of its parent directive (if any) instead.
DSAStackTy::ParentDirectiveScope InParentDirectiveRAII(
*DSAStack, CheckScopeInfo && DSAStack->isBodyComplete());
// If we are attempting to capture a global variable in a directive with
// 'target' we return true so that this global is also mapped to the device.
//
if (VD && !VD->hasLocalStorage() &&
(getCurCapturedRegion() || getCurBlock() || getCurLambda())) {
if (isInOpenMPTargetExecutionDirective()) {
DSAStackTy::DSAVarData DVarTop =
DSAStack->getTopDSA(D, DSAStack->isClauseParsingMode());
if (DVarTop.CKind != OMPC_unknown && DVarTop.RefExpr)
return VD;
// If the declaration is enclosed in a 'declare target' directive,
// then it should not be captured.
//
if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
return nullptr;
CapturedRegionScopeInfo *CSI = nullptr;
for (FunctionScopeInfo *FSI : llvm::drop_begin(
llvm::reverse(FunctionScopes),
CheckScopeInfo ? (FunctionScopes.size() - (StopAt + 1)) : 0)) {
if (!isa<CapturingScopeInfo>(FSI))
return nullptr;
if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(FSI))
if (RSI->CapRegionKind == CR_OpenMP) {
CSI = RSI;
break;
}
}
assert(CSI && "Failed to find CapturedRegionScopeInfo");
SmallVector<OpenMPDirectiveKind, 4> Regions;
getOpenMPCaptureRegions(Regions,
DSAStack->getDirective(CSI->OpenMPLevel));
if (Regions[CSI->OpenMPCaptureLevel] != OMPD_task)
return VD;
}
if (isInOpenMPDeclareTargetContext()) {
// Try to mark variable as declare target if it is used in capturing
// regions.
if (LangOpts.OpenMP <= 45 &&
!OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
checkDeclIsAllowedInOpenMPTarget(nullptr, VD);
return nullptr;
}
}
if (CheckScopeInfo) {
bool OpenMPFound = false;
for (unsigned I = StopAt + 1; I > 0; --I) {
FunctionScopeInfo *FSI = FunctionScopes[I - 1];
if (!isa<CapturingScopeInfo>(FSI))
return nullptr;
if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(FSI))
if (RSI->CapRegionKind == CR_OpenMP) {
OpenMPFound = true;
break;
}
}
if (!OpenMPFound)
return nullptr;
}
if (DSAStack->getCurrentDirective() != OMPD_unknown &&
(!DSAStack->isClauseParsingMode() ||
DSAStack->getParentDirective() != OMPD_unknown)) {
auto &&Info = DSAStack->isLoopControlVariable(D);
if (Info.first ||
(VD && VD->hasLocalStorage() &&
isImplicitOrExplicitTaskingRegion(DSAStack->getCurrentDirective())) ||
(VD && DSAStack->isForceVarCapturing()))
return VD ? VD : Info.second;
DSAStackTy::DSAVarData DVarTop =
DSAStack->getTopDSA(D, DSAStack->isClauseParsingMode());
if (DVarTop.CKind != OMPC_unknown && isOpenMPPrivate(DVarTop.CKind) &&
(!VD || VD->hasLocalStorage() || !DVarTop.AppliedToPointee))
return VD ? VD : cast<VarDecl>(DVarTop.PrivateCopy->getDecl());
// Threadprivate variables must not be captured.
if (isOpenMPThreadPrivate(DVarTop.CKind))
return nullptr;
// The variable is not private or it is the variable in the directive with
// default(none) clause and not used in any clause.
DSAStackTy::DSAVarData DVarPrivate = DSAStack->hasDSA(
D,
[](OpenMPClauseKind C, bool AppliedToPointee) {
return isOpenMPPrivate(C) && !AppliedToPointee;
},
[](OpenMPDirectiveKind) { return true; },
DSAStack->isClauseParsingMode());
// Global shared must not be captured.
if (VD && !VD->hasLocalStorage() && DVarPrivate.CKind == OMPC_unknown &&
((DSAStack->getDefaultDSA() != DSA_none &&
DSAStack->getDefaultDSA() != DSA_firstprivate) ||
DVarTop.CKind == OMPC_shared))
return nullptr;
if (DVarPrivate.CKind != OMPC_unknown ||
(VD && (DSAStack->getDefaultDSA() == DSA_none ||
DSAStack->getDefaultDSA() == DSA_firstprivate)))
return VD ? VD : cast<VarDecl>(DVarPrivate.PrivateCopy->getDecl());
}
return nullptr;
}
void Sema::adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex,
unsigned Level) const {
FunctionScopesIndex -= getOpenMPCaptureLevels(DSAStack->getDirective(Level));
}
void Sema::startOpenMPLoop() {
assert(LangOpts.OpenMP && "OpenMP must be enabled.");
if (isOpenMPLoopDirective(DSAStack->getCurrentDirective()))
DSAStack->loopInit();
}
void Sema::startOpenMPCXXRangeFor() {
assert(LangOpts.OpenMP && "OpenMP must be enabled.");
if (isOpenMPLoopDirective(DSAStack->getCurrentDirective())) {
DSAStack->resetPossibleLoopCounter();
DSAStack->loopStart();
}
}
OpenMPClauseKind Sema::isOpenMPPrivateDecl(ValueDecl *D, unsigned Level,
unsigned CapLevel) const {
assert(LangOpts.OpenMP && "OpenMP is not allowed");
if (DSAStack->hasExplicitDirective(isOpenMPTaskingDirective, Level)) {
bool IsTriviallyCopyable =
D->getType().getNonReferenceType().isTriviallyCopyableType(Context) &&
!D->getType()
.getNonReferenceType()
.getCanonicalType()
->getAsCXXRecordDecl();
OpenMPDirectiveKind DKind = DSAStack->getDirective(Level);
SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
getOpenMPCaptureRegions(CaptureRegions, DKind);
if (isOpenMPTaskingDirective(CaptureRegions[CapLevel]) &&
(IsTriviallyCopyable ||
!isOpenMPTaskLoopDirective(CaptureRegions[CapLevel]))) {
if (DSAStack->hasExplicitDSA(
D,
[](OpenMPClauseKind K, bool) { return K == OMPC_firstprivate; },
Level, /*NotLastprivate=*/true))
return OMPC_firstprivate;
DSAStackTy::DSAVarData DVar = DSAStack->getImplicitDSA(D, Level);
if (DVar.CKind != OMPC_shared &&
!DSAStack->isLoopControlVariable(D, Level).first && !DVar.RefExpr) {
DSAStack->addImplicitTaskFirstprivate(Level, D);
return OMPC_firstprivate;
}
}
}
if (isOpenMPLoopDirective(DSAStack->getCurrentDirective())) {
if (DSAStack->getAssociatedLoops() > 0 && !DSAStack->isLoopStarted()) {
DSAStack->resetPossibleLoopCounter(D);
DSAStack->loopStart();
return OMPC_private;
}
if ((DSAStack->getPossiblyLoopCunter() == D->getCanonicalDecl() ||
DSAStack->isLoopControlVariable(D).first) &&
!DSAStack->hasExplicitDSA(
D, [](OpenMPClauseKind K, bool) { return K != OMPC_private; },
Level) &&
!isOpenMPSimdDirective(DSAStack->getCurrentDirective()))
return OMPC_private;
}
if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (DSAStack->isThreadPrivate(const_cast<VarDecl *>(VD)) &&
DSAStack->isForceVarCapturing() &&
!DSAStack->hasExplicitDSA(
D, [](OpenMPClauseKind K, bool) { return K == OMPC_copyin; },
Level))
return OMPC_private;
}
// User-defined allocators are private since they must be defined in the
// context of target region.
if (DSAStack->hasExplicitDirective(isOpenMPTargetExecutionDirective, Level) &&
DSAStack->isUsesAllocatorsDecl(Level, D).getValueOr(
DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait) ==
DSAStackTy::UsesAllocatorsDeclKind::UserDefinedAllocator)
return OMPC_private;
return (DSAStack->hasExplicitDSA(
D, [](OpenMPClauseKind K, bool) { return K == OMPC_private; },
Level) ||
(DSAStack->isClauseParsingMode() &&
DSAStack->getClauseParsingMode() == OMPC_private) ||
// Consider taskgroup reduction descriptor variable a private
// to avoid possible capture in the region.
(DSAStack->hasExplicitDirective(
[](OpenMPDirectiveKind K) {
return K == OMPD_taskgroup ||
((isOpenMPParallelDirective(K) ||
isOpenMPWorksharingDirective(K)) &&
!isOpenMPSimdDirective(K));
},
Level) &&
DSAStack->isTaskgroupReductionRef(D, Level)))
? OMPC_private
: OMPC_unknown;
}
void Sema::setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D,
unsigned Level) {
assert(LangOpts.OpenMP && "OpenMP is not allowed");
D = getCanonicalDecl(D);
OpenMPClauseKind OMPC = OMPC_unknown;
for (unsigned I = DSAStack->getNestingLevel() + 1; I > Level; --I) {
const unsigned NewLevel = I - 1;
if (DSAStack->hasExplicitDSA(
D,
[&OMPC](const OpenMPClauseKind K, bool AppliedToPointee) {
if (isOpenMPPrivate(K) && !AppliedToPointee) {
OMPC = K;
return true;
}
return false;
},
NewLevel))
break;
if (DSAStack->checkMappableExprComponentListsForDeclAtLevel(
D, NewLevel,
[](OMPClauseMappableExprCommon::MappableExprComponentListRef,
OpenMPClauseKind) { return true; })) {
OMPC = OMPC_map;
break;
}
if (DSAStack->hasExplicitDirective(isOpenMPTargetExecutionDirective,
NewLevel)) {
OMPC = OMPC_map;
if (DSAStack->mustBeFirstprivateAtLevel(
NewLevel, getVariableCategoryFromDecl(LangOpts, D)))
OMPC = OMPC_firstprivate;
break;
}
}
if (OMPC != OMPC_unknown)
FD->addAttr(OMPCaptureKindAttr::CreateImplicit(Context, unsigned(OMPC)));
}
bool Sema::isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level,
unsigned CaptureLevel) const {
assert(LangOpts.OpenMP && "OpenMP is not allowed");
// Return true if the current level is no longer enclosed in a target region.
SmallVector<OpenMPDirectiveKind, 4> Regions;
getOpenMPCaptureRegions(Regions, DSAStack->getDirective(Level));
const auto *VD = dyn_cast<VarDecl>(D);
return VD && !VD->hasLocalStorage() &&
DSAStack->hasExplicitDirective(isOpenMPTargetExecutionDirective,
Level) &&
Regions[CaptureLevel] != OMPD_task;
}
bool Sema::isOpenMPGlobalCapturedDecl(ValueDecl *D, unsigned Level,
unsigned CaptureLevel) const {
assert(LangOpts.OpenMP && "OpenMP is not allowed");
// Return true if the current level is no longer enclosed in a target region.
if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (!VD->hasLocalStorage()) {
if (isInOpenMPTargetExecutionDirective())
return true;
DSAStackTy::DSAVarData TopDVar =
DSAStack->getTopDSA(D, /*FromParent=*/false);
unsigned NumLevels =
getOpenMPCaptureLevels(DSAStack->getDirective(Level));
if (Level == 0)
return (NumLevels == CaptureLevel + 1) && TopDVar.CKind != OMPC_shared;
do {
--Level;
DSAStackTy::DSAVarData DVar = DSAStack->getImplicitDSA(D, Level);
if (DVar.CKind != OMPC_shared)
return true;
} while (Level > 0);
}
}
return true;
}
void Sema::DestroyDataSharingAttributesStack() { delete DSAStack; }
void Sema::ActOnOpenMPBeginDeclareVariant(SourceLocation Loc,
OMPTraitInfo &TI) {
OMPDeclareVariantScopes.push_back(OMPDeclareVariantScope(TI));
}
void Sema::ActOnOpenMPEndDeclareVariant() {
assert(isInOpenMPDeclareVariantScope() &&
"Not in OpenMP declare variant scope!");
OMPDeclareVariantScopes.pop_back();
}
void Sema::finalizeOpenMPDelayedAnalysis(const FunctionDecl *Caller,
const FunctionDecl *Callee,
SourceLocation Loc) {
assert(LangOpts.OpenMP && "Expected OpenMP compilation mode.");
Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
OMPDeclareTargetDeclAttr::getDeviceType(Caller->getMostRecentDecl());
// Ignore host functions during device analyzis.
if (LangOpts.OpenMPIsDevice &&
(!DevTy || *DevTy == OMPDeclareTargetDeclAttr::DT_Host))
return;
// Ignore nohost functions during host analyzis.
if (!LangOpts.OpenMPIsDevice && DevTy &&
*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
return;
const FunctionDecl *FD = Callee->getMostRecentDecl();
DevTy = OMPDeclareTargetDeclAttr::getDeviceType(FD);
if (LangOpts.OpenMPIsDevice && DevTy &&
*DevTy == OMPDeclareTargetDeclAttr::DT_Host) {
// Diagnose host function called during device codegen.
StringRef HostDevTy =
getOpenMPSimpleClauseTypeName(OMPC_device_type, OMPC_DEVICE_TYPE_host);
Diag(Loc, diag::err_omp_wrong_device_function_call) << HostDevTy << 0;
Diag(*OMPDeclareTargetDeclAttr::getLocation(FD),
diag::note_omp_marked_device_type_here)
<< HostDevTy;
return;
}
if (!LangOpts.OpenMPIsDevice && !LangOpts.OpenMPOffloadMandatory && DevTy &&
*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) {
// Diagnose nohost function called during host codegen.
StringRef NoHostDevTy = getOpenMPSimpleClauseTypeName(
OMPC_device_type, OMPC_DEVICE_TYPE_nohost);
Diag(Loc, diag::err_omp_wrong_device_function_call) << NoHostDevTy << 1;
Diag(*OMPDeclareTargetDeclAttr::getLocation(FD),
diag::note_omp_marked_device_type_here)
<< NoHostDevTy;
}
}
void Sema::StartOpenMPDSABlock(OpenMPDirectiveKind DKind,
const DeclarationNameInfo &DirName,
Scope *CurScope, SourceLocation Loc) {
DSAStack->push(DKind, DirName, CurScope, Loc);
PushExpressionEvaluationContext(
ExpressionEvaluationContext::PotentiallyEvaluated);
}
void Sema::StartOpenMPClause(OpenMPClauseKind K) {
DSAStack->setClauseParsingMode(K);
}
void Sema::EndOpenMPClause() {
DSAStack->setClauseParsingMode(/*K=*/OMPC_unknown);
CleanupVarDeclMarking();
}
static std::pair<ValueDecl *, bool>
getPrivateItem(Sema &S, Expr *&RefExpr, SourceLocation &ELoc,
SourceRange &ERange, bool AllowArraySection = false);
/// Check consistency of the reduction clauses.
static void checkReductionClauses(Sema &S, DSAStackTy *Stack,
ArrayRef<OMPClause *> Clauses) {
bool InscanFound = false;
SourceLocation InscanLoc;
// OpenMP 5.0, 2.19.5.4 reduction Clause, Restrictions.
// A reduction clause without the inscan reduction-modifier may not appear on
// a construct on which a reduction clause with the inscan reduction-modifier
// appears.
for (OMPClause *C : Clauses) {
if (C->getClauseKind() != OMPC_reduction)
continue;
auto *RC = cast<OMPReductionClause>(C);
if (RC->getModifier() == OMPC_REDUCTION_inscan) {
InscanFound = true;
InscanLoc = RC->getModifierLoc();
continue;
}
if (RC->getModifier() == OMPC_REDUCTION_task) {
// OpenMP 5.0, 2.19.5.4 reduction Clause.
// A reduction clause with the task reduction-modifier may only appear on
// a parallel construct, a worksharing construct or a combined or
// composite construct for which any of the aforementioned constructs is a
// constituent construct and simd or loop are not constituent constructs.
OpenMPDirectiveKind CurDir = Stack->getCurrentDirective();
if (!(isOpenMPParallelDirective(CurDir) ||
isOpenMPWorksharingDirective(CurDir)) ||
isOpenMPSimdDirective(CurDir))
S.Diag(RC->getModifierLoc(),
diag::err_omp_reduction_task_not_parallel_or_worksharing);
continue;
}
}
if (InscanFound) {
for (OMPClause *C : Clauses) {
if (C->getClauseKind() != OMPC_reduction)
continue;
auto *RC = cast<OMPReductionClause>(C);
if (RC->getModifier() != OMPC_REDUCTION_inscan) {
S.Diag(RC->getModifier() == OMPC_REDUCTION_unknown
? RC->getBeginLoc()
: RC->getModifierLoc(),
diag::err_omp_inscan_reduction_expected);
S.Diag(InscanLoc, diag::note_omp_previous_inscan_reduction);
continue;
}
for (Expr *Ref : RC->varlists()) {
assert(Ref && "NULL expr in OpenMP nontemporal clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = Ref;
auto Res = getPrivateItem(S, SimpleRefExpr, ELoc, ERange,
/*AllowArraySection=*/true);
ValueDecl *D = Res.first;
if (!D)
continue;
if (!Stack->isUsedInScanDirective(getCanonicalDecl(D))) {
S.Diag(Ref->getExprLoc(),
diag::err_omp_reduction_not_inclusive_exclusive)
<< Ref->getSourceRange();
}
}
}
}
}
static void checkAllocateClauses(Sema &S, DSAStackTy *Stack,
ArrayRef<OMPClause *> Clauses);
static DeclRefExpr *buildCapture(Sema &S, ValueDecl *D, Expr *CaptureExpr,
bool WithInit);
static void reportOriginalDsa(Sema &SemaRef, const DSAStackTy *Stack,
const ValueDecl *D,
const DSAStackTy::DSAVarData &DVar,
bool IsLoopIterVar = false);
void Sema::EndOpenMPDSABlock(Stmt *CurDirective) {
// OpenMP [2.14.3.5, Restrictions, C/C++, p.1]
// A variable of class type (or array thereof) that appears in a lastprivate
// clause requires an accessible, unambiguous default constructor for the
// class type, unless the list item is also specified in a firstprivate
// clause.
if (const auto *D = dyn_cast_or_null<OMPExecutableDirective>(CurDirective)) {
for (OMPClause *C : D->clauses()) {
if (auto *Clause = dyn_cast<OMPLastprivateClause>(C)) {
SmallVector<Expr *, 8> PrivateCopies;
for (Expr *DE : Clause->varlists()) {
if (DE->isValueDependent() || DE->isTypeDependent()) {
PrivateCopies.push_back(nullptr);
continue;
}
auto *DRE = cast<DeclRefExpr>(DE->IgnoreParens());
auto *VD = cast<VarDecl>(DRE->getDecl());
QualType Type = VD->getType().getNonReferenceType();
const DSAStackTy::DSAVarData DVar =
DSAStack->getTopDSA(VD, /*FromParent=*/false);
if (DVar.CKind == OMPC_lastprivate) {
// Generate helper private variable and initialize it with the
// default value. The address of the original variable is replaced
// by the address of the new private variable in CodeGen. This new
// variable is not added to IdResolver, so the code in the OpenMP
// region uses original variable for proper diagnostics.
VarDecl *VDPrivate = buildVarDecl(
*this, DE->getExprLoc(), Type.getUnqualifiedType(),
VD->getName(), VD->hasAttrs() ? &VD->getAttrs() : nullptr, DRE);
ActOnUninitializedDecl(VDPrivate);
if (VDPrivate->isInvalidDecl()) {
PrivateCopies.push_back(nullptr);
continue;
}
PrivateCopies.push_back(buildDeclRefExpr(
*this, VDPrivate, DE->getType(), DE->getExprLoc()));
} else {
// The variable is also a firstprivate, so initialization sequence
// for private copy is generated already.
PrivateCopies.push_back(nullptr);
}
}
Clause->setPrivateCopies(PrivateCopies);
continue;
}
// Finalize nontemporal clause by handling private copies, if any.
if (auto *Clause = dyn_cast<OMPNontemporalClause>(C)) {
SmallVector<Expr *, 8> PrivateRefs;
for (Expr *RefExpr : Clause->varlists()) {
assert(RefExpr && "NULL expr in OpenMP nontemporal clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
if (Res.second)
// It will be analyzed later.
PrivateRefs.push_back(RefExpr);
ValueDecl *D = Res.first;
if (!D)
continue;
const DSAStackTy::DSAVarData DVar =
DSAStack->getTopDSA(D, /*FromParent=*/false);
PrivateRefs.push_back(DVar.PrivateCopy ? DVar.PrivateCopy
: SimpleRefExpr);
}
Clause->setPrivateRefs(PrivateRefs);
continue;
}
if (auto *Clause = dyn_cast<OMPUsesAllocatorsClause>(C)) {
for (unsigned I = 0, E = Clause->getNumberOfAllocators(); I < E; ++I) {
OMPUsesAllocatorsClause::Data D = Clause->getAllocatorData(I);
auto *DRE = dyn_cast<DeclRefExpr>(D.Allocator->IgnoreParenImpCasts());
if (!DRE)
continue;
ValueDecl *VD = DRE->getDecl();
if (!VD || !isa<VarDecl>(VD))
continue;
DSAStackTy::DSAVarData DVar =
DSAStack->getTopDSA(VD, /*FromParent=*/false);
// OpenMP [2.12.5, target Construct]
// Memory allocators that appear in a uses_allocators clause cannot
// appear in other data-sharing attribute clauses or data-mapping
// attribute clauses in the same construct.
Expr *MapExpr = nullptr;
if (DVar.RefExpr ||
DSAStack->checkMappableExprComponentListsForDecl(
VD, /*CurrentRegionOnly=*/true,
[VD, &MapExpr](
OMPClauseMappableExprCommon::MappableExprComponentListRef
MapExprComponents,
OpenMPClauseKind C) {
auto MI = MapExprComponents.rbegin();
auto ME = MapExprComponents.rend();
if (MI != ME &&
MI->getAssociatedDeclaration()->getCanonicalDecl() ==
VD->getCanonicalDecl()) {
MapExpr = MI->getAssociatedExpression();
return true;
}
return false;
})) {
Diag(D.Allocator->getExprLoc(),
diag::err_omp_allocator_used_in_clauses)
<< D.Allocator->getSourceRange();
if (DVar.RefExpr)
reportOriginalDsa(*this, DSAStack, VD, DVar);
else
Diag(MapExpr->getExprLoc(), diag::note_used_here)
<< MapExpr->getSourceRange();
}
}
continue;
}
}
// Check allocate clauses.
if (!CurContext->isDependentContext())
checkAllocateClauses(*this, DSAStack, D->clauses());
checkReductionClauses(*this, DSAStack, D->clauses());
}
DSAStack->pop();
DiscardCleanupsInEvaluationContext();
PopExpressionEvaluationContext();
}
static bool FinishOpenMPLinearClause(OMPLinearClause &Clause, DeclRefExpr *IV,
Expr *NumIterations, Sema &SemaRef,
Scope *S, DSAStackTy *Stack);
namespace {
class VarDeclFilterCCC final : public CorrectionCandidateCallback {
private:
Sema &SemaRef;
public:
explicit VarDeclFilterCCC(Sema &S) : SemaRef(S) {}
bool ValidateCandidate(const TypoCorrection &Candidate) override {
NamedDecl *ND = Candidate.getCorrectionDecl();
if (const auto *VD = dyn_cast_or_null<VarDecl>(ND)) {
return VD->hasGlobalStorage() &&
SemaRef.isDeclInScope(ND, SemaRef.getCurLexicalContext(),
SemaRef.getCurScope());
}
return false;
}
std::unique_ptr<CorrectionCandidateCallback> clone() override {
return std::make_unique<VarDeclFilterCCC>(*this);
}
};
class VarOrFuncDeclFilterCCC final : public CorrectionCandidateCallback {
private:
Sema &SemaRef;
public:
explicit VarOrFuncDeclFilterCCC(Sema &S) : SemaRef(S) {}
bool ValidateCandidate(const TypoCorrection &Candidate) override {
NamedDecl *ND = Candidate.getCorrectionDecl();
if (ND && ((isa<VarDecl>(ND) && ND->getKind() == Decl::Var) ||
isa<FunctionDecl>(ND))) {
return SemaRef.isDeclInScope(ND, SemaRef.getCurLexicalContext(),
SemaRef.getCurScope());
}
return false;
}
std::unique_ptr<CorrectionCandidateCallback> clone() override {
return std::make_unique<VarOrFuncDeclFilterCCC>(*this);
}
};
} // namespace
ExprResult Sema::ActOnOpenMPIdExpression(Scope *CurScope,
CXXScopeSpec &ScopeSpec,
const DeclarationNameInfo &Id,
OpenMPDirectiveKind Kind) {
LookupResult Lookup(*this, Id, LookupOrdinaryName);
LookupParsedName(Lookup, CurScope, &ScopeSpec, true);
if (Lookup.isAmbiguous())
return ExprError();
VarDecl *VD;
if (!Lookup.isSingleResult()) {
VarDeclFilterCCC CCC(*this);
if (TypoCorrection Corrected =
CorrectTypo(Id, LookupOrdinaryName, CurScope, nullptr, CCC,
CTK_ErrorRecovery)) {
diagnoseTypo(Corrected,
PDiag(Lookup.empty()
? diag::err_undeclared_var_use_suggest
: diag::err_omp_expected_var_arg_suggest)
<< Id.getName());
VD = Corrected.getCorrectionDeclAs<VarDecl>();
} else {
Diag(Id.getLoc(), Lookup.empty() ? diag::err_undeclared_var_use
: diag::err_omp_expected_var_arg)
<< Id.getName();
return ExprError();
}
} else if (!(VD = Lookup.getAsSingle<VarDecl>())) {
Diag(Id.getLoc(), diag::err_omp_expected_var_arg) << Id.getName();
Diag(Lookup.getFoundDecl()->getLocation(), diag::note_declared_at);
return ExprError();
}
Lookup.suppressDiagnostics();
// OpenMP [2.9.2, Syntax, C/C++]
// Variables must be file-scope, namespace-scope, or static block-scope.
if (Kind == OMPD_threadprivate && !VD->hasGlobalStorage()) {
Diag(Id.getLoc(), diag::err_omp_global_var_arg)
<< getOpenMPDirectiveName(Kind) << !VD->isStaticLocal();
bool IsDecl =
VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
Diag(VD->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< VD;
return ExprError();
}
VarDecl *CanonicalVD = VD->getCanonicalDecl();
NamedDecl *ND = CanonicalVD;
// OpenMP [2.9.2, Restrictions, C/C++, p.2]
// A threadprivate directive for file-scope variables must appear outside
// any definition or declaration.
if (CanonicalVD->getDeclContext()->isTranslationUnit() &&
!getCurLexicalContext()->isTranslationUnit()) {
Diag(Id.getLoc(), diag::err_omp_var_scope)
<< getOpenMPDirectiveName(Kind) << VD;
bool IsDecl =
VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
Diag(VD->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< VD;
return ExprError();
}
// OpenMP [2.9.2, Restrictions, C/C++, p.3]
// A threadprivate directive for static class member variables must appear
// in the class definition, in the same scope in which the member
// variables are declared.
if (CanonicalVD->isStaticDataMember() &&
!CanonicalVD->getDeclContext()->Equals(getCurLexicalContext())) {
Diag(Id.getLoc(), diag::err_omp_var_scope)
<< getOpenMPDirectiveName(Kind) << VD;
bool IsDecl =
VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
Diag(VD->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< VD;
return ExprError();
}
// OpenMP [2.9.2, Restrictions, C/C++, p.4]
// A threadprivate directive for namespace-scope variables must appear
// outside any definition or declaration other than the namespace
// definition itself.
if (CanonicalVD->getDeclContext()->isNamespace() &&
(!getCurLexicalContext()->isFileContext() ||
!getCurLexicalContext()->Encloses(CanonicalVD->getDeclContext()))) {
Diag(Id.getLoc(), diag::err_omp_var_scope)
<< getOpenMPDirectiveName(Kind) << VD;
bool IsDecl =
VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
Diag(VD->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< VD;
return ExprError();
}
// OpenMP [2.9.2, Restrictions, C/C++, p.6]
// A threadprivate directive for static block-scope variables must appear
// in the scope of the variable and not in a nested scope.
if (CanonicalVD->isLocalVarDecl() && CurScope &&
!isDeclInScope(ND, getCurLexicalContext(), CurScope)) {
Diag(Id.getLoc(), diag::err_omp_var_scope)
<< getOpenMPDirectiveName(Kind) << VD;
bool IsDecl =
VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
Diag(VD->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< VD;
return ExprError();
}
// OpenMP [2.9.2, Restrictions, C/C++, p.2-6]
// A threadprivate directive must lexically precede all references to any
// of the variables in its list.
if (Kind == OMPD_threadprivate && VD->isUsed() &&
!DSAStack->isThreadPrivate(VD)) {
Diag(Id.getLoc(), diag::err_omp_var_used)
<< getOpenMPDirectiveName(Kind) << VD;
return ExprError();
}
QualType ExprType = VD->getType().getNonReferenceType();
return DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
SourceLocation(), VD,
/*RefersToEnclosingVariableOrCapture=*/false,
Id.getLoc(), ExprType, VK_LValue);
}
Sema::DeclGroupPtrTy
Sema::ActOnOpenMPThreadprivateDirective(SourceLocation Loc,
ArrayRef<Expr *> VarList) {
if (OMPThreadPrivateDecl *D = CheckOMPThreadPrivateDecl(Loc, VarList)) {
CurContext->addDecl(D);
return DeclGroupPtrTy::make(DeclGroupRef(D));
}
return nullptr;
}
namespace {
class LocalVarRefChecker final
: public ConstStmtVisitor<LocalVarRefChecker, bool> {
Sema &SemaRef;
public:
bool VisitDeclRefExpr(const DeclRefExpr *E) {
if (const auto *VD = dyn_cast<VarDecl>(E->getDecl())) {
if (VD->hasLocalStorage()) {
SemaRef.Diag(E->getBeginLoc(),
diag::err_omp_local_var_in_threadprivate_init)
<< E->getSourceRange();
SemaRef.Diag(VD->getLocation(), diag::note_defined_here)
<< VD << VD->getSourceRange();
return true;
}
}
return false;
}
bool VisitStmt(const Stmt *S) {
for (const Stmt *Child : S->children()) {
if (Child && Visit(Child))
return true;
}
return false;
}
explicit LocalVarRefChecker(Sema &SemaRef) : SemaRef(SemaRef) {}
};
} // namespace
OMPThreadPrivateDecl *
Sema::CheckOMPThreadPrivateDecl(SourceLocation Loc, ArrayRef<Expr *> VarList) {
SmallVector<Expr *, 8> Vars;
for (Expr *RefExpr : VarList) {
auto *DE = cast<DeclRefExpr>(RefExpr);
auto *VD = cast<VarDecl>(DE->getDecl());
SourceLocation ILoc = DE->getExprLoc();
// Mark variable as used.
VD->setReferenced();
VD->markUsed(Context);
QualType QType = VD->getType();
if (QType->isDependentType() || QType->isInstantiationDependentType()) {
// It will be analyzed later.
Vars.push_back(DE);
continue;
}
// OpenMP [2.9.2, Restrictions, C/C++, p.10]
// A threadprivate variable must not have an incomplete type.
if (RequireCompleteType(ILoc, VD->getType(),
diag::err_omp_threadprivate_incomplete_type)) {
continue;
}
// OpenMP [2.9.2, Restrictions, C/C++, p.10]
// A threadprivate variable must not have a reference type.
if (VD->getType()->isReferenceType()) {
Diag(ILoc, diag::err_omp_ref_type_arg)
<< getOpenMPDirectiveName(OMPD_threadprivate) << VD->getType();
bool IsDecl =
VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
Diag(VD->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< VD;
continue;
}
// Check if this is a TLS variable. If TLS is not being supported, produce
// the corresponding diagnostic.
if ((VD->getTLSKind() != VarDecl::TLS_None &&
!(VD->hasAttr<OMPThreadPrivateDeclAttr>() &&
getLangOpts().OpenMPUseTLS &&
getASTContext().getTargetInfo().isTLSSupported())) ||
(VD->getStorageClass() == SC_Register && VD->hasAttr<AsmLabelAttr>() &&
!VD->isLocalVarDecl())) {
Diag(ILoc, diag::err_omp_var_thread_local)
<< VD << ((VD->getTLSKind() != VarDecl::TLS_None) ? 0 : 1);
bool IsDecl =
VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
Diag(VD->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< VD;
continue;
}
// Check if initial value of threadprivate variable reference variable with
// local storage (it is not supported by runtime).
if (const Expr *Init = VD->getAnyInitializer()) {
LocalVarRefChecker Checker(*this);
if (Checker.Visit(Init))
continue;
}
Vars.push_back(RefExpr);
DSAStack->addDSA(VD, DE, OMPC_threadprivate);
VD->addAttr(OMPThreadPrivateDeclAttr::CreateImplicit(
Context, SourceRange(Loc, Loc)));
if (ASTMutationListener *ML = Context.getASTMutationListener())
ML->DeclarationMarkedOpenMPThreadPrivate(VD);
}
OMPThreadPrivateDecl *D = nullptr;
if (!Vars.empty()) {
D = OMPThreadPrivateDecl::Create(Context, getCurLexicalContext(), Loc,
Vars);
D->setAccess(AS_public);
}
return D;
}
static OMPAllocateDeclAttr::AllocatorTypeTy
getAllocatorKind(Sema &S, DSAStackTy *Stack, Expr *Allocator) {
if (!Allocator)
return OMPAllocateDeclAttr::OMPNullMemAlloc;
if (Allocator->isTypeDependent() || Allocator->isValueDependent() ||
Allocator->isInstantiationDependent() ||
Allocator->containsUnexpandedParameterPack())
return OMPAllocateDeclAttr::OMPUserDefinedMemAlloc;
auto AllocatorKindRes = OMPAllocateDeclAttr::OMPUserDefinedMemAlloc;
const Expr *AE = Allocator->IgnoreParenImpCasts();
for (int I = 0; I < OMPAllocateDeclAttr::OMPUserDefinedMemAlloc; ++I) {
auto AllocatorKind = static_cast<OMPAllocateDeclAttr::AllocatorTypeTy>(I);
const Expr *DefAllocator = Stack->getAllocator(AllocatorKind);
llvm::FoldingSetNodeID AEId, DAEId;
AE->Profile(AEId, S.getASTContext(), /*Canonical=*/true);
DefAllocator->Profile(DAEId, S.getASTContext(), /*Canonical=*/true);
if (AEId == DAEId) {
AllocatorKindRes = AllocatorKind;
break;
}
}
return AllocatorKindRes;
}
static bool checkPreviousOMPAllocateAttribute(
Sema &S, DSAStackTy *Stack, Expr *RefExpr, VarDecl *VD,
OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind, Expr *Allocator) {
if (!VD->hasAttr<OMPAllocateDeclAttr>())
return false;
const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
Expr *PrevAllocator = A->getAllocator();
OMPAllocateDeclAttr::AllocatorTypeTy PrevAllocatorKind =
getAllocatorKind(S, Stack, PrevAllocator);
bool AllocatorsMatch = AllocatorKind == PrevAllocatorKind;
if (AllocatorsMatch &&
AllocatorKind == OMPAllocateDeclAttr::OMPUserDefinedMemAlloc &&
Allocator && PrevAllocator) {
const Expr *AE = Allocator->IgnoreParenImpCasts();
const Expr *PAE = PrevAllocator->IgnoreParenImpCasts();
llvm::FoldingSetNodeID AEId, PAEId;
AE->Profile(AEId, S.Context, /*Canonical=*/true);
PAE->Profile(PAEId, S.Context, /*Canonical=*/true);
AllocatorsMatch = AEId == PAEId;
}
if (!AllocatorsMatch) {
SmallString<256> AllocatorBuffer;
llvm::raw_svector_ostream AllocatorStream(AllocatorBuffer);
if (Allocator)
Allocator->printPretty(AllocatorStream, nullptr, S.getPrintingPolicy());
SmallString<256> PrevAllocatorBuffer;
llvm::raw_svector_ostream PrevAllocatorStream(PrevAllocatorBuffer);
if (PrevAllocator)
PrevAllocator->printPretty(PrevAllocatorStream, nullptr,
S.getPrintingPolicy());
SourceLocation AllocatorLoc =
Allocator ? Allocator->getExprLoc() : RefExpr->getExprLoc();
SourceRange AllocatorRange =
Allocator ? Allocator->getSourceRange() : RefExpr->getSourceRange();
SourceLocation PrevAllocatorLoc =
PrevAllocator ? PrevAllocator->getExprLoc() : A->getLocation();
SourceRange PrevAllocatorRange =
PrevAllocator ? PrevAllocator->getSourceRange() : A->getRange();
S.Diag(AllocatorLoc, diag::warn_omp_used_different_allocator)
<< (Allocator ? 1 : 0) << AllocatorStream.str()
<< (PrevAllocator ? 1 : 0) << PrevAllocatorStream.str()
<< AllocatorRange;
S.Diag(PrevAllocatorLoc, diag::note_omp_previous_allocator)
<< PrevAllocatorRange;
return true;
}
return false;
}
static void
applyOMPAllocateAttribute(Sema &S, VarDecl *VD,
OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind,
Expr *Allocator, Expr *Alignment, SourceRange SR) {
if (VD->hasAttr<OMPAllocateDeclAttr>())
return;
if (Alignment &&
(Alignment->isTypeDependent() || Alignment->isValueDependent() ||
Alignment->isInstantiationDependent() ||
Alignment->containsUnexpandedParameterPack()))
// Apply later when we have a usable value.
return;
if (Allocator &&
(Allocator->isTypeDependent() || Allocator->isValueDependent() ||
Allocator->isInstantiationDependent() ||
Allocator->containsUnexpandedParameterPack()))
return;
auto *A = OMPAllocateDeclAttr::CreateImplicit(S.Context, AllocatorKind,
Allocator, Alignment, SR);
VD->addAttr(A);
if (ASTMutationListener *ML = S.Context.getASTMutationListener())
ML->DeclarationMarkedOpenMPAllocate(VD, A);
}
Sema::DeclGroupPtrTy
Sema::ActOnOpenMPAllocateDirective(SourceLocation Loc, ArrayRef<Expr *> VarList,
ArrayRef<OMPClause *> Clauses,
DeclContext *Owner) {
assert(Clauses.size() <= 2 && "Expected at most two clauses.");
Expr *Alignment = nullptr;
Expr *Allocator = nullptr;
if (Clauses.empty()) {
// OpenMP 5.0, 2.11.3 allocate Directive, Restrictions.
// allocate directives that appear in a target region must specify an
// allocator clause unless a requires directive with the dynamic_allocators
// clause is present in the same compilation unit.
if (LangOpts.OpenMPIsDevice &&
!DSAStack->hasRequiresDeclWithClause<OMPDynamicAllocatorsClause>())
targetDiag(Loc, diag::err_expected_allocator_clause);
} else {
for (const OMPClause *C : Clauses)
if (const auto *AC = dyn_cast<OMPAllocatorClause>(C))
Allocator = AC->getAllocator();
else if (const auto *AC = dyn_cast<OMPAlignClause>(C))
Alignment = AC->getAlignment();
else
llvm_unreachable("Unexpected clause on allocate directive");
}
OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind =
getAllocatorKind(*this, DSAStack, Allocator);
SmallVector<Expr *, 8> Vars;
for (Expr *RefExpr : VarList) {
auto *DE = cast<DeclRefExpr>(RefExpr);
auto *VD = cast<VarDecl>(DE->getDecl());
// Check if this is a TLS variable or global register.
if (VD->getTLSKind() != VarDecl::TLS_None ||
VD->hasAttr<OMPThreadPrivateDeclAttr>() ||
(VD->getStorageClass() == SC_Register && VD->hasAttr<AsmLabelAttr>() &&
!VD->isLocalVarDecl()))
continue;
// If the used several times in the allocate directive, the same allocator
// must be used.
if (checkPreviousOMPAllocateAttribute(*this, DSAStack, RefExpr, VD,
AllocatorKind, Allocator))
continue;
// OpenMP, 2.11.3 allocate Directive, Restrictions, C / C++
// If a list item has a static storage type, the allocator expression in the
// allocator clause must be a constant expression that evaluates to one of
// the predefined memory allocator values.
if (Allocator && VD->hasGlobalStorage()) {
if (AllocatorKind == OMPAllocateDeclAttr::OMPUserDefinedMemAlloc) {
Diag(Allocator->getExprLoc(),
diag::err_omp_expected_predefined_allocator)
<< Allocator->getSourceRange();
bool IsDecl = VD->isThisDeclarationADefinition(Context) ==
VarDecl::DeclarationOnly;
Diag(VD->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< VD;
continue;
}
}
Vars.push_back(RefExpr);
applyOMPAllocateAttribute(*this, VD, AllocatorKind, Allocator, Alignment,
DE->getSourceRange());
}
if (Vars.empty())
return nullptr;
if (!Owner)
Owner = getCurLexicalContext();
auto *D = OMPAllocateDecl::Create(Context, Owner, Loc, Vars, Clauses);
D->setAccess(AS_public);
Owner->addDecl(D);
return DeclGroupPtrTy::make(DeclGroupRef(D));
}
Sema::DeclGroupPtrTy
Sema::ActOnOpenMPRequiresDirective(SourceLocation Loc,
ArrayRef<OMPClause *> ClauseList) {
OMPRequiresDecl *D = nullptr;
if (!CurContext->isFileContext()) {
Diag(Loc, diag::err_omp_invalid_scope) << "requires";
} else {
D = CheckOMPRequiresDecl(Loc, ClauseList);
if (D) {
CurContext->addDecl(D);
DSAStack->addRequiresDecl(D);
}
}
return DeclGroupPtrTy::make(DeclGroupRef(D));
}
void Sema::ActOnOpenMPAssumesDirective(SourceLocation Loc,
OpenMPDirectiveKind DKind,
ArrayRef<std::string> Assumptions,
bool SkippedClauses) {
if (!SkippedClauses && Assumptions.empty())
Diag(Loc, diag::err_omp_no_clause_for_directive)
<< llvm::omp::getAllAssumeClauseOptions()
<< llvm::omp::getOpenMPDirectiveName(DKind);
auto *AA = AssumptionAttr::Create(Context, llvm::join(Assumptions, ","), Loc);
if (DKind == llvm::omp::Directive::OMPD_begin_assumes) {
OMPAssumeScoped.push_back(AA);
return;
}
// Global assumes without assumption clauses are ignored.
if (Assumptions.empty())
return;
assert(DKind == llvm::omp::Directive::OMPD_assumes &&
"Unexpected omp assumption directive!");
OMPAssumeGlobal.push_back(AA);
// The OMPAssumeGlobal scope above will take care of new declarations but
// we also want to apply the assumption to existing ones, e.g., to
// declarations in included headers. To this end, we traverse all existing
// declaration contexts and annotate function declarations here.
SmallVector<DeclContext *, 8> DeclContexts;
auto *Ctx = CurContext;
while (Ctx->getLexicalParent())
Ctx = Ctx->getLexicalParent();
DeclContexts.push_back(Ctx);
while (!DeclContexts.empty()) {
DeclContext *DC = DeclContexts.pop_back_val();
for (auto *SubDC : DC->decls()) {
if (SubDC->isInvalidDecl())
continue;
if (auto *CTD = dyn_cast<ClassTemplateDecl>(SubDC)) {
DeclContexts.push_back(CTD->getTemplatedDecl());
llvm::append_range(DeclContexts, CTD->specializations());
continue;
}
if (auto *DC = dyn_cast<DeclContext>(SubDC))
DeclContexts.push_back(DC);
if (auto *F = dyn_cast<FunctionDecl>(SubDC)) {
F->addAttr(AA);
continue;
}
}
}
}
void Sema::ActOnOpenMPEndAssumesDirective() {
assert(isInOpenMPAssumeScope() && "Not in OpenMP assumes scope!");
OMPAssumeScoped.pop_back();
}
OMPRequiresDecl *Sema::CheckOMPRequiresDecl(SourceLocation Loc,
ArrayRef<OMPClause *> ClauseList) {
/// For target specific clauses, the requires directive cannot be
/// specified after the handling of any of the target regions in the
/// current compilation unit.
ArrayRef<SourceLocation> TargetLocations =
DSAStack->getEncounteredTargetLocs();
SourceLocation AtomicLoc = DSAStack->getAtomicDirectiveLoc();
if (!TargetLocations.empty() || !AtomicLoc.isInvalid()) {
for (const OMPClause *CNew : ClauseList) {
// Check if any of the requires clauses affect target regions.
if (isa<OMPUnifiedSharedMemoryClause>(CNew) ||
isa<OMPUnifiedAddressClause>(CNew) ||
isa<OMPReverseOffloadClause>(CNew) ||
isa<OMPDynamicAllocatorsClause>(CNew)) {
Diag(Loc, diag::err_omp_directive_before_requires)
<< "target" << getOpenMPClauseName(CNew->getClauseKind());
for (SourceLocation TargetLoc : TargetLocations) {
Diag(TargetLoc, diag::note_omp_requires_encountered_directive)
<< "target";
}
} else if (!AtomicLoc.isInvalid() &&
isa<OMPAtomicDefaultMemOrderClause>(CNew)) {
Diag(Loc, diag::err_omp_directive_before_requires)
<< "atomic" << getOpenMPClauseName(CNew->getClauseKind());
Diag(AtomicLoc, diag::note_omp_requires_encountered_directive)
<< "atomic";
}
}
}
if (!DSAStack->hasDuplicateRequiresClause(ClauseList))
return OMPRequiresDecl::Create(Context, getCurLexicalContext(), Loc,
ClauseList);
return nullptr;
}
static void reportOriginalDsa(Sema &SemaRef, const DSAStackTy *Stack,
const ValueDecl *D,
const DSAStackTy::DSAVarData &DVar,
bool IsLoopIterVar) {
if (DVar.RefExpr) {
SemaRef.Diag(DVar.RefExpr->getExprLoc(), diag::note_omp_explicit_dsa)
<< getOpenMPClauseName(DVar.CKind);
return;
}
enum {
PDSA_StaticMemberShared,
PDSA_StaticLocalVarShared,
PDSA_LoopIterVarPrivate,
PDSA_LoopIterVarLinear,
PDSA_LoopIterVarLastprivate,
PDSA_ConstVarShared,
PDSA_GlobalVarShared,
PDSA_TaskVarFirstprivate,
PDSA_LocalVarPrivate,
PDSA_Implicit
} Reason = PDSA_Implicit;
bool ReportHint = false;
auto ReportLoc = D->getLocation();
auto *VD = dyn_cast<VarDecl>(D);
if (IsLoopIterVar) {
if (DVar.CKind == OMPC_private)
Reason = PDSA_LoopIterVarPrivate;
else if (DVar.CKind == OMPC_lastprivate)
Reason = PDSA_LoopIterVarLastprivate;
else
Reason = PDSA_LoopIterVarLinear;
} else if (isOpenMPTaskingDirective(DVar.DKind) &&
DVar.CKind == OMPC_firstprivate) {
Reason = PDSA_TaskVarFirstprivate;
ReportLoc = DVar.ImplicitDSALoc;
} else if (VD && VD->isStaticLocal())
Reason = PDSA_StaticLocalVarShared;
else if (VD && VD->isStaticDataMember())
Reason = PDSA_StaticMemberShared;
else if (VD && VD->isFileVarDecl())
Reason = PDSA_GlobalVarShared;
else if (D->getType().isConstant(SemaRef.getASTContext()))
Reason = PDSA_ConstVarShared;
else if (VD && VD->isLocalVarDecl() && DVar.CKind == OMPC_private) {
ReportHint = true;
Reason = PDSA_LocalVarPrivate;
}
if (Reason != PDSA_Implicit) {
SemaRef.Diag(ReportLoc, diag::note_omp_predetermined_dsa)
<< Reason << ReportHint
<< getOpenMPDirectiveName(Stack->getCurrentDirective());
} else if (DVar.ImplicitDSALoc.isValid()) {
SemaRef.Diag(DVar.ImplicitDSALoc, diag::note_omp_implicit_dsa)
<< getOpenMPClauseName(DVar.CKind);
}
}
static OpenMPMapClauseKind
getMapClauseKindFromModifier(OpenMPDefaultmapClauseModifier M,
bool IsAggregateOrDeclareTarget) {
OpenMPMapClauseKind Kind = OMPC_MAP_unknown;
switch (M) {
case OMPC_DEFAULTMAP_MODIFIER_alloc:
Kind = OMPC_MAP_alloc;
break;
case OMPC_DEFAULTMAP_MODIFIER_to:
Kind = OMPC_MAP_to;
break;
case OMPC_DEFAULTMAP_MODIFIER_from:
Kind = OMPC_MAP_from;
break;
case OMPC_DEFAULTMAP_MODIFIER_tofrom:
Kind = OMPC_MAP_tofrom;
break;
case OMPC_DEFAULTMAP_MODIFIER_present:
// OpenMP 5.1 [2.21.7.3] defaultmap clause, Description]
// If implicit-behavior is present, each variable referenced in the
// construct in the category specified by variable-category is treated as if
// it had been listed in a map clause with the map-type of alloc and
// map-type-modifier of present.
Kind = OMPC_MAP_alloc;
break;
case OMPC_DEFAULTMAP_MODIFIER_firstprivate:
case OMPC_DEFAULTMAP_MODIFIER_last:
llvm_unreachable("Unexpected defaultmap implicit behavior");
case OMPC_DEFAULTMAP_MODIFIER_none:
case OMPC_DEFAULTMAP_MODIFIER_default:
case OMPC_DEFAULTMAP_MODIFIER_unknown:
// IsAggregateOrDeclareTarget could be true if:
// 1. the implicit behavior for aggregate is tofrom
// 2. it's a declare target link
if (IsAggregateOrDeclareTarget) {
Kind = OMPC_MAP_tofrom;
break;
}
llvm_unreachable("Unexpected defaultmap implicit behavior");
}
assert(Kind != OMPC_MAP_unknown && "Expect map kind to be known");
return Kind;
}
namespace {
class DSAAttrChecker final : public StmtVisitor<DSAAttrChecker, void> {
DSAStackTy *Stack;
Sema &SemaRef;
bool ErrorFound = false;
bool TryCaptureCXXThisMembers = false;
CapturedStmt *CS = nullptr;
const static unsigned DefaultmapKindNum = OMPC_DEFAULTMAP_pointer + 1;
llvm::SmallVector<Expr *, 4> ImplicitFirstprivate;
llvm::SmallVector<Expr *, 4> ImplicitMap[DefaultmapKindNum][OMPC_MAP_delete];
llvm::SmallVector<OpenMPMapModifierKind, NumberOfOMPMapClauseModifiers>
ImplicitMapModifier[DefaultmapKindNum];
Sema::VarsWithInheritedDSAType VarsWithInheritedDSA;
llvm::SmallDenseSet<const ValueDecl *, 4> ImplicitDeclarations;
void VisitSubCaptures(OMPExecutableDirective *S) {
// Check implicitly captured variables.
if (!S->hasAssociatedStmt() || !S->getAssociatedStmt())
return;
if (S->getDirectiveKind() == OMPD_atomic ||
S->getDirectiveKind() == OMPD_critical ||
S->getDirectiveKind() == OMPD_section ||
S->getDirectiveKind() == OMPD_master ||
S->getDirectiveKind() == OMPD_masked ||
isOpenMPLoopTransformationDirective(S->getDirectiveKind())) {
Visit(S->getAssociatedStmt());
return;
}
visitSubCaptures(S->getInnermostCapturedStmt());
// Try to capture inner this->member references to generate correct mappings
// and diagnostics.
if (TryCaptureCXXThisMembers ||
(isOpenMPTargetExecutionDirective(Stack->getCurrentDirective()) &&
llvm::any_of(S->getInnermostCapturedStmt()->captures(),
[](const CapturedStmt::Capture &C) {
return C.capturesThis();
}))) {
bool SavedTryCaptureCXXThisMembers = TryCaptureCXXThisMembers;
TryCaptureCXXThisMembers = true;
Visit(S->getInnermostCapturedStmt()->getCapturedStmt());
TryCaptureCXXThisMembers = SavedTryCaptureCXXThisMembers;
}
// In tasks firstprivates are not captured anymore, need to analyze them
// explicitly.
if (isOpenMPTaskingDirective(S->getDirectiveKind()) &&
!isOpenMPTaskLoopDirective(S->getDirectiveKind())) {
for (OMPClause *C : S->clauses())
if (auto *FC = dyn_cast<OMPFirstprivateClause>(C)) {
for (Expr *Ref : FC->varlists())
Visit(Ref);
}
}
}
public:
void VisitDeclRefExpr(DeclRefExpr *E) {
if (TryCaptureCXXThisMembers || E->isTypeDependent() ||
E->isValueDependent() || E->containsUnexpandedParameterPack() ||
E->isInstantiationDependent())
return;
if (auto *VD = dyn_cast<VarDecl>(E->getDecl())) {
// Check the datasharing rules for the expressions in the clauses.
if (!CS || (isa<OMPCapturedExprDecl>(VD) && !CS->capturesVariable(VD) &&
!Stack->getTopDSA(VD, /*FromParent=*/false).RefExpr)) {
if (auto *CED = dyn_cast<OMPCapturedExprDecl>(VD))
if (!CED->hasAttr<OMPCaptureNoInitAttr>()) {
Visit(CED->getInit());
return;
}
} else if (VD->isImplicit() || isa<OMPCapturedExprDecl>(VD))
// Do not analyze internal variables and do not enclose them into
// implicit clauses.
return;
VD = VD->getCanonicalDecl();
// Skip internally declared variables.
if (VD->hasLocalStorage() && CS && !CS->capturesVariable(VD) &&
!Stack->isImplicitTaskFirstprivate(VD))
return;
// Skip allocators in uses_allocators clauses.
if (Stack->isUsesAllocatorsDecl(VD).hasValue())
return;
DSAStackTy::DSAVarData DVar = Stack->getTopDSA(VD, /*FromParent=*/false);
// Check if the variable has explicit DSA set and stop analysis if it so.
if (DVar.RefExpr || !ImplicitDeclarations.insert(VD).second)
return;
// Skip internally declared static variables.
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
if (VD->hasGlobalStorage() && CS && !CS->capturesVariable(VD) &&
(Stack->hasRequiresDeclWithClause<OMPUnifiedSharedMemoryClause>() ||
!Res || *Res != OMPDeclareTargetDeclAttr::MT_Link) &&
!Stack->isImplicitTaskFirstprivate(VD))
return;
SourceLocation ELoc = E->getExprLoc();
OpenMPDirectiveKind DKind = Stack->getCurrentDirective();
// The default(none) clause requires that each variable that is referenced
// in the construct, and does not have a predetermined data-sharing
// attribute, must have its data-sharing attribute explicitly determined
// by being listed in a data-sharing attribute clause.
if (DVar.CKind == OMPC_unknown &&
(Stack->getDefaultDSA() == DSA_none ||
Stack->getDefaultDSA() == DSA_firstprivate) &&
isImplicitOrExplicitTaskingRegion(DKind) &&
VarsWithInheritedDSA.count(VD) == 0) {
bool InheritedDSA = Stack->getDefaultDSA() == DSA_none;
if (!InheritedDSA && Stack->getDefaultDSA() == DSA_firstprivate) {
DSAStackTy::DSAVarData DVar =
Stack->getImplicitDSA(VD, /*FromParent=*/false);
InheritedDSA = DVar.CKind == OMPC_unknown;
}
if (InheritedDSA)
VarsWithInheritedDSA[VD] = E;
return;
}
// OpenMP 5.0 [2.19.7.2, defaultmap clause, Description]
// If implicit-behavior is none, each variable referenced in the
// construct that does not have a predetermined data-sharing attribute
// and does not appear in a to or link clause on a declare target
// directive must be listed in a data-mapping attribute clause, a
// data-haring attribute clause (including a data-sharing attribute
// clause on a combined construct where target. is one of the
// constituent constructs), or an is_device_ptr clause.
OpenMPDefaultmapClauseKind ClauseKind =
getVariableCategoryFromDecl(SemaRef.getLangOpts(), VD);
if (SemaRef.getLangOpts().OpenMP >= 50) {
bool IsModifierNone = Stack->getDefaultmapModifier(ClauseKind) ==
OMPC_DEFAULTMAP_MODIFIER_none;
if (DVar.CKind == OMPC_unknown && IsModifierNone &&
VarsWithInheritedDSA.count(VD) == 0 && !Res) {
// Only check for data-mapping attribute and is_device_ptr here
// since we have already make sure that the declaration does not
// have a data-sharing attribute above
if (!Stack->checkMappableExprComponentListsForDecl(
VD, /*CurrentRegionOnly=*/true,
[VD](OMPClauseMappableExprCommon::MappableExprComponentListRef
MapExprComponents,
OpenMPClauseKind) {
auto MI = MapExprComponents.rbegin();
auto ME = MapExprComponents.rend();
return MI != ME && MI->getAssociatedDeclaration() == VD;
})) {
VarsWithInheritedDSA[VD] = E;
return;
}
}
}
if (SemaRef.getLangOpts().OpenMP > 50) {
bool IsModifierPresent = Stack->getDefaultmapModifier(ClauseKind) ==
OMPC_DEFAULTMAP_MODIFIER_present;
if (IsModifierPresent) {
if (llvm::find(ImplicitMapModifier[ClauseKind],
OMPC_MAP_MODIFIER_present) ==
std::end(ImplicitMapModifier[ClauseKind])) {
ImplicitMapModifier[ClauseKind].push_back(
OMPC_MAP_MODIFIER_present);
}
}
}
if (isOpenMPTargetExecutionDirective(DKind) &&
!Stack->isLoopControlVariable(VD).first) {
if (!Stack->checkMappableExprComponentListsForDecl(
VD, /*CurrentRegionOnly=*/true,
[this](OMPClauseMappableExprCommon::MappableExprComponentListRef
StackComponents,
OpenMPClauseKind) {
if (SemaRef.LangOpts.OpenMP >= 50)
return !StackComponents.empty();
// Variable is used if it has been marked as an array, array
// section, array shaping or the variable iself.
return StackComponents.size() == 1 ||
std::all_of(
std::next(StackComponents.rbegin()),
StackComponents.rend(),
[](const OMPClauseMappableExprCommon::
MappableComponent &MC) {
return MC.getAssociatedDeclaration() ==
nullptr &&
(isa<OMPArraySectionExpr>(
MC.getAssociatedExpression()) ||
isa<OMPArrayShapingExpr>(
MC.getAssociatedExpression()) ||
isa<ArraySubscriptExpr>(
MC.getAssociatedExpression()));
});
})) {
bool IsFirstprivate = false;
// By default lambdas are captured as firstprivates.
if (const auto *RD =
VD->getType().getNonReferenceType()->getAsCXXRecordDecl())
IsFirstprivate = RD->isLambda();
IsFirstprivate =
IsFirstprivate || (Stack->mustBeFirstprivate(ClauseKind) && !Res);
if (IsFirstprivate) {
ImplicitFirstprivate.emplace_back(E);
} else {
OpenMPDefaultmapClauseModifier M =
Stack->getDefaultmapModifier(ClauseKind);
OpenMPMapClauseKind Kind = getMapClauseKindFromModifier(
M, ClauseKind == OMPC_DEFAULTMAP_aggregate || Res);
ImplicitMap[ClauseKind][Kind].emplace_back(E);
}
return;
}
}
// OpenMP [2.9.3.6, Restrictions, p.2]
// A list item that appears in a reduction clause of the innermost
// enclosing worksharing or parallel construct may not be accessed in an
// explicit task.
DVar = Stack->hasInnermostDSA(
VD,
[](OpenMPClauseKind C, bool AppliedToPointee) {
return C == OMPC_reduction && !AppliedToPointee;
},
[](OpenMPDirectiveKind K) {
return isOpenMPParallelDirective(K) ||
isOpenMPWorksharingDirective(K) || isOpenMPTeamsDirective(K);
},
/*FromParent=*/true);
if (isOpenMPTaskingDirective(DKind) && DVar.CKind == OMPC_reduction) {
ErrorFound = true;
SemaRef.Diag(ELoc, diag::err_omp_reduction_in_task);
reportOriginalDsa(SemaRef, Stack, VD, DVar);
return;
}
// Define implicit data-sharing attributes for task.
DVar = Stack->getImplicitDSA(VD, /*FromParent=*/false);
if (((isOpenMPTaskingDirective(DKind) && DVar.CKind != OMPC_shared) ||
(Stack->getDefaultDSA() == DSA_firstprivate &&
DVar.CKind == OMPC_firstprivate && !DVar.RefExpr)) &&
!Stack->isLoopControlVariable(VD).first) {
ImplicitFirstprivate.push_back(E);
return;
}
// Store implicitly used globals with declare target link for parent
// target.
if (!isOpenMPTargetExecutionDirective(DKind) && Res &&
*Res == OMPDeclareTargetDeclAttr::MT_Link) {
Stack->addToParentTargetRegionLinkGlobals(E);
return;
}
}
}
void VisitMemberExpr(MemberExpr *E) {
if (E->isTypeDependent() || E->isValueDependent() ||
E->containsUnexpandedParameterPack() || E->isInstantiationDependent())
return;
auto *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
OpenMPDirectiveKind DKind = Stack->getCurrentDirective();
if (auto *TE = dyn_cast<CXXThisExpr>(E->getBase()->IgnoreParenCasts())) {
if (!FD)
return;
DSAStackTy::DSAVarData DVar = Stack->getTopDSA(FD, /*FromParent=*/false);
// Check if the variable has explicit DSA set and stop analysis if it
// so.
if (DVar.RefExpr || !ImplicitDeclarations.insert(FD).second)
return;
if (isOpenMPTargetExecutionDirective(DKind) &&
!Stack->isLoopControlVariable(FD).first &&
!Stack->checkMappableExprComponentListsForDecl(
FD, /*CurrentRegionOnly=*/true,
[](OMPClauseMappableExprCommon::MappableExprComponentListRef
StackComponents,
OpenMPClauseKind) {
return isa<CXXThisExpr>(
cast<MemberExpr>(
StackComponents.back().getAssociatedExpression())
->getBase()
->IgnoreParens());
})) {
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C/C++, p.3]
// A bit-field cannot appear in a map clause.
//
if (FD->isBitField())
return;
// Check to see if the member expression is referencing a class that
// has already been explicitly mapped
if (Stack->isClassPreviouslyMapped(TE->getType()))
return;
OpenMPDefaultmapClauseModifier Modifier =
Stack->getDefaultmapModifier(OMPC_DEFAULTMAP_aggregate);
OpenMPDefaultmapClauseKind ClauseKind =
getVariableCategoryFromDecl(SemaRef.getLangOpts(), FD);
OpenMPMapClauseKind Kind = getMapClauseKindFromModifier(
Modifier, /*IsAggregateOrDeclareTarget*/ true);
ImplicitMap[ClauseKind][Kind].emplace_back(E);
return;
}
SourceLocation ELoc = E->getExprLoc();
// OpenMP [2.9.3.6, Restrictions, p.2]
// A list item that appears in a reduction clause of the innermost
// enclosing worksharing or parallel construct may not be accessed in
// an explicit task.
DVar = Stack->hasInnermostDSA(
FD,
[](OpenMPClauseKind C, bool AppliedToPointee) {
return C == OMPC_reduction && !AppliedToPointee;
},
[](OpenMPDirectiveKind K) {
return isOpenMPParallelDirective(K) ||
isOpenMPWorksharingDirective(K) || isOpenMPTeamsDirective(K);
},
/*FromParent=*/true);
if (isOpenMPTaskingDirective(DKind) && DVar.CKind == OMPC_reduction) {
ErrorFound = true;
SemaRef.Diag(ELoc, diag::err_omp_reduction_in_task);
reportOriginalDsa(SemaRef, Stack, FD, DVar);
return;
}
// Define implicit data-sharing attributes for task.
DVar = Stack->getImplicitDSA(FD, /*FromParent=*/false);
if (isOpenMPTaskingDirective(DKind) && DVar.CKind != OMPC_shared &&
!Stack->isLoopControlVariable(FD).first) {
// Check if there is a captured expression for the current field in the
// region. Do not mark it as firstprivate unless there is no captured
// expression.
// TODO: try to make it firstprivate.
if (DVar.CKind != OMPC_unknown)
ImplicitFirstprivate.push_back(E);
}
return;
}
if (isOpenMPTargetExecutionDirective(DKind)) {
OMPClauseMappableExprCommon::MappableExprComponentList CurComponents;
if (!checkMapClauseExpressionBase(SemaRef, E, CurComponents, OMPC_map,
Stack->getCurrentDirective(),
/*NoDiagnose=*/true))
return;
const auto *VD = cast<ValueDecl>(
CurComponents.back().getAssociatedDeclaration()->getCanonicalDecl());
if (!Stack->checkMappableExprComponentListsForDecl(
VD, /*CurrentRegionOnly=*/true,
[&CurComponents](
OMPClauseMappableExprCommon::MappableExprComponentListRef
StackComponents,
OpenMPClauseKind) {
auto CCI = CurComponents.rbegin();
auto CCE = CurComponents.rend();
for (const auto &SC : llvm::reverse(StackComponents)) {
// Do both expressions have the same kind?
if (CCI->getAssociatedExpression()->getStmtClass() !=
SC.getAssociatedExpression()->getStmtClass())
if (!((isa<OMPArraySectionExpr>(
SC.getAssociatedExpression()) ||
isa<OMPArrayShapingExpr>(
SC.getAssociatedExpression())) &&
isa<ArraySubscriptExpr>(
CCI->getAssociatedExpression())))
return false;
const Decl *CCD = CCI->getAssociatedDeclaration();
const Decl *SCD = SC.getAssociatedDeclaration();
CCD = CCD ? CCD->getCanonicalDecl() : nullptr;
SCD = SCD ? SCD->getCanonicalDecl() : nullptr;
if (SCD != CCD)
return false;
std::advance(CCI, 1);
if (CCI == CCE)
break;
}
return true;
})) {
Visit(E->getBase());
}
} else if (!TryCaptureCXXThisMembers) {
Visit(E->getBase());
}
}
void VisitOMPExecutableDirective(OMPExecutableDirective *S) {
for (OMPClause *C : S->clauses()) {
// Skip analysis of arguments of private clauses for task|target
// directives.
if (isa_and_nonnull<OMPPrivateClause>(C))
continue;
// Skip analysis of arguments of implicitly defined firstprivate clause
// for task|target directives.
// Skip analysis of arguments of implicitly defined map clause for target
// directives.
if (C && !((isa<OMPFirstprivateClause>(C) || isa<OMPMapClause>(C)) &&
C->isImplicit() &&
!isOpenMPTaskingDirective(Stack->getCurrentDirective()))) {
for (Stmt *CC : C->children()) {
if (CC)
Visit(CC);
}
}
}
// Check implicitly captured variables.
VisitSubCaptures(S);
}
void VisitOMPLoopTransformationDirective(OMPLoopTransformationDirective *S) {
// Loop transformation directives do not introduce data sharing
VisitStmt(S);
}
void VisitCallExpr(CallExpr *S) {
for (Stmt *C : S->arguments()) {
if (C) {
// Check implicitly captured variables in the task-based directives to
// check if they must be firstprivatized.
Visit(C);
}
}
if (Expr *Callee = S->getCallee())
if (auto *CE = dyn_cast<MemberExpr>(Callee->IgnoreParenImpCasts()))
Visit(CE->getBase());
}
void VisitStmt(Stmt *S) {
for (Stmt *C : S->children()) {
if (C) {
// Check implicitly captured variables in the task-based directives to
// check if they must be firstprivatized.
Visit(C);
}
}
}
void visitSubCaptures(CapturedStmt *S) {
for (const CapturedStmt::Capture &Cap : S->captures()) {
if (!Cap.capturesVariable() && !Cap.capturesVariableByCopy())
continue;
VarDecl *VD = Cap.getCapturedVar();
// Do not try to map the variable if it or its sub-component was mapped
// already.
if (isOpenMPTargetExecutionDirective(Stack->getCurrentDirective()) &&
Stack->checkMappableExprComponentListsForDecl(
VD, /*CurrentRegionOnly=*/true,
[](OMPClauseMappableExprCommon::MappableExprComponentListRef,
OpenMPClauseKind) { return true; }))
continue;
DeclRefExpr *DRE = buildDeclRefExpr(
SemaRef, VD, VD->getType().getNonLValueExprType(SemaRef.Context),
Cap.getLocation(), /*RefersToCapture=*/true);
Visit(DRE);
}
}
bool isErrorFound() const { return ErrorFound; }
ArrayRef<Expr *> getImplicitFirstprivate() const {
return ImplicitFirstprivate;
}
ArrayRef<Expr *> getImplicitMap(OpenMPDefaultmapClauseKind DK,
OpenMPMapClauseKind MK) const {
return ImplicitMap[DK][MK];
}
ArrayRef<OpenMPMapModifierKind>
getImplicitMapModifier(OpenMPDefaultmapClauseKind Kind) const {
return ImplicitMapModifier[Kind];
}
const Sema::VarsWithInheritedDSAType &getVarsWithInheritedDSA() const {
return VarsWithInheritedDSA;
}
DSAAttrChecker(DSAStackTy *S, Sema &SemaRef, CapturedStmt *CS)
: Stack(S), SemaRef(SemaRef), ErrorFound(false), CS(CS) {
// Process declare target link variables for the target directives.
if (isOpenMPTargetExecutionDirective(S->getCurrentDirective())) {
for (DeclRefExpr *E : Stack->getLinkGlobals())
Visit(E);
}
}
};
} // namespace
static void handleDeclareVariantConstructTrait(DSAStackTy *Stack,
OpenMPDirectiveKind DKind,
bool ScopeEntry) {
SmallVector<llvm::omp::TraitProperty, 8> Traits;
if (isOpenMPTargetExecutionDirective(DKind))
Traits.emplace_back(llvm::omp::TraitProperty::construct_target_target);
if (isOpenMPTeamsDirective(DKind))
Traits.emplace_back(llvm::omp::TraitProperty::construct_teams_teams);
if (isOpenMPParallelDirective(DKind))
Traits.emplace_back(llvm::omp::TraitProperty::construct_parallel_parallel);
if (isOpenMPWorksharingDirective(DKind))
Traits.emplace_back(llvm::omp::TraitProperty::construct_for_for);
if (isOpenMPSimdDirective(DKind))
Traits.emplace_back(llvm::omp::TraitProperty::construct_simd_simd);
Stack->handleConstructTrait(Traits, ScopeEntry);
}
void Sema::ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope) {
switch (DKind) {
case OMPD_parallel:
case OMPD_parallel_for:
case OMPD_parallel_for_simd:
case OMPD_parallel_sections:
case OMPD_parallel_master:
case OMPD_parallel_loop:
case OMPD_teams:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd: {
QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
QualType KmpInt32PtrTy =
Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
Sema::CapturedParamNameType Params[] = {
std::make_pair(".global_tid.", KmpInt32PtrTy),
std::make_pair(".bound_tid.", KmpInt32PtrTy),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
Params);
break;
}
case OMPD_target_teams:
case OMPD_target_parallel:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_teams_loop:
case OMPD_target_parallel_loop:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd: {
QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
QualType KmpInt32PtrTy =
Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
QualType Args[] = {VoidPtrTy};
FunctionProtoType::ExtProtoInfo EPI;
EPI.Variadic = true;
QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
Sema::CapturedParamNameType Params[] = {
std::make_pair(".global_tid.", KmpInt32Ty),
std::make_pair(".part_id.", KmpInt32PtrTy),
std::make_pair(".privates.", VoidPtrTy),
std::make_pair(
".copy_fn.",
Context.getPointerType(CopyFnType).withConst().withRestrict()),
std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
Params, /*OpenMPCaptureLevel=*/0);
// Mark this captured region as inlined, because we don't use outlined
// function directly.
getCurCapturedRegion()->TheCapturedDecl->addAttr(
AlwaysInlineAttr::CreateImplicit(
Context, {}, AttributeCommonInfo::AS_Keyword,
AlwaysInlineAttr::Keyword_forceinline));
Sema::CapturedParamNameType ParamsTarget[] = {
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
// Start a captured region for 'target' with no implicit parameters.
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
ParamsTarget, /*OpenMPCaptureLevel=*/1);
Sema::CapturedParamNameType ParamsTeamsOrParallel[] = {
std::make_pair(".global_tid.", KmpInt32PtrTy),
std::make_pair(".bound_tid.", KmpInt32PtrTy),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
// Start a captured region for 'teams' or 'parallel'. Both regions have
// the same implicit parameters.
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
ParamsTeamsOrParallel, /*OpenMPCaptureLevel=*/2);
break;
}
case OMPD_target:
case OMPD_target_simd: {
QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
QualType KmpInt32PtrTy =
Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
QualType Args[] = {VoidPtrTy};
FunctionProtoType::ExtProtoInfo EPI;
EPI.Variadic = true;
QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
Sema::CapturedParamNameType Params[] = {
std::make_pair(".global_tid.", KmpInt32Ty),
std::make_pair(".part_id.", KmpInt32PtrTy),
std::make_pair(".privates.", VoidPtrTy),
std::make_pair(
".copy_fn.",
Context.getPointerType(CopyFnType).withConst().withRestrict()),
std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
Params, /*OpenMPCaptureLevel=*/0);
// Mark this captured region as inlined, because we don't use outlined
// function directly.
getCurCapturedRegion()->TheCapturedDecl->addAttr(
AlwaysInlineAttr::CreateImplicit(
Context, {}, AttributeCommonInfo::AS_Keyword,
AlwaysInlineAttr::Keyword_forceinline));
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
std::make_pair(StringRef(), QualType()),
/*OpenMPCaptureLevel=*/1);
break;
}
case OMPD_atomic:
case OMPD_critical:
case OMPD_section:
case OMPD_master:
case OMPD_masked:
case OMPD_tile:
case OMPD_unroll:
break;
case OMPD_loop:
// TODO: 'loop' may require additional parameters depending on the binding.
// Treat similar to OMPD_simd/OMPD_for for now.
case OMPD_simd:
case OMPD_for:
case OMPD_for_simd:
case OMPD_sections:
case OMPD_single:
case OMPD_taskgroup:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_ordered:
case OMPD_target_data:
case OMPD_dispatch: {
Sema::CapturedParamNameType Params[] = {
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
Params);
break;
}
case OMPD_task: {
QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
QualType KmpInt32PtrTy =
Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
QualType Args[] = {VoidPtrTy};
FunctionProtoType::ExtProtoInfo EPI;
EPI.Variadic = true;
QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
Sema::CapturedParamNameType Params[] = {
std::make_pair(".global_tid.", KmpInt32Ty),
std::make_pair(".part_id.", KmpInt32PtrTy),
std::make_pair(".privates.", VoidPtrTy),
std::make_pair(
".copy_fn.",
Context.getPointerType(CopyFnType).withConst().withRestrict()),
std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
Params);
// Mark this captured region as inlined, because we don't use outlined
// function directly.
getCurCapturedRegion()->TheCapturedDecl->addAttr(
AlwaysInlineAttr::CreateImplicit(
Context, {}, AttributeCommonInfo::AS_Keyword,
AlwaysInlineAttr::Keyword_forceinline));
break;
}
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd: {
QualType KmpInt32Ty =
Context.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1)
.withConst();
QualType KmpUInt64Ty =
Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0)
.withConst();
QualType KmpInt64Ty =
Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1)
.withConst();
QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
QualType KmpInt32PtrTy =
Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
QualType Args[] = {VoidPtrTy};
FunctionProtoType::ExtProtoInfo EPI;
EPI.Variadic = true;
QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
Sema::CapturedParamNameType Params[] = {
std::make_pair(".global_tid.", KmpInt32Ty),
std::make_pair(".part_id.", KmpInt32PtrTy),
std::make_pair(".privates.", VoidPtrTy),
std::make_pair(
".copy_fn.",
Context.getPointerType(CopyFnType).withConst().withRestrict()),
std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
std::make_pair(".lb.", KmpUInt64Ty),
std::make_pair(".ub.", KmpUInt64Ty),
std::make_pair(".st.", KmpInt64Ty),
std::make_pair(".liter.", KmpInt32Ty),
std::make_pair(".reductions.", VoidPtrTy),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
Params);
// Mark this captured region as inlined, because we don't use outlined
// function directly.
getCurCapturedRegion()->TheCapturedDecl->addAttr(
AlwaysInlineAttr::CreateImplicit(
Context, {}, AttributeCommonInfo::AS_Keyword,
AlwaysInlineAttr::Keyword_forceinline));
break;
}
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd: {
QualType KmpInt32Ty =
Context.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1)
.withConst();
QualType KmpUInt64Ty =
Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0)
.withConst();
QualType KmpInt64Ty =
Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1)
.withConst();
QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
QualType KmpInt32PtrTy =
Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
Sema::CapturedParamNameType ParamsParallel[] = {
std::make_pair(".global_tid.", KmpInt32PtrTy),
std::make_pair(".bound_tid.", KmpInt32PtrTy),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
// Start a captured region for 'parallel'.
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
ParamsParallel, /*OpenMPCaptureLevel=*/0);
QualType Args[] = {VoidPtrTy};
FunctionProtoType::ExtProtoInfo EPI;
EPI.Variadic = true;
QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
Sema::CapturedParamNameType Params[] = {
std::make_pair(".global_tid.", KmpInt32Ty),
std::make_pair(".part_id.", KmpInt32PtrTy),
std::make_pair(".privates.", VoidPtrTy),
std::make_pair(
".copy_fn.",
Context.getPointerType(CopyFnType).withConst().withRestrict()),
std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
std::make_pair(".lb.", KmpUInt64Ty),
std::make_pair(".ub.", KmpUInt64Ty),
std::make_pair(".st.", KmpInt64Ty),
std::make_pair(".liter.", KmpInt32Ty),
std::make_pair(".reductions.", VoidPtrTy),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
Params, /*OpenMPCaptureLevel=*/1);
// Mark this captured region as inlined, because we don't use outlined
// function directly.
getCurCapturedRegion()->TheCapturedDecl->addAttr(
AlwaysInlineAttr::CreateImplicit(
Context, {}, AttributeCommonInfo::AS_Keyword,
AlwaysInlineAttr::Keyword_forceinline));
break;
}
case OMPD_distribute_parallel_for_simd:
case OMPD_distribute_parallel_for: {
QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
QualType KmpInt32PtrTy =
Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
Sema::CapturedParamNameType Params[] = {
std::make_pair(".global_tid.", KmpInt32PtrTy),
std::make_pair(".bound_tid.", KmpInt32PtrTy),
std::make_pair(".previous.lb.", Context.getSizeType().withConst()),
std::make_pair(".previous.ub.", Context.getSizeType().withConst()),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
Params);
break;
}
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd: {
QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
QualType KmpInt32PtrTy =
Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
QualType Args[] = {VoidPtrTy};
FunctionProtoType::ExtProtoInfo EPI;
EPI.Variadic = true;
QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
Sema::CapturedParamNameType Params[] = {
std::make_pair(".global_tid.", KmpInt32Ty),
std::make_pair(".part_id.", KmpInt32PtrTy),
std::make_pair(".privates.", VoidPtrTy),
std::make_pair(
".copy_fn.",
Context.getPointerType(CopyFnType).withConst().withRestrict()),
std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
Params, /*OpenMPCaptureLevel=*/0);
// Mark this captured region as inlined, because we don't use outlined
// function directly.
getCurCapturedRegion()->TheCapturedDecl->addAttr(
AlwaysInlineAttr::CreateImplicit(
Context, {}, AttributeCommonInfo::AS_Keyword,
AlwaysInlineAttr::Keyword_forceinline));
Sema::CapturedParamNameType ParamsTarget[] = {
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
// Start a captured region for 'target' with no implicit parameters.
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
ParamsTarget, /*OpenMPCaptureLevel=*/1);
Sema::CapturedParamNameType ParamsTeams[] = {
std::make_pair(".global_tid.", KmpInt32PtrTy),
std::make_pair(".bound_tid.", KmpInt32PtrTy),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
// Start a captured region for 'target' with no implicit parameters.
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
ParamsTeams, /*OpenMPCaptureLevel=*/2);
Sema::CapturedParamNameType ParamsParallel[] = {
std::make_pair(".global_tid.", KmpInt32PtrTy),
std::make_pair(".bound_tid.", KmpInt32PtrTy),
std::make_pair(".previous.lb.", Context.getSizeType().withConst()),
std::make_pair(".previous.ub.", Context.getSizeType().withConst()),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
// Start a captured region for 'teams' or 'parallel'. Both regions have
// the same implicit parameters.
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
ParamsParallel, /*OpenMPCaptureLevel=*/3);
break;
}
case OMPD_teams_loop: {
QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
QualType KmpInt32PtrTy =
Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
Sema::CapturedParamNameType ParamsTeams[] = {
std::make_pair(".global_tid.", KmpInt32PtrTy),
std::make_pair(".bound_tid.", KmpInt32PtrTy),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
// Start a captured region for 'teams'.
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
ParamsTeams, /*OpenMPCaptureLevel=*/0);
break;
}
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd: {
QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
QualType KmpInt32PtrTy =
Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
Sema::CapturedParamNameType ParamsTeams[] = {
std::make_pair(".global_tid.", KmpInt32PtrTy),
std::make_pair(".bound_tid.", KmpInt32PtrTy),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
// Start a captured region for 'target' with no implicit parameters.
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
ParamsTeams, /*OpenMPCaptureLevel=*/0);
Sema::CapturedParamNameType ParamsParallel[] = {
std::make_pair(".global_tid.", KmpInt32PtrTy),
std::make_pair(".bound_tid.", KmpInt32PtrTy),
std::make_pair(".previous.lb.", Context.getSizeType().withConst()),
std::make_pair(".previous.ub.", Context.getSizeType().withConst()),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
// Start a captured region for 'teams' or 'parallel'. Both regions have
// the same implicit parameters.
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
ParamsParallel, /*OpenMPCaptureLevel=*/1);
break;
}
case OMPD_target_update:
case OMPD_target_enter_data:
case OMPD_target_exit_data: {
QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst();
QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict();
QualType KmpInt32PtrTy =
Context.getPointerType(KmpInt32Ty).withConst().withRestrict();
QualType Args[] = {VoidPtrTy};
FunctionProtoType::ExtProtoInfo EPI;
EPI.Variadic = true;
QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI);
Sema::CapturedParamNameType Params[] = {
std::make_pair(".global_tid.", KmpInt32Ty),
std::make_pair(".part_id.", KmpInt32PtrTy),
std::make_pair(".privates.", VoidPtrTy),
std::make_pair(
".copy_fn.",
Context.getPointerType(CopyFnType).withConst().withRestrict()),
std::make_pair(".task_t.", Context.VoidPtrTy.withConst()),
std::make_pair(StringRef(), QualType()) // __context with shared vars
};
ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP,
Params);
// Mark this captured region as inlined, because we don't use outlined
// function directly.
getCurCapturedRegion()->TheCapturedDecl->addAttr(
AlwaysInlineAttr::CreateImplicit(
Context, {}, AttributeCommonInfo::AS_Keyword,
AlwaysInlineAttr::Keyword_forceinline));
break;
}
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_cancellation_point:
case OMPD_cancel:
case OMPD_flush:
case OMPD_depobj:
case OMPD_scan:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_declare_simd:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_requires:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
case OMPD_metadirective:
llvm_unreachable("OpenMP Directive is not allowed");
case OMPD_unknown:
default:
llvm_unreachable("Unknown OpenMP directive");
}
DSAStack->setContext(CurContext);
handleDeclareVariantConstructTrait(DSAStack, DKind, /* ScopeEntry */ true);
}
int Sema::getNumberOfConstructScopes(unsigned Level) const {
return getOpenMPCaptureLevels(DSAStack->getDirective(Level));
}
int Sema::getOpenMPCaptureLevels(OpenMPDirectiveKind DKind) {
SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
getOpenMPCaptureRegions(CaptureRegions, DKind);
return CaptureRegions.size();
}
static OMPCapturedExprDecl *buildCaptureDecl(Sema &S, IdentifierInfo *Id,
Expr *CaptureExpr, bool WithInit,
bool AsExpression) {
assert(CaptureExpr);
ASTContext &C = S.getASTContext();
Expr *Init = AsExpression ? CaptureExpr : CaptureExpr->IgnoreImpCasts();
QualType Ty = Init->getType();
if (CaptureExpr->getObjectKind() == OK_Ordinary && CaptureExpr->isGLValue()) {
if (S.getLangOpts().CPlusPlus) {
Ty = C.getLValueReferenceType(Ty);
} else {
Ty = C.getPointerType(Ty);
ExprResult Res =
S.CreateBuiltinUnaryOp(CaptureExpr->getExprLoc(), UO_AddrOf, Init);
if (!Res.isUsable())
return nullptr;
Init = Res.get();
}
WithInit = true;
}
auto *CED = OMPCapturedExprDecl::Create(C, S.CurContext, Id, Ty,
CaptureExpr->getBeginLoc());
if (!WithInit)
CED->addAttr(OMPCaptureNoInitAttr::CreateImplicit(C));
S.CurContext->addHiddenDecl(CED);
Sema::TentativeAnalysisScope Trap(S);
S.AddInitializerToDecl(CED, Init, /*DirectInit=*/false);
return CED;
}
static DeclRefExpr *buildCapture(Sema &S, ValueDecl *D, Expr *CaptureExpr,
bool WithInit) {
OMPCapturedExprDecl *CD;
if (VarDecl *VD = S.isOpenMPCapturedDecl(D))
CD = cast<OMPCapturedExprDecl>(VD);
else
CD = buildCaptureDecl(S, D->getIdentifier(), CaptureExpr, WithInit,
/*AsExpression=*/false);
return buildDeclRefExpr(S, CD, CD->getType().getNonReferenceType(),
CaptureExpr->getExprLoc());
}
static ExprResult buildCapture(Sema &S, Expr *CaptureExpr, DeclRefExpr *&Ref) {
CaptureExpr = S.DefaultLvalueConversion(CaptureExpr).get();
if (!Ref) {
OMPCapturedExprDecl *CD = buildCaptureDecl(
S, &S.getASTContext().Idents.get(".capture_expr."), CaptureExpr,
/*WithInit=*/true, /*AsExpression=*/true);
Ref = buildDeclRefExpr(S, CD, CD->getType().getNonReferenceType(),
CaptureExpr->getExprLoc());
}
ExprResult Res = Ref;
if (!S.getLangOpts().CPlusPlus &&
CaptureExpr->getObjectKind() == OK_Ordinary && CaptureExpr->isGLValue() &&
Ref->getType()->isPointerType()) {
Res = S.CreateBuiltinUnaryOp(CaptureExpr->getExprLoc(), UO_Deref, Ref);
if (!Res.isUsable())
return ExprError();
}
return S.DefaultLvalueConversion(Res.get());
}
namespace {
// OpenMP directives parsed in this section are represented as a
// CapturedStatement with an associated statement. If a syntax error
// is detected during the parsing of the associated statement, the
// compiler must abort processing and close the CapturedStatement.
//
// Combined directives such as 'target parallel' have more than one
// nested CapturedStatements. This RAII ensures that we unwind out
// of all the nested CapturedStatements when an error is found.
class CaptureRegionUnwinderRAII {
private:
Sema &S;
bool &ErrorFound;
OpenMPDirectiveKind DKind = OMPD_unknown;
public:
CaptureRegionUnwinderRAII(Sema &S, bool &ErrorFound,
OpenMPDirectiveKind DKind)
: S(S), ErrorFound(ErrorFound), DKind(DKind) {}
~CaptureRegionUnwinderRAII() {
if (ErrorFound) {
int ThisCaptureLevel = S.getOpenMPCaptureLevels(DKind);
while (--ThisCaptureLevel >= 0)
S.ActOnCapturedRegionError();
}
}
};
} // namespace
void Sema::tryCaptureOpenMPLambdas(ValueDecl *V) {
// Capture variables captured by reference in lambdas for target-based
// directives.
if (!CurContext->isDependentContext() &&
(isOpenMPTargetExecutionDirective(DSAStack->getCurrentDirective()) ||
isOpenMPTargetDataManagementDirective(
DSAStack->getCurrentDirective()))) {
QualType Type = V->getType();
if (const auto *RD = Type.getCanonicalType()
.getNonReferenceType()
->getAsCXXRecordDecl()) {
bool SavedForceCaptureByReferenceInTargetExecutable =
DSAStack->isForceCaptureByReferenceInTargetExecutable();
DSAStack->setForceCaptureByReferenceInTargetExecutable(
/*V=*/true);
if (RD->isLambda()) {
llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
FieldDecl *ThisCapture;
RD->getCaptureFields(Captures, ThisCapture);
for (const LambdaCapture &LC : RD->captures()) {
if (LC.getCaptureKind() == LCK_ByRef) {
VarDecl *VD = LC.getCapturedVar();
DeclContext *VDC = VD->getDeclContext();
if (!VDC->Encloses(CurContext))
continue;
MarkVariableReferenced(LC.getLocation(), VD);
} else if (LC.getCaptureKind() == LCK_This) {
QualType ThisTy = getCurrentThisType();
if (!ThisTy.isNull() &&
Context.typesAreCompatible(ThisTy, ThisCapture->getType()))
CheckCXXThisCapture(LC.getLocation());
}
}
}
DSAStack->setForceCaptureByReferenceInTargetExecutable(
SavedForceCaptureByReferenceInTargetExecutable);
}
}
}
static bool checkOrderedOrderSpecified(Sema &S,
const ArrayRef<OMPClause *> Clauses) {
const OMPOrderedClause *Ordered = nullptr;
const OMPOrderClause *Order = nullptr;
for (const OMPClause *Clause : Clauses) {
if (Clause->getClauseKind() == OMPC_ordered)
Ordered = cast<OMPOrderedClause>(Clause);
else if (Clause->getClauseKind() == OMPC_order) {
Order = cast<OMPOrderClause>(Clause);
if (Order->getKind() != OMPC_ORDER_concurrent)
Order = nullptr;
}
if (Ordered && Order)
break;
}
if (Ordered && Order) {
S.Diag(Order->getKindKwLoc(),
diag::err_omp_simple_clause_incompatible_with_ordered)
<< getOpenMPClauseName(OMPC_order)
<< getOpenMPSimpleClauseTypeName(OMPC_order, OMPC_ORDER_concurrent)
<< SourceRange(Order->getBeginLoc(), Order->getEndLoc());
S.Diag(Ordered->getBeginLoc(), diag::note_omp_ordered_param)
<< 0 << SourceRange(Ordered->getBeginLoc(), Ordered->getEndLoc());
return true;
}
return false;
}
StmtResult Sema::ActOnOpenMPRegionEnd(StmtResult S,
ArrayRef<OMPClause *> Clauses) {
handleDeclareVariantConstructTrait(DSAStack, DSAStack->getCurrentDirective(),
/* ScopeEntry */ false);
if (DSAStack->getCurrentDirective() == OMPD_atomic ||
DSAStack->getCurrentDirective() == OMPD_critical ||
DSAStack->getCurrentDirective() == OMPD_section ||
DSAStack->getCurrentDirective() == OMPD_master ||
DSAStack->getCurrentDirective() == OMPD_masked)
return S;
bool ErrorFound = false;
CaptureRegionUnwinderRAII CaptureRegionUnwinder(
*this, ErrorFound, DSAStack->getCurrentDirective());
if (!S.isUsable()) {
ErrorFound = true;
return StmtError();
}
SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
getOpenMPCaptureRegions(CaptureRegions, DSAStack->getCurrentDirective());
OMPOrderedClause *OC = nullptr;
OMPScheduleClause *SC = nullptr;
SmallVector<const OMPLinearClause *, 4> LCs;
SmallVector<const OMPClauseWithPreInit *, 4> PICs;
// This is required for proper codegen.
for (OMPClause *Clause : Clauses) {
if (!LangOpts.OpenMPSimd &&
isOpenMPTaskingDirective(DSAStack->getCurrentDirective()) &&
Clause->getClauseKind() == OMPC_in_reduction) {
// Capture taskgroup task_reduction descriptors inside the tasking regions
// with the corresponding in_reduction items.
auto *IRC = cast<OMPInReductionClause>(Clause);
for (Expr *E : IRC->taskgroup_descriptors())
if (E)
MarkDeclarationsReferencedInExpr(E);
}
if (isOpenMPPrivate(Clause->getClauseKind()) ||
Clause->getClauseKind() == OMPC_copyprivate ||
(getLangOpts().OpenMPUseTLS &&
getASTContext().getTargetInfo().isTLSSupported() &&
Clause->getClauseKind() == OMPC_copyin)) {
DSAStack->setForceVarCapturing(Clause->getClauseKind() == OMPC_copyin);
// Mark all variables in private list clauses as used in inner region.
for (Stmt *VarRef : Clause->children()) {
if (auto *E = cast_or_null<Expr>(VarRef)) {
MarkDeclarationsReferencedInExpr(E);
}
}
DSAStack->setForceVarCapturing(/*V=*/false);
} else if (isOpenMPLoopTransformationDirective(
DSAStack->getCurrentDirective())) {
assert(CaptureRegions.empty() &&
"No captured regions in loop transformation directives.");
} else if (CaptureRegions.size() > 1 ||
CaptureRegions.back() != OMPD_unknown) {
if (auto *C = OMPClauseWithPreInit::get(Clause))
PICs.push_back(C);
if (auto *C = OMPClauseWithPostUpdate::get(Clause)) {
if (Expr *E = C->getPostUpdateExpr())
MarkDeclarationsReferencedInExpr(E);
}
}
if (Clause->getClauseKind() == OMPC_schedule)
SC = cast<OMPScheduleClause>(Clause);
else if (Clause->getClauseKind() == OMPC_ordered)
OC = cast<OMPOrderedClause>(Clause);
else if (Clause->getClauseKind() == OMPC_linear)
LCs.push_back(cast<OMPLinearClause>(Clause));
}
// Capture allocator expressions if used.
for (Expr *E : DSAStack->getInnerAllocators())
MarkDeclarationsReferencedInExpr(E);
// OpenMP, 2.7.1 Loop Construct, Restrictions
// The nonmonotonic modifier cannot be specified if an ordered clause is
// specified.
if (SC &&
(SC->getFirstScheduleModifier() == OMPC_SCHEDULE_MODIFIER_nonmonotonic ||
SC->getSecondScheduleModifier() ==
OMPC_SCHEDULE_MODIFIER_nonmonotonic) &&
OC) {
Diag(SC->getFirstScheduleModifier() == OMPC_SCHEDULE_MODIFIER_nonmonotonic
? SC->getFirstScheduleModifierLoc()
: SC->getSecondScheduleModifierLoc(),
diag::err_omp_simple_clause_incompatible_with_ordered)
<< getOpenMPClauseName(OMPC_schedule)
<< getOpenMPSimpleClauseTypeName(OMPC_schedule,
OMPC_SCHEDULE_MODIFIER_nonmonotonic)
<< SourceRange(OC->getBeginLoc(), OC->getEndLoc());
ErrorFound = true;
}
// OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Restrictions.
// If an order(concurrent) clause is present, an ordered clause may not appear
// on the same directive.
if (checkOrderedOrderSpecified(*this, Clauses))
ErrorFound = true;
if (!LCs.empty() && OC && OC->getNumForLoops()) {
for (const OMPLinearClause *C : LCs) {
Diag(C->getBeginLoc(), diag::err_omp_linear_ordered)
<< SourceRange(OC->getBeginLoc(), OC->getEndLoc());
}
ErrorFound = true;
}
if (isOpenMPWorksharingDirective(DSAStack->getCurrentDirective()) &&
isOpenMPSimdDirective(DSAStack->getCurrentDirective()) && OC &&
OC->getNumForLoops()) {
Diag(OC->getBeginLoc(), diag::err_omp_ordered_simd)
<< getOpenMPDirectiveName(DSAStack->getCurrentDirective());
ErrorFound = true;
}
if (ErrorFound) {
return StmtError();
}
StmtResult SR = S;
unsigned CompletedRegions = 0;
for (OpenMPDirectiveKind ThisCaptureRegion : llvm::reverse(CaptureRegions)) {
// Mark all variables in private list clauses as used in inner region.
// Required for proper codegen of combined directives.
// TODO: add processing for other clauses.
if (ThisCaptureRegion != OMPD_unknown) {
for (const clang::OMPClauseWithPreInit *C : PICs) {
OpenMPDirectiveKind CaptureRegion = C->getCaptureRegion();
// Find the particular capture region for the clause if the
// directive is a combined one with multiple capture regions.
// If the directive is not a combined one, the capture region
// associated with the clause is OMPD_unknown and is generated
// only once.
if (CaptureRegion == ThisCaptureRegion ||
CaptureRegion == OMPD_unknown) {
if (auto *DS = cast_or_null<DeclStmt>(C->getPreInitStmt())) {
for (Decl *D : DS->decls())
MarkVariableReferenced(D->getLocation(), cast<VarDecl>(D));
}
}
}
}
if (ThisCaptureRegion == OMPD_target) {
// Capture allocator traits in the target region. They are used implicitly
// and, thus, are not captured by default.
for (OMPClause *C : Clauses) {
if (const auto *UAC = dyn_cast<OMPUsesAllocatorsClause>(C)) {
for (unsigned I = 0, End = UAC->getNumberOfAllocators(); I < End;
++I) {
OMPUsesAllocatorsClause::Data D = UAC->getAllocatorData(I);
if (Expr *E = D.AllocatorTraits)
MarkDeclarationsReferencedInExpr(E);
}
continue;
}
}
}
if (ThisCaptureRegion == OMPD_parallel) {
// Capture temp arrays for inscan reductions and locals in aligned
// clauses.
for (OMPClause *C : Clauses) {
if (auto *RC = dyn_cast<OMPReductionClause>(C)) {
if (RC->getModifier() != OMPC_REDUCTION_inscan)
continue;
for (Expr *E : RC->copy_array_temps())
MarkDeclarationsReferencedInExpr(E);
}
if (auto *AC = dyn_cast<OMPAlignedClause>(C)) {
for (Expr *E : AC->varlists())
MarkDeclarationsReferencedInExpr(E);
}
}
}
if (++CompletedRegions == CaptureRegions.size())
DSAStack->setBodyComplete();
SR = ActOnCapturedRegionEnd(SR.get());
}
return SR;
}
static bool checkCancelRegion(Sema &SemaRef, OpenMPDirectiveKind CurrentRegion,
OpenMPDirectiveKind CancelRegion,
SourceLocation StartLoc) {
// CancelRegion is only needed for cancel and cancellation_point.
if (CurrentRegion != OMPD_cancel && CurrentRegion != OMPD_cancellation_point)
return false;
if (CancelRegion == OMPD_parallel || CancelRegion == OMPD_for ||
CancelRegion == OMPD_sections || CancelRegion == OMPD_taskgroup)
return false;
SemaRef.Diag(StartLoc, diag::err_omp_wrong_cancel_region)
<< getOpenMPDirectiveName(CancelRegion);
return true;
}
static bool checkNestingOfRegions(Sema &SemaRef, const DSAStackTy *Stack,
OpenMPDirectiveKind CurrentRegion,
const DeclarationNameInfo &CurrentName,
OpenMPDirectiveKind CancelRegion,
OpenMPBindClauseKind BindKind,
SourceLocation StartLoc) {
if (Stack->getCurScope()) {
OpenMPDirectiveKind ParentRegion = Stack->getParentDirective();
OpenMPDirectiveKind OffendingRegion = ParentRegion;
bool NestingProhibited = false;
bool CloseNesting = true;
bool OrphanSeen = false;
enum {
NoRecommend,
ShouldBeInParallelRegion,
ShouldBeInOrderedRegion,
ShouldBeInTargetRegion,
ShouldBeInTeamsRegion,
ShouldBeInLoopSimdRegion,
} Recommend = NoRecommend;
if (isOpenMPSimdDirective(ParentRegion) &&
((SemaRef.LangOpts.OpenMP <= 45 && CurrentRegion != OMPD_ordered) ||
(SemaRef.LangOpts.OpenMP >= 50 && CurrentRegion != OMPD_ordered &&
CurrentRegion != OMPD_simd && CurrentRegion != OMPD_atomic &&
CurrentRegion != OMPD_scan))) {
// OpenMP [2.16, Nesting of Regions]
// OpenMP constructs may not be nested inside a simd region.
// OpenMP [2.8.1,simd Construct, Restrictions]
// An ordered construct with the simd clause is the only OpenMP
// construct that can appear in the simd region.
// Allowing a SIMD construct nested in another SIMD construct is an
// extension. The OpenMP 4.5 spec does not allow it. Issue a warning
// message.
// OpenMP 5.0 [2.9.3.1, simd Construct, Restrictions]
// The only OpenMP constructs that can be encountered during execution of
// a simd region are the atomic construct, the loop construct, the simd
// construct and the ordered construct with the simd clause.
SemaRef.Diag(StartLoc, (CurrentRegion != OMPD_simd)
? diag::err_omp_prohibited_region_simd
: diag::warn_omp_nesting_simd)
<< (SemaRef.LangOpts.OpenMP >= 50 ? 1 : 0);
return CurrentRegion != OMPD_simd;
}
if (ParentRegion == OMPD_atomic) {
// OpenMP [2.16, Nesting of Regions]
// OpenMP constructs may not be nested inside an atomic region.
SemaRef.Diag(StartLoc, diag::err_omp_prohibited_region_atomic);
return true;
}
if (CurrentRegion == OMPD_section) {
// OpenMP [2.7.2, sections Construct, Restrictions]
// Orphaned section directives are prohibited. That is, the section
// directives must appear within the sections construct and must not be
// encountered elsewhere in the sections region.
if (ParentRegion != OMPD_sections &&
ParentRegion != OMPD_parallel_sections) {
SemaRef.Diag(StartLoc, diag::err_omp_orphaned_section_directive)
<< (ParentRegion != OMPD_unknown)
<< getOpenMPDirectiveName(ParentRegion);
return true;
}
return false;
}
// Allow some constructs (except teams and cancellation constructs) to be
// orphaned (they could be used in functions, called from OpenMP regions
// with the required preconditions).
if (ParentRegion == OMPD_unknown &&
!isOpenMPNestingTeamsDirective(CurrentRegion) &&
CurrentRegion != OMPD_cancellation_point &&
CurrentRegion != OMPD_cancel && CurrentRegion != OMPD_scan)
return false;
if (CurrentRegion == OMPD_cancellation_point ||
CurrentRegion == OMPD_cancel) {
// OpenMP [2.16, Nesting of Regions]
// A cancellation point construct for which construct-type-clause is
// taskgroup must be nested inside a task construct. A cancellation
// point construct for which construct-type-clause is not taskgroup must
// be closely nested inside an OpenMP construct that matches the type
// specified in construct-type-clause.
// A cancel construct for which construct-type-clause is taskgroup must be
// nested inside a task construct. A cancel construct for which
// construct-type-clause is not taskgroup must be closely nested inside an
// OpenMP construct that matches the type specified in
// construct-type-clause.
NestingProhibited =
!((CancelRegion == OMPD_parallel &&
(ParentRegion == OMPD_parallel ||
ParentRegion == OMPD_target_parallel)) ||
(CancelRegion == OMPD_for &&
(ParentRegion == OMPD_for || ParentRegion == OMPD_parallel_for ||
ParentRegion == OMPD_target_parallel_for ||
ParentRegion == OMPD_distribute_parallel_for ||
ParentRegion == OMPD_teams_distribute_parallel_for ||
ParentRegion == OMPD_target_teams_distribute_parallel_for)) ||
(CancelRegion == OMPD_taskgroup &&
(ParentRegion == OMPD_task ||
(SemaRef.getLangOpts().OpenMP >= 50 &&
(ParentRegion == OMPD_taskloop ||
ParentRegion == OMPD_master_taskloop ||
ParentRegion == OMPD_parallel_master_taskloop)))) ||
(CancelRegion == OMPD_sections &&
(ParentRegion == OMPD_section || ParentRegion == OMPD_sections ||
ParentRegion == OMPD_parallel_sections)));
OrphanSeen = ParentRegion == OMPD_unknown;
} else if (CurrentRegion == OMPD_master || CurrentRegion == OMPD_masked) {
// OpenMP 5.1 [2.22, Nesting of Regions]
// A masked region may not be closely nested inside a worksharing, loop,
// atomic, task, or taskloop region.
NestingProhibited = isOpenMPWorksharingDirective(ParentRegion) ||
isOpenMPGenericLoopDirective(ParentRegion) ||
isOpenMPTaskingDirective(ParentRegion);
} else if (CurrentRegion == OMPD_critical && CurrentName.getName()) {
// OpenMP [2.16, Nesting of Regions]
// A critical region may not be nested (closely or otherwise) inside a
// critical region with the same name. Note that this restriction is not
// sufficient to prevent deadlock.
SourceLocation PreviousCriticalLoc;
bool DeadLock = Stack->hasDirective(
[CurrentName, &PreviousCriticalLoc](OpenMPDirectiveKind K,
const DeclarationNameInfo &DNI,
SourceLocation Loc) {
if (K == OMPD_critical && DNI.getName() == CurrentName.getName()) {
PreviousCriticalLoc = Loc;
return true;
}
return false;
},
false /* skip top directive */);
if (DeadLock) {
SemaRef.Diag(StartLoc,
diag::err_omp_prohibited_region_critical_same_name)
<< CurrentName.getName();
if (PreviousCriticalLoc.isValid())
SemaRef.Diag(PreviousCriticalLoc,
diag::note_omp_previous_critical_region);
return true;
}
} else if (CurrentRegion == OMPD_barrier) {
// OpenMP 5.1 [2.22, Nesting of Regions]
// A barrier region may not be closely nested inside a worksharing, loop,
// task, taskloop, critical, ordered, atomic, or masked region.
NestingProhibited =
isOpenMPWorksharingDirective(ParentRegion) ||
isOpenMPGenericLoopDirective(ParentRegion) ||
isOpenMPTaskingDirective(ParentRegion) ||
ParentRegion == OMPD_master || ParentRegion == OMPD_masked ||
ParentRegion == OMPD_parallel_master ||
ParentRegion == OMPD_critical || ParentRegion == OMPD_ordered;
} else if (isOpenMPWorksharingDirective(CurrentRegion) &&
!isOpenMPParallelDirective(CurrentRegion) &&
!isOpenMPTeamsDirective(CurrentRegion)) {
// OpenMP 5.1 [2.22, Nesting of Regions]
// A loop region that binds to a parallel region or a worksharing region
// may not be closely nested inside a worksharing, loop, task, taskloop,
// critical, ordered, atomic, or masked region.
NestingProhibited =
isOpenMPWorksharingDirective(ParentRegion) ||
isOpenMPGenericLoopDirective(ParentRegion) ||
isOpenMPTaskingDirective(ParentRegion) ||
ParentRegion == OMPD_master || ParentRegion == OMPD_masked ||
ParentRegion == OMPD_parallel_master ||
ParentRegion == OMPD_critical || ParentRegion == OMPD_ordered;
Recommend = ShouldBeInParallelRegion;
} else if (CurrentRegion == OMPD_ordered) {
// OpenMP [2.16, Nesting of Regions]
// An ordered region may not be closely nested inside a critical,
// atomic, or explicit task region.
// An ordered region must be closely nested inside a loop region (or
// parallel loop region) with an ordered clause.
// OpenMP [2.8.1,simd Construct, Restrictions]
// An ordered construct with the simd clause is the only OpenMP construct
// that can appear in the simd region.
NestingProhibited = ParentRegion == OMPD_critical ||
isOpenMPTaskingDirective(ParentRegion) ||
!(isOpenMPSimdDirective(ParentRegion) ||
Stack->isParentOrderedRegion());
Recommend = ShouldBeInOrderedRegion;
} else if (isOpenMPNestingTeamsDirective(CurrentRegion)) {
// OpenMP [2.16, Nesting of Regions]
// If specified, a teams construct must be contained within a target
// construct.
NestingProhibited =
(SemaRef.LangOpts.OpenMP <= 45 && ParentRegion != OMPD_target) ||
(SemaRef.LangOpts.OpenMP >= 50 && ParentRegion != OMPD_unknown &&
ParentRegion != OMPD_target);
OrphanSeen = ParentRegion == OMPD_unknown;
Recommend = ShouldBeInTargetRegion;
} else if (CurrentRegion == OMPD_scan) {
// OpenMP [2.16, Nesting of Regions]
// If specified, a teams construct must be contained within a target
// construct.
NestingProhibited =
SemaRef.LangOpts.OpenMP < 50 ||
(ParentRegion != OMPD_simd && ParentRegion != OMPD_for &&
ParentRegion != OMPD_for_simd && ParentRegion != OMPD_parallel_for &&
ParentRegion != OMPD_parallel_for_simd);
OrphanSeen = ParentRegion == OMPD_unknown;
Recommend = ShouldBeInLoopSimdRegion;
}
if (!NestingProhibited &&
!isOpenMPTargetExecutionDirective(CurrentRegion) &&
!isOpenMPTargetDataManagementDirective(CurrentRegion) &&
(ParentRegion == OMPD_teams || ParentRegion == OMPD_target_teams)) {
// OpenMP [5.1, 2.22, Nesting of Regions]
// distribute, distribute simd, distribute parallel worksharing-loop,
// distribute parallel worksharing-loop SIMD, loop, parallel regions,
// including any parallel regions arising from combined constructs,
// omp_get_num_teams() regions, and omp_get_team_num() regions are the
// only OpenMP regions that may be strictly nested inside the teams
// region.
NestingProhibited = !isOpenMPParallelDirective(CurrentRegion) &&
!isOpenMPDistributeDirective(CurrentRegion) &&
CurrentRegion != OMPD_loop;
Recommend = ShouldBeInParallelRegion;
}
if (!NestingProhibited && CurrentRegion == OMPD_loop) {
// OpenMP [5.1, 2.11.7, loop Construct, Restrictions]
// If the bind clause is present on the loop construct and binding is
// teams then the corresponding loop region must be strictly nested inside
// a teams region.
NestingProhibited = BindKind == OMPC_BIND_teams &&
ParentRegion != OMPD_teams &&
ParentRegion != OMPD_target_teams;
Recommend = ShouldBeInTeamsRegion;
}
if (!NestingProhibited &&
isOpenMPNestingDistributeDirective(CurrentRegion)) {
// OpenMP 4.5 [2.17 Nesting of Regions]
// The region associated with the distribute construct must be strictly
// nested inside a teams region
NestingProhibited =
(ParentRegion != OMPD_teams && ParentRegion != OMPD_target_teams);
Recommend = ShouldBeInTeamsRegion;
}
if (!NestingProhibited &&
(isOpenMPTargetExecutionDirective(CurrentRegion) ||
isOpenMPTargetDataManagementDirective(CurrentRegion))) {
// OpenMP 4.5 [2.17 Nesting of Regions]
// If a target, target update, target data, target enter data, or
// target exit data construct is encountered during execution of a
// target region, the behavior is unspecified.
NestingProhibited = Stack->hasDirective(
[&OffendingRegion](OpenMPDirectiveKind K, const DeclarationNameInfo &,
SourceLocation) {
if (isOpenMPTargetExecutionDirective(K)) {
OffendingRegion = K;
return true;
}
return false;
},
false /* don't skip top directive */);
CloseNesting = false;
}
if (NestingProhibited) {
if (OrphanSeen) {
SemaRef.Diag(StartLoc, diag::err_omp_orphaned_device_directive)
<< getOpenMPDirectiveName(CurrentRegion) << Recommend;
} else {
SemaRef.Diag(StartLoc, diag::err_omp_prohibited_region)
<< CloseNesting << getOpenMPDirectiveName(OffendingRegion)
<< Recommend << getOpenMPDirectiveName(CurrentRegion);
}
return true;
}
}
return false;
}
struct Kind2Unsigned {
using argument_type = OpenMPDirectiveKind;
unsigned operator()(argument_type DK) { return unsigned(DK); }
};
static bool checkIfClauses(Sema &S, OpenMPDirectiveKind Kind,
ArrayRef<OMPClause *> Clauses,
ArrayRef<OpenMPDirectiveKind> AllowedNameModifiers) {
bool ErrorFound = false;
unsigned NamedModifiersNumber = 0;
llvm::IndexedMap<const OMPIfClause *, Kind2Unsigned> FoundNameModifiers;
FoundNameModifiers.resize(llvm::omp::Directive_enumSize + 1);
SmallVector<SourceLocation, 4> NameModifierLoc;
for (const OMPClause *C : Clauses) {
if (const auto *IC = dyn_cast_or_null<OMPIfClause>(C)) {
// At most one if clause without a directive-name-modifier can appear on
// the directive.
OpenMPDirectiveKind CurNM = IC->getNameModifier();
if (FoundNameModifiers[CurNM]) {
S.Diag(C->getBeginLoc(), diag::err_omp_more_one_clause)
<< getOpenMPDirectiveName(Kind) << getOpenMPClauseName(OMPC_if)
<< (CurNM != OMPD_unknown) << getOpenMPDirectiveName(CurNM);
ErrorFound = true;
} else if (CurNM != OMPD_unknown) {
NameModifierLoc.push_back(IC->getNameModifierLoc());
++NamedModifiersNumber;
}
FoundNameModifiers[CurNM] = IC;
if (CurNM == OMPD_unknown)
continue;
// Check if the specified name modifier is allowed for the current
// directive.
// At most one if clause with the particular directive-name-modifier can
// appear on the directive.
if (!llvm::is_contained(AllowedNameModifiers, CurNM)) {
S.Diag(IC->getNameModifierLoc(),
diag::err_omp_wrong_if_directive_name_modifier)
<< getOpenMPDirectiveName(CurNM) << getOpenMPDirectiveName(Kind);
ErrorFound = true;
}
}
}
// If any if clause on the directive includes a directive-name-modifier then
// all if clauses on the directive must include a directive-name-modifier.
if (FoundNameModifiers[OMPD_unknown] && NamedModifiersNumber > 0) {
if (NamedModifiersNumber == AllowedNameModifiers.size()) {
S.Diag(FoundNameModifiers[OMPD_unknown]->getBeginLoc(),
diag::err_omp_no_more_if_clause);
} else {
std::string Values;
std::string Sep(", ");
unsigned AllowedCnt = 0;
unsigned TotalAllowedNum =
AllowedNameModifiers.size() - NamedModifiersNumber;
for (unsigned Cnt = 0, End = AllowedNameModifiers.size(); Cnt < End;
++Cnt) {
OpenMPDirectiveKind NM = AllowedNameModifiers[Cnt];
if (!FoundNameModifiers[NM]) {
Values += "'";
Values += getOpenMPDirectiveName(NM);
Values += "'";
if (AllowedCnt + 2 == TotalAllowedNum)
Values += " or ";
else if (AllowedCnt + 1 != TotalAllowedNum)
Values += Sep;
++AllowedCnt;
}
}
S.Diag(FoundNameModifiers[OMPD_unknown]->getCondition()->getBeginLoc(),
diag::err_omp_unnamed_if_clause)
<< (TotalAllowedNum > 1) << Values;
}
for (SourceLocation Loc : NameModifierLoc) {
S.Diag(Loc, diag::note_omp_previous_named_if_clause);
}
ErrorFound = true;
}
return ErrorFound;
}
static std::pair<ValueDecl *, bool> getPrivateItem(Sema &S, Expr *&RefExpr,
SourceLocation &ELoc,
SourceRange &ERange,
bool AllowArraySection) {
if (RefExpr->isTypeDependent() || RefExpr->isValueDependent() ||
RefExpr->containsUnexpandedParameterPack())
return std::make_pair(nullptr, true);
// OpenMP [3.1, C/C++]
// A list item is a variable name.
// OpenMP [2.9.3.3, Restrictions, p.1]
// A variable that is part of another variable (as an array or
// structure element) cannot appear in a private clause.
RefExpr = RefExpr->IgnoreParens();
enum {
NoArrayExpr = -1,
ArraySubscript = 0,
OMPArraySection = 1
} IsArrayExpr = NoArrayExpr;
if (AllowArraySection) {
if (auto *ASE = dyn_cast_or_null<ArraySubscriptExpr>(RefExpr)) {
Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
Base = TempASE->getBase()->IgnoreParenImpCasts();
RefExpr = Base;
IsArrayExpr = ArraySubscript;
} else if (auto *OASE = dyn_cast_or_null<OMPArraySectionExpr>(RefExpr)) {
Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
Base = TempOASE->getBase()->IgnoreParenImpCasts();
while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
Base = TempASE->getBase()->IgnoreParenImpCasts();
RefExpr = Base;
IsArrayExpr = OMPArraySection;
}
}
ELoc = RefExpr->getExprLoc();
ERange = RefExpr->getSourceRange();
RefExpr = RefExpr->IgnoreParenImpCasts();
auto *DE = dyn_cast_or_null<DeclRefExpr>(RefExpr);
auto *ME = dyn_cast_or_null<MemberExpr>(RefExpr);
if ((!DE || !isa<VarDecl>(DE->getDecl())) &&
(S.getCurrentThisType().isNull() || !ME ||
!isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()) ||
!isa<FieldDecl>(ME->getMemberDecl()))) {
if (IsArrayExpr != NoArrayExpr) {
S.Diag(ELoc, diag::err_omp_expected_base_var_name)
<< IsArrayExpr << ERange;
} else {
S.Diag(ELoc,
AllowArraySection
? diag::err_omp_expected_var_name_member_expr_or_array_item
: diag::err_omp_expected_var_name_member_expr)
<< (S.getCurrentThisType().isNull() ? 0 : 1) << ERange;
}
return std::make_pair(nullptr, false);
}
return std::make_pair(
getCanonicalDecl(DE ? DE->getDecl() : ME->getMemberDecl()), false);
}
namespace {
/// Checks if the allocator is used in uses_allocators clause to be allowed in
/// target regions.
class AllocatorChecker final : public ConstStmtVisitor<AllocatorChecker, bool> {
DSAStackTy *S = nullptr;
public:
bool VisitDeclRefExpr(const DeclRefExpr *E) {
return S->isUsesAllocatorsDecl(E->getDecl())
.getValueOr(
DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait) ==
DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait;
}
bool VisitStmt(const Stmt *S) {
for (const Stmt *Child : S->children()) {
if (Child && Visit(Child))
return true;
}
return false;
}
explicit AllocatorChecker(DSAStackTy *S) : S(S) {}
};
} // namespace
static void checkAllocateClauses(Sema &S, DSAStackTy *Stack,
ArrayRef<OMPClause *> Clauses) {
assert(!S.CurContext->isDependentContext() &&
"Expected non-dependent context.");
auto AllocateRange =
llvm::make_filter_range(Clauses, OMPAllocateClause::classof);
llvm::DenseMap<CanonicalDeclPtr<Decl>, CanonicalDeclPtr<VarDecl>> DeclToCopy;
auto PrivateRange = llvm::make_filter_range(Clauses, [](const OMPClause *C) {
return isOpenMPPrivate(C->getClauseKind());
});
for (OMPClause *Cl : PrivateRange) {
MutableArrayRef<Expr *>::iterator I, It, Et;
if (Cl->getClauseKind() == OMPC_private) {
auto *PC = cast<OMPPrivateClause>(Cl);
I = PC->private_copies().begin();
It = PC->varlist_begin();
Et = PC->varlist_end();
} else if (Cl->getClauseKind() == OMPC_firstprivate) {
auto *PC = cast<OMPFirstprivateClause>(Cl);
I = PC->private_copies().begin();
It = PC->varlist_begin();
Et = PC->varlist_end();
} else if (Cl->getClauseKind() == OMPC_lastprivate) {
auto *PC = cast<OMPLastprivateClause>(Cl);
I = PC->private_copies().begin();
It = PC->varlist_begin();
Et = PC->varlist_end();
} else if (Cl->getClauseKind() == OMPC_linear) {
auto *PC = cast<OMPLinearClause>(Cl);
I = PC->privates().begin();
It = PC->varlist_begin();
Et = PC->varlist_end();
} else if (Cl->getClauseKind() == OMPC_reduction) {
auto *PC = cast<OMPReductionClause>(Cl);
I = PC->privates().begin();
It = PC->varlist_begin();
Et = PC->varlist_end();
} else if (Cl->getClauseKind() == OMPC_task_reduction) {
auto *PC = cast<OMPTaskReductionClause>(Cl);
I = PC->privates().begin();
It = PC->varlist_begin();
Et = PC->varlist_end();
} else if (Cl->getClauseKind() == OMPC_in_reduction) {
auto *PC = cast<OMPInReductionClause>(Cl);
I = PC->privates().begin();
It = PC->varlist_begin();
Et = PC->varlist_end();
} else {
llvm_unreachable("Expected private clause.");
}
for (Expr *E : llvm::make_range(It, Et)) {
if (!*I) {
++I;
continue;
}
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = E;
auto Res = getPrivateItem(S, SimpleRefExpr, ELoc, ERange,
/*AllowArraySection=*/true);
DeclToCopy.try_emplace(Res.first,
cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()));
++I;
}
}
for (OMPClause *C : AllocateRange) {
auto *AC = cast<OMPAllocateClause>(C);
if (S.getLangOpts().OpenMP >= 50 &&
!Stack->hasRequiresDeclWithClause<OMPDynamicAllocatorsClause>() &&
isOpenMPTargetExecutionDirective(Stack->getCurrentDirective()) &&
AC->getAllocator()) {
Expr *Allocator = AC->getAllocator();
// OpenMP, 2.12.5 target Construct
// Memory allocators that do not appear in a uses_allocators clause cannot
// appear as an allocator in an allocate clause or be used in the target
// region unless a requires directive with the dynamic_allocators clause
// is present in the same compilation unit.
AllocatorChecker Checker(Stack);
if (Checker.Visit(Allocator))
S.Diag(Allocator->getExprLoc(),
diag::err_omp_allocator_not_in_uses_allocators)
<< Allocator->getSourceRange();
}
OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind =
getAllocatorKind(S, Stack, AC->getAllocator());
// OpenMP, 2.11.4 allocate Clause, Restrictions.
// For task, taskloop or target directives, allocation requests to memory
// allocators with the trait access set to thread result in unspecified
// behavior.
if (AllocatorKind == OMPAllocateDeclAttr::OMPThreadMemAlloc &&
(isOpenMPTaskingDirective(Stack->getCurrentDirective()) ||
isOpenMPTargetExecutionDirective(Stack->getCurrentDirective()))) {
S.Diag(AC->getAllocator()->getExprLoc(),
diag::warn_omp_allocate_thread_on_task_target_directive)
<< getOpenMPDirectiveName(Stack->getCurrentDirective());
}
for (Expr *E : AC->varlists()) {
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = E;
auto Res = getPrivateItem(S, SimpleRefExpr, ELoc, ERange);
ValueDecl *VD = Res.first;
DSAStackTy::DSAVarData Data = Stack->getTopDSA(VD, /*FromParent=*/false);
if (!isOpenMPPrivate(Data.CKind)) {
S.Diag(E->getExprLoc(),
diag::err_omp_expected_private_copy_for_allocate);
continue;
}
VarDecl *PrivateVD = DeclToCopy[VD];
if (checkPreviousOMPAllocateAttribute(S, Stack, E, PrivateVD,
AllocatorKind, AC->getAllocator()))
continue;
// Placeholder until allocate clause supports align modifier.
Expr *Alignment = nullptr;
applyOMPAllocateAttribute(S, PrivateVD, AllocatorKind, AC->getAllocator(),
Alignment, E->getSourceRange());
}
}
}
namespace {
/// Rewrite statements and expressions for Sema \p Actions CurContext.
///
/// Used to wrap already parsed statements/expressions into a new CapturedStmt
/// context. DeclRefExpr used inside the new context are changed to refer to the
/// captured variable instead.
class CaptureVars : public TreeTransform<CaptureVars> {
using BaseTransform = TreeTransform<CaptureVars>;
public:
CaptureVars(Sema &Actions) : BaseTransform(Actions) {}
bool AlwaysRebuild() { return true; }
};
} // namespace
static VarDecl *precomputeExpr(Sema &Actions,
SmallVectorImpl<Stmt *> &BodyStmts, Expr *E,
StringRef Name) {
Expr *NewE = AssertSuccess(CaptureVars(Actions).TransformExpr(E));
VarDecl *NewVar = buildVarDecl(Actions, {}, NewE->getType(), Name, nullptr,
dyn_cast<DeclRefExpr>(E->IgnoreImplicit()));
auto *NewDeclStmt = cast<DeclStmt>(AssertSuccess(
Actions.ActOnDeclStmt(Actions.ConvertDeclToDeclGroup(NewVar), {}, {})));
Actions.AddInitializerToDecl(NewDeclStmt->getSingleDecl(), NewE, false);
BodyStmts.push_back(NewDeclStmt);
return NewVar;
}
/// Create a closure that computes the number of iterations of a loop.
///
/// \param Actions The Sema object.
/// \param LogicalTy Type for the logical iteration number.
/// \param Rel Comparison operator of the loop condition.
/// \param StartExpr Value of the loop counter at the first iteration.
/// \param StopExpr Expression the loop counter is compared against in the loop
/// condition. \param StepExpr Amount of increment after each iteration.
///
/// \return Closure (CapturedStmt) of the distance calculation.
static CapturedStmt *buildDistanceFunc(Sema &Actions, QualType LogicalTy,
BinaryOperator::Opcode Rel,
Expr *StartExpr, Expr *StopExpr,
Expr *StepExpr) {
ASTContext &Ctx = Actions.getASTContext();
TypeSourceInfo *LogicalTSI = Ctx.getTrivialTypeSourceInfo(LogicalTy);
// Captured regions currently don't support return values, we use an
// out-parameter instead. All inputs are implicit captures.
// TODO: Instead of capturing each DeclRefExpr occurring in
// StartExpr/StopExpr/Step, these could also be passed as a value capture.
QualType ResultTy = Ctx.getLValueReferenceType(LogicalTy);
Sema::CapturedParamNameType Params[] = {{"Distance", ResultTy},
{StringRef(), QualType()}};
Actions.ActOnCapturedRegionStart({}, nullptr, CR_Default, Params);
Stmt *Body;
{
Sema::CompoundScopeRAII CompoundScope(Actions);
CapturedDecl *CS = cast<CapturedDecl>(Actions.CurContext);
// Get the LValue expression for the result.
ImplicitParamDecl *DistParam = CS->getParam(0);
DeclRefExpr *DistRef = Actions.BuildDeclRefExpr(
DistParam, LogicalTy, VK_LValue, {}, nullptr, nullptr, {}, nullptr);
SmallVector<Stmt *, 4> BodyStmts;
// Capture all referenced variable references.
// TODO: Instead of computing NewStart/NewStop/NewStep inside the
// CapturedStmt, we could compute them before and capture the result, to be
// used jointly with the LoopVar function.
VarDecl *NewStart = precomputeExpr(Actions, BodyStmts, StartExpr, ".start");
VarDecl *NewStop = precomputeExpr(Actions, BodyStmts, StopExpr, ".stop");
VarDecl *NewStep = precomputeExpr(Actions, BodyStmts, StepExpr, ".step");
auto BuildVarRef = [&](VarDecl *VD) {
return buildDeclRefExpr(Actions, VD, VD->getType(), {});
};
IntegerLiteral *Zero = IntegerLiteral::Create(
Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), 0), LogicalTy, {});
IntegerLiteral *One = IntegerLiteral::Create(
Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), 1), LogicalTy, {});
Expr *Dist;
if (Rel == BO_NE) {
// When using a != comparison, the increment can be +1 or -1. This can be
// dynamic at runtime, so we need to check for the direction.
Expr *IsNegStep = AssertSuccess(
Actions.BuildBinOp(nullptr, {}, BO_LT, BuildVarRef(NewStep), Zero));
// Positive increment.
Expr *ForwardRange = AssertSuccess(Actions.BuildBinOp(
nullptr, {}, BO_Sub, BuildVarRef(NewStop), BuildVarRef(NewStart)));
ForwardRange = AssertSuccess(
Actions.BuildCStyleCastExpr({}, LogicalTSI, {}, ForwardRange));
Expr *ForwardDist = AssertSuccess(Actions.BuildBinOp(
nullptr, {}, BO_Div, ForwardRange, BuildVarRef(NewStep)));
// Negative increment.
Expr *BackwardRange = AssertSuccess(Actions.BuildBinOp(
nullptr, {}, BO_Sub, BuildVarRef(NewStart), BuildVarRef(NewStop)));
BackwardRange = AssertSuccess(
Actions.BuildCStyleCastExpr({}, LogicalTSI, {}, BackwardRange));
Expr *NegIncAmount = AssertSuccess(
Actions.BuildUnaryOp(nullptr, {}, UO_Minus, BuildVarRef(NewStep)));
Expr *BackwardDist = AssertSuccess(
Actions.BuildBinOp(nullptr, {}, BO_Div, BackwardRange, NegIncAmount));
// Use the appropriate case.
Dist = AssertSuccess(Actions.ActOnConditionalOp(
{}, {}, IsNegStep, BackwardDist, ForwardDist));
} else {
assert((Rel == BO_LT || Rel == BO_LE || Rel == BO_GE || Rel == BO_GT) &&
"Expected one of these relational operators");
// We can derive the direction from any other comparison operator. It is
// non well-formed OpenMP if Step increments/decrements in the other
// directions. Whether at least the first iteration passes the loop
// condition.
Expr *HasAnyIteration = AssertSuccess(Actions.BuildBinOp(
nullptr, {}, Rel, BuildVarRef(NewStart), BuildVarRef(NewStop)));
// Compute the range between first and last counter value.
Expr *Range;
if (Rel == BO_GE || Rel == BO_GT)
Range = AssertSuccess(Actions.BuildBinOp(
nullptr, {}, BO_Sub, BuildVarRef(NewStart), BuildVarRef(NewStop)));
else
Range = AssertSuccess(Actions.BuildBinOp(
nullptr, {}, BO_Sub, BuildVarRef(NewStop), BuildVarRef(NewStart)));
// Ensure unsigned range space.
Range =
AssertSuccess(Actions.BuildCStyleCastExpr({}, LogicalTSI, {}, Range));
if (Rel == BO_LE || Rel == BO_GE) {
// Add one to the range if the relational operator is inclusive.
Range =
AssertSuccess(Actions.BuildBinOp(nullptr, {}, BO_Add, Range, One));
}
// Divide by the absolute step amount. If the range is not a multiple of
// the step size, rounding-up the effective upper bound ensures that the
// last iteration is included.
// Note that the rounding-up may cause an overflow in a temporry that
// could be avoided, but would have occurred in a C-style for-loop as well.
Expr *Divisor = BuildVarRef(NewStep);
if (Rel == BO_GE || Rel == BO_GT)
Divisor =
AssertSuccess(Actions.BuildUnaryOp(nullptr, {}, UO_Minus, Divisor));
Expr *DivisorMinusOne =
AssertSuccess(Actions.BuildBinOp(nullptr, {}, BO_Sub, Divisor, One));
Expr *RangeRoundUp = AssertSuccess(
Actions.BuildBinOp(nullptr, {}, BO_Add, Range, DivisorMinusOne));
Dist = AssertSuccess(
Actions.BuildBinOp(nullptr, {}, BO_Div, RangeRoundUp, Divisor));
// If there is not at least one iteration, the range contains garbage. Fix
// to zero in this case.
Dist = AssertSuccess(
Actions.ActOnConditionalOp({}, {}, HasAnyIteration, Dist, Zero));
}
// Assign the result to the out-parameter.
Stmt *ResultAssign = AssertSuccess(Actions.BuildBinOp(
Actions.getCurScope(), {}, BO_Assign, DistRef, Dist));
BodyStmts.push_back(ResultAssign);
Body = AssertSuccess(Actions.ActOnCompoundStmt({}, {}, BodyStmts, false));
}
return cast<CapturedStmt>(
AssertSuccess(Actions.ActOnCapturedRegionEnd(Body)));
}
/// Create a closure that computes the loop variable from the logical iteration
/// number.
///
/// \param Actions The Sema object.
/// \param LoopVarTy Type for the loop variable used for result value.
/// \param LogicalTy Type for the logical iteration number.
/// \param StartExpr Value of the loop counter at the first iteration.
/// \param Step Amount of increment after each iteration.
/// \param Deref Whether the loop variable is a dereference of the loop
/// counter variable.
///
/// \return Closure (CapturedStmt) of the loop value calculation.
static CapturedStmt *buildLoopVarFunc(Sema &Actions, QualType LoopVarTy,
QualType LogicalTy,
DeclRefExpr *StartExpr, Expr *Step,
bool Deref) {
ASTContext &Ctx = Actions.getASTContext();
// Pass the result as an out-parameter. Passing as return value would require
// the OpenMPIRBuilder to know additional C/C++ semantics, such as how to
// invoke a copy constructor.
QualType TargetParamTy = Ctx.getLValueReferenceType(LoopVarTy);
Sema::CapturedParamNameType Params[] = {{"LoopVar", TargetParamTy},
{"Logical", LogicalTy},
{StringRef(), QualType()}};
Actions.ActOnCapturedRegionStart({}, nullptr, CR_Default, Params);
// Capture the initial iterator which represents the LoopVar value at the
// zero's logical iteration. Since the original ForStmt/CXXForRangeStmt update
// it in every iteration, capture it by value before it is modified.
VarDecl *StartVar = cast<VarDecl>(StartExpr->getDecl());
bool Invalid = Actions.tryCaptureVariable(StartVar, {},
Sema::TryCapture_ExplicitByVal, {});
(void)Invalid;
assert(!Invalid && "Expecting capture-by-value to work.");
Expr *Body;
{
Sema::CompoundScopeRAII CompoundScope(Actions);
auto *CS = cast<CapturedDecl>(Actions.CurContext);
ImplicitParamDecl *TargetParam = CS->getParam(0);
DeclRefExpr *TargetRef = Actions.BuildDeclRefExpr(
TargetParam, LoopVarTy, VK_LValue, {}, nullptr, nullptr, {}, nullptr);
ImplicitParamDecl *IndvarParam = CS->getParam(1);
DeclRefExpr *LogicalRef = Actions.BuildDeclRefExpr(
IndvarParam, LogicalTy, VK_LValue, {}, nullptr, nullptr, {}, nullptr);
// Capture the Start expression.
CaptureVars Recap(Actions);
Expr *NewStart = AssertSuccess(Recap.TransformExpr(StartExpr));
Expr *NewStep = AssertSuccess(Recap.TransformExpr(Step));
Expr *Skip = AssertSuccess(
Actions.BuildBinOp(nullptr, {}, BO_Mul, NewStep, LogicalRef));
// TODO: Explicitly cast to the iterator's difference_type instead of
// relying on implicit conversion.
Expr *Advanced =
AssertSuccess(Actions.BuildBinOp(nullptr, {}, BO_Add, NewStart, Skip));
if (Deref) {
// For range-based for-loops convert the loop counter value to a concrete
// loop variable value by dereferencing the iterator.
Advanced =
AssertSuccess(Actions.BuildUnaryOp(nullptr, {}, UO_Deref, Advanced));
}
// Assign the result to the output parameter.
Body = AssertSuccess(Actions.BuildBinOp(Actions.getCurScope(), {},
BO_Assign, TargetRef, Advanced));
}
return cast<CapturedStmt>(
AssertSuccess(Actions.ActOnCapturedRegionEnd(Body)));
}
StmtResult Sema::ActOnOpenMPCanonicalLoop(Stmt *AStmt) {
ASTContext &Ctx = getASTContext();
// Extract the common elements of ForStmt and CXXForRangeStmt:
// Loop variable, repeat condition, increment
Expr *Cond, *Inc;
VarDecl *LIVDecl, *LUVDecl;
if (auto *For = dyn_cast<ForStmt>(AStmt)) {
Stmt *Init = For->getInit();
if (auto *LCVarDeclStmt = dyn_cast<DeclStmt>(Init)) {
// For statement declares loop variable.
LIVDecl = cast<VarDecl>(LCVarDeclStmt->getSingleDecl());
} else if (auto *LCAssign = dyn_cast<BinaryOperator>(Init)) {
// For statement reuses variable.
assert(LCAssign->getOpcode() == BO_Assign &&
"init part must be a loop variable assignment");
auto *CounterRef = cast<DeclRefExpr>(LCAssign->getLHS());
LIVDecl = cast<VarDecl>(CounterRef->getDecl());
} else
llvm_unreachable("Cannot determine loop variable");
LUVDecl = LIVDecl;
Cond = For->getCond();
Inc = For->getInc();
} else if (auto *RangeFor = dyn_cast<CXXForRangeStmt>(AStmt)) {
DeclStmt *BeginStmt = RangeFor->getBeginStmt();
LIVDecl = cast<VarDecl>(BeginStmt->getSingleDecl());
LUVDecl = RangeFor->getLoopVariable();
Cond = RangeFor->getCond();
Inc = RangeFor->getInc();
} else
llvm_unreachable("unhandled kind of loop");
QualType CounterTy = LIVDecl->getType();
QualType LVTy = LUVDecl->getType();
// Analyze the loop condition.
Expr *LHS, *RHS;
BinaryOperator::Opcode CondRel;
Cond = Cond->IgnoreImplicit();
if (auto *CondBinExpr = dyn_cast<BinaryOperator>(Cond)) {
LHS = CondBinExpr->getLHS();
RHS = CondBinExpr->getRHS();
CondRel = CondBinExpr->getOpcode();
} else if (auto *CondCXXOp = dyn_cast<CXXOperatorCallExpr>(Cond)) {
assert(CondCXXOp->getNumArgs() == 2 && "Comparison should have 2 operands");
LHS = CondCXXOp->getArg(0);
RHS = CondCXXOp->getArg(1);
switch (CondCXXOp->getOperator()) {
case OO_ExclaimEqual:
CondRel = BO_NE;
break;
case OO_Less:
CondRel = BO_LT;
break;
case OO_LessEqual:
CondRel = BO_LE;
break;
case OO_Greater:
CondRel = BO_GT;
break;
case OO_GreaterEqual:
CondRel = BO_GE;
break;
default:
llvm_unreachable("unexpected iterator operator");
}
} else
llvm_unreachable("unexpected loop condition");
// Normalize such that the loop counter is on the LHS.
if (!isa<DeclRefExpr>(LHS->IgnoreImplicit()) ||
cast<DeclRefExpr>(LHS->IgnoreImplicit())->getDecl() != LIVDecl) {
std::swap(LHS, RHS);
CondRel = BinaryOperator::reverseComparisonOp(CondRel);
}
auto *CounterRef = cast<DeclRefExpr>(LHS->IgnoreImplicit());
// Decide the bit width for the logical iteration counter. By default use the
// unsigned ptrdiff_t integer size (for iterators and pointers).
// TODO: For iterators, use iterator::difference_type,
// std::iterator_traits<>::difference_type or decltype(it - end).
QualType LogicalTy = Ctx.getUnsignedPointerDiffType();
if (CounterTy->isIntegerType()) {
unsigned BitWidth = Ctx.getIntWidth(CounterTy);
LogicalTy = Ctx.getIntTypeForBitwidth(BitWidth, false);
}
// Analyze the loop increment.
Expr *Step;
if (auto *IncUn = dyn_cast<UnaryOperator>(Inc)) {
int Direction;
switch (IncUn->getOpcode()) {
case UO_PreInc:
case UO_PostInc:
Direction = 1;
break;
case UO_PreDec:
case UO_PostDec:
Direction = -1;
break;
default:
llvm_unreachable("unhandled unary increment operator");
}
Step = IntegerLiteral::Create(
Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), Direction), LogicalTy, {});
} else if (auto *IncBin = dyn_cast<BinaryOperator>(Inc)) {
if (IncBin->getOpcode() == BO_AddAssign) {
Step = IncBin->getRHS();
} else if (IncBin->getOpcode() == BO_SubAssign) {
Step =
AssertSuccess(BuildUnaryOp(nullptr, {}, UO_Minus, IncBin->getRHS()));
} else
llvm_unreachable("unhandled binary increment operator");
} else if (auto *CondCXXOp = dyn_cast<CXXOperatorCallExpr>(Inc)) {
switch (CondCXXOp->getOperator()) {
case OO_PlusPlus:
Step = IntegerLiteral::Create(
Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), 1), LogicalTy, {});
break;
case OO_MinusMinus:
Step = IntegerLiteral::Create(
Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), -1), LogicalTy, {});
break;
case OO_PlusEqual:
Step = CondCXXOp->getArg(1);
break;
case OO_MinusEqual:
Step = AssertSuccess(
BuildUnaryOp(nullptr, {}, UO_Minus, CondCXXOp->getArg(1)));
break;
default:
llvm_unreachable("unhandled overloaded increment operator");
}
} else
llvm_unreachable("unknown increment expression");
CapturedStmt *DistanceFunc =
buildDistanceFunc(*this, LogicalTy, CondRel, LHS, RHS, Step);
CapturedStmt *LoopVarFunc = buildLoopVarFunc(
*this, LVTy, LogicalTy, CounterRef, Step, isa<CXXForRangeStmt>(AStmt));
DeclRefExpr *LVRef = BuildDeclRefExpr(LUVDecl, LUVDecl->getType(), VK_LValue,
{}, nullptr, nullptr, {}, nullptr);
return OMPCanonicalLoop::create(getASTContext(), AStmt, DistanceFunc,
LoopVarFunc, LVRef);
}
StmtResult Sema::ActOnOpenMPLoopnest(Stmt *AStmt) {
// Handle a literal loop.
if (isa<ForStmt>(AStmt) || isa<CXXForRangeStmt>(AStmt))
return ActOnOpenMPCanonicalLoop(AStmt);
// If not a literal loop, it must be the result of a loop transformation.
OMPExecutableDirective *LoopTransform = cast<OMPExecutableDirective>(AStmt);
assert(
isOpenMPLoopTransformationDirective(LoopTransform->getDirectiveKind()) &&
"Loop transformation directive expected");
return LoopTransform;
}
static ExprResult buildUserDefinedMapperRef(Sema &SemaRef, Scope *S,
CXXScopeSpec &MapperIdScopeSpec,
const DeclarationNameInfo &MapperId,
QualType Type,
Expr *UnresolvedMapper);
/// Perform DFS through the structure/class data members trying to find
/// member(s) with user-defined 'default' mapper and generate implicit map
/// clauses for such members with the found 'default' mapper.
static void
processImplicitMapsWithDefaultMappers(Sema &S, DSAStackTy *Stack,
SmallVectorImpl<OMPClause *> &Clauses) {
// Check for the deault mapper for data members.
if (S.getLangOpts().OpenMP < 50)
return;
SmallVector<OMPClause *, 4> ImplicitMaps;
for (int Cnt = 0, EndCnt = Clauses.size(); Cnt < EndCnt; ++Cnt) {
auto *C = dyn_cast<OMPMapClause>(Clauses[Cnt]);
if (!C)
continue;
SmallVector<Expr *, 4> SubExprs;
auto *MI = C->mapperlist_begin();
for (auto I = C->varlist_begin(), End = C->varlist_end(); I != End;
++I, ++MI) {
// Expression is mapped using mapper - skip it.
if (*MI)
continue;
Expr *E = *I;
// Expression is dependent - skip it, build the mapper when it gets
// instantiated.
if (E->isTypeDependent() || E->isValueDependent() ||
E->containsUnexpandedParameterPack())
continue;
// Array section - need to check for the mapping of the array section
// element.
QualType CanonType = E->getType().getCanonicalType();
if (CanonType->isSpecificBuiltinType(BuiltinType::OMPArraySection)) {
const auto *OASE = cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts());
QualType BaseType =
OMPArraySectionExpr::getBaseOriginalType(OASE->getBase());
QualType ElemType;
if (const auto *ATy = BaseType->getAsArrayTypeUnsafe())
ElemType = ATy->getElementType();
else
ElemType = BaseType->getPointeeType();
CanonType = ElemType;
}
// DFS over data members in structures/classes.
SmallVector<std::pair<QualType, FieldDecl *>, 4> Types(
1, {CanonType, nullptr});
llvm::DenseMap<const Type *, Expr *> Visited;
SmallVector<std::pair<FieldDecl *, unsigned>, 4> ParentChain(
1, {nullptr, 1});
while (!Types.empty()) {
QualType BaseType;
FieldDecl *CurFD;
std::tie(BaseType, CurFD) = Types.pop_back_val();
while (ParentChain.back().second == 0)
ParentChain.pop_back();
--ParentChain.back().second;
if (BaseType.isNull())
continue;
// Only structs/classes are allowed to have mappers.
const RecordDecl *RD = BaseType.getCanonicalType()->getAsRecordDecl();
if (!RD)
continue;
auto It = Visited.find(BaseType.getTypePtr());
if (It == Visited.end()) {
// Try to find the associated user-defined mapper.
CXXScopeSpec MapperIdScopeSpec;
DeclarationNameInfo DefaultMapperId;
DefaultMapperId.setName(S.Context.DeclarationNames.getIdentifier(
&S.Context.Idents.get("default")));
DefaultMapperId.setLoc(E->getExprLoc());
ExprResult ER = buildUserDefinedMapperRef(
S, Stack->getCurScope(), MapperIdScopeSpec, DefaultMapperId,
BaseType, /*UnresolvedMapper=*/nullptr);
if (ER.isInvalid())
continue;
It = Visited.try_emplace(BaseType.getTypePtr(), ER.get()).first;
}
// Found default mapper.
if (It->second) {
auto *OE = new (S.Context) OpaqueValueExpr(E->getExprLoc(), CanonType,
VK_LValue, OK_Ordinary, E);
OE->setIsUnique(/*V=*/true);
Expr *BaseExpr = OE;
for (const auto &P : ParentChain) {
if (P.first) {
BaseExpr = S.BuildMemberExpr(
BaseExpr, /*IsArrow=*/false, E->getExprLoc(),
NestedNameSpecifierLoc(), SourceLocation(), P.first,
DeclAccessPair::make(P.first, P.first->getAccess()),
/*HadMultipleCandidates=*/false, DeclarationNameInfo(),
P.first->getType(), VK_LValue, OK_Ordinary);
BaseExpr = S.DefaultLvalueConversion(BaseExpr).get();
}
}
if (CurFD)
BaseExpr = S.BuildMemberExpr(
BaseExpr, /*IsArrow=*/false, E->getExprLoc(),
NestedNameSpecifierLoc(), SourceLocation(), CurFD,
DeclAccessPair::make(CurFD, CurFD->getAccess()),
/*HadMultipleCandidates=*/false, DeclarationNameInfo(),
CurFD->getType(), VK_LValue, OK_Ordinary);
SubExprs.push_back(BaseExpr);
continue;
}
// Check for the "default" mapper for data members.
bool FirstIter = true;
for (FieldDecl *FD : RD->fields()) {
if (!FD)
continue;
QualType FieldTy = FD->getType();
if (FieldTy.isNull() ||
!(FieldTy->isStructureOrClassType() || FieldTy->isUnionType()))
continue;
if (FirstIter) {
FirstIter = false;
ParentChain.emplace_back(CurFD, 1);
} else {
++ParentChain.back().second;
}
Types.emplace_back(FieldTy, FD);
}
}
}
if (SubExprs.empty())
continue;
CXXScopeSpec MapperIdScopeSpec;
DeclarationNameInfo MapperId;
if (OMPClause *NewClause = S.ActOnOpenMPMapClause(
C->getMapTypeModifiers(), C->getMapTypeModifiersLoc(),
MapperIdScopeSpec, MapperId, C->getMapType(),
/*IsMapTypeImplicit=*/true, SourceLocation(), SourceLocation(),
SubExprs, OMPVarListLocTy()))
Clauses.push_back(NewClause);
}
}
StmtResult Sema::ActOnOpenMPExecutableDirective(
OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName,
OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc) {
StmtResult Res = StmtError();
OpenMPBindClauseKind BindKind = OMPC_BIND_unknown;
if (const OMPBindClause *BC =
OMPExecutableDirective::getSingleClause<OMPBindClause>(Clauses))
BindKind = BC->getBindKind();
// First check CancelRegion which is then used in checkNestingOfRegions.
if (checkCancelRegion(*this, Kind, CancelRegion, StartLoc) ||
checkNestingOfRegions(*this, DSAStack, Kind, DirName, CancelRegion,
BindKind, StartLoc))
return StmtError();
llvm::SmallVector<OMPClause *, 8> ClausesWithImplicit;
VarsWithInheritedDSAType VarsWithInheritedDSA;
bool ErrorFound = false;
ClausesWithImplicit.append(Clauses.begin(), Clauses.end());
if (AStmt && !CurContext->isDependentContext() && Kind != OMPD_atomic &&
Kind != OMPD_critical && Kind != OMPD_section && Kind != OMPD_master &&
Kind != OMPD_masked && !isOpenMPLoopTransformationDirective(Kind)) {
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
// Check default data sharing attributes for referenced variables.
DSAAttrChecker DSAChecker(DSAStack, *this, cast<CapturedStmt>(AStmt));
int ThisCaptureLevel = getOpenMPCaptureLevels(Kind);
Stmt *S = AStmt;
while (--ThisCaptureLevel >= 0)
S = cast<CapturedStmt>(S)->getCapturedStmt();
DSAChecker.Visit(S);
if (!isOpenMPTargetDataManagementDirective(Kind) &&
!isOpenMPTaskingDirective(Kind)) {
// Visit subcaptures to generate implicit clauses for captured vars.
auto *CS = cast<CapturedStmt>(AStmt);
SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
getOpenMPCaptureRegions(CaptureRegions, Kind);
// Ignore outer tasking regions for target directives.
if (CaptureRegions.size() > 1 && CaptureRegions.front() == OMPD_task)
CS = cast<CapturedStmt>(CS->getCapturedStmt());
DSAChecker.visitSubCaptures(CS);
}
if (DSAChecker.isErrorFound())
return StmtError();
// Generate list of implicitly defined firstprivate variables.
VarsWithInheritedDSA = DSAChecker.getVarsWithInheritedDSA();
SmallVector<Expr *, 4> ImplicitFirstprivates(
DSAChecker.getImplicitFirstprivate().begin(),
DSAChecker.getImplicitFirstprivate().end());
const unsigned DefaultmapKindNum = OMPC_DEFAULTMAP_pointer + 1;
SmallVector<Expr *, 4> ImplicitMaps[DefaultmapKindNum][OMPC_MAP_delete];
SmallVector<OpenMPMapModifierKind, NumberOfOMPMapClauseModifiers>
ImplicitMapModifiers[DefaultmapKindNum];
SmallVector<SourceLocation, NumberOfOMPMapClauseModifiers>
ImplicitMapModifiersLoc[DefaultmapKindNum];
// Get the original location of present modifier from Defaultmap clause.
SourceLocation PresentModifierLocs[DefaultmapKindNum];
for (OMPClause *C : Clauses) {
if (auto *DMC = dyn_cast<OMPDefaultmapClause>(C))
if (DMC->getDefaultmapModifier() == OMPC_DEFAULTMAP_MODIFIER_present)
PresentModifierLocs[DMC->getDefaultmapKind()] =
DMC->getDefaultmapModifierLoc();
}
for (unsigned VC = 0; VC < DefaultmapKindNum; ++VC) {
auto Kind = static_cast<OpenMPDefaultmapClauseKind>(VC);
for (unsigned I = 0; I < OMPC_MAP_delete; ++I) {
ArrayRef<Expr *> ImplicitMap = DSAChecker.getImplicitMap(
Kind, static_cast<OpenMPMapClauseKind>(I));
ImplicitMaps[VC][I].append(ImplicitMap.begin(), ImplicitMap.end());
}
ArrayRef<OpenMPMapModifierKind> ImplicitModifier =
DSAChecker.getImplicitMapModifier(Kind);
ImplicitMapModifiers[VC].append(ImplicitModifier.begin(),
ImplicitModifier.end());
std::fill_n(std::back_inserter(ImplicitMapModifiersLoc[VC]),
ImplicitModifier.size(), PresentModifierLocs[VC]);
}
// Mark taskgroup task_reduction descriptors as implicitly firstprivate.
for (OMPClause *C : Clauses) {
if (auto *IRC = dyn_cast<OMPInReductionClause>(C)) {
for (Expr *E : IRC->taskgroup_descriptors())
if (E)
ImplicitFirstprivates.emplace_back(E);
}
// OpenMP 5.0, 2.10.1 task Construct
// [detach clause]... The event-handle will be considered as if it was
// specified on a firstprivate clause.
if (auto *DC = dyn_cast<OMPDetachClause>(C))
ImplicitFirstprivates.push_back(DC->getEventHandler());
}
if (!ImplicitFirstprivates.empty()) {
if (OMPClause *Implicit = ActOnOpenMPFirstprivateClause(
ImplicitFirstprivates, SourceLocation(), SourceLocation(),
SourceLocation())) {
ClausesWithImplicit.push_back(Implicit);
ErrorFound = cast<OMPFirstprivateClause>(Implicit)->varlist_size() !=
ImplicitFirstprivates.size();
} else {
ErrorFound = true;
}
}
// OpenMP 5.0 [2.19.7]
// If a list item appears in a reduction, lastprivate or linear
// clause on a combined target construct then it is treated as
// if it also appears in a map clause with a map-type of tofrom
if (getLangOpts().OpenMP >= 50 && Kind != OMPD_target &&
isOpenMPTargetExecutionDirective(Kind)) {
SmallVector<Expr *, 4> ImplicitExprs;
for (OMPClause *C : Clauses) {
if (auto *RC = dyn_cast<OMPReductionClause>(C))
for (Expr *E : RC->varlists())
if (!isa<DeclRefExpr>(E->IgnoreParenImpCasts()))
ImplicitExprs.emplace_back(E);
}
if (!ImplicitExprs.empty()) {
ArrayRef<Expr *> Exprs = ImplicitExprs;
CXXScopeSpec MapperIdScopeSpec;
DeclarationNameInfo MapperId;
if (OMPClause *Implicit = ActOnOpenMPMapClause(
OMPC_MAP_MODIFIER_unknown, SourceLocation(), MapperIdScopeSpec,
MapperId, OMPC_MAP_tofrom,
/*IsMapTypeImplicit=*/true, SourceLocation(), SourceLocation(),
Exprs, OMPVarListLocTy(), /*NoDiagnose=*/true))
ClausesWithImplicit.emplace_back(Implicit);
}
}
for (unsigned I = 0, E = DefaultmapKindNum; I < E; ++I) {
int ClauseKindCnt = -1;
for (ArrayRef<Expr *> ImplicitMap : ImplicitMaps[I]) {
++ClauseKindCnt;
if (ImplicitMap.empty())
continue;
CXXScopeSpec MapperIdScopeSpec;
DeclarationNameInfo MapperId;
auto Kind = static_cast<OpenMPMapClauseKind>(ClauseKindCnt);
if (OMPClause *Implicit = ActOnOpenMPMapClause(
ImplicitMapModifiers[I], ImplicitMapModifiersLoc[I],
MapperIdScopeSpec, MapperId, Kind, /*IsMapTypeImplicit=*/true,
SourceLocation(), SourceLocation(), ImplicitMap,
OMPVarListLocTy())) {
ClausesWithImplicit.emplace_back(Implicit);
ErrorFound |= cast<OMPMapClause>(Implicit)->varlist_size() !=
ImplicitMap.size();
} else {
ErrorFound = true;
}
}
}
// Build expressions for implicit maps of data members with 'default'
// mappers.
if (LangOpts.OpenMP >= 50)
processImplicitMapsWithDefaultMappers(*this, DSAStack,
ClausesWithImplicit);
}
llvm::SmallVector<OpenMPDirectiveKind, 4> AllowedNameModifiers;
switch (Kind) {
case OMPD_parallel:
Res = ActOnOpenMPParallelDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc);
AllowedNameModifiers.push_back(OMPD_parallel);
break;
case OMPD_simd:
Res = ActOnOpenMPSimdDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc,
VarsWithInheritedDSA);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_tile:
Res =
ActOnOpenMPTileDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc);
break;
case OMPD_unroll:
Res = ActOnOpenMPUnrollDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc);
break;
case OMPD_for:
Res = ActOnOpenMPForDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc,
VarsWithInheritedDSA);
break;
case OMPD_for_simd:
Res = ActOnOpenMPForSimdDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc, VarsWithInheritedDSA);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_sections:
Res = ActOnOpenMPSectionsDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc);
break;
case OMPD_section:
assert(ClausesWithImplicit.empty() &&
"No clauses are allowed for 'omp section' directive");
Res = ActOnOpenMPSectionDirective(AStmt, StartLoc, EndLoc);
break;
case OMPD_single:
Res = ActOnOpenMPSingleDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc);
break;
case OMPD_master:
assert(ClausesWithImplicit.empty() &&
"No clauses are allowed for 'omp master' directive");
Res = ActOnOpenMPMasterDirective(AStmt, StartLoc, EndLoc);
break;
case OMPD_masked:
Res = ActOnOpenMPMaskedDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc);
break;
case OMPD_critical:
Res = ActOnOpenMPCriticalDirective(DirName, ClausesWithImplicit, AStmt,
StartLoc, EndLoc);
break;
case OMPD_parallel_for:
Res = ActOnOpenMPParallelForDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_parallel);
break;
case OMPD_parallel_for_simd:
Res = ActOnOpenMPParallelForSimdDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_parallel);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_parallel_master:
Res = ActOnOpenMPParallelMasterDirective(ClausesWithImplicit, AStmt,
StartLoc, EndLoc);
AllowedNameModifiers.push_back(OMPD_parallel);
break;
case OMPD_parallel_sections:
Res = ActOnOpenMPParallelSectionsDirective(ClausesWithImplicit, AStmt,
StartLoc, EndLoc);
AllowedNameModifiers.push_back(OMPD_parallel);
break;
case OMPD_task:
Res =
ActOnOpenMPTaskDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc);
AllowedNameModifiers.push_back(OMPD_task);
break;
case OMPD_taskyield:
assert(ClausesWithImplicit.empty() &&
"No clauses are allowed for 'omp taskyield' directive");
assert(AStmt == nullptr &&
"No associated statement allowed for 'omp taskyield' directive");
Res = ActOnOpenMPTaskyieldDirective(StartLoc, EndLoc);
break;
case OMPD_barrier:
assert(ClausesWithImplicit.empty() &&
"No clauses are allowed for 'omp barrier' directive");
assert(AStmt == nullptr &&
"No associated statement allowed for 'omp barrier' directive");
Res = ActOnOpenMPBarrierDirective(StartLoc, EndLoc);
break;
case OMPD_taskwait:
assert(AStmt == nullptr &&
"No associated statement allowed for 'omp taskwait' directive");
Res = ActOnOpenMPTaskwaitDirective(ClausesWithImplicit, StartLoc, EndLoc);
break;
case OMPD_taskgroup:
Res = ActOnOpenMPTaskgroupDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc);
break;
case OMPD_flush:
assert(AStmt == nullptr &&
"No associated statement allowed for 'omp flush' directive");
Res = ActOnOpenMPFlushDirective(ClausesWithImplicit, StartLoc, EndLoc);
break;
case OMPD_depobj:
assert(AStmt == nullptr &&
"No associated statement allowed for 'omp depobj' directive");
Res = ActOnOpenMPDepobjDirective(ClausesWithImplicit, StartLoc, EndLoc);
break;
case OMPD_scan:
assert(AStmt == nullptr &&
"No associated statement allowed for 'omp scan' directive");
Res = ActOnOpenMPScanDirective(ClausesWithImplicit, StartLoc, EndLoc);
break;
case OMPD_ordered:
Res = ActOnOpenMPOrderedDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc);
break;
case OMPD_atomic:
Res = ActOnOpenMPAtomicDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc);
break;
case OMPD_teams:
Res =
ActOnOpenMPTeamsDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc);
break;
case OMPD_target:
Res = ActOnOpenMPTargetDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc);
AllowedNameModifiers.push_back(OMPD_target);
break;
case OMPD_target_parallel:
Res = ActOnOpenMPTargetParallelDirective(ClausesWithImplicit, AStmt,
StartLoc, EndLoc);
AllowedNameModifiers.push_back(OMPD_target);
AllowedNameModifiers.push_back(OMPD_parallel);
break;
case OMPD_target_parallel_for:
Res = ActOnOpenMPTargetParallelForDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_target);
AllowedNameModifiers.push_back(OMPD_parallel);
break;
case OMPD_cancellation_point:
assert(ClausesWithImplicit.empty() &&
"No clauses are allowed for 'omp cancellation point' directive");
assert(AStmt == nullptr && "No associated statement allowed for 'omp "
"cancellation point' directive");
Res = ActOnOpenMPCancellationPointDirective(StartLoc, EndLoc, CancelRegion);
break;
case OMPD_cancel:
assert(AStmt == nullptr &&
"No associated statement allowed for 'omp cancel' directive");
Res = ActOnOpenMPCancelDirective(ClausesWithImplicit, StartLoc, EndLoc,
CancelRegion);
AllowedNameModifiers.push_back(OMPD_cancel);
break;
case OMPD_target_data:
Res = ActOnOpenMPTargetDataDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc);
AllowedNameModifiers.push_back(OMPD_target_data);
break;
case OMPD_target_enter_data:
Res = ActOnOpenMPTargetEnterDataDirective(ClausesWithImplicit, StartLoc,
EndLoc, AStmt);
AllowedNameModifiers.push_back(OMPD_target_enter_data);
break;
case OMPD_target_exit_data:
Res = ActOnOpenMPTargetExitDataDirective(ClausesWithImplicit, StartLoc,
EndLoc, AStmt);
AllowedNameModifiers.push_back(OMPD_target_exit_data);
break;
case OMPD_taskloop:
Res = ActOnOpenMPTaskLoopDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_taskloop);
break;
case OMPD_taskloop_simd:
Res = ActOnOpenMPTaskLoopSimdDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_taskloop);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_master_taskloop:
Res = ActOnOpenMPMasterTaskLoopDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_taskloop);
break;
case OMPD_master_taskloop_simd:
Res = ActOnOpenMPMasterTaskLoopSimdDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_taskloop);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_parallel_master_taskloop:
Res = ActOnOpenMPParallelMasterTaskLoopDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_taskloop);
AllowedNameModifiers.push_back(OMPD_parallel);
break;
case OMPD_parallel_master_taskloop_simd:
Res = ActOnOpenMPParallelMasterTaskLoopSimdDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_taskloop);
AllowedNameModifiers.push_back(OMPD_parallel);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_distribute:
Res = ActOnOpenMPDistributeDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc, VarsWithInheritedDSA);
break;
case OMPD_target_update:
Res = ActOnOpenMPTargetUpdateDirective(ClausesWithImplicit, StartLoc,
EndLoc, AStmt);
AllowedNameModifiers.push_back(OMPD_target_update);
break;
case OMPD_distribute_parallel_for:
Res = ActOnOpenMPDistributeParallelForDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_parallel);
break;
case OMPD_distribute_parallel_for_simd:
Res = ActOnOpenMPDistributeParallelForSimdDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_parallel);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_distribute_simd:
Res = ActOnOpenMPDistributeSimdDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_target_parallel_for_simd:
Res = ActOnOpenMPTargetParallelForSimdDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_target);
AllowedNameModifiers.push_back(OMPD_parallel);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_target_simd:
Res = ActOnOpenMPTargetSimdDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_target);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_teams_distribute:
Res = ActOnOpenMPTeamsDistributeDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
break;
case OMPD_teams_distribute_simd:
Res = ActOnOpenMPTeamsDistributeSimdDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_teams_distribute_parallel_for_simd:
Res = ActOnOpenMPTeamsDistributeParallelForSimdDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_parallel);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_teams_distribute_parallel_for:
Res = ActOnOpenMPTeamsDistributeParallelForDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_parallel);
break;
case OMPD_target_teams:
Res = ActOnOpenMPTargetTeamsDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc);
AllowedNameModifiers.push_back(OMPD_target);
break;
case OMPD_target_teams_distribute:
Res = ActOnOpenMPTargetTeamsDistributeDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_target);
break;
case OMPD_target_teams_distribute_parallel_for:
Res = ActOnOpenMPTargetTeamsDistributeParallelForDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_target);
AllowedNameModifiers.push_back(OMPD_parallel);
break;
case OMPD_target_teams_distribute_parallel_for_simd:
Res = ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_target);
AllowedNameModifiers.push_back(OMPD_parallel);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_target_teams_distribute_simd:
Res = ActOnOpenMPTargetTeamsDistributeSimdDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
AllowedNameModifiers.push_back(OMPD_target);
if (LangOpts.OpenMP >= 50)
AllowedNameModifiers.push_back(OMPD_simd);
break;
case OMPD_interop:
assert(AStmt == nullptr &&
"No associated statement allowed for 'omp interop' directive");
Res = ActOnOpenMPInteropDirective(ClausesWithImplicit, StartLoc, EndLoc);
break;
case OMPD_dispatch:
Res = ActOnOpenMPDispatchDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc);
break;
case OMPD_loop:
Res = ActOnOpenMPGenericLoopDirective(ClausesWithImplicit, AStmt, StartLoc,
EndLoc, VarsWithInheritedDSA);
break;
case OMPD_teams_loop:
Res = ActOnOpenMPTeamsGenericLoopDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
break;
case OMPD_target_teams_loop:
Res = ActOnOpenMPTargetTeamsGenericLoopDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
break;
case OMPD_parallel_loop:
Res = ActOnOpenMPParallelGenericLoopDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
break;
case OMPD_target_parallel_loop:
Res = ActOnOpenMPTargetParallelGenericLoopDirective(
ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA);
break;
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_declare_simd:
case OMPD_requires:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
llvm_unreachable("OpenMP Directive is not allowed");
case OMPD_unknown:
default:
llvm_unreachable("Unknown OpenMP directive");
}
ErrorFound = Res.isInvalid() || ErrorFound;
// Check variables in the clauses if default(none) or
// default(firstprivate) was specified.
if (DSAStack->getDefaultDSA() == DSA_none ||
DSAStack->getDefaultDSA() == DSA_firstprivate) {
DSAAttrChecker DSAChecker(DSAStack, *this, nullptr);
for (OMPClause *C : Clauses) {
switch (C->getClauseKind()) {
case OMPC_num_threads:
case OMPC_dist_schedule:
// Do not analyse if no parent teams directive.
if (isOpenMPTeamsDirective(Kind))
break;
continue;
case OMPC_if:
if (isOpenMPTeamsDirective(Kind) &&
cast<OMPIfClause>(C)->getNameModifier() != OMPD_target)
break;
if (isOpenMPParallelDirective(Kind) &&
isOpenMPTaskLoopDirective(Kind) &&
cast<OMPIfClause>(C)->getNameModifier() != OMPD_parallel)
break;
continue;
case OMPC_schedule:
case OMPC_detach:
break;
case OMPC_grainsize:
case OMPC_num_tasks:
case OMPC_final:
case OMPC_priority:
case OMPC_novariants:
case OMPC_nocontext:
// Do not analyze if no parent parallel directive.
if (isOpenMPParallelDirective(Kind))
break;
continue;
case OMPC_ordered:
case OMPC_device:
case OMPC_num_teams:
case OMPC_thread_limit:
case OMPC_hint:
case OMPC_collapse:
case OMPC_safelen:
case OMPC_simdlen:
case OMPC_sizes:
case OMPC_default:
case OMPC_proc_bind:
case OMPC_private:
case OMPC_firstprivate:
case OMPC_lastprivate:
case OMPC_shared:
case OMPC_reduction:
case OMPC_task_reduction:
case OMPC_in_reduction:
case OMPC_linear:
case OMPC_aligned:
case OMPC_copyin:
case OMPC_copyprivate:
case OMPC_nowait:
case OMPC_untied:
case OMPC_mergeable:
case OMPC_allocate:
case OMPC_read:
case OMPC_write:
case OMPC_update:
case OMPC_capture:
case OMPC_compare:
case OMPC_seq_cst:
case OMPC_acq_rel:
case OMPC_acquire:
case OMPC_release:
case OMPC_relaxed:
case OMPC_depend:
case OMPC_threads:
case OMPC_simd:
case OMPC_map:
case OMPC_nogroup:
case OMPC_defaultmap:
case OMPC_to:
case OMPC_from:
case OMPC_use_device_ptr:
case OMPC_use_device_addr:
case OMPC_is_device_ptr:
case OMPC_has_device_addr:
case OMPC_nontemporal:
case OMPC_order:
case OMPC_destroy:
case OMPC_inclusive:
case OMPC_exclusive:
case OMPC_uses_allocators:
case OMPC_affinity:
case OMPC_bind:
continue;
case OMPC_allocator:
case OMPC_flush:
case OMPC_depobj:
case OMPC_threadprivate:
case OMPC_uniform:
case OMPC_unknown:
case OMPC_unified_address:
case OMPC_unified_shared_memory:
case OMPC_reverse_offload:
case OMPC_dynamic_allocators:
case OMPC_atomic_default_mem_order:
case OMPC_device_type:
case OMPC_match:
case OMPC_when:
default:
llvm_unreachable("Unexpected clause");
}
for (Stmt *CC : C->children()) {
if (CC)
DSAChecker.Visit(CC);
}
}
for (const auto &P : DSAChecker.getVarsWithInheritedDSA())
VarsWithInheritedDSA[P.getFirst()] = P.getSecond();
}
for (const auto &P : VarsWithInheritedDSA) {
if (P.getFirst()->isImplicit() || isa<OMPCapturedExprDecl>(P.getFirst()))
continue;
ErrorFound = true;
if (DSAStack->getDefaultDSA() == DSA_none ||
DSAStack->getDefaultDSA() == DSA_firstprivate) {
Diag(P.second->getExprLoc(), diag::err_omp_no_dsa_for_variable)
<< P.first << P.second->getSourceRange();
Diag(DSAStack->getDefaultDSALocation(), diag::note_omp_default_dsa_none);
} else if (getLangOpts().OpenMP >= 50) {
Diag(P.second->getExprLoc(),
diag::err_omp_defaultmap_no_attr_for_variable)
<< P.first << P.second->getSourceRange();
Diag(DSAStack->getDefaultDSALocation(),
diag::note_omp_defaultmap_attr_none);
}
}
if (!AllowedNameModifiers.empty())
ErrorFound = checkIfClauses(*this, Kind, Clauses, AllowedNameModifiers) ||
ErrorFound;
if (ErrorFound)
return StmtError();
if (!CurContext->isDependentContext() &&
isOpenMPTargetExecutionDirective(Kind) &&
!(DSAStack->hasRequiresDeclWithClause<OMPUnifiedSharedMemoryClause>() ||
DSAStack->hasRequiresDeclWithClause<OMPUnifiedAddressClause>() ||
DSAStack->hasRequiresDeclWithClause<OMPReverseOffloadClause>() ||
DSAStack->hasRequiresDeclWithClause<OMPDynamicAllocatorsClause>())) {
// Register target to DSA Stack.
DSAStack->addTargetDirLocation(StartLoc);
}
return Res;
}
Sema::DeclGroupPtrTy Sema::ActOnOpenMPDeclareSimdDirective(
DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS, Expr *Simdlen,
ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR) {
assert(Aligneds.size() == Alignments.size());
assert(Linears.size() == LinModifiers.size());
assert(Linears.size() == Steps.size());
if (!DG || DG.get().isNull())
return DeclGroupPtrTy();
const int SimdId = 0;
if (!DG.get().isSingleDecl()) {
Diag(SR.getBegin(), diag::err_omp_single_decl_in_declare_simd_variant)
<< SimdId;
return DG;
}
Decl *ADecl = DG.get().getSingleDecl();
if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ADecl))
ADecl = FTD->getTemplatedDecl();
auto *FD = dyn_cast<FunctionDecl>(ADecl);
if (!FD) {
Diag(ADecl->getLocation(), diag::err_omp_function_expected) << SimdId;
return DeclGroupPtrTy();
}
// OpenMP [2.8.2, declare simd construct, Description]
// The parameter of the simdlen clause must be a constant positive integer
// expression.
ExprResult SL;
if (Simdlen)
SL = VerifyPositiveIntegerConstantInClause(Simdlen, OMPC_simdlen);
// OpenMP [2.8.2, declare simd construct, Description]
// The special this pointer can be used as if was one of the arguments to the
// function in any of the linear, aligned, or uniform clauses.
// The uniform clause declares one or more arguments to have an invariant
// value for all concurrent invocations of the function in the execution of a
// single SIMD loop.
llvm::DenseMap<const Decl *, const Expr *> UniformedArgs;
const Expr *UniformedLinearThis = nullptr;
for (const Expr *E : Uniforms) {
E = E->IgnoreParenImpCasts();
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
if (FD->getNumParams() > PVD->getFunctionScopeIndex() &&
FD->getParamDecl(PVD->getFunctionScopeIndex())
->getCanonicalDecl() == PVD->getCanonicalDecl()) {
UniformedArgs.try_emplace(PVD->getCanonicalDecl(), E);
continue;
}
if (isa<CXXThisExpr>(E)) {
UniformedLinearThis = E;
continue;
}
Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause)
<< FD->getDeclName() << (isa<CXXMethodDecl>(ADecl) ? 1 : 0);
}
// OpenMP [2.8.2, declare simd construct, Description]
// The aligned clause declares that the object to which each list item points
// is aligned to the number of bytes expressed in the optional parameter of
// the aligned clause.
// The special this pointer can be used as if was one of the arguments to the
// function in any of the linear, aligned, or uniform clauses.
// The type of list items appearing in the aligned clause must be array,
// pointer, reference to array, or reference to pointer.
llvm::DenseMap<const Decl *, const Expr *> AlignedArgs;
const Expr *AlignedThis = nullptr;
for (const Expr *E : Aligneds) {
E = E->IgnoreParenImpCasts();
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
const VarDecl *CanonPVD = PVD->getCanonicalDecl();
if (FD->getNumParams() > PVD->getFunctionScopeIndex() &&
FD->getParamDecl(PVD->getFunctionScopeIndex())
->getCanonicalDecl() == CanonPVD) {
// OpenMP [2.8.1, simd construct, Restrictions]
// A list-item cannot appear in more than one aligned clause.
if (AlignedArgs.count(CanonPVD) > 0) {
Diag(E->getExprLoc(), diag::err_omp_used_in_clause_twice)
<< 1 << getOpenMPClauseName(OMPC_aligned)
<< E->getSourceRange();
Diag(AlignedArgs[CanonPVD]->getExprLoc(),
diag::note_omp_explicit_dsa)
<< getOpenMPClauseName(OMPC_aligned);
continue;
}
AlignedArgs[CanonPVD] = E;
QualType QTy = PVD->getType()
.getNonReferenceType()
.getUnqualifiedType()
.getCanonicalType();
const Type *Ty = QTy.getTypePtrOrNull();
if (!Ty || (!Ty->isArrayType() && !Ty->isPointerType())) {
Diag(E->getExprLoc(), diag::err_omp_aligned_expected_array_or_ptr)
<< QTy << getLangOpts().CPlusPlus << E->getSourceRange();
Diag(PVD->getLocation(), diag::note_previous_decl) << PVD;
}
continue;
}
}
if (isa<CXXThisExpr>(E)) {
if (AlignedThis) {
Diag(E->getExprLoc(), diag::err_omp_used_in_clause_twice)
<< 2 << getOpenMPClauseName(OMPC_aligned) << E->getSourceRange();
Diag(AlignedThis->getExprLoc(), diag::note_omp_explicit_dsa)
<< getOpenMPClauseName(OMPC_aligned);
}
AlignedThis = E;
continue;
}
Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause)
<< FD->getDeclName() << (isa<CXXMethodDecl>(ADecl) ? 1 : 0);
}
// The optional parameter of the aligned clause, alignment, must be a constant
// positive integer expression. If no optional parameter is specified,
// implementation-defined default alignments for SIMD instructions on the
// target platforms are assumed.
SmallVector<const Expr *, 4> NewAligns;
for (Expr *E : Alignments) {
ExprResult Align;
if (E)
Align = VerifyPositiveIntegerConstantInClause(E, OMPC_aligned);
NewAligns.push_back(Align.get());
}
// OpenMP [2.8.2, declare simd construct, Description]
// The linear clause declares one or more list items to be private to a SIMD
// lane and to have a linear relationship with respect to the iteration space
// of a loop.
// The special this pointer can be used as if was one of the arguments to the
// function in any of the linear, aligned, or uniform clauses.
// When a linear-step expression is specified in a linear clause it must be
// either a constant integer expression or an integer-typed parameter that is
// specified in a uniform clause on the directive.
llvm::DenseMap<const Decl *, const Expr *> LinearArgs;
const bool IsUniformedThis = UniformedLinearThis != nullptr;
auto MI = LinModifiers.begin();
for (const Expr *E : Linears) {
auto LinKind = static_cast<OpenMPLinearClauseKind>(*MI);
++MI;
E = E->IgnoreParenImpCasts();
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
const VarDecl *CanonPVD = PVD->getCanonicalDecl();
if (FD->getNumParams() > PVD->getFunctionScopeIndex() &&
FD->getParamDecl(PVD->getFunctionScopeIndex())
->getCanonicalDecl() == CanonPVD) {
// OpenMP [2.15.3.7, linear Clause, Restrictions]
// A list-item cannot appear in more than one linear clause.
if (LinearArgs.count(CanonPVD) > 0) {
Diag(E->getExprLoc(), diag::err_omp_wrong_dsa)
<< getOpenMPClauseName(OMPC_linear)
<< getOpenMPClauseName(OMPC_linear) << E->getSourceRange();
Diag(LinearArgs[CanonPVD]->getExprLoc(),
diag::note_omp_explicit_dsa)
<< getOpenMPClauseName(OMPC_linear);
continue;
}
// Each argument can appear in at most one uniform or linear clause.
if (UniformedArgs.count(CanonPVD) > 0) {
Diag(E->getExprLoc(), diag::err_omp_wrong_dsa)
<< getOpenMPClauseName(OMPC_linear)
<< getOpenMPClauseName(OMPC_uniform) << E->getSourceRange();
Diag(UniformedArgs[CanonPVD]->getExprLoc(),
diag::note_omp_explicit_dsa)
<< getOpenMPClauseName(OMPC_uniform);
continue;
}
LinearArgs[CanonPVD] = E;
if (E->isValueDependent() || E->isTypeDependent() ||
E->isInstantiationDependent() ||
E->containsUnexpandedParameterPack())
continue;
(void)CheckOpenMPLinearDecl(CanonPVD, E->getExprLoc(), LinKind,
PVD->getOriginalType(),
/*IsDeclareSimd=*/true);
continue;
}
}
if (isa<CXXThisExpr>(E)) {
if (UniformedLinearThis) {
Diag(E->getExprLoc(), diag::err_omp_wrong_dsa)
<< getOpenMPClauseName(OMPC_linear)
<< getOpenMPClauseName(IsUniformedThis ? OMPC_uniform : OMPC_linear)
<< E->getSourceRange();
Diag(UniformedLinearThis->getExprLoc(), diag::note_omp_explicit_dsa)
<< getOpenMPClauseName(IsUniformedThis ? OMPC_uniform
: OMPC_linear);
continue;
}
UniformedLinearThis = E;
if (E->isValueDependent() || E->isTypeDependent() ||
E->isInstantiationDependent() || E->containsUnexpandedParameterPack())
continue;
(void)CheckOpenMPLinearDecl(/*D=*/nullptr, E->getExprLoc(), LinKind,
E->getType(), /*IsDeclareSimd=*/true);
continue;
}
Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause)
<< FD->getDeclName() << (isa<CXXMethodDecl>(ADecl) ? 1 : 0);
}
Expr *Step = nullptr;
Expr *NewStep = nullptr;
SmallVector<Expr *, 4> NewSteps;
for (Expr *E : Steps) {
// Skip the same step expression, it was checked already.
if (Step == E || !E) {
NewSteps.push_back(E ? NewStep : nullptr);
continue;
}
Step = E;
if (const auto *DRE = dyn_cast<DeclRefExpr>(Step))
if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
const VarDecl *CanonPVD = PVD->getCanonicalDecl();
if (UniformedArgs.count(CanonPVD) == 0) {
Diag(Step->getExprLoc(), diag::err_omp_expected_uniform_param)
<< Step->getSourceRange();
} else if (E->isValueDependent() || E->isTypeDependent() ||
E->isInstantiationDependent() ||
E->containsUnexpandedParameterPack() ||
CanonPVD->getType()->hasIntegerRepresentation()) {
NewSteps.push_back(Step);
} else {
Diag(Step->getExprLoc(), diag::err_omp_expected_int_param)
<< Step->getSourceRange();
}
continue;
}
NewStep = Step;
if (Step && !Step->isValueDependent() && !Step->isTypeDependent() &&
!Step->isInstantiationDependent() &&
!Step->containsUnexpandedParameterPack()) {
NewStep = PerformOpenMPImplicitIntegerConversion(Step->getExprLoc(), Step)
.get();
if (NewStep)
NewStep =
VerifyIntegerConstantExpression(NewStep, /*FIXME*/ AllowFold).get();
}
NewSteps.push_back(NewStep);
}
auto *NewAttr = OMPDeclareSimdDeclAttr::CreateImplicit(
Context, BS, SL.get(), const_cast<Expr **>(Uniforms.data()),
Uniforms.size(), const_cast<Expr **>(Aligneds.data()), Aligneds.size(),
const_cast<Expr **>(NewAligns.data()), NewAligns.size(),
const_cast<Expr **>(Linears.data()), Linears.size(),
const_cast<unsigned *>(LinModifiers.data()), LinModifiers.size(),
NewSteps.data(), NewSteps.size(), SR);
ADecl->addAttr(NewAttr);
return DG;
}
static void setPrototype(Sema &S, FunctionDecl *FD, FunctionDecl *FDWithProto,
QualType NewType) {
assert(NewType->isFunctionProtoType() &&
"Expected function type with prototype.");
assert(FD->getType()->isFunctionNoProtoType() &&
"Expected function with type with no prototype.");
assert(FDWithProto->getType()->isFunctionProtoType() &&
"Expected function with prototype.");
// Synthesize parameters with the same types.
FD->setType(NewType);
SmallVector<ParmVarDecl *, 16> Params;
for (const ParmVarDecl *P : FDWithProto->parameters()) {
auto *Param = ParmVarDecl::Create(S.getASTContext(), FD, SourceLocation(),
SourceLocation(), nullptr, P->getType(),
/*TInfo=*/nullptr, SC_None, nullptr);
Param->setScopeInfo(0, Params.size());
Param->setImplicit();
Params.push_back(Param);
}
FD->setParams(Params);
}
void Sema::ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl *D) {
if (D->isInvalidDecl())
return;
FunctionDecl *FD = nullptr;
if (auto *UTemplDecl = dyn_cast<FunctionTemplateDecl>(D))
FD = UTemplDecl->getTemplatedDecl();
else
FD = cast<FunctionDecl>(D);
assert(FD && "Expected a function declaration!");
// If we are instantiating templates we do *not* apply scoped assumptions but
// only global ones. We apply scoped assumption to the template definition
// though.
if (!inTemplateInstantiation()) {
for (AssumptionAttr *AA : OMPAssumeScoped)
FD->addAttr(AA);
}
for (AssumptionAttr *AA : OMPAssumeGlobal)
FD->addAttr(AA);
}
Sema::OMPDeclareVariantScope::OMPDeclareVariantScope(OMPTraitInfo &TI)
: TI(&TI), NameSuffix(TI.getMangledName()) {}
void Sema::ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParamLists,
SmallVectorImpl<FunctionDecl *> &Bases) {
if (!D.getIdentifier())
return;
OMPDeclareVariantScope &DVScope = OMPDeclareVariantScopes.back();
// Template specialization is an extension, check if we do it.
bool IsTemplated = !TemplateParamLists.empty();
if (IsTemplated &
!DVScope.TI->isExtensionActive(
llvm::omp::TraitProperty::implementation_extension_allow_templates))
return;
IdentifierInfo *BaseII = D.getIdentifier();
LookupResult Lookup(*this, DeclarationName(BaseII), D.getIdentifierLoc(),
LookupOrdinaryName);
LookupParsedName(Lookup, S, &D.getCXXScopeSpec());
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
QualType FType = TInfo->getType();
bool IsConstexpr =
D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr;
bool IsConsteval =
D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Consteval;
for (auto *Candidate : Lookup) {
auto *CandidateDecl = Candidate->getUnderlyingDecl();
FunctionDecl *UDecl = nullptr;
if (IsTemplated && isa<FunctionTemplateDecl>(CandidateDecl)) {
auto *FTD = cast<FunctionTemplateDecl>(CandidateDecl);
if (FTD->getTemplateParameters()->size() == TemplateParamLists.size())
UDecl = FTD->getTemplatedDecl();
} else if (!IsTemplated)
UDecl = dyn_cast<FunctionDecl>(CandidateDecl);
if (!UDecl)
continue;
// Don't specialize constexpr/consteval functions with
// non-constexpr/consteval functions.
if (UDecl->isConstexpr() && !IsConstexpr)
continue;
if (UDecl->isConsteval() && !IsConsteval)
continue;
QualType UDeclTy = UDecl->getType();
if (!UDeclTy->isDependentType()) {
QualType NewType = Context.mergeFunctionTypes(
FType, UDeclTy, /* OfBlockPointer */ false,
/* Unqualified */ false, /* AllowCXX */ true);
if (NewType.isNull())
continue;
}
// Found a base!
Bases.push_back(UDecl);
}
bool UseImplicitBase = !DVScope.TI->isExtensionActive(
llvm::omp::TraitProperty::implementation_extension_disable_implicit_base);
// If no base was found we create a declaration that we use as base.
if (Bases.empty() && UseImplicitBase) {
D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
Decl *BaseD = HandleDeclarator(S, D, TemplateParamLists);
BaseD->setImplicit(true);
if (auto *BaseTemplD = dyn_cast<FunctionTemplateDecl>(BaseD))
Bases.push_back(BaseTemplD->getTemplatedDecl());
else
Bases.push_back(cast<FunctionDecl>(BaseD));
}
std::string MangledName;
MangledName += D.getIdentifier()->getName();
MangledName += getOpenMPVariantManglingSeparatorStr();
MangledName += DVScope.NameSuffix;
IdentifierInfo &VariantII = Context.Idents.get(MangledName);
VariantII.setMangledOpenMPVariantName(true);
D.SetIdentifier(&VariantII, D.getBeginLoc());
}
void Sema::ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(
Decl *D, SmallVectorImpl<FunctionDecl *> &Bases) {
// Do not mark function as is used to prevent its emission if this is the
// only place where it is used.
EnterExpressionEvaluationContext Unevaluated(
*this, Sema::ExpressionEvaluationContext::Unevaluated);
FunctionDecl *FD = nullptr;
if (auto *UTemplDecl = dyn_cast<FunctionTemplateDecl>(D))
FD = UTemplDecl->getTemplatedDecl();
else
FD = cast<FunctionDecl>(D);
auto *VariantFuncRef = DeclRefExpr::Create(
Context, NestedNameSpecifierLoc(), SourceLocation(), FD,
/* RefersToEnclosingVariableOrCapture */ false,
/* NameLoc */ FD->getLocation(), FD->getType(),
ExprValueKind::VK_PRValue);
OMPDeclareVariantScope &DVScope = OMPDeclareVariantScopes.back();
auto *OMPDeclareVariantA = OMPDeclareVariantAttr::CreateImplicit(
Context, VariantFuncRef, DVScope.TI,
/*NothingArgs=*/nullptr, /*NothingArgsSize=*/0,
/*NeedDevicePtrArgs=*/nullptr, /*NeedDevicePtrArgsSize=*/0,
/*AppendArgs=*/nullptr, /*AppendArgsSize=*/0);
for (FunctionDecl *BaseFD : Bases)
BaseFD->addAttr(OMPDeclareVariantA);
}
ExprResult Sema::ActOnOpenMPCall(ExprResult Call, Scope *Scope,
SourceLocation LParenLoc,
MultiExprArg ArgExprs,
SourceLocation RParenLoc, Expr *ExecConfig) {
// The common case is a regular call we do not want to specialize at all. Try
// to make that case fast by bailing early.
CallExpr *CE = dyn_cast<CallExpr>(Call.get());
if (!CE)
return Call;
FunctionDecl *CalleeFnDecl = CE->getDirectCallee();
if (!CalleeFnDecl)
return Call;
if (!CalleeFnDecl->hasAttr<OMPDeclareVariantAttr>())
return Call;
ASTContext &Context = getASTContext();
std::function<void(StringRef)> DiagUnknownTrait = [this,
CE](StringRef ISATrait) {
// TODO Track the selector locations in a way that is accessible here to
// improve the diagnostic location.
Diag(CE->getBeginLoc(), diag::warn_unknown_declare_variant_isa_trait)
<< ISATrait;
};
TargetOMPContext OMPCtx(Context, std::move(DiagUnknownTrait),
getCurFunctionDecl(), DSAStack->getConstructTraits());
QualType CalleeFnType = CalleeFnDecl->getType();
SmallVector<Expr *, 4> Exprs;
SmallVector<VariantMatchInfo, 4> VMIs;
while (CalleeFnDecl) {
for (OMPDeclareVariantAttr *A :
CalleeFnDecl->specific_attrs<OMPDeclareVariantAttr>()) {
Expr *VariantRef = A->getVariantFuncRef();
VariantMatchInfo VMI;
OMPTraitInfo &TI = A->getTraitInfo();
TI.getAsVariantMatchInfo(Context, VMI);
if (!isVariantApplicableInContext(VMI, OMPCtx,
/* DeviceSetOnly */ false))
continue;
VMIs.push_back(VMI);
Exprs.push_back(VariantRef);
}
CalleeFnDecl = CalleeFnDecl->getPreviousDecl();
}
ExprResult NewCall;
do {
int BestIdx = getBestVariantMatchForContext(VMIs, OMPCtx);
if (BestIdx < 0)
return Call;
Expr *BestExpr = cast<DeclRefExpr>(Exprs[BestIdx]);
Decl *BestDecl = cast<DeclRefExpr>(BestExpr)->getDecl();
{
// Try to build a (member) call expression for the current best applicable
// variant expression. We allow this to fail in which case we continue
// with the next best variant expression. The fail case is part of the
// implementation defined behavior in the OpenMP standard when it talks
// about what differences in the function prototypes: "Any differences
// that the specific OpenMP context requires in the prototype of the
// variant from the base function prototype are implementation defined."
// This wording is there to allow the specialized variant to have a
// different type than the base function. This is intended and OK but if
// we cannot create a call the difference is not in the "implementation
// defined range" we allow.
Sema::TentativeAnalysisScope Trap(*this);
if (auto *SpecializedMethod = dyn_cast<CXXMethodDecl>(BestDecl)) {
auto *MemberCall = dyn_cast<CXXMemberCallExpr>(CE);
BestExpr = MemberExpr::CreateImplicit(
Context, MemberCall->getImplicitObjectArgument(),
/* IsArrow */ false, SpecializedMethod, Context.BoundMemberTy,
MemberCall->getValueKind(), MemberCall->getObjectKind());
}
NewCall = BuildCallExpr(Scope, BestExpr, LParenLoc, ArgExprs, RParenLoc,
ExecConfig);
if (NewCall.isUsable()) {
if (CallExpr *NCE = dyn_cast<CallExpr>(NewCall.get())) {
FunctionDecl *NewCalleeFnDecl = NCE->getDirectCallee();
QualType NewType = Context.mergeFunctionTypes(
CalleeFnType, NewCalleeFnDecl->getType(),
/* OfBlockPointer */ false,
/* Unqualified */ false, /* AllowCXX */ true);
if (!NewType.isNull())
break;
// Don't use the call if the function type was not compatible.
NewCall = nullptr;
}
}
}
VMIs.erase(VMIs.begin() + BestIdx);
Exprs.erase(Exprs.begin() + BestIdx);
} while (!VMIs.empty());
if (!NewCall.isUsable())
return Call;
return PseudoObjectExpr::Create(Context, CE, {NewCall.get()}, 0);
}
Optional<std::pair<FunctionDecl *, Expr *>>
Sema::checkOpenMPDeclareVariantFunction(Sema::DeclGroupPtrTy DG,
Expr *VariantRef, OMPTraitInfo &TI,
unsigned NumAppendArgs,
SourceRange SR) {
if (!DG || DG.get().isNull())
return None;
const int VariantId = 1;
// Must be applied only to single decl.
if (!DG.get().isSingleDecl()) {
Diag(SR.getBegin(), diag::err_omp_single_decl_in_declare_simd_variant)
<< VariantId << SR;
return None;
}
Decl *ADecl = DG.get().getSingleDecl();
if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ADecl))
ADecl = FTD->getTemplatedDecl();
// Decl must be a function.
auto *FD = dyn_cast<FunctionDecl>(ADecl);
if (!FD) {
Diag(ADecl->getLocation(), diag::err_omp_function_expected)
<< VariantId << SR;
return None;
}
auto &&HasMultiVersionAttributes = [](const FunctionDecl *FD) {
// The 'target' attribute needs to be separately checked because it does
// not always signify a multiversion function declaration.
return FD->isMultiVersion() || FD->hasAttr<TargetAttr>();
};
// OpenMP is not compatible with multiversion function attributes.
if (HasMultiVersionAttributes(FD)) {
Diag(FD->getLocation(), diag::err_omp_declare_variant_incompat_attributes)
<< SR;
return None;
}
// Allow #pragma omp declare variant only if the function is not used.
if (FD->isUsed(false))
Diag(SR.getBegin(), diag::warn_omp_declare_variant_after_used)
<< FD->getLocation();
// Check if the function was emitted already.
const FunctionDecl *Definition;
if (!FD->isThisDeclarationADefinition() && FD->isDefined(Definition) &&
(LangOpts.EmitAllDecls || Context.DeclMustBeEmitted(Definition)))
Diag(SR.getBegin(), diag::warn_omp_declare_variant_after_emitted)
<< FD->getLocation();
// The VariantRef must point to function.
if (!VariantRef) {
Diag(SR.getBegin(), diag::err_omp_function_expected) << VariantId;
return None;
}
auto ShouldDelayChecks = [](Expr *&E, bool) {
return E && (E->isTypeDependent() || E->isValueDependent() ||
E->containsUnexpandedParameterPack() ||
E->isInstantiationDependent());
};
// Do not check templates, wait until instantiation.
if (FD->isDependentContext() || ShouldDelayChecks(VariantRef, false) ||
TI.anyScoreOrCondition(ShouldDelayChecks))
return std::make_pair(FD, VariantRef);
// Deal with non-constant score and user condition expressions.
auto HandleNonConstantScoresAndConditions = [this](Expr *&E,
bool IsScore) -> bool {
if (!E || E->isIntegerConstantExpr(Context))
return false;
if (IsScore) {
// We warn on non-constant scores and pretend they were not present.
Diag(E->getExprLoc(), diag::warn_omp_declare_variant_score_not_constant)
<< E;
E = nullptr;
} else {
// We could replace a non-constant user condition with "false" but we
// will soon need to handle these anyway for the dynamic version of
// OpenMP context selectors.
Diag(E->getExprLoc(),
diag::err_omp_declare_variant_user_condition_not_constant)
<< E;
}
return true;
};
if (TI.anyScoreOrCondition(HandleNonConstantScoresAndConditions))
return None;
QualType AdjustedFnType = FD->getType();
if (NumAppendArgs) {
const auto *PTy = AdjustedFnType->getAsAdjusted<FunctionProtoType>();
if (!PTy) {
Diag(FD->getLocation(), diag::err_omp_declare_variant_prototype_required)
<< SR;
return None;
}
// Adjust the function type to account for an extra omp_interop_t for each
// specified in the append_args clause.
const TypeDecl *TD = nullptr;
LookupResult Result(*this, &Context.Idents.get("omp_interop_t"),
SR.getBegin(), Sema::LookupOrdinaryName);
if (LookupName(Result, getCurScope())) {
NamedDecl *ND = Result.getFoundDecl();
TD = dyn_cast_or_null<TypeDecl>(ND);
}
if (!TD) {
Diag(SR.getBegin(), diag::err_omp_interop_type_not_found) << SR;
return None;
}
QualType InteropType = Context.getTypeDeclType(TD);
if (PTy->isVariadic()) {
Diag(FD->getLocation(), diag::err_omp_append_args_with_varargs) << SR;
return None;
}
llvm::SmallVector<QualType, 8> Params;
Params.append(PTy->param_type_begin(), PTy->param_type_end());
Params.insert(Params.end(), NumAppendArgs, InteropType);
AdjustedFnType = Context.getFunctionType(PTy->getReturnType(), Params,
PTy->getExtProtoInfo());
}
// Convert VariantRef expression to the type of the original function to
// resolve possible conflicts.
ExprResult VariantRefCast = VariantRef;
if (LangOpts.CPlusPlus) {
QualType FnPtrType;
auto *Method = dyn_cast<CXXMethodDecl>(FD);
if (Method && !Method->isStatic()) {
const Type *ClassType =
Context.getTypeDeclType(Method->getParent()).getTypePtr();
FnPtrType = Context.getMemberPointerType(AdjustedFnType, ClassType);
ExprResult ER;
{
// Build adrr_of unary op to correctly handle type checks for member
// functions.
Sema::TentativeAnalysisScope Trap(*this);
ER = CreateBuiltinUnaryOp(VariantRef->getBeginLoc(), UO_AddrOf,
VariantRef);
}
if (!ER.isUsable()) {
Diag(VariantRef->getExprLoc(), diag::err_omp_function_expected)
<< VariantId << VariantRef->getSourceRange();
return None;
}
VariantRef = ER.get();
} else {
FnPtrType = Context.getPointerType(AdjustedFnType);
}
QualType VarianPtrType = Context.getPointerType(VariantRef->getType());
if (VarianPtrType.getUnqualifiedType() != FnPtrType.getUnqualifiedType()) {
ImplicitConversionSequence ICS = TryImplicitConversion(
VariantRef, FnPtrType.getUnqualifiedType(),
/*SuppressUserConversions=*/false, AllowedExplicit::None,
/*InOverloadResolution=*/false,
/*CStyle=*/false,
/*AllowObjCWritebackConversion=*/false);
if (ICS.isFailure()) {
Diag(VariantRef->getExprLoc(),
diag::err_omp_declare_variant_incompat_types)
<< VariantRef->getType()
<< ((Method && !Method->isStatic()) ? FnPtrType : FD->getType())
<< (NumAppendArgs ? 1 : 0) << VariantRef->getSourceRange();
return None;
}
VariantRefCast = PerformImplicitConversion(
VariantRef, FnPtrType.getUnqualifiedType(), AA_Converting);
if (!VariantRefCast.isUsable())
return None;
}
// Drop previously built artificial addr_of unary op for member functions.
if (Method && !Method->isStatic()) {
Expr *PossibleAddrOfVariantRef = VariantRefCast.get();
if (auto *UO = dyn_cast<UnaryOperator>(
PossibleAddrOfVariantRef->IgnoreImplicit()))
VariantRefCast = UO->getSubExpr();
}
}
ExprResult ER = CheckPlaceholderExpr(VariantRefCast.get());
if (!ER.isUsable() ||
!ER.get()->IgnoreParenImpCasts()->getType()->isFunctionType()) {
Diag(VariantRef->getExprLoc(), diag::err_omp_function_expected)
<< VariantId << VariantRef->getSourceRange();
return None;
}
// The VariantRef must point to function.
auto *DRE = dyn_cast<DeclRefExpr>(ER.get()->IgnoreParenImpCasts());
if (!DRE) {
Diag(VariantRef->getExprLoc(), diag::err_omp_function_expected)
<< VariantId << VariantRef->getSourceRange();
return None;
}
auto *NewFD = dyn_cast_or_null<FunctionDecl>(DRE->getDecl());
if (!NewFD) {
Diag(VariantRef->getExprLoc(), diag::err_omp_function_expected)
<< VariantId << VariantRef->getSourceRange();
return None;
}
if (FD->getCanonicalDecl() == NewFD->getCanonicalDecl()) {
Diag(VariantRef->getExprLoc(),
diag::err_omp_declare_variant_same_base_function)
<< VariantRef->getSourceRange();
return None;
}
// Check if function types are compatible in C.
if (!LangOpts.CPlusPlus) {
QualType NewType =
Context.mergeFunctionTypes(AdjustedFnType, NewFD->getType());
if (NewType.isNull()) {
Diag(VariantRef->getExprLoc(),
diag::err_omp_declare_variant_incompat_types)
<< NewFD->getType() << FD->getType() << (NumAppendArgs ? 1 : 0)
<< VariantRef->getSourceRange();
return None;
}
if (NewType->isFunctionProtoType()) {
if (FD->getType()->isFunctionNoProtoType())
setPrototype(*this, FD, NewFD, NewType);
else if (NewFD->getType()->isFunctionNoProtoType())
setPrototype(*this, NewFD, FD, NewType);
}
}
// Check if variant function is not marked with declare variant directive.
if (NewFD->hasAttrs() && NewFD->hasAttr<OMPDeclareVariantAttr>()) {
Diag(VariantRef->getExprLoc(),
diag::warn_omp_declare_variant_marked_as_declare_variant)
<< VariantRef->getSourceRange();
SourceRange SR =
NewFD->specific_attr_begin<OMPDeclareVariantAttr>()->getRange();
Diag(SR.getBegin(), diag::note_omp_marked_declare_variant_here) << SR;
return None;
}
enum DoesntSupport {
VirtFuncs = 1,
Constructors = 3,
Destructors = 4,
DeletedFuncs = 5,
DefaultedFuncs = 6,
ConstexprFuncs = 7,
ConstevalFuncs = 8,
};
if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
if (CXXFD->isVirtual()) {
Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support)
<< VirtFuncs;
return None;
}
if (isa<CXXConstructorDecl>(FD)) {
Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support)
<< Constructors;
return None;
}
if (isa<CXXDestructorDecl>(FD)) {
Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support)
<< Destructors;
return None;
}
}
if (FD->isDeleted()) {
Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support)
<< DeletedFuncs;
return None;
}
if (FD->isDefaulted()) {
Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support)
<< DefaultedFuncs;
return None;
}
if (FD->isConstexpr()) {
Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support)
<< (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
return None;
}
// Check general compatibility.
if (areMultiversionVariantFunctionsCompatible(
FD, NewFD, PartialDiagnostic::NullDiagnostic(),
PartialDiagnosticAt(SourceLocation(),
PartialDiagnostic::NullDiagnostic()),
PartialDiagnosticAt(
VariantRef->getExprLoc(),
PDiag(diag::err_omp_declare_variant_doesnt_support)),
PartialDiagnosticAt(VariantRef->getExprLoc(),
PDiag(diag::err_omp_declare_variant_diff)
<< FD->getLocation()),
/*TemplatesSupported=*/true, /*ConstexprSupported=*/false,
/*CLinkageMayDiffer=*/true))
return None;
return std::make_pair(FD, cast<Expr>(DRE));
}
void Sema::ActOnOpenMPDeclareVariantDirective(
FunctionDecl *FD, Expr *VariantRef, OMPTraitInfo &TI,
ArrayRef<Expr *> AdjustArgsNothing,
ArrayRef<Expr *> AdjustArgsNeedDevicePtr,
ArrayRef<OMPDeclareVariantAttr::InteropType> AppendArgs,
SourceLocation AdjustArgsLoc, SourceLocation AppendArgsLoc,
SourceRange SR) {
// OpenMP 5.1 [2.3.5, declare variant directive, Restrictions]
// An adjust_args clause or append_args clause can only be specified if the
// dispatch selector of the construct selector set appears in the match
// clause.
SmallVector<Expr *, 8> AllAdjustArgs;
llvm::append_range(AllAdjustArgs, AdjustArgsNothing);
llvm::append_range(AllAdjustArgs, AdjustArgsNeedDevicePtr);
if (!AllAdjustArgs.empty() || !AppendArgs.empty()) {
VariantMatchInfo VMI;
TI.getAsVariantMatchInfo(Context, VMI);
if (!llvm::is_contained(
VMI.ConstructTraits,
llvm::omp::TraitProperty::construct_dispatch_dispatch)) {
if (!AllAdjustArgs.empty())
Diag(AdjustArgsLoc, diag::err_omp_clause_requires_dispatch_construct)
<< getOpenMPClauseName(OMPC_adjust_args);
if (!AppendArgs.empty())
Diag(AppendArgsLoc, diag::err_omp_clause_requires_dispatch_construct)
<< getOpenMPClauseName(OMPC_append_args);
return;
}
}
// OpenMP 5.1 [2.3.5, declare variant directive, Restrictions]
// Each argument can only appear in a single adjust_args clause for each
// declare variant directive.
llvm::SmallPtrSet<const VarDecl *, 4> AdjustVars;
for (Expr *E : AllAdjustArgs) {
E = E->IgnoreParenImpCasts();
if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
const VarDecl *CanonPVD = PVD->getCanonicalDecl();
if (FD->getNumParams() > PVD->getFunctionScopeIndex() &&
FD->getParamDecl(PVD->getFunctionScopeIndex())
->getCanonicalDecl() == CanonPVD) {
// It's a parameter of the function, check duplicates.
if (!AdjustVars.insert(CanonPVD).second) {
Diag(DRE->getLocation(), diag::err_omp_adjust_arg_multiple_clauses)
<< PVD;
return;
}
continue;
}
}
}
// Anything that is not a function parameter is an error.
Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause) << FD << 0;
return;
}
auto *NewAttr = OMPDeclareVariantAttr::CreateImplicit(
Context, VariantRef, &TI, const_cast<Expr **>(AdjustArgsNothing.data()),
AdjustArgsNothing.size(),
const_cast<Expr **>(AdjustArgsNeedDevicePtr.data()),
AdjustArgsNeedDevicePtr.size(),
const_cast<OMPDeclareVariantAttr::InteropType *>(AppendArgs.data()),
AppendArgs.size(), SR);
FD->addAttr(NewAttr);
}
StmtResult Sema::ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
setFunctionHasBranchProtectedScope();
return OMPParallelDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
DSAStack->getTaskgroupReductionRef(),
DSAStack->isCancelRegion());
}
namespace {
/// Iteration space of a single for loop.
struct LoopIterationSpace final {
/// True if the condition operator is the strict compare operator (<, > or
/// !=).
bool IsStrictCompare = false;
/// Condition of the loop.
Expr *PreCond = nullptr;
/// This expression calculates the number of iterations in the loop.
/// It is always possible to calculate it before starting the loop.
Expr *NumIterations = nullptr;
/// The loop counter variable.
Expr *CounterVar = nullptr;
/// Private loop counter variable.
Expr *PrivateCounterVar = nullptr;
/// This is initializer for the initial value of #CounterVar.
Expr *CounterInit = nullptr;
/// This is step for the #CounterVar used to generate its update:
/// #CounterVar = #CounterInit + #CounterStep * CurrentIteration.
Expr *CounterStep = nullptr;
/// Should step be subtracted?
bool Subtract = false;
/// Source range of the loop init.
SourceRange InitSrcRange;
/// Source range of the loop condition.
SourceRange CondSrcRange;
/// Source range of the loop increment.
SourceRange IncSrcRange;
/// Minimum value that can have the loop control variable. Used to support
/// non-rectangular loops. Applied only for LCV with the non-iterator types,
/// since only such variables can be used in non-loop invariant expressions.
Expr *MinValue = nullptr;
/// Maximum value that can have the loop control variable. Used to support
/// non-rectangular loops. Applied only for LCV with the non-iterator type,
/// since only such variables can be used in non-loop invariant expressions.
Expr *MaxValue = nullptr;
/// true, if the lower bound depends on the outer loop control var.
bool IsNonRectangularLB = false;
/// true, if the upper bound depends on the outer loop control var.
bool IsNonRectangularUB = false;
/// Index of the loop this loop depends on and forms non-rectangular loop
/// nest.
unsigned LoopDependentIdx = 0;
/// Final condition for the non-rectangular loop nest support. It is used to
/// check that the number of iterations for this particular counter must be
/// finished.
Expr *FinalCondition = nullptr;
};
/// Helper class for checking canonical form of the OpenMP loops and
/// extracting iteration space of each loop in the loop nest, that will be used
/// for IR generation.
class OpenMPIterationSpaceChecker {
/// Reference to Sema.
Sema &SemaRef;
/// Does the loop associated directive support non-rectangular loops?
bool SupportsNonRectangular;
/// Data-sharing stack.
DSAStackTy &Stack;
/// A location for diagnostics (when there is no some better location).
SourceLocation DefaultLoc;
/// A location for diagnostics (when increment is not compatible).
SourceLocation ConditionLoc;
/// A source location for referring to loop init later.
SourceRange InitSrcRange;
/// A source location for referring to condition later.
SourceRange ConditionSrcRange;
/// A source location for referring to increment later.
SourceRange IncrementSrcRange;
/// Loop variable.
ValueDecl *LCDecl = nullptr;
/// Reference to loop variable.
Expr *LCRef = nullptr;
/// Lower bound (initializer for the var).
Expr *LB = nullptr;
/// Upper bound.
Expr *UB = nullptr;
/// Loop step (increment).
Expr *Step = nullptr;
/// This flag is true when condition is one of:
/// Var < UB
/// Var <= UB
/// UB > Var
/// UB >= Var
/// This will have no value when the condition is !=
llvm::Optional<bool> TestIsLessOp;
/// This flag is true when condition is strict ( < or > ).
bool TestIsStrictOp = false;
/// This flag is true when step is subtracted on each iteration.
bool SubtractStep = false;
/// The outer loop counter this loop depends on (if any).
const ValueDecl *DepDecl = nullptr;
/// Contains number of loop (starts from 1) on which loop counter init
/// expression of this loop depends on.
Optional<unsigned> InitDependOnLC;
/// Contains number of loop (starts from 1) on which loop counter condition
/// expression of this loop depends on.
Optional<unsigned> CondDependOnLC;
/// Checks if the provide statement depends on the loop counter.
Optional<unsigned> doesDependOnLoopCounter(const Stmt *S, bool IsInitializer);
/// Original condition required for checking of the exit condition for
/// non-rectangular loop.
Expr *Condition = nullptr;
public:
OpenMPIterationSpaceChecker(Sema &SemaRef, bool SupportsNonRectangular,
DSAStackTy &Stack, SourceLocation DefaultLoc)
: SemaRef(SemaRef), SupportsNonRectangular(SupportsNonRectangular),
Stack(Stack), DefaultLoc(DefaultLoc), ConditionLoc(DefaultLoc) {}
/// Check init-expr for canonical loop form and save loop counter
/// variable - #Var and its initialization value - #LB.
bool checkAndSetInit(Stmt *S, bool EmitDiags = true);
/// Check test-expr for canonical form, save upper-bound (#UB), flags
/// for less/greater and for strict/non-strict comparison.
bool checkAndSetCond(Expr *S);
/// Check incr-expr for canonical loop form and return true if it
/// does not conform, otherwise save loop step (#Step).
bool checkAndSetInc(Expr *S);
/// Return the loop counter variable.
ValueDecl *getLoopDecl() const { return LCDecl; }
/// Return the reference expression to loop counter variable.
Expr *getLoopDeclRefExpr() const { return LCRef; }
/// Source range of the loop init.
SourceRange getInitSrcRange() const { return InitSrcRange; }
/// Source range of the loop condition.
SourceRange getConditionSrcRange() const { return ConditionSrcRange; }
/// Source range of the loop increment.
SourceRange getIncrementSrcRange() const { return IncrementSrcRange; }
/// True if the step should be subtracted.
bool shouldSubtractStep() const { return SubtractStep; }
/// True, if the compare operator is strict (<, > or !=).
bool isStrictTestOp() const { return TestIsStrictOp; }
/// Build the expression to calculate the number of iterations.
Expr *buildNumIterations(
Scope *S, ArrayRef<LoopIterationSpace> ResultIterSpaces, bool LimitedType,
llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const;
/// Build the precondition expression for the loops.
Expr *
buildPreCond(Scope *S, Expr *Cond,
llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const;
/// Build reference expression to the counter be used for codegen.
DeclRefExpr *
buildCounterVar(llvm::MapVector<const Expr *, DeclRefExpr *> &Captures,
DSAStackTy &DSA) const;
/// Build reference expression to the private counter be used for
/// codegen.
Expr *buildPrivateCounterVar() const;
/// Build initialization of the counter be used for codegen.
Expr *buildCounterInit() const;
/// Build step of the counter be used for codegen.
Expr *buildCounterStep() const;
/// Build loop data with counter value for depend clauses in ordered
/// directives.
Expr *
buildOrderedLoopData(Scope *S, Expr *Counter,
llvm::MapVector<const Expr *, DeclRefExpr *> &Captures,
SourceLocation Loc, Expr *Inc = nullptr,
OverloadedOperatorKind OOK = OO_Amp);
/// Builds the minimum value for the loop counter.
std::pair<Expr *, Expr *> buildMinMaxValues(
Scope *S, llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const;
/// Builds final condition for the non-rectangular loops.
Expr *buildFinalCondition(Scope *S) const;
/// Return true if any expression is dependent.
bool dependent() const;
/// Returns true if the initializer forms non-rectangular loop.
bool doesInitDependOnLC() const { return InitDependOnLC.hasValue(); }
/// Returns true if the condition forms non-rectangular loop.
bool doesCondDependOnLC() const { return CondDependOnLC.hasValue(); }
/// Returns index of the loop we depend on (starting from 1), or 0 otherwise.
unsigned getLoopDependentIdx() const {
return InitDependOnLC.getValueOr(CondDependOnLC.getValueOr(0));
}
private:
/// Check the right-hand side of an assignment in the increment
/// expression.
bool checkAndSetIncRHS(Expr *RHS);
/// Helper to set loop counter variable and its initializer.
bool setLCDeclAndLB(ValueDecl *NewLCDecl, Expr *NewDeclRefExpr, Expr *NewLB,
bool EmitDiags);
/// Helper to set upper bound.
bool setUB(Expr *NewUB, llvm::Optional<bool> LessOp, bool StrictOp,
SourceRange SR, SourceLocation SL);
/// Helper to set loop increment.
bool setStep(Expr *NewStep, bool Subtract);
};
bool OpenMPIterationSpaceChecker::dependent() const {
if (!LCDecl) {
assert(!LB && !UB && !Step);
return false;
}
return LCDecl->getType()->isDependentType() ||
(LB && LB->isValueDependent()) || (UB && UB->isValueDependent()) ||
(Step && Step->isValueDependent());
}
bool OpenMPIterationSpaceChecker::setLCDeclAndLB(ValueDecl *NewLCDecl,
Expr *NewLCRefExpr,
Expr *NewLB, bool EmitDiags) {
// State consistency checking to ensure correct usage.
assert(LCDecl == nullptr && LB == nullptr && LCRef == nullptr &&
UB == nullptr && Step == nullptr && !TestIsLessOp && !TestIsStrictOp);
if (!NewLCDecl || !NewLB || NewLB->containsErrors())
return true;
LCDecl = getCanonicalDecl(NewLCDecl);
LCRef = NewLCRefExpr;
if (auto *CE = dyn_cast_or_null<CXXConstructExpr>(NewLB))
if (const CXXConstructorDecl *Ctor = CE->getConstructor())
if ((Ctor->isCopyOrMoveConstructor() ||
Ctor->isConvertingConstructor(/*AllowExplicit=*/false)) &&
CE->getNumArgs() > 0 && CE->getArg(0) != nullptr)
NewLB = CE->getArg(0)->IgnoreParenImpCasts();
LB = NewLB;
if (EmitDiags)
InitDependOnLC = doesDependOnLoopCounter(LB, /*IsInitializer=*/true);
return false;
}
bool OpenMPIterationSpaceChecker::setUB(Expr *NewUB,
llvm::Optional<bool> LessOp,
bool StrictOp, SourceRange SR,
SourceLocation SL) {
// State consistency checking to ensure correct usage.
assert(LCDecl != nullptr && LB != nullptr && UB == nullptr &&
Step == nullptr && !TestIsLessOp && !TestIsStrictOp);
if (!NewUB || NewUB->containsErrors())
return true;
UB = NewUB;
if (LessOp)
TestIsLessOp = LessOp;
TestIsStrictOp = StrictOp;
ConditionSrcRange = SR;
ConditionLoc = SL;
CondDependOnLC = doesDependOnLoopCounter(UB, /*IsInitializer=*/false);
return false;
}
bool OpenMPIterationSpaceChecker::setStep(Expr *NewStep, bool Subtract) {
// State consistency checking to ensure correct usage.
assert(LCDecl != nullptr && LB != nullptr && Step == nullptr);
if (!NewStep || NewStep->containsErrors())
return true;
if (!NewStep->isValueDependent()) {
// Check that the step is integer expression.
SourceLocation StepLoc = NewStep->getBeginLoc();
ExprResult Val = SemaRef.PerformOpenMPImplicitIntegerConversion(
StepLoc, getExprAsWritten(NewStep));
if (Val.isInvalid())
return true;
NewStep = Val.get();
// OpenMP [2.6, Canonical Loop Form, Restrictions]
// If test-expr is of form var relational-op b and relational-op is < or
// <= then incr-expr must cause var to increase on each iteration of the
// loop. If test-expr is of form var relational-op b and relational-op is
// > or >= then incr-expr must cause var to decrease on each iteration of
// the loop.
// If test-expr is of form b relational-op var and relational-op is < or
// <= then incr-expr must cause var to decrease on each iteration of the
// loop. If test-expr is of form b relational-op var and relational-op is
// > or >= then incr-expr must cause var to increase on each iteration of
// the loop.
Optional<llvm::APSInt> Result =
NewStep->getIntegerConstantExpr(SemaRef.Context);
bool IsUnsigned = !NewStep->getType()->hasSignedIntegerRepresentation();
bool IsConstNeg =
Result && Result->isSigned() && (Subtract != Result->isNegative());
bool IsConstPos =
Result && Result->isSigned() && (Subtract == Result->isNegative());
bool IsConstZero = Result && !Result->getBoolValue();
// != with increment is treated as <; != with decrement is treated as >
if (!TestIsLessOp.hasValue())
TestIsLessOp = IsConstPos || (IsUnsigned && !Subtract);
if (UB &&
(IsConstZero || (TestIsLessOp.getValue()
? (IsConstNeg || (IsUnsigned && Subtract))
: (IsConstPos || (IsUnsigned && !Subtract))))) {
SemaRef.Diag(NewStep->getExprLoc(),
diag::err_omp_loop_incr_not_compatible)
<< LCDecl << TestIsLessOp.getValue() << NewStep->getSourceRange();
SemaRef.Diag(ConditionLoc,
diag::note_omp_loop_cond_requres_compatible_incr)
<< TestIsLessOp.getValue() << ConditionSrcRange;
return true;
}
if (TestIsLessOp.getValue() == Subtract) {
NewStep =
SemaRef.CreateBuiltinUnaryOp(NewStep->getExprLoc(), UO_Minus, NewStep)
.get();
Subtract = !Subtract;
}
}
Step = NewStep;
SubtractStep = Subtract;
return false;
}
namespace {
/// Checker for the non-rectangular loops. Checks if the initializer or
/// condition expression references loop counter variable.
class LoopCounterRefChecker final
: public ConstStmtVisitor<LoopCounterRefChecker, bool> {
Sema &SemaRef;
DSAStackTy &Stack;
const ValueDecl *CurLCDecl = nullptr;
const ValueDecl *DepDecl = nullptr;
const ValueDecl *PrevDepDecl = nullptr;
bool IsInitializer = true;
bool SupportsNonRectangular;
unsigned BaseLoopId = 0;
bool checkDecl(const Expr *E, const ValueDecl *VD) {
if (getCanonicalDecl(VD) == getCanonicalDecl(CurLCDecl)) {
SemaRef.Diag(E->getExprLoc(), diag::err_omp_stmt_depends_on_loop_counter)
<< (IsInitializer ? 0 : 1);
return false;
}
const auto &&Data = Stack.isLoopControlVariable(VD);
// OpenMP, 2.9.1 Canonical Loop Form, Restrictions.
// The type of the loop iterator on which we depend may not have a random
// access iterator type.
if (Data.first && VD->getType()->isRecordType()) {
SmallString<128> Name;
llvm::raw_svector_ostream OS(Name);
VD->getNameForDiagnostic(OS, SemaRef.getPrintingPolicy(),
/*Qualified=*/true);
SemaRef.Diag(E->getExprLoc(),
diag::err_omp_wrong_dependency_iterator_type)
<< OS.str();
SemaRef.Diag(VD->getLocation(), diag::note_previous_decl) << VD;
return false;
}
if (Data.first && !SupportsNonRectangular) {
SemaRef.Diag(E->getExprLoc(), diag::err_omp_invariant_dependency);
return false;
}
if (Data.first &&
(DepDecl || (PrevDepDecl &&
getCanonicalDecl(VD) != getCanonicalDecl(PrevDepDecl)))) {
if (!DepDecl && PrevDepDecl)
DepDecl = PrevDepDecl;
SmallString<128> Name;
llvm::raw_svector_ostream OS(Name);
DepDecl->getNameForDiagnostic(OS, SemaRef.getPrintingPolicy(),
/*Qualified=*/true);
SemaRef.Diag(E->getExprLoc(),
diag::err_omp_invariant_or_linear_dependency)
<< OS.str();
return false;
}
if (Data.first) {
DepDecl = VD;
BaseLoopId = Data.first;
}
return Data.first;
}
public:
bool VisitDeclRefExpr(const DeclRefExpr *E) {
const ValueDecl *VD = E->getDecl();
if (isa<VarDecl>(VD))
return checkDecl(E, VD);
return false;
}
bool VisitMemberExpr(const MemberExpr *E) {
if (isa<CXXThisExpr>(E->getBase()->IgnoreParens())) {
const ValueDecl *VD = E->getMemberDecl();
if (isa<VarDecl>(VD) || isa<FieldDecl>(VD))
return checkDecl(E, VD);
}
return false;
}
bool VisitStmt(const Stmt *S) {
bool Res = false;
for (const Stmt *Child : S->children())
Res = (Child && Visit(Child)) || Res;
return Res;
}
explicit LoopCounterRefChecker(Sema &SemaRef, DSAStackTy &Stack,
const ValueDecl *CurLCDecl, bool IsInitializer,
const ValueDecl *PrevDepDecl = nullptr,
bool SupportsNonRectangular = true)
: SemaRef(SemaRef), Stack(Stack), CurLCDecl(CurLCDecl),
PrevDepDecl(PrevDepDecl), IsInitializer(IsInitializer),
SupportsNonRectangular(SupportsNonRectangular) {}
unsigned getBaseLoopId() const {
assert(CurLCDecl && "Expected loop dependency.");
return BaseLoopId;
}
const ValueDecl *getDepDecl() const {
assert(CurLCDecl && "Expected loop dependency.");
return DepDecl;
}
};
} // namespace
Optional<unsigned>
OpenMPIterationSpaceChecker::doesDependOnLoopCounter(const Stmt *S,
bool IsInitializer) {
// Check for the non-rectangular loops.
LoopCounterRefChecker LoopStmtChecker(SemaRef, Stack, LCDecl, IsInitializer,
DepDecl, SupportsNonRectangular);
if (LoopStmtChecker.Visit(S)) {
DepDecl = LoopStmtChecker.getDepDecl();
return LoopStmtChecker.getBaseLoopId();
}
return llvm::None;
}
bool OpenMPIterationSpaceChecker::checkAndSetInit(Stmt *S, bool EmitDiags) {
// Check init-expr for canonical loop form and save loop counter
// variable - #Var and its initialization value - #LB.
// OpenMP [2.6] Canonical loop form. init-expr may be one of the following:
// var = lb
// integer-type var = lb
// random-access-iterator-type var = lb
// pointer-type var = lb
//
if (!S) {
if (EmitDiags) {
SemaRef.Diag(DefaultLoc, diag::err_omp_loop_not_canonical_init);
}
return true;
}
if (auto *ExprTemp = dyn_cast<ExprWithCleanups>(S))
if (!ExprTemp->cleanupsHaveSideEffects())
S = ExprTemp->getSubExpr();
InitSrcRange = S->getSourceRange();
if (Expr *E = dyn_cast<Expr>(S))
S = E->IgnoreParens();
if (auto *BO = dyn_cast<BinaryOperator>(S)) {
if (BO->getOpcode() == BO_Assign) {
Expr *LHS = BO->getLHS()->IgnoreParens();
if (auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
if (auto *CED = dyn_cast<OMPCapturedExprDecl>(DRE->getDecl()))
if (auto *ME = dyn_cast<MemberExpr>(getExprAsWritten(CED->getInit())))
return setLCDeclAndLB(ME->getMemberDecl(), ME, BO->getRHS(),
EmitDiags);
return setLCDeclAndLB(DRE->getDecl(), DRE, BO->getRHS(), EmitDiags);
}
if (auto *ME = dyn_cast<MemberExpr>(LHS)) {
if (ME->isArrow() &&
isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
return setLCDeclAndLB(ME->getMemberDecl(), ME, BO->getRHS(),
EmitDiags);
}
}
} else if (auto *DS = dyn_cast<DeclStmt>(S)) {
if (DS->isSingleDecl()) {
if (auto *Var = dyn_cast_or_null<VarDecl>(DS->getSingleDecl())) {
if (Var->hasInit() && !Var->getType()->isReferenceType()) {
// Accept non-canonical init form here but emit ext. warning.
if (Var->getInitStyle() != VarDecl::CInit && EmitDiags)
SemaRef.Diag(S->getBeginLoc(),
diag::ext_omp_loop_not_canonical_init)
<< S->getSourceRange();
return setLCDeclAndLB(
Var,
buildDeclRefExpr(SemaRef, Var,
Var->getType().getNonReferenceType(),
DS->getBeginLoc()),
Var->getInit(), EmitDiags);
}
}
}
} else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(S)) {
if (CE->getOperator() == OO_Equal) {
Expr *LHS = CE->getArg(0);
if (auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
if (auto *CED = dyn_cast<OMPCapturedExprDecl>(DRE->getDecl()))
if (auto *ME = dyn_cast<MemberExpr>(getExprAsWritten(CED->getInit())))
return setLCDeclAndLB(ME->getMemberDecl(), ME, BO->getRHS(),
EmitDiags);
return setLCDeclAndLB(DRE->getDecl(), DRE, CE->getArg(1), EmitDiags);
}
if (auto *ME = dyn_cast<MemberExpr>(LHS)) {
if (ME->isArrow() &&
isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
return setLCDeclAndLB(ME->getMemberDecl(), ME, BO->getRHS(),
EmitDiags);
}
}
}
if (dependent() || SemaRef.CurContext->isDependentContext())
return false;
if (EmitDiags) {
SemaRef.Diag(S->getBeginLoc(), diag::err_omp_loop_not_canonical_init)
<< S->getSourceRange();
}
return true;
}
/// Ignore parenthesizes, implicit casts, copy constructor and return the
/// variable (which may be the loop variable) if possible.
static const ValueDecl *getInitLCDecl(const Expr *E) {
if (!E)
return nullptr;
E = getExprAsWritten(E);
if (const auto *CE = dyn_cast_or_null<CXXConstructExpr>(E))
if (const CXXConstructorDecl *Ctor = CE->getConstructor())
if ((Ctor->isCopyOrMoveConstructor() ||
Ctor->isConvertingConstructor(/*AllowExplicit=*/false)) &&
CE->getNumArgs() > 0 && CE->getArg(0) != nullptr)
E = CE->getArg(0)->IgnoreParenImpCasts();
if (const auto *DRE = dyn_cast_or_null<DeclRefExpr>(E)) {
if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
return getCanonicalDecl(VD);
}
if (const auto *ME = dyn_cast_or_null<MemberExpr>(E))
if (ME->isArrow() && isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
return getCanonicalDecl(ME->getMemberDecl());
return nullptr;
}
bool OpenMPIterationSpaceChecker::checkAndSetCond(Expr *S) {
// Check test-expr for canonical form, save upper-bound UB, flags for
// less/greater and for strict/non-strict comparison.
// OpenMP [2.9] Canonical loop form. Test-expr may be one of the following:
// var relational-op b
// b relational-op var
//
bool IneqCondIsCanonical = SemaRef.getLangOpts().OpenMP >= 50;
if (!S) {
SemaRef.Diag(DefaultLoc, diag::err_omp_loop_not_canonical_cond)
<< (IneqCondIsCanonical ? 1 : 0) << LCDecl;
return true;
}
Condition = S;
S = getExprAsWritten(S);
SourceLocation CondLoc = S->getBeginLoc();
auto &&CheckAndSetCond = [this, IneqCondIsCanonical](
BinaryOperatorKind Opcode, const Expr *LHS,
const Expr *RHS, SourceRange SR,
SourceLocation OpLoc) -> llvm::Optional<bool> {
if (BinaryOperator::isRelationalOp(Opcode)) {
if (getInitLCDecl(LHS) == LCDecl)
return setUB(const_cast<Expr *>(RHS),
(Opcode == BO_LT || Opcode == BO_LE),
(Opcode == BO_LT || Opcode == BO_GT), SR, OpLoc);
if (getInitLCDecl(RHS) == LCDecl)
return setUB(const_cast<Expr *>(LHS),
(Opcode == BO_GT || Opcode == BO_GE),
(Opcode == BO_LT || Opcode == BO_GT), SR, OpLoc);
} else if (IneqCondIsCanonical && Opcode == BO_NE) {
return setUB(const_cast<Expr *>(getInitLCDecl(LHS) == LCDecl ? RHS : LHS),
/*LessOp=*/llvm::None,
/*StrictOp=*/true, SR, OpLoc);
}
return llvm::None;
};
llvm::Optional<bool> Res;
if (auto *RBO = dyn_cast<CXXRewrittenBinaryOperator>(S)) {
CXXRewrittenBinaryOperator::DecomposedForm DF = RBO->getDecomposedForm();
Res = CheckAndSetCond(DF.Opcode, DF.LHS, DF.RHS, RBO->getSourceRange(),
RBO->getOperatorLoc());
} else if (auto *BO = dyn_cast<BinaryOperator>(S)) {
Res = CheckAndSetCond(BO->getOpcode(), BO->getLHS(), BO->getRHS(),
BO->getSourceRange(), BO->getOperatorLoc());
} else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(S)) {
if (CE->getNumArgs() == 2) {
Res = CheckAndSetCond(
BinaryOperator::getOverloadedOpcode(CE->getOperator()), CE->getArg(0),
CE->getArg(1), CE->getSourceRange(), CE->getOperatorLoc());
}
}
if (Res.hasValue())
return *Res;
if (dependent() || SemaRef.CurContext->isDependentContext())
return false;
SemaRef.Diag(CondLoc, diag::err_omp_loop_not_canonical_cond)
<< (IneqCondIsCanonical ? 1 : 0) << S->getSourceRange() << LCDecl;
return true;
}
bool OpenMPIterationSpaceChecker::checkAndSetIncRHS(Expr *RHS) {
// RHS of canonical loop form increment can be:
// var + incr
// incr + var
// var - incr
//
RHS = RHS->IgnoreParenImpCasts();
if (auto *BO = dyn_cast<BinaryOperator>(RHS)) {
if (BO->isAdditiveOp()) {
bool IsAdd = BO->getOpcode() == BO_Add;
if (getInitLCDecl(BO->getLHS()) == LCDecl)
return setStep(BO->getRHS(), !IsAdd);
if (IsAdd && getInitLCDecl(BO->getRHS()) == LCDecl)
return setStep(BO->getLHS(), /*Subtract=*/false);
}
} else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(RHS)) {
bool IsAdd = CE->getOperator() == OO_Plus;
if ((IsAdd || CE->getOperator() == OO_Minus) && CE->getNumArgs() == 2) {
if (getInitLCDecl(CE->getArg(0)) == LCDecl)
return setStep(CE->getArg(1), !IsAdd);
if (IsAdd && getInitLCDecl(CE->getArg(1)) == LCDecl)
return setStep(CE->getArg(0), /*Subtract=*/false);
}
}
if (dependent() || SemaRef.CurContext->isDependentContext())
return false;
SemaRef.Diag(RHS->getBeginLoc(), diag::err_omp_loop_not_canonical_incr)
<< RHS->getSourceRange() << LCDecl;
return true;
}
bool OpenMPIterationSpaceChecker::checkAndSetInc(Expr *S) {
// Check incr-expr for canonical loop form and return true if it
// does not conform.
// OpenMP [2.6] Canonical loop form. Test-expr may be one of the following:
// ++var
// var++
// --var
// var--
// var += incr
// var -= incr
// var = var + incr
// var = incr + var
// var = var - incr
//
if (!S) {
SemaRef.Diag(DefaultLoc, diag::err_omp_loop_not_canonical_incr) << LCDecl;
return true;
}
if (auto *ExprTemp = dyn_cast<ExprWithCleanups>(S))
if (!ExprTemp->cleanupsHaveSideEffects())
S = ExprTemp->getSubExpr();
IncrementSrcRange = S->getSourceRange();
S = S->IgnoreParens();
if (auto *UO = dyn_cast<UnaryOperator>(S)) {
if (UO->isIncrementDecrementOp() &&
getInitLCDecl(UO->getSubExpr()) == LCDecl)
return setStep(SemaRef
.ActOnIntegerConstant(UO->getBeginLoc(),
(UO->isDecrementOp() ? -1 : 1))
.get(),
/*Subtract=*/false);
} else if (auto *BO = dyn_cast<BinaryOperator>(S)) {
switch (BO->getOpcode()) {
case BO_AddAssign:
case BO_SubAssign:
if (getInitLCDecl(BO->getLHS()) == LCDecl)
return setStep(BO->getRHS(), BO->getOpcode() == BO_SubAssign);
break;
case BO_Assign:
if (getInitLCDecl(BO->getLHS()) == LCDecl)
return checkAndSetIncRHS(BO->getRHS());
break;
default:
break;
}
} else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(S)) {
switch (CE->getOperator()) {
case OO_PlusPlus:
case OO_MinusMinus:
if (getInitLCDecl(CE->getArg(0)) == LCDecl)
return setStep(SemaRef
.ActOnIntegerConstant(
CE->getBeginLoc(),
((CE->getOperator() == OO_MinusMinus) ? -1 : 1))
.get(),
/*Subtract=*/false);
break;
case OO_PlusEqual:
case OO_MinusEqual:
if (getInitLCDecl(CE->getArg(0)) == LCDecl)
return setStep(CE->getArg(1), CE->getOperator() == OO_MinusEqual);
break;
case OO_Equal:
if (getInitLCDecl(CE->getArg(0)) == LCDecl)
return checkAndSetIncRHS(CE->getArg(1));
break;
default:
break;
}
}
if (dependent() || SemaRef.CurContext->isDependentContext())
return false;
SemaRef.Diag(S->getBeginLoc(), diag::err_omp_loop_not_canonical_incr)
<< S->getSourceRange() << LCDecl;
return true;
}
static ExprResult
tryBuildCapture(Sema &SemaRef, Expr *Capture,
llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) {
if (SemaRef.CurContext->isDependentContext() || Capture->containsErrors())
return Capture;
if (Capture->isEvaluatable(SemaRef.Context, Expr::SE_AllowSideEffects))
return SemaRef.PerformImplicitConversion(
Capture->IgnoreImpCasts(), Capture->getType(), Sema::AA_Converting,
/*AllowExplicit=*/true);
auto I = Captures.find(Capture);
if (I != Captures.end())
return buildCapture(SemaRef, Capture, I->second);
DeclRefExpr *Ref = nullptr;
ExprResult Res = buildCapture(SemaRef, Capture, Ref);
Captures[Capture] = Ref;
return Res;
}
/// Calculate number of iterations, transforming to unsigned, if number of
/// iterations may be larger than the original type.
static Expr *
calculateNumIters(Sema &SemaRef, Scope *S, SourceLocation DefaultLoc,
Expr *Lower, Expr *Upper, Expr *Step, QualType LCTy,
bool TestIsStrictOp, bool RoundToStep,
llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) {
ExprResult NewStep = tryBuildCapture(SemaRef, Step, Captures);
if (!NewStep.isUsable())
return nullptr;
llvm::APSInt LRes, SRes;
bool IsLowerConst = false, IsStepConst = false;
if (Optional<llvm::APSInt> Res =
Lower->getIntegerConstantExpr(SemaRef.Context)) {
LRes = *Res;
IsLowerConst = true;
}
if (Optional<llvm::APSInt> Res =
Step->getIntegerConstantExpr(SemaRef.Context)) {
SRes = *Res;
IsStepConst = true;
}
bool NoNeedToConvert = IsLowerConst && !RoundToStep &&
((!TestIsStrictOp && LRes.isNonNegative()) ||
(TestIsStrictOp && LRes.isStrictlyPositive()));
bool NeedToReorganize = false;
// Check if any subexpressions in Lower -Step [+ 1] lead to overflow.
if (!NoNeedToConvert && IsLowerConst &&
(TestIsStrictOp || (RoundToStep && IsStepConst))) {
NoNeedToConvert = true;
if (RoundToStep) {
unsigned BW = LRes.getBitWidth() > SRes.getBitWidth()
? LRes.getBitWidth()
: SRes.getBitWidth();
LRes = LRes.extend(BW + 1);
LRes.setIsSigned(true);
SRes = SRes.extend(BW + 1);
SRes.setIsSigned(true);
LRes -= SRes;
NoNeedToConvert = LRes.trunc(BW).extend(BW + 1) == LRes;
LRes = LRes.trunc(BW);
}
if (TestIsStrictOp) {
unsigned BW = LRes.getBitWidth();
LRes = LRes.extend(BW + 1);
LRes.setIsSigned(true);
++LRes;
NoNeedToConvert =
NoNeedToConvert && LRes.trunc(BW).extend(BW + 1) == LRes;
// truncate to the original bitwidth.
LRes = LRes.trunc(BW);
}
NeedToReorganize = NoNeedToConvert;
}
llvm::APSInt URes;
bool IsUpperConst = false;
if (Optional<llvm::APSInt> Res =
Upper->getIntegerConstantExpr(SemaRef.Context)) {
URes = *Res;
IsUpperConst = true;
}
if (NoNeedToConvert && IsLowerConst && IsUpperConst &&
(!RoundToStep || IsStepConst)) {
unsigned BW = LRes.getBitWidth() > URes.getBitWidth() ? LRes.getBitWidth()
: URes.getBitWidth();
LRes = LRes.extend(BW + 1);
LRes.setIsSigned(true);
URes = URes.extend(BW + 1);
URes.setIsSigned(true);
URes -= LRes;
NoNeedToConvert = URes.trunc(BW).extend(BW + 1) == URes;
NeedToReorganize = NoNeedToConvert;
}
// If the boundaries are not constant or (Lower - Step [+ 1]) is not constant
// or less than zero (Upper - (Lower - Step [+ 1]) may overflow) - promote to
// unsigned.
if ((!NoNeedToConvert || (LRes.isNegative() && !IsUpperConst)) &&
!LCTy->isDependentType() && LCTy->isIntegerType()) {
QualType LowerTy = Lower->getType();
QualType UpperTy = Upper->getType();
uint64_t LowerSize = SemaRef.Context.getTypeSize(LowerTy);
uint64_t UpperSize = SemaRef.Context.getTypeSize(UpperTy);
if ((LowerSize <= UpperSize && UpperTy->hasSignedIntegerRepresentation()) ||
(LowerSize > UpperSize && LowerTy->hasSignedIntegerRepresentation())) {
QualType CastType = SemaRef.Context.getIntTypeForBitwidth(
LowerSize > UpperSize ? LowerSize : UpperSize, /*Signed=*/0);
Upper =
SemaRef
.PerformImplicitConversion(
SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Upper).get(),
CastType, Sema::AA_Converting)
.get();
Lower = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Lower).get();
NewStep = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, NewStep.get());
}
}
if (!Lower || !Upper || NewStep.isInvalid())
return nullptr;
ExprResult Diff;
// If need to reorganize, then calculate the form as Upper - (Lower - Step [+
// 1]).
if (NeedToReorganize) {
Diff = Lower;
if (RoundToStep) {
// Lower - Step
Diff =
SemaRef.BuildBinOp(S, DefaultLoc, BO_Sub, Diff.get(), NewStep.get());
if (!Diff.isUsable())
return nullptr;
}
// Lower - Step [+ 1]
if (TestIsStrictOp)
Diff = SemaRef.BuildBinOp(
S, DefaultLoc, BO_Add, Diff.get(),
SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get());
if (!Diff.isUsable())
return nullptr;
Diff = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Diff.get());
if (!Diff.isUsable())
return nullptr;
// Upper - (Lower - Step [+ 1]).
Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Sub, Upper, Diff.get());
if (!Diff.isUsable())
return nullptr;
} else {
Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Sub, Upper, Lower);
if (!Diff.isUsable() && LCTy->getAsCXXRecordDecl()) {
// BuildBinOp already emitted error, this one is to point user to upper
// and lower bound, and to tell what is passed to 'operator-'.
SemaRef.Diag(Upper->getBeginLoc(), diag::err_omp_loop_diff_cxx)
<< Upper->getSourceRange() << Lower->getSourceRange();
return nullptr;
}
if (!Diff.isUsable())
return nullptr;
// Upper - Lower [- 1]
if (TestIsStrictOp)
Diff = SemaRef.BuildBinOp(
S, DefaultLoc, BO_Sub, Diff.get(),
SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get());
if (!Diff.isUsable())
return nullptr;
if (RoundToStep) {
// Upper - Lower [- 1] + Step
Diff =
SemaRef.BuildBinOp(S, DefaultLoc, BO_Add, Diff.get(), NewStep.get());
if (!Diff.isUsable())
return nullptr;
}
}
// Parentheses (for dumping/debugging purposes only).
Diff = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Diff.get());
if (!Diff.isUsable())
return nullptr;
// (Upper - Lower [- 1] + Step) / Step or (Upper - Lower) / Step
Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Div, Diff.get(), NewStep.get());
if (!Diff.isUsable())
return nullptr;
return Diff.get();
}
/// Build the expression to calculate the number of iterations.
Expr *OpenMPIterationSpaceChecker::buildNumIterations(
Scope *S, ArrayRef<LoopIterationSpace> ResultIterSpaces, bool LimitedType,
llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const {
QualType VarType = LCDecl->getType().getNonReferenceType();
if (!VarType->isIntegerType() && !VarType->isPointerType() &&
!SemaRef.getLangOpts().CPlusPlus)
return nullptr;
Expr *LBVal = LB;
Expr *UBVal = UB;
// LB = TestIsLessOp.getValue() ? min(LB(MinVal), LB(MaxVal)) :
// max(LB(MinVal), LB(MaxVal))
if (InitDependOnLC) {
const LoopIterationSpace &IS = ResultIterSpaces[*InitDependOnLC - 1];
if (!IS.MinValue || !IS.MaxValue)
return nullptr;
// OuterVar = Min
ExprResult MinValue =
SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, IS.MinValue);
if (!MinValue.isUsable())
return nullptr;
ExprResult LBMinVal = SemaRef.BuildBinOp(S, DefaultLoc, BO_Assign,
IS.CounterVar, MinValue.get());
if (!LBMinVal.isUsable())
return nullptr;
// OuterVar = Min, LBVal
LBMinVal =
SemaRef.BuildBinOp(S, DefaultLoc, BO_Comma, LBMinVal.get(), LBVal);
if (!LBMinVal.isUsable())
return nullptr;
// (OuterVar = Min, LBVal)
LBMinVal = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, LBMinVal.get());
if (!LBMinVal.isUsable())
return nullptr;
// OuterVar = Max
ExprResult MaxValue =
SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, IS.MaxValue);
if (!MaxValue.isUsable())
return nullptr;
ExprResult LBMaxVal = SemaRef.BuildBinOp(S, DefaultLoc, BO_Assign,
IS.CounterVar, MaxValue.get());
if (!LBMaxVal.isUsable())
return nullptr;
// OuterVar = Max, LBVal
LBMaxVal =
SemaRef.BuildBinOp(S, DefaultLoc, BO_Comma, LBMaxVal.get(), LBVal);
if (!LBMaxVal.isUsable())
return nullptr;
// (OuterVar = Max, LBVal)
LBMaxVal = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, LBMaxVal.get());
if (!LBMaxVal.isUsable())
return nullptr;
Expr *LBMin = tryBuildCapture(SemaRef, LBMinVal.get(), Captures).get();
Expr *LBMax = tryBuildCapture(SemaRef, LBMaxVal.get(), Captures).get();
if (!LBMin || !LBMax)
return nullptr;
// LB(MinVal) < LB(MaxVal)
ExprResult MinLessMaxRes =
SemaRef.BuildBinOp(S, DefaultLoc, BO_LT, LBMin, LBMax);
if (!MinLessMaxRes.isUsable())
return nullptr;
Expr *MinLessMax =
tryBuildCapture(SemaRef, MinLessMaxRes.get(), Captures).get();
if (!MinLessMax)
return nullptr;
if (TestIsLessOp.getValue()) {
// LB(MinVal) < LB(MaxVal) ? LB(MinVal) : LB(MaxVal) - min(LB(MinVal),
// LB(MaxVal))
ExprResult MinLB = SemaRef.ActOnConditionalOp(DefaultLoc, DefaultLoc,
MinLessMax, LBMin, LBMax);
if (!MinLB.isUsable())
return nullptr;
LBVal = MinLB.get();
} else {
// LB(MinVal) < LB(MaxVal) ? LB(MaxVal) : LB(MinVal) - max(LB(MinVal),
// LB(MaxVal))
ExprResult MaxLB = SemaRef.ActOnConditionalOp(DefaultLoc, DefaultLoc,
MinLessMax, LBMax, LBMin);
if (!MaxLB.isUsable())
return nullptr;
LBVal = MaxLB.get();
}
}
// UB = TestIsLessOp.getValue() ? max(UB(MinVal), UB(MaxVal)) :
// min(UB(MinVal), UB(MaxVal))
if (CondDependOnLC) {
const LoopIterationSpace &IS = ResultIterSpaces[*CondDependOnLC - 1];
if (!IS.MinValue || !IS.MaxValue)
return nullptr;
// OuterVar = Min
ExprResult MinValue =
SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, IS.MinValue);
if (!MinValue.isUsable())
return nullptr;
ExprResult UBMinVal = SemaRef.BuildBinOp(S, DefaultLoc, BO_Assign,
IS.CounterVar, MinValue.get());
if (!UBMinVal.isUsable())
return nullptr;
// OuterVar = Min, UBVal
UBMinVal =
SemaRef.BuildBinOp(S, DefaultLoc, BO_Comma, UBMinVal.get(), UBVal);
if (!UBMinVal.isUsable())
return nullptr;
// (OuterVar = Min, UBVal)
UBMinVal = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, UBMinVal.get());
if (!UBMinVal.isUsable())
return nullptr;
// OuterVar = Max
ExprResult MaxValue =
SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, IS.MaxValue);
if (!MaxValue.isUsable())
return nullptr;
ExprResult UBMaxVal = SemaRef.BuildBinOp(S, DefaultLoc, BO_Assign,
IS.CounterVar, MaxValue.get());
if (!UBMaxVal.isUsable())
return nullptr;
// OuterVar = Max, UBVal
UBMaxVal =
SemaRef.BuildBinOp(S, DefaultLoc, BO_Comma, UBMaxVal.get(), UBVal);
if (!UBMaxVal.isUsable())
return nullptr;
// (OuterVar = Max, UBVal)
UBMaxVal = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, UBMaxVal.get());
if (!UBMaxVal.isUsable())
return nullptr;
Expr *UBMin = tryBuildCapture(SemaRef, UBMinVal.get(), Captures).get();
Expr *UBMax = tryBuildCapture(SemaRef, UBMaxVal.get(), Captures).get();
if (!UBMin || !UBMax)
return nullptr;
// UB(MinVal) > UB(MaxVal)
ExprResult MinGreaterMaxRes =
SemaRef.BuildBinOp(S, DefaultLoc, BO_GT, UBMin, UBMax);
if (!MinGreaterMaxRes.isUsable())
return nullptr;
Expr *MinGreaterMax =
tryBuildCapture(SemaRef, MinGreaterMaxRes.get(), Captures).get();
if (!MinGreaterMax)
return nullptr;
if (TestIsLessOp.getValue()) {
// UB(MinVal) > UB(MaxVal) ? UB(MinVal) : UB(MaxVal) - max(UB(MinVal),
// UB(MaxVal))
ExprResult MaxUB = SemaRef.ActOnConditionalOp(
DefaultLoc, DefaultLoc, MinGreaterMax, UBMin, UBMax);
if (!MaxUB.isUsable())
return nullptr;
UBVal = MaxUB.get();
} else {
// UB(MinVal) > UB(MaxVal) ? UB(MaxVal) : UB(MinVal) - min(UB(MinVal),
// UB(MaxVal))
ExprResult MinUB = SemaRef.ActOnConditionalOp(
DefaultLoc, DefaultLoc, MinGreaterMax, UBMax, UBMin);
if (!MinUB.isUsable())
return nullptr;
UBVal = MinUB.get();
}
}
Expr *UBExpr = TestIsLessOp.getValue() ? UBVal : LBVal;
Expr *LBExpr = TestIsLessOp.getValue() ? LBVal : UBVal;
Expr *Upper = tryBuildCapture(SemaRef, UBExpr, Captures).get();
Expr *Lower = tryBuildCapture(SemaRef, LBExpr, Captures).get();
if (!Upper || !Lower)
return nullptr;
ExprResult Diff = calculateNumIters(SemaRef, S, DefaultLoc, Lower, Upper,
Step, VarType, TestIsStrictOp,
/*RoundToStep=*/true, Captures);
if (!Diff.isUsable())
return nullptr;
// OpenMP runtime requires 32-bit or 64-bit loop variables.
QualType Type = Diff.get()->getType();
ASTContext &C = SemaRef.Context;
bool UseVarType = VarType->hasIntegerRepresentation() &&
C.getTypeSize(Type) > C.getTypeSize(VarType);
if (!Type->isIntegerType() || UseVarType) {
unsigned NewSize =
UseVarType ? C.getTypeSize(VarType) : C.getTypeSize(Type);
bool IsSigned = UseVarType ? VarType->hasSignedIntegerRepresentation()
: Type->hasSignedIntegerRepresentation();
Type = C.getIntTypeForBitwidth(NewSize, IsSigned);
if (!SemaRef.Context.hasSameType(Diff.get()->getType(), Type)) {
Diff = SemaRef.PerformImplicitConversion(
Diff.get(), Type, Sema::AA_Converting, /*AllowExplicit=*/true);
if (!Diff.isUsable())
return nullptr;
}
}
if (LimitedType) {
unsigned NewSize = (C.getTypeSize(Type) > 32) ? 64 : 32;
if (NewSize != C.getTypeSize(Type)) {
if (NewSize < C.getTypeSize(Type)) {
assert(NewSize == 64 && "incorrect loop var size");
SemaRef.Diag(DefaultLoc, diag::warn_omp_loop_64_bit_var)
<< InitSrcRange << ConditionSrcRange;
}
QualType NewType = C.getIntTypeForBitwidth(
NewSize, Type->hasSignedIntegerRepresentation() ||
C.getTypeSize(Type) < NewSize);
if (!SemaRef.Context.hasSameType(Diff.get()->getType(), NewType)) {
Diff = SemaRef.PerformImplicitConversion(Diff.get(), NewType,
Sema::AA_Converting, true);
if (!Diff.isUsable())
return nullptr;
}
}
}
return Diff.get();
}
std::pair<Expr *, Expr *> OpenMPIterationSpaceChecker::buildMinMaxValues(
Scope *S, llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const {
// Do not build for iterators, they cannot be used in non-rectangular loop
// nests.
if (LCDecl->getType()->isRecordType())
return std::make_pair(nullptr, nullptr);
// If we subtract, the min is in the condition, otherwise the min is in the
// init value.
Expr *MinExpr = nullptr;
Expr *MaxExpr = nullptr;
Expr *LBExpr = TestIsLessOp.getValue() ? LB : UB;
Expr *UBExpr = TestIsLessOp.getValue() ? UB : LB;
bool LBNonRect = TestIsLessOp.getValue() ? InitDependOnLC.hasValue()
: CondDependOnLC.hasValue();
bool UBNonRect = TestIsLessOp.getValue() ? CondDependOnLC.hasValue()
: InitDependOnLC.hasValue();
Expr *Lower =
LBNonRect ? LBExpr : tryBuildCapture(SemaRef, LBExpr, Captures).get();
Expr *Upper =
UBNonRect ? UBExpr : tryBuildCapture(SemaRef, UBExpr, Captures).get();
if (!Upper || !Lower)
return std::make_pair(nullptr, nullptr);
if (TestIsLessOp.getValue())
MinExpr = Lower;
else
MaxExpr = Upper;
// Build minimum/maximum value based on number of iterations.
QualType VarType = LCDecl->getType().getNonReferenceType();
ExprResult Diff = calculateNumIters(SemaRef, S, DefaultLoc, Lower, Upper,
Step, VarType, TestIsStrictOp,
/*RoundToStep=*/false, Captures);
if (!Diff.isUsable())
return std::make_pair(nullptr, nullptr);
// ((Upper - Lower [- 1]) / Step) * Step
// Parentheses (for dumping/debugging purposes only).
Diff = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Diff.get());
if (!Diff.isUsable())
return std::make_pair(nullptr, nullptr);
ExprResult NewStep = tryBuildCapture(SemaRef, Step, Captures);
if (!NewStep.isUsable())
return std::make_pair(nullptr, nullptr);
Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Mul, Diff.get(), NewStep.get());
if (!Diff.isUsable())
return std::make_pair(nullptr, nullptr);
// Parentheses (for dumping/debugging purposes only).
Diff = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Diff.get());
if (!Diff.isUsable())
return std::make_pair(nullptr, nullptr);
// Convert to the ptrdiff_t, if original type is pointer.
if (VarType->isAnyPointerType() &&
!SemaRef.Context.hasSameType(
Diff.get()->getType(),
SemaRef.Context.getUnsignedPointerDiffType())) {
Diff = SemaRef.PerformImplicitConversion(
Diff.get(), SemaRef.Context.getUnsignedPointerDiffType(),
Sema::AA_Converting, /*AllowExplicit=*/true);
}
if (!Diff.isUsable())
return std::make_pair(nullptr, nullptr);
if (TestIsLessOp.getValue()) {
// MinExpr = Lower;
// MaxExpr = Lower + (((Upper - Lower [- 1]) / Step) * Step)
Diff = SemaRef.BuildBinOp(
S, DefaultLoc, BO_Add,
SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Lower).get(),
Diff.get());
if (!Diff.isUsable())
return std::make_pair(nullptr, nullptr);
} else {
// MaxExpr = Upper;
// MinExpr = Upper - (((Upper - Lower [- 1]) / Step) * Step)
Diff = SemaRef.BuildBinOp(
S, DefaultLoc, BO_Sub,
SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Upper).get(),
Diff.get());
if (!Diff.isUsable())
return std::make_pair(nullptr, nullptr);
}
// Convert to the original type.
if (SemaRef.Context.hasSameType(Diff.get()->getType(), VarType))
Diff = SemaRef.PerformImplicitConversion(Diff.get(), VarType,
Sema::AA_Converting,
/*AllowExplicit=*/true);
if (!Diff.isUsable())
return std::make_pair(nullptr, nullptr);
Sema::TentativeAnalysisScope Trap(SemaRef);
Diff = SemaRef.ActOnFinishFullExpr(Diff.get(), /*DiscardedValue=*/false);
if (!Diff.isUsable())
return std::make_pair(nullptr, nullptr);
if (TestIsLessOp.getValue())
MaxExpr = Diff.get();
else
MinExpr = Diff.get();
return std::make_pair(MinExpr, MaxExpr);
}
Expr *OpenMPIterationSpaceChecker::buildFinalCondition(Scope *S) const {
if (InitDependOnLC || CondDependOnLC)
return Condition;
return nullptr;
}
Expr *OpenMPIterationSpaceChecker::buildPreCond(
Scope *S, Expr *Cond,
llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const {
// Do not build a precondition when the condition/initialization is dependent
// to prevent pessimistic early loop exit.
// TODO: this can be improved by calculating min/max values but not sure that
// it will be very effective.
if (CondDependOnLC || InitDependOnLC)
return SemaRef
.PerformImplicitConversion(
SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get(),
SemaRef.Context.BoolTy, /*Action=*/Sema::AA_Casting,
/*AllowExplicit=*/true)
.get();
// Try to build LB <op> UB, where <op> is <, >, <=, or >=.
Sema::TentativeAnalysisScope Trap(SemaRef);
ExprResult NewLB = tryBuildCapture(SemaRef, LB, Captures);
ExprResult NewUB = tryBuildCapture(SemaRef, UB, Captures);
if (!NewLB.isUsable() || !NewUB.isUsable())
return nullptr;
ExprResult CondExpr = SemaRef.BuildBinOp(
S, DefaultLoc,
TestIsLessOp.getValue() ? (TestIsStrictOp ? BO_LT : BO_LE)
: (TestIsStrictOp ? BO_GT : BO_GE),
NewLB.get(), NewUB.get());
if (CondExpr.isUsable()) {
if (!SemaRef.Context.hasSameUnqualifiedType(CondExpr.get()->getType(),
SemaRef.Context.BoolTy))
CondExpr = SemaRef.PerformImplicitConversion(
CondExpr.get(), SemaRef.Context.BoolTy, /*Action=*/Sema::AA_Casting,
/*AllowExplicit=*/true);
}
// Otherwise use original loop condition and evaluate it in runtime.
return CondExpr.isUsable() ? CondExpr.get() : Cond;
}
/// Build reference expression to the counter be used for codegen.
DeclRefExpr *OpenMPIterationSpaceChecker::buildCounterVar(
llvm::MapVector<const Expr *, DeclRefExpr *> &Captures,
DSAStackTy &DSA) const {
auto *VD = dyn_cast<VarDecl>(LCDecl);
if (!VD) {
VD = SemaRef.isOpenMPCapturedDecl(LCDecl);
DeclRefExpr *Ref = buildDeclRefExpr(
SemaRef, VD, VD->getType().getNonReferenceType(), DefaultLoc);
const DSAStackTy::DSAVarData Data =
DSA.getTopDSA(LCDecl, /*FromParent=*/false);
// If the loop control decl is explicitly marked as private, do not mark it
// as captured again.
if (!isOpenMPPrivate(Data.CKind) || !Data.RefExpr)
Captures.insert(std::make_pair(LCRef, Ref));
return Ref;
}
return cast<DeclRefExpr>(LCRef);
}
Expr *OpenMPIterationSpaceChecker::buildPrivateCounterVar() const {
if (LCDecl && !LCDecl->isInvalidDecl()) {
QualType Type = LCDecl->getType().getNonReferenceType();
VarDecl *PrivateVar = buildVarDecl(
SemaRef, DefaultLoc, Type, LCDecl->getName(),
LCDecl->hasAttrs() ? &LCDecl->getAttrs() : nullptr,
isa<VarDecl>(LCDecl)
? buildDeclRefExpr(SemaRef, cast<VarDecl>(LCDecl), Type, DefaultLoc)
: nullptr);
if (PrivateVar->isInvalidDecl())
return nullptr;
return buildDeclRefExpr(SemaRef, PrivateVar, Type, DefaultLoc);
}
return nullptr;
}
/// Build initialization of the counter to be used for codegen.
Expr *OpenMPIterationSpaceChecker::buildCounterInit() const { return LB; }
/// Build step of the counter be used for codegen.
Expr *OpenMPIterationSpaceChecker::buildCounterStep() const { return Step; }
Expr *OpenMPIterationSpaceChecker::buildOrderedLoopData(
Scope *S, Expr *Counter,
llvm::MapVector<const Expr *, DeclRefExpr *> &Captures, SourceLocation Loc,
Expr *Inc, OverloadedOperatorKind OOK) {
Expr *Cnt = SemaRef.DefaultLvalueConversion(Counter).get();
if (!Cnt)
return nullptr;
if (Inc) {
assert((OOK == OO_Plus || OOK == OO_Minus) &&
"Expected only + or - operations for depend clauses.");
BinaryOperatorKind BOK = (OOK == OO_Plus) ? BO_Add : BO_Sub;
Cnt = SemaRef.BuildBinOp(S, Loc, BOK, Cnt, Inc).get();
if (!Cnt)
return nullptr;
}
QualType VarType = LCDecl->getType().getNonReferenceType();
if (!VarType->isIntegerType() && !VarType->isPointerType() &&
!SemaRef.getLangOpts().CPlusPlus)
return nullptr;
// Upper - Lower
Expr *Upper = TestIsLessOp.getValue()
? Cnt
: tryBuildCapture(SemaRef, LB, Captures).get();
Expr *Lower = TestIsLessOp.getValue()
? tryBuildCapture(SemaRef, LB, Captures).get()
: Cnt;
if (!Upper || !Lower)
return nullptr;
ExprResult Diff = calculateNumIters(
SemaRef, S, DefaultLoc, Lower, Upper, Step, VarType,
/*TestIsStrictOp=*/false, /*RoundToStep=*/false, Captures);
if (!Diff.isUsable())
return nullptr;
return Diff.get();
}
} // namespace
void Sema::ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init) {
assert(getLangOpts().OpenMP && "OpenMP is not active.");
assert(Init && "Expected loop in canonical form.");
unsigned AssociatedLoops = DSAStack->getAssociatedLoops();
if (AssociatedLoops > 0 &&
isOpenMPLoopDirective(DSAStack->getCurrentDirective())) {
DSAStack->loopStart();
OpenMPIterationSpaceChecker ISC(*this, /*SupportsNonRectangular=*/true,
*DSAStack, ForLoc);
if (!ISC.checkAndSetInit(Init, /*EmitDiags=*/false)) {
if (ValueDecl *D = ISC.getLoopDecl()) {
auto *VD = dyn_cast<VarDecl>(D);
DeclRefExpr *PrivateRef = nullptr;
if (!VD) {
if (VarDecl *Private = isOpenMPCapturedDecl(D)) {
VD = Private;
} else {
PrivateRef = buildCapture(*this, D, ISC.getLoopDeclRefExpr(),
/*WithInit=*/false);
VD = cast<VarDecl>(PrivateRef->getDecl());
}
}
DSAStack->addLoopControlVariable(D, VD);
const Decl *LD = DSAStack->getPossiblyLoopCunter();
if (LD != D->getCanonicalDecl()) {
DSAStack->resetPossibleLoopCounter();
if (auto *Var = dyn_cast_or_null<VarDecl>(LD))
MarkDeclarationsReferencedInExpr(
buildDeclRefExpr(*this, const_cast<VarDecl *>(Var),
Var->getType().getNonLValueExprType(Context),
ForLoc, /*RefersToCapture=*/true));
}
OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
// OpenMP [2.14.1.1, Data-sharing Attribute Rules for Variables
// Referenced in a Construct, C/C++]. The loop iteration variable in the
// associated for-loop of a simd construct with just one associated
// for-loop may be listed in a linear clause with a constant-linear-step
// that is the increment of the associated for-loop. The loop iteration
// variable(s) in the associated for-loop(s) of a for or parallel for
// construct may be listed in a private or lastprivate clause.
DSAStackTy::DSAVarData DVar =
DSAStack->getTopDSA(D, /*FromParent=*/false);
// If LoopVarRefExpr is nullptr it means the corresponding loop variable
// is declared in the loop and it is predetermined as a private.
Expr *LoopDeclRefExpr = ISC.getLoopDeclRefExpr();
OpenMPClauseKind PredeterminedCKind =
isOpenMPSimdDirective(DKind)
? (DSAStack->hasMutipleLoops() ? OMPC_lastprivate : OMPC_linear)
: OMPC_private;
if (((isOpenMPSimdDirective(DKind) && DVar.CKind != OMPC_unknown &&
DVar.CKind != PredeterminedCKind && DVar.RefExpr &&
(LangOpts.OpenMP <= 45 || (DVar.CKind != OMPC_lastprivate &&
DVar.CKind != OMPC_private))) ||
((isOpenMPWorksharingDirective(DKind) || DKind == OMPD_taskloop ||
DKind == OMPD_master_taskloop ||
DKind == OMPD_parallel_master_taskloop ||
isOpenMPDistributeDirective(DKind)) &&
!isOpenMPSimdDirective(DKind) && DVar.CKind != OMPC_unknown &&
DVar.CKind != OMPC_private && DVar.CKind != OMPC_lastprivate)) &&
(DVar.CKind != OMPC_private || DVar.RefExpr)) {
Diag(Init->getBeginLoc(), diag::err_omp_loop_var_dsa)
<< getOpenMPClauseName(DVar.CKind)
<< getOpenMPDirectiveName(DKind)
<< getOpenMPClauseName(PredeterminedCKind);
if (DVar.RefExpr == nullptr)
DVar.CKind = PredeterminedCKind;
reportOriginalDsa(*this, DSAStack, D, DVar,
/*IsLoopIterVar=*/true);
} else if (LoopDeclRefExpr) {
// Make the loop iteration variable private (for worksharing
// constructs), linear (for simd directives with the only one
// associated loop) or lastprivate (for simd directives with several
// collapsed or ordered loops).
if (DVar.CKind == OMPC_unknown)
DSAStack->addDSA(D, LoopDeclRefExpr, PredeterminedCKind,
PrivateRef);
}
}
}
DSAStack->setAssociatedLoops(AssociatedLoops - 1);
}
}
/// Called on a for stmt to check and extract its iteration space
/// for further processing (such as collapsing).
static bool checkOpenMPIterationSpace(
OpenMPDirectiveKind DKind, Stmt *S, Sema &SemaRef, DSAStackTy &DSA,
unsigned CurrentNestedLoopCount, unsigned NestedLoopCount,
unsigned TotalNestedLoopCount, Expr *CollapseLoopCountExpr,
Expr *OrderedLoopCountExpr,
Sema::VarsWithInheritedDSAType &VarsWithImplicitDSA,
llvm::MutableArrayRef<LoopIterationSpace> ResultIterSpaces,
llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) {
bool SupportsNonRectangular = !isOpenMPLoopTransformationDirective(DKind);
// OpenMP [2.9.1, Canonical Loop Form]
// for (init-expr; test-expr; incr-expr) structured-block
// for (range-decl: range-expr) structured-block
if (auto *CanonLoop = dyn_cast_or_null<OMPCanonicalLoop>(S))
S = CanonLoop->getLoopStmt();
auto *For = dyn_cast_or_null<ForStmt>(S);
auto *CXXFor = dyn_cast_or_null<CXXForRangeStmt>(S);
// Ranged for is supported only in OpenMP 5.0.
if (!For && (SemaRef.LangOpts.OpenMP <= 45 || !CXXFor)) {
SemaRef.Diag(S->getBeginLoc(), diag::err_omp_not_for)
<< (CollapseLoopCountExpr != nullptr || OrderedLoopCountExpr != nullptr)
<< getOpenMPDirectiveName(DKind) << TotalNestedLoopCount
<< (CurrentNestedLoopCount > 0) << CurrentNestedLoopCount;
if (TotalNestedLoopCount > 1) {
if (CollapseLoopCountExpr && OrderedLoopCountExpr)
SemaRef.Diag(DSA.getConstructLoc(),
diag::note_omp_collapse_ordered_expr)
<< 2 << CollapseLoopCountExpr->getSourceRange()
<< OrderedLoopCountExpr->getSourceRange();
else if (CollapseLoopCountExpr)
SemaRef.Diag(CollapseLoopCountExpr->getExprLoc(),
diag::note_omp_collapse_ordered_expr)
<< 0 << CollapseLoopCountExpr->getSourceRange();
else
SemaRef.Diag(OrderedLoopCountExpr->getExprLoc(),
diag::note_omp_collapse_ordered_expr)
<< 1 << OrderedLoopCountExpr->getSourceRange();
}
return true;
}
assert(((For && For->getBody()) || (CXXFor && CXXFor->getBody())) &&
"No loop body.");
// Postpone analysis in dependent contexts for ranged for loops.
if (CXXFor && SemaRef.CurContext->isDependentContext())
return false;
OpenMPIterationSpaceChecker ISC(SemaRef, SupportsNonRectangular, DSA,
For ? For->getForLoc() : CXXFor->getForLoc());
// Check init.
Stmt *Init = For ? For->getInit() : CXXFor->getBeginStmt();
if (ISC.checkAndSetInit(Init))
return true;
bool HasErrors = false;
// Check loop variable's type.
if (ValueDecl *LCDecl = ISC.getLoopDecl()) {
// OpenMP [2.6, Canonical Loop Form]
// Var is one of the following:
// A variable of signed or unsigned integer type.
// For C++, a variable of a random access iterator type.
// For C, a variable of a pointer type.
QualType VarType = LCDecl->getType().getNonReferenceType();
if (!VarType->isDependentType() && !VarType->isIntegerType() &&
!VarType->isPointerType() &&
!(SemaRef.getLangOpts().CPlusPlus && VarType->isOverloadableType())) {
SemaRef.Diag(Init->getBeginLoc(), diag::err_omp_loop_variable_type)
<< SemaRef.getLangOpts().CPlusPlus;
HasErrors = true;
}
// OpenMP, 2.14.1.1 Data-sharing Attribute Rules for Variables Referenced in
// a Construct
// The loop iteration variable(s) in the associated for-loop(s) of a for or
// parallel for construct is (are) private.
// The loop iteration variable in the associated for-loop of a simd
// construct with just one associated for-loop is linear with a
// constant-linear-step that is the increment of the associated for-loop.
// Exclude loop var from the list of variables with implicitly defined data
// sharing attributes.
VarsWithImplicitDSA.erase(LCDecl);
assert(isOpenMPLoopDirective(DKind) && "DSA for non-loop vars");
// Check test-expr.
HasErrors |= ISC.checkAndSetCond(For ? For->getCond() : CXXFor->getCond());
// Check incr-expr.
HasErrors |= ISC.checkAndSetInc(For ? For->getInc() : CXXFor->getInc());
}
if (ISC.dependent() || SemaRef.CurContext->isDependentContext() || HasErrors)
return HasErrors;
// Build the loop's iteration space representation.
ResultIterSpaces[CurrentNestedLoopCount].PreCond = ISC.buildPreCond(
DSA.getCurScope(), For ? For->getCond() : CXXFor->getCond(), Captures);
ResultIterSpaces[CurrentNestedLoopCount].NumIterations =
ISC.buildNumIterations(DSA.getCurScope(), ResultIterSpaces,
(isOpenMPWorksharingDirective(DKind) ||
isOpenMPGenericLoopDirective(DKind) ||
isOpenMPTaskLoopDirective(DKind) ||
isOpenMPDistributeDirective(DKind) ||
isOpenMPLoopTransformationDirective(DKind)),
Captures);
ResultIterSpaces[CurrentNestedLoopCount].CounterVar =
ISC.buildCounterVar(Captures, DSA);
ResultIterSpaces[CurrentNestedLoopCount].PrivateCounterVar =
ISC.buildPrivateCounterVar();
ResultIterSpaces[CurrentNestedLoopCount].CounterInit = ISC.buildCounterInit();
ResultIterSpaces[CurrentNestedLoopCount].CounterStep = ISC.buildCounterStep();
ResultIterSpaces[CurrentNestedLoopCount].InitSrcRange = ISC.getInitSrcRange();
ResultIterSpaces[CurrentNestedLoopCount].CondSrcRange =
ISC.getConditionSrcRange();
ResultIterSpaces[CurrentNestedLoopCount].IncSrcRange =
ISC.getIncrementSrcRange();
ResultIterSpaces[CurrentNestedLoopCount].Subtract = ISC.shouldSubtractStep();
ResultIterSpaces[CurrentNestedLoopCount].IsStrictCompare =
ISC.isStrictTestOp();
std::tie(ResultIterSpaces[CurrentNestedLoopCount].MinValue,
ResultIterSpaces[CurrentNestedLoopCount].MaxValue) =
ISC.buildMinMaxValues(DSA.getCurScope(), Captures);
ResultIterSpaces[CurrentNestedLoopCount].FinalCondition =
ISC.buildFinalCondition(DSA.getCurScope());
ResultIterSpaces[CurrentNestedLoopCount].IsNonRectangularLB =
ISC.doesInitDependOnLC();
ResultIterSpaces[CurrentNestedLoopCount].IsNonRectangularUB =
ISC.doesCondDependOnLC();
ResultIterSpaces[CurrentNestedLoopCount].LoopDependentIdx =
ISC.getLoopDependentIdx();
HasErrors |=
(ResultIterSpaces[CurrentNestedLoopCount].PreCond == nullptr ||
ResultIterSpaces[CurrentNestedLoopCount].NumIterations == nullptr ||
ResultIterSpaces[CurrentNestedLoopCount].CounterVar == nullptr ||
ResultIterSpaces[CurrentNestedLoopCount].PrivateCounterVar == nullptr ||
ResultIterSpaces[CurrentNestedLoopCount].CounterInit == nullptr ||
ResultIterSpaces[CurrentNestedLoopCount].CounterStep == nullptr);
if (!HasErrors && DSA.isOrderedRegion()) {
if (DSA.getOrderedRegionParam().second->getNumForLoops()) {
if (CurrentNestedLoopCount <
DSA.getOrderedRegionParam().second->getLoopNumIterations().size()) {
DSA.getOrderedRegionParam().second->setLoopNumIterations(
CurrentNestedLoopCount,
ResultIterSpaces[CurrentNestedLoopCount].NumIterations);
DSA.getOrderedRegionParam().second->setLoopCounter(
CurrentNestedLoopCount,
ResultIterSpaces[CurrentNestedLoopCount].CounterVar);
}
}
for (auto &Pair : DSA.getDoacrossDependClauses()) {
if (CurrentNestedLoopCount >= Pair.first->getNumLoops()) {
// Erroneous case - clause has some problems.
continue;
}
if (Pair.first->getDependencyKind() == OMPC_DEPEND_sink &&
Pair.second.size() <= CurrentNestedLoopCount) {
// Erroneous case - clause has some problems.
Pair.first->setLoopData(CurrentNestedLoopCount, nullptr);
continue;
}
Expr *CntValue;
if (Pair.first->getDependencyKind() == OMPC_DEPEND_source)
CntValue = ISC.buildOrderedLoopData(
DSA.getCurScope(),
ResultIterSpaces[CurrentNestedLoopCount].CounterVar, Captures,
Pair.first->getDependencyLoc());
else
CntValue = ISC.buildOrderedLoopData(
DSA.getCurScope(),
ResultIterSpaces[CurrentNestedLoopCount].CounterVar, Captures,
Pair.first->getDependencyLoc(),
Pair.second[CurrentNestedLoopCount].first,
Pair.second[CurrentNestedLoopCount].second);
Pair.first->setLoopData(CurrentNestedLoopCount, CntValue);
}
}
return HasErrors;
}
/// Build 'VarRef = Start.
static ExprResult
buildCounterInit(Sema &SemaRef, Scope *S, SourceLocation Loc, ExprResult VarRef,
ExprResult Start, bool IsNonRectangularLB,
llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) {
// Build 'VarRef = Start.
ExprResult NewStart = IsNonRectangularLB
? Start.get()
: tryBuildCapture(SemaRef, Start.get(), Captures);
if (!NewStart.isUsable())
return ExprError();
if (!SemaRef.Context.hasSameType(NewStart.get()->getType(),
VarRef.get()->getType())) {
NewStart = SemaRef.PerformImplicitConversion(
NewStart.get(), VarRef.get()->getType(), Sema::AA_Converting,
/*AllowExplicit=*/true);
if (!NewStart.isUsable())
return ExprError();
}
ExprResult Init =
SemaRef.BuildBinOp(S, Loc, BO_Assign, VarRef.get(), NewStart.get());
return Init;
}
/// Build 'VarRef = Start + Iter * Step'.
static ExprResult buildCounterUpdate(
Sema &SemaRef, Scope *S, SourceLocation Loc, ExprResult VarRef,
ExprResult Start, ExprResult Iter, ExprResult Step, bool Subtract,
bool IsNonRectangularLB,
llvm::MapVector<const Expr *, DeclRefExpr *> *Captures = nullptr) {
// Add parentheses (for debugging purposes only).
Iter = SemaRef.ActOnParenExpr(Loc, Loc, Iter.get());
if (!VarRef.isUsable() || !Start.isUsable() || !Iter.isUsable() ||
!Step.isUsable())
return ExprError();
ExprResult NewStep = Step;
if (Captures)
NewStep = tryBuildCapture(SemaRef, Step.get(), *Captures);
if (NewStep.isInvalid())
return ExprError();
ExprResult Update =
SemaRef.BuildBinOp(S, Loc, BO_Mul, Iter.get(), NewStep.get());
if (!Update.isUsable())
return ExprError();
// Try to build 'VarRef = Start, VarRef (+|-)= Iter * Step' or
// 'VarRef = Start (+|-) Iter * Step'.
if (!Start.isUsable())
return ExprError();
ExprResult NewStart = SemaRef.ActOnParenExpr(Loc, Loc, Start.get());
if (!NewStart.isUsable())
return ExprError();
if (Captures && !IsNonRectangularLB)
NewStart = tryBuildCapture(SemaRef, Start.get(), *Captures);
if (NewStart.isInvalid())
return ExprError();
// First attempt: try to build 'VarRef = Start, VarRef += Iter * Step'.
ExprResult SavedUpdate = Update;
ExprResult UpdateVal;
if (VarRef.get()->getType()->isOverloadableType() ||
NewStart.get()->getType()->isOverloadableType() ||
Update.get()->getType()->isOverloadableType()) {
Sema::TentativeAnalysisScope Trap(SemaRef);
Update =
SemaRef.BuildBinOp(S, Loc, BO_Assign, VarRef.get(), NewStart.get());
if (Update.isUsable()) {
UpdateVal =
SemaRef.BuildBinOp(S, Loc, Subtract ? BO_SubAssign : BO_AddAssign,
VarRef.get(), SavedUpdate.get());
if (UpdateVal.isUsable()) {
Update = SemaRef.CreateBuiltinBinOp(Loc, BO_Comma, Update.get(),
UpdateVal.get());
}
}
}
// Second attempt: try to build 'VarRef = Start (+|-) Iter * Step'.
if (!Update.isUsable() || !UpdateVal.isUsable()) {
Update = SemaRef.BuildBinOp(S, Loc, Subtract ? BO_Sub : BO_Add,
NewStart.get(), SavedUpdate.get());
if (!Update.isUsable())
return ExprError();
if (!SemaRef.Context.hasSameType(Update.get()->getType(),
VarRef.get()->getType())) {
Update = SemaRef.PerformImplicitConversion(
Update.get(), VarRef.get()->getType(), Sema::AA_Converting, true);
if (!Update.isUsable())
return ExprError();
}
Update = SemaRef.BuildBinOp(S, Loc, BO_Assign, VarRef.get(), Update.get());
}
return Update;
}
/// Convert integer expression \a E to make it have at least \a Bits
/// bits.
static ExprResult widenIterationCount(unsigned Bits, Expr *E, Sema &SemaRef) {
if (E == nullptr)
return ExprError();
ASTContext &C = SemaRef.Context;
QualType OldType = E->getType();
unsigned HasBits = C.getTypeSize(OldType);
if (HasBits >= Bits)
return ExprResult(E);
// OK to convert to signed, because new type has more bits than old.
QualType NewType = C.getIntTypeForBitwidth(Bits, /* Signed */ true);
return SemaRef.PerformImplicitConversion(E, NewType, Sema::AA_Converting,
true);
}
/// Check if the given expression \a E is a constant integer that fits
/// into \a Bits bits.
static bool fitsInto(unsigned Bits, bool Signed, const Expr *E, Sema &SemaRef) {
if (E == nullptr)
return false;
if (Optional<llvm::APSInt> Result =
E->getIntegerConstantExpr(SemaRef.Context))
return Signed ? Result->isSignedIntN(Bits) : Result->isIntN(Bits);
return false;
}
/// Build preinits statement for the given declarations.
static Stmt *buildPreInits(ASTContext &Context,
MutableArrayRef<Decl *> PreInits) {
if (!PreInits.empty()) {
return new (Context) DeclStmt(
DeclGroupRef::Create(Context, PreInits.begin(), PreInits.size()),
SourceLocation(), SourceLocation());
}
return nullptr;
}
/// Build preinits statement for the given declarations.
static Stmt *
buildPreInits(ASTContext &Context,
const llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) {
if (!Captures.empty()) {
SmallVector<Decl *, 16> PreInits;
for (const auto &Pair : Captures)
PreInits.push_back(Pair.second->getDecl());
return buildPreInits(Context, PreInits);
}
return nullptr;
}
/// Build postupdate expression for the given list of postupdates expressions.
static Expr *buildPostUpdate(Sema &S, ArrayRef<Expr *> PostUpdates) {
Expr *PostUpdate = nullptr;
if (!PostUpdates.empty()) {
for (Expr *E : PostUpdates) {
Expr *ConvE = S.BuildCStyleCastExpr(
E->getExprLoc(),
S.Context.getTrivialTypeSourceInfo(S.Context.VoidTy),
E->getExprLoc(), E)
.get();
PostUpdate = PostUpdate
? S.CreateBuiltinBinOp(ConvE->getExprLoc(), BO_Comma,
PostUpdate, ConvE)
.get()
: ConvE;
}
}
return PostUpdate;
}
/// Called on a for stmt to check itself and nested loops (if any).
/// \return Returns 0 if one of the collapsed stmts is not canonical for loop,
/// number of collapsed loops otherwise.
static unsigned
checkOpenMPLoop(OpenMPDirectiveKind DKind, Expr *CollapseLoopCountExpr,
Expr *OrderedLoopCountExpr, Stmt *AStmt, Sema &SemaRef,
DSAStackTy &DSA,
Sema::VarsWithInheritedDSAType &VarsWithImplicitDSA,
OMPLoopBasedDirective::HelperExprs &Built) {
unsigned NestedLoopCount = 1;
bool SupportsNonPerfectlyNested = (SemaRef.LangOpts.OpenMP >= 50) &&
!isOpenMPLoopTransformationDirective(DKind);
if (CollapseLoopCountExpr) {
// Found 'collapse' clause - calculate collapse number.
Expr::EvalResult Result;
if (!CollapseLoopCountExpr->isValueDependent() &&
CollapseLoopCountExpr->EvaluateAsInt(Result, SemaRef.getASTContext())) {
NestedLoopCount = Result.Val.getInt().getLimitedValue();
} else {
Built.clear(/*Size=*/1);
return 1;
}
}
unsigned OrderedLoopCount = 1;
if (OrderedLoopCountExpr) {
// Found 'ordered' clause - calculate collapse number.
Expr::EvalResult EVResult;
if (!OrderedLoopCountExpr->isValueDependent() &&
OrderedLoopCountExpr->EvaluateAsInt(EVResult,
SemaRef.getASTContext())) {
llvm::APSInt Result = EVResult.Val.getInt();
if (Result.getLimitedValue() < NestedLoopCount) {
SemaRef.Diag(OrderedLoopCountExpr->getExprLoc(),
diag::err_omp_wrong_ordered_loop_count)
<< OrderedLoopCountExpr->getSourceRange();
SemaRef.Diag(CollapseLoopCountExpr->getExprLoc(),
diag::note_collapse_loop_count)
<< CollapseLoopCountExpr->getSourceRange();
}
OrderedLoopCount = Result.getLimitedValue();
} else {
Built.clear(/*Size=*/1);
return 1;
}
}
// This is helper routine for loop directives (e.g., 'for', 'simd',
// 'for simd', etc.).
llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
unsigned NumLoops = std::max(OrderedLoopCount, NestedLoopCount);
SmallVector<LoopIterationSpace, 4> IterSpaces(NumLoops);
if (!OMPLoopBasedDirective::doForAllLoops(
AStmt->IgnoreContainers(!isOpenMPLoopTransformationDirective(DKind)),
SupportsNonPerfectlyNested, NumLoops,
[DKind, &SemaRef, &DSA, NumLoops, NestedLoopCount,
CollapseLoopCountExpr, OrderedLoopCountExpr, &VarsWithImplicitDSA,
&IterSpaces, &Captures](unsigned Cnt, Stmt *CurStmt) {
if (checkOpenMPIterationSpace(
DKind, CurStmt, SemaRef, DSA, Cnt, NestedLoopCount,
NumLoops, CollapseLoopCountExpr, OrderedLoopCountExpr,
VarsWithImplicitDSA, IterSpaces, Captures))
return true;
if (Cnt > 0 && Cnt >= NestedLoopCount &&
IterSpaces[Cnt].CounterVar) {
// Handle initialization of captured loop iterator variables.
auto *DRE = cast<DeclRefExpr>(IterSpaces[Cnt].CounterVar);
if (isa<OMPCapturedExprDecl>(DRE->getDecl())) {
Captures[DRE] = DRE;
}
}
return false;
},
[&SemaRef, &Captures](OMPLoopTransformationDirective *Transform) {
Stmt *DependentPreInits = Transform->getPreInits();
if (!DependentPreInits)
return;
for (Decl *C : cast<DeclStmt>(DependentPreInits)->getDeclGroup()) {
auto *D = cast<VarDecl>(C);
DeclRefExpr *Ref = buildDeclRefExpr(SemaRef, D, D->getType(),
Transform->getBeginLoc());
Captures[Ref] = Ref;
}
}))
return 0;
Built.clear(/* size */ NestedLoopCount);
if (SemaRef.CurContext->isDependentContext())
return NestedLoopCount;
// An example of what is generated for the following code:
//
// #pragma omp simd collapse(2) ordered(2)
// for (i = 0; i < NI; ++i)
// for (k = 0; k < NK; ++k)
// for (j = J0; j < NJ; j+=2) {
// <loop body>
// }
//
// We generate the code below.
// Note: the loop body may be outlined in CodeGen.
// Note: some counters may be C++ classes, operator- is used to find number of
// iterations and operator+= to calculate counter value.
// Note: decltype(NumIterations) must be integer type (in 'omp for', only i32
// or i64 is currently supported).
//
// #define NumIterations (NI * ((NJ - J0 - 1 + 2) / 2))
// for (int[32|64]_t IV = 0; IV < NumIterations; ++IV ) {
// .local.i = IV / ((NJ - J0 - 1 + 2) / 2);
// .local.j = J0 + (IV % ((NJ - J0 - 1 + 2) / 2)) * 2;
// // similar updates for vars in clauses (e.g. 'linear')
// <loop body (using local i and j)>
// }
// i = NI; // assign final values of counters
// j = NJ;
//
// Last iteration number is (I1 * I2 * ... In) - 1, where I1, I2 ... In are
// the iteration counts of the collapsed for loops.
// Precondition tests if there is at least one iteration (all conditions are
// true).
auto PreCond = ExprResult(IterSpaces[0].PreCond);
Expr *N0 = IterSpaces[0].NumIterations;
ExprResult LastIteration32 =
widenIterationCount(/*Bits=*/32,
SemaRef
.PerformImplicitConversion(
N0->IgnoreImpCasts(), N0->getType(),
Sema::AA_Converting, /*AllowExplicit=*/true)
.get(),
SemaRef);
ExprResult LastIteration64 = widenIterationCount(
/*Bits=*/64,
SemaRef
.PerformImplicitConversion(N0->IgnoreImpCasts(), N0->getType(),
Sema::AA_Converting,
/*AllowExplicit=*/true)
.get(),
SemaRef);
if (!LastIteration32.isUsable() || !LastIteration64.isUsable())
return NestedLoopCount;
ASTContext &C = SemaRef.Context;
bool AllCountsNeedLessThan32Bits = C.getTypeSize(N0->getType()) < 32;
Scope *CurScope = DSA.getCurScope();
for (unsigned Cnt = 1; Cnt < NestedLoopCount; ++Cnt) {
if (PreCond.isUsable()) {
PreCond =
SemaRef.BuildBinOp(CurScope, PreCond.get()->getExprLoc(), BO_LAnd,
PreCond.get(), IterSpaces[Cnt].PreCond);
}
Expr *N = IterSpaces[Cnt].NumIterations;
SourceLocation Loc = N->getExprLoc();
AllCountsNeedLessThan32Bits &= C.getTypeSize(N->getType()) < 32;
if (LastIteration32.isUsable())
LastIteration32 = SemaRef.BuildBinOp(
CurScope, Loc, BO_Mul, LastIteration32.get(),
SemaRef
.PerformImplicitConversion(N->IgnoreImpCasts(), N->getType(),
Sema::AA_Converting,
/*AllowExplicit=*/true)
.get());
if (LastIteration64.isUsable())
LastIteration64 = SemaRef.BuildBinOp(
CurScope, Loc, BO_Mul, LastIteration64.get(),
SemaRef
.PerformImplicitConversion(N->IgnoreImpCasts(), N->getType(),
Sema::AA_Converting,
/*AllowExplicit=*/true)
.get());
}
// Choose either the 32-bit or 64-bit version.
ExprResult LastIteration = LastIteration64;
if (SemaRef.getLangOpts().OpenMPOptimisticCollapse ||
(LastIteration32.isUsable() &&
C.getTypeSize(LastIteration32.get()->getType()) == 32 &&
(AllCountsNeedLessThan32Bits || NestedLoopCount == 1 ||
fitsInto(
/*Bits=*/32,
LastIteration32.get()->getType()->hasSignedIntegerRepresentation(),
LastIteration64.get(), SemaRef))))
LastIteration = LastIteration32;
QualType VType = LastIteration.get()->getType();
QualType RealVType = VType;
QualType StrideVType = VType;
if (isOpenMPTaskLoopDirective(DKind)) {
VType =
SemaRef.Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
StrideVType =
SemaRef.Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
}
if (!LastIteration.isUsable())
return 0;
// Save the number of iterations.
ExprResult NumIterations = LastIteration;
{
LastIteration = SemaRef.BuildBinOp(
CurScope, LastIteration.get()->getExprLoc(), BO_Sub,
LastIteration.get(),
SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get());
if (!LastIteration.isUsable())
return 0;
}
// Calculate the last iteration number beforehand instead of doing this on
// each iteration. Do not do this if the number of iterations may be kfold-ed.
bool IsConstant = LastIteration.get()->isIntegerConstantExpr(SemaRef.Context);
ExprResult CalcLastIteration;
if (!IsConstant) {
ExprResult SaveRef =
tryBuildCapture(SemaRef, LastIteration.get(), Captures);
LastIteration = SaveRef;
// Prepare SaveRef + 1.
NumIterations = SemaRef.BuildBinOp(
CurScope, SaveRef.get()->getExprLoc(), BO_Add, SaveRef.get(),
SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get());
if (!NumIterations.isUsable())
return 0;
}
SourceLocation InitLoc = IterSpaces[0].InitSrcRange.getBegin();
// Build variables passed into runtime, necessary for worksharing directives.
ExprResult LB, UB, IL, ST, EUB, CombLB, CombUB, PrevLB, PrevUB, CombEUB;
if (isOpenMPWorksharingDirective(DKind) || isOpenMPTaskLoopDirective(DKind) ||
isOpenMPDistributeDirective(DKind) ||
isOpenMPGenericLoopDirective(DKind) ||
isOpenMPLoopTransformationDirective(DKind)) {
// Lower bound variable, initialized with zero.
VarDecl *LBDecl = buildVarDecl(SemaRef, InitLoc, VType, ".omp.lb");
LB = buildDeclRefExpr(SemaRef, LBDecl, VType, InitLoc);
SemaRef.AddInitializerToDecl(LBDecl,
SemaRef.ActOnIntegerConstant(InitLoc, 0).get(),
/*DirectInit*/ false);
// Upper bound variable, initialized with last iteration number.
VarDecl *UBDecl = buildVarDecl(SemaRef, InitLoc, VType, ".omp.ub");
UB = buildDeclRefExpr(SemaRef, UBDecl, VType, InitLoc);
SemaRef.AddInitializerToDecl(UBDecl, LastIteration.get(),
/*DirectInit*/ false);
// A 32-bit variable-flag where runtime returns 1 for the last iteration.
// This will be used to implement clause 'lastprivate'.
QualType Int32Ty = SemaRef.Context.getIntTypeForBitwidth(32, true);
VarDecl *ILDecl = buildVarDecl(SemaRef, InitLoc, Int32Ty, ".omp.is_last");
IL = buildDeclRefExpr(SemaRef, ILDecl, Int32Ty, InitLoc);
SemaRef.AddInitializerToDecl(ILDecl,
SemaRef.ActOnIntegerConstant(InitLoc, 0).get(),
/*DirectInit*/ false);
// Stride variable returned by runtime (we initialize it to 1 by default).
VarDecl *STDecl =
buildVarDecl(SemaRef, InitLoc, StrideVType, ".omp.stride");
ST = buildDeclRefExpr(SemaRef, STDecl, StrideVType, InitLoc);
SemaRef.AddInitializerToDecl(STDecl,
SemaRef.ActOnIntegerConstant(InitLoc, 1).get(),
/*DirectInit*/ false);
// Build expression: UB = min(UB, LastIteration)
// It is necessary for CodeGen of directives with static scheduling.
ExprResult IsUBGreater = SemaRef.BuildBinOp(CurScope, InitLoc, BO_GT,
UB.get(), LastIteration.get());
ExprResult CondOp = SemaRef.ActOnConditionalOp(
LastIteration.get()->getExprLoc(), InitLoc, IsUBGreater.get(),
LastIteration.get(), UB.get());
EUB = SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, UB.get(),
CondOp.get());
EUB = SemaRef.ActOnFinishFullExpr(EUB.get(), /*DiscardedValue*/ false);
// If we have a combined directive that combines 'distribute', 'for' or
// 'simd' we need to be able to access the bounds of the schedule of the
// enclosing region. E.g. in 'distribute parallel for' the bounds obtained
// by scheduling 'distribute' have to be passed to the schedule of 'for'.
if (isOpenMPLoopBoundSharingDirective(DKind)) {
// Lower bound variable, initialized with zero.
VarDecl *CombLBDecl =
buildVarDecl(SemaRef, InitLoc, VType, ".omp.comb.lb");
CombLB = buildDeclRefExpr(SemaRef, CombLBDecl, VType, InitLoc);
SemaRef.AddInitializerToDecl(
CombLBDecl, SemaRef.ActOnIntegerConstant(InitLoc, 0).get(),
/*DirectInit*/ false);
// Upper bound variable, initialized with last iteration number.
VarDecl *CombUBDecl =
buildVarDecl(SemaRef, InitLoc, VType, ".omp.comb.ub");
CombUB = buildDeclRefExpr(SemaRef, CombUBDecl, VType, InitLoc);
SemaRef.AddInitializerToDecl(CombUBDecl, LastIteration.get(),
/*DirectInit*/ false);
ExprResult CombIsUBGreater = SemaRef.BuildBinOp(
CurScope, InitLoc, BO_GT, CombUB.get(), LastIteration.get());
ExprResult CombCondOp =
SemaRef.ActOnConditionalOp(InitLoc, InitLoc, CombIsUBGreater.get(),
LastIteration.get(), CombUB.get());
CombEUB = SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, CombUB.get(),
CombCondOp.get());
CombEUB =
SemaRef.ActOnFinishFullExpr(CombEUB.get(), /*DiscardedValue*/ false);
const CapturedDecl *CD = cast<CapturedStmt>(AStmt)->getCapturedDecl();
// We expect to have at least 2 more parameters than the 'parallel'
// directive does - the lower and upper bounds of the previous schedule.
assert(CD->getNumParams() >= 4 &&
"Unexpected number of parameters in loop combined directive");
// Set the proper type for the bounds given what we learned from the
// enclosed loops.
ImplicitParamDecl *PrevLBDecl = CD->getParam(/*PrevLB=*/2);
ImplicitParamDecl *PrevUBDecl = CD->getParam(/*PrevUB=*/3);
// Previous lower and upper bounds are obtained from the region
// parameters.
PrevLB =
buildDeclRefExpr(SemaRef, PrevLBDecl, PrevLBDecl->getType(), InitLoc);
PrevUB =
buildDeclRefExpr(SemaRef, PrevUBDecl, PrevUBDecl->getType(), InitLoc);
}
}
// Build the iteration variable and its initialization before loop.
ExprResult IV;
ExprResult Init, CombInit;
{
VarDecl *IVDecl = buildVarDecl(SemaRef, InitLoc, RealVType, ".omp.iv");
IV = buildDeclRefExpr(SemaRef, IVDecl, RealVType, InitLoc);
Expr *RHS = (isOpenMPWorksharingDirective(DKind) ||
isOpenMPGenericLoopDirective(DKind) ||
isOpenMPTaskLoopDirective(DKind) ||
isOpenMPDistributeDirective(DKind) ||
isOpenMPLoopTransformationDirective(DKind))
? LB.get()
: SemaRef.ActOnIntegerConstant(SourceLocation(), 0).get();
Init = SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, IV.get(), RHS);
Init = SemaRef.ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
if (isOpenMPLoopBoundSharingDirective(DKind)) {
Expr *CombRHS =
(isOpenMPWorksharingDirective(DKind) ||
isOpenMPGenericLoopDirective(DKind) ||
isOpenMPTaskLoopDirective(DKind) ||
isOpenMPDistributeDirective(DKind))
? CombLB.get()
: SemaRef.ActOnIntegerConstant(SourceLocation(), 0).get();
CombInit =
SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, IV.get(), CombRHS);
CombInit =
SemaRef.ActOnFinishFullExpr(CombInit.get(), /*DiscardedValue*/ false);
}
}
bool UseStrictCompare =
RealVType->hasUnsignedIntegerRepresentation() &&
llvm::all_of(IterSpaces, [](const LoopIterationSpace &LIS) {
return LIS.IsStrictCompare;
});
// Loop condition (IV < NumIterations) or (IV <= UB or IV < UB + 1 (for
// unsigned IV)) for worksharing loops.
SourceLocation CondLoc = AStmt->getBeginLoc();
Expr *BoundUB = UB.get();
if (UseStrictCompare) {
BoundUB =
SemaRef
.BuildBinOp(CurScope, CondLoc, BO_Add, BoundUB,
SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get())
.get();
BoundUB =
SemaRef.ActOnFinishFullExpr(BoundUB, /*DiscardedValue*/ false).get();
}
ExprResult Cond =
(isOpenMPWorksharingDirective(DKind) ||
isOpenMPGenericLoopDirective(DKind) ||
isOpenMPTaskLoopDirective(DKind) || isOpenMPDistributeDirective(DKind) ||
isOpenMPLoopTransformationDirective(DKind))
? SemaRef.BuildBinOp(CurScope, CondLoc,
UseStrictCompare ? BO_LT : BO_LE, IV.get(),
BoundUB)
: SemaRef.BuildBinOp(CurScope, CondLoc, BO_LT, IV.get(),
NumIterations.get());
ExprResult CombDistCond;
if (isOpenMPLoopBoundSharingDirective(DKind)) {
CombDistCond = SemaRef.BuildBinOp(CurScope, CondLoc, BO_LT, IV.get(),
NumIterations.get());
}
ExprResult CombCond;
if (isOpenMPLoopBoundSharingDirective(DKind)) {
Expr *BoundCombUB = CombUB.get();
if (UseStrictCompare) {
BoundCombUB =
SemaRef
.BuildBinOp(
CurScope, CondLoc, BO_Add, BoundCombUB,
SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get())
.get();
BoundCombUB =
SemaRef.ActOnFinishFullExpr(BoundCombUB, /*DiscardedValue*/ false)
.get();
}
CombCond =
SemaRef.BuildBinOp(CurScope, CondLoc, UseStrictCompare ? BO_LT : BO_LE,
IV.get(), BoundCombUB);
}
// Loop increment (IV = IV + 1)
SourceLocation IncLoc = AStmt->getBeginLoc();
ExprResult Inc =
SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, IV.get(),
SemaRef.ActOnIntegerConstant(IncLoc, 1).get());
if (!Inc.isUsable())
return 0;
Inc = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, IV.get(), Inc.get());
Inc = SemaRef.ActOnFinishFullExpr(Inc.get(), /*DiscardedValue*/ false);
if (!Inc.isUsable())
return 0;
// Increments for worksharing loops (LB = LB + ST; UB = UB + ST).
// Used for directives with static scheduling.
// In combined construct, add combined version that use CombLB and CombUB
// base variables for the update
ExprResult NextLB, NextUB, CombNextLB, CombNextUB;
if (isOpenMPWorksharingDirective(DKind) || isOpenMPTaskLoopDirective(DKind) ||
isOpenMPGenericLoopDirective(DKind) ||
isOpenMPDistributeDirective(DKind) ||
isOpenMPLoopTransformationDirective(DKind)) {
// LB + ST
NextLB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, LB.get(), ST.get());
if (!NextLB.isUsable())
return 0;
// LB = LB + ST
NextLB =
SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, LB.get(), NextLB.get());
NextLB =
SemaRef.ActOnFinishFullExpr(NextLB.get(), /*DiscardedValue*/ false);
if (!NextLB.isUsable())
return 0;
// UB + ST
NextUB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, UB.get(), ST.get());
if (!NextUB.isUsable())
return 0;
// UB = UB + ST
NextUB =
SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, UB.get(), NextUB.get());
NextUB =
SemaRef.ActOnFinishFullExpr(NextUB.get(), /*DiscardedValue*/ false);
if (!NextUB.isUsable())
return 0;
if (isOpenMPLoopBoundSharingDirective(DKind)) {
CombNextLB =
SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, CombLB.get(), ST.get());
if (!NextLB.isUsable())
return 0;
// LB = LB + ST
CombNextLB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, CombLB.get(),
CombNextLB.get());
CombNextLB = SemaRef.ActOnFinishFullExpr(CombNextLB.get(),
/*DiscardedValue*/ false);
if (!CombNextLB.isUsable())
return 0;
// UB + ST
CombNextUB =
SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, CombUB.get(), ST.get());
if (!CombNextUB.isUsable())
return 0;
// UB = UB + ST
CombNextUB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, CombUB.get(),
CombNextUB.get());
CombNextUB = SemaRef.ActOnFinishFullExpr(CombNextUB.get(),
/*DiscardedValue*/ false);
if (!CombNextUB.isUsable())
return 0;
}
}
// Create increment expression for distribute loop when combined in a same
// directive with for as IV = IV + ST; ensure upper bound expression based
// on PrevUB instead of NumIterations - used to implement 'for' when found
// in combination with 'distribute', like in 'distribute parallel for'
SourceLocation DistIncLoc = AStmt->getBeginLoc();
ExprResult DistCond, DistInc, PrevEUB, ParForInDistCond;
if (isOpenMPLoopBoundSharingDirective(DKind)) {
DistCond = SemaRef.BuildBinOp(
CurScope, CondLoc, UseStrictCompare ? BO_LT : BO_LE, IV.get(), BoundUB);
assert(DistCond.isUsable() && "distribute cond expr was not built");
DistInc =
SemaRef.BuildBinOp(CurScope, DistIncLoc, BO_Add, IV.get(), ST.get());
assert(DistInc.isUsable() && "distribute inc expr was not built");
DistInc = SemaRef.BuildBinOp(CurScope, DistIncLoc, BO_Assign, IV.get(),
DistInc.get());
DistInc =
SemaRef.ActOnFinishFullExpr(DistInc.get(), /*DiscardedValue*/ false);
assert(DistInc.isUsable() && "distribute inc expr was not built");
// Build expression: UB = min(UB, prevUB) for #for in composite or combined
// construct
ExprResult NewPrevUB = PrevUB;
SourceLocation DistEUBLoc = AStmt->getBeginLoc();
if (!SemaRef.Context.hasSameType(UB.get()->getType(),
PrevUB.get()->getType())) {
NewPrevUB = SemaRef.BuildCStyleCastExpr(
DistEUBLoc,
SemaRef.Context.getTrivialTypeSourceInfo(UB.get()->getType()),
DistEUBLoc, NewPrevUB.get());
if (!NewPrevUB.isUsable())
return 0;
}
ExprResult IsUBGreater = SemaRef.BuildBinOp(CurScope, DistEUBLoc, BO_GT,
UB.get(), NewPrevUB.get());
ExprResult CondOp = SemaRef.ActOnConditionalOp(
DistEUBLoc, DistEUBLoc, IsUBGreater.get(), NewPrevUB.get(), UB.get());
PrevEUB = SemaRef.BuildBinOp(CurScope, DistIncLoc, BO_Assign, UB.get(),
CondOp.get());
PrevEUB =
SemaRef.ActOnFinishFullExpr(PrevEUB.get(), /*DiscardedValue*/ false);
// Build IV <= PrevUB or IV < PrevUB + 1 for unsigned IV to be used in
// parallel for is in combination with a distribute directive with
// schedule(static, 1)
Expr *BoundPrevUB = PrevUB.get();
if (UseStrictCompare) {
BoundPrevUB =
SemaRef
.BuildBinOp(
CurScope, CondLoc, BO_Add, BoundPrevUB,
SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get())
.get();
BoundPrevUB =
SemaRef.ActOnFinishFullExpr(BoundPrevUB, /*DiscardedValue*/ false)
.get();
}
ParForInDistCond =
SemaRef.BuildBinOp(CurScope, CondLoc, UseStrictCompare ? BO_LT : BO_LE,
IV.get(), BoundPrevUB);
}
// Build updates and final values of the loop counters.
bool HasErrors = false;
Built.Counters.resize(NestedLoopCount);
Built.Inits.resize(NestedLoopCount);
Built.Updates.resize(NestedLoopCount);
Built.Finals.resize(NestedLoopCount);
Built.DependentCounters.resize(NestedLoopCount);
Built.DependentInits.resize(NestedLoopCount);
Built.FinalsConditions.resize(NestedLoopCount);
{
// We implement the following algorithm for obtaining the
// original loop iteration variable values based on the
// value of the collapsed loop iteration variable IV.
//
// Let n+1 be the number of collapsed loops in the nest.
// Iteration variables (I0, I1, .... In)
// Iteration counts (N0, N1, ... Nn)
//
// Acc = IV;
//
// To compute Ik for loop k, 0 <= k <= n, generate:
// Prod = N(k+1) * N(k+2) * ... * Nn;
// Ik = Acc / Prod;
// Acc -= Ik * Prod;
//
ExprResult Acc = IV;
for (unsigned int Cnt = 0; Cnt < NestedLoopCount; ++Cnt) {
LoopIterationSpace &IS = IterSpaces[Cnt];
SourceLocation UpdLoc = IS.IncSrcRange.getBegin();
ExprResult Iter;
// Compute prod
ExprResult Prod = SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get();
for (unsigned int K = Cnt + 1; K < NestedLoopCount; ++K)
Prod = SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Mul, Prod.get(),
IterSpaces[K].NumIterations);
// Iter = Acc / Prod
// If there is at least one more inner loop to avoid
// multiplication by 1.
if (Cnt + 1 < NestedLoopCount)
Iter =
SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Div, Acc.get(), Prod.get());
else
Iter = Acc;
if (!Iter.isUsable()) {
HasErrors = true;
break;
}
// Update Acc:
// Acc -= Iter * Prod
// Check if there is at least one more inner loop to avoid
// multiplication by 1.
if (Cnt + 1 < NestedLoopCount)
Prod = SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Mul, Iter.get(),
Prod.get());
else
Prod = Iter;
Acc = SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Sub, Acc.get(), Prod.get());
// Build update: IS.CounterVar(Private) = IS.Start + Iter * IS.Step
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IS.CounterVar)->getDecl());
DeclRefExpr *CounterVar = buildDeclRefExpr(
SemaRef, VD, IS.CounterVar->getType(), IS.CounterVar->getExprLoc(),
/*RefersToCapture=*/true);
ExprResult Init =
buildCounterInit(SemaRef, CurScope, UpdLoc, CounterVar,
IS.CounterInit, IS.IsNonRectangularLB, Captures);
if (!Init.isUsable()) {
HasErrors = true;
break;
}
ExprResult Update = buildCounterUpdate(
SemaRef, CurScope, UpdLoc, CounterVar, IS.CounterInit, Iter,
IS.CounterStep, IS.Subtract, IS.IsNonRectangularLB, &Captures);
if (!Update.isUsable()) {
HasErrors = true;
break;
}
// Build final: IS.CounterVar = IS.Start + IS.NumIters * IS.Step
ExprResult Final =
buildCounterUpdate(SemaRef, CurScope, UpdLoc, CounterVar,
IS.CounterInit, IS.NumIterations, IS.CounterStep,
IS.Subtract, IS.IsNonRectangularLB, &Captures);
if (!Final.isUsable()) {
HasErrors = true;
break;
}
if (!Update.isUsable() || !Final.isUsable()) {
HasErrors = true;
break;
}
// Save results
Built.Counters[Cnt] = IS.CounterVar;
Built.PrivateCounters[Cnt] = IS.PrivateCounterVar;
Built.Inits[Cnt] = Init.get();
Built.Updates[Cnt] = Update.get();
Built.Finals[Cnt] = Final.get();
Built.DependentCounters[Cnt] = nullptr;
Built.DependentInits[Cnt] = nullptr;
Built.FinalsConditions[Cnt] = nullptr;
if (IS.IsNonRectangularLB || IS.IsNonRectangularUB) {
Built.DependentCounters[Cnt] =
Built.Counters[NestedLoopCount - 1 - IS.LoopDependentIdx];
Built.DependentInits[Cnt] =
Built.Inits[NestedLoopCount - 1 - IS.LoopDependentIdx];
Built.FinalsConditions[Cnt] = IS.FinalCondition;
}
}
}
if (HasErrors)
return 0;
// Save results
Built.IterationVarRef = IV.get();
Built.LastIteration = LastIteration.get();
Built.NumIterations = NumIterations.get();
Built.CalcLastIteration = SemaRef
.ActOnFinishFullExpr(CalcLastIteration.get(),
/*DiscardedValue=*/false)
.get();
Built.PreCond = PreCond.get();
Built.PreInits = buildPreInits(C, Captures);
Built.Cond = Cond.get();
Built.Init = Init.get();
Built.Inc = Inc.get();
Built.LB = LB.get();
Built.UB = UB.get();
Built.IL = IL.get();
Built.ST = ST.get();
Built.EUB = EUB.get();
Built.NLB = NextLB.get();
Built.NUB = NextUB.get();
Built.PrevLB = PrevLB.get();
Built.PrevUB = PrevUB.get();
Built.DistInc = DistInc.get();
Built.PrevEUB = PrevEUB.get();
Built.DistCombinedFields.LB = CombLB.get();
Built.DistCombinedFields.UB = CombUB.get();
Built.DistCombinedFields.EUB = CombEUB.get();
Built.DistCombinedFields.Init = CombInit.get();
Built.DistCombinedFields.Cond = CombCond.get();
Built.DistCombinedFields.NLB = CombNextLB.get();
Built.DistCombinedFields.NUB = CombNextUB.get();
Built.DistCombinedFields.DistCond = CombDistCond.get();
Built.DistCombinedFields.ParForInDistCond = ParForInDistCond.get();
return NestedLoopCount;
}
static Expr *getCollapseNumberExpr(ArrayRef<OMPClause *> Clauses) {
auto CollapseClauses =
OMPExecutableDirective::getClausesOfKind<OMPCollapseClause>(Clauses);
if (CollapseClauses.begin() != CollapseClauses.end())
return (*CollapseClauses.begin())->getNumForLoops();
return nullptr;
}
static Expr *getOrderedNumberExpr(ArrayRef<OMPClause *> Clauses) {
auto OrderedClauses =
OMPExecutableDirective::getClausesOfKind<OMPOrderedClause>(Clauses);
if (OrderedClauses.begin() != OrderedClauses.end())
return (*OrderedClauses.begin())->getNumForLoops();
return nullptr;
}
static bool checkSimdlenSafelenSpecified(Sema &S,
const ArrayRef<OMPClause *> Clauses) {
const OMPSafelenClause *Safelen = nullptr;
const OMPSimdlenClause *Simdlen = nullptr;
for (const OMPClause *Clause : Clauses) {
if (Clause->getClauseKind() == OMPC_safelen)
Safelen = cast<OMPSafelenClause>(Clause);
else if (Clause->getClauseKind() == OMPC_simdlen)
Simdlen = cast<OMPSimdlenClause>(Clause);
if (Safelen && Simdlen)
break;
}
if (Simdlen && Safelen) {
const Expr *SimdlenLength = Simdlen->getSimdlen();
const Expr *SafelenLength = Safelen->getSafelen();
if (SimdlenLength->isValueDependent() || SimdlenLength->isTypeDependent() ||
SimdlenLength->isInstantiationDependent() ||
SimdlenLength->containsUnexpandedParameterPack())
return false;
if (SafelenLength->isValueDependent() || SafelenLength->isTypeDependent() ||
SafelenLength->isInstantiationDependent() ||
SafelenLength->containsUnexpandedParameterPack())
return false;
Expr::EvalResult SimdlenResult, SafelenResult;
SimdlenLength->EvaluateAsInt(SimdlenResult, S.Context);
SafelenLength->EvaluateAsInt(SafelenResult, S.Context);
llvm::APSInt SimdlenRes = SimdlenResult.Val.getInt();
llvm::APSInt SafelenRes = SafelenResult.Val.getInt();
// OpenMP 4.5 [2.8.1, simd Construct, Restrictions]
// If both simdlen and safelen clauses are specified, the value of the
// simdlen parameter must be less than or equal to the value of the safelen
// parameter.
if (SimdlenRes > SafelenRes) {
S.Diag(SimdlenLength->getExprLoc(),
diag::err_omp_wrong_simdlen_safelen_values)
<< SimdlenLength->getSourceRange() << SafelenLength->getSourceRange();
return true;
}
}
return false;
}
StmtResult
Sema::ActOnOpenMPSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
SourceLocation StartLoc, SourceLocation EndLoc,
VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' or 'ordered' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_simd, getCollapseNumberExpr(Clauses), getOrderedNumberExpr(Clauses),
AStmt, *this, *DSAStack, VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp simd loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPSimdDirective::Create(Context, StartLoc, EndLoc, NestedLoopCount,
Clauses, AStmt, B);
}
StmtResult
Sema::ActOnOpenMPForDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
SourceLocation StartLoc, SourceLocation EndLoc,
VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' or 'ordered' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_for, getCollapseNumberExpr(Clauses), getOrderedNumberExpr(Clauses),
AStmt, *this, *DSAStack, VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
setFunctionHasBranchProtectedScope();
return OMPForDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
}
StmtResult Sema::ActOnOpenMPForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' or 'ordered' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_for_simd, getCollapseNumberExpr(Clauses),
getOrderedNumberExpr(Clauses), AStmt, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for simd loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPForSimdDirective::Create(Context, StartLoc, EndLoc, NestedLoopCount,
Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
auto BaseStmt = AStmt;
while (auto *CS = dyn_cast_or_null<CapturedStmt>(BaseStmt))
BaseStmt = CS->getCapturedStmt();
if (auto *C = dyn_cast_or_null<CompoundStmt>(BaseStmt)) {
auto S = C->children();
if (S.begin() == S.end())
return StmtError();
// All associated statements must be '#pragma omp section' except for
// the first one.
for (Stmt *SectionStmt : llvm::drop_begin(S)) {
if (!SectionStmt || !isa<OMPSectionDirective>(SectionStmt)) {
if (SectionStmt)
Diag(SectionStmt->getBeginLoc(),
diag::err_omp_sections_substmt_not_section);
return StmtError();
}
cast<OMPSectionDirective>(SectionStmt)
->setHasCancel(DSAStack->isCancelRegion());
}
} else {
Diag(AStmt->getBeginLoc(), diag::err_omp_sections_not_compound_stmt);
return StmtError();
}
setFunctionHasBranchProtectedScope();
return OMPSectionsDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
DSAStack->getTaskgroupReductionRef(),
DSAStack->isCancelRegion());
}
StmtResult Sema::ActOnOpenMPSectionDirective(Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
setFunctionHasBranchProtectedScope();
DSAStack->setParentCancelRegion(DSAStack->isCancelRegion());
return OMPSectionDirective::Create(Context, StartLoc, EndLoc, AStmt,
DSAStack->isCancelRegion());
}
static Expr *getDirectCallExpr(Expr *E) {
E = E->IgnoreParenCasts()->IgnoreImplicit();
if (auto *CE = dyn_cast<CallExpr>(E))
if (CE->getDirectCallee())
return E;
return nullptr;
}
StmtResult Sema::ActOnOpenMPDispatchDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
Stmt *S = cast<CapturedStmt>(AStmt)->getCapturedStmt();
// 5.1 OpenMP
// expression-stmt : an expression statement with one of the following forms:
// expression = target-call ( [expression-list] );
// target-call ( [expression-list] );
SourceLocation TargetCallLoc;
if (!CurContext->isDependentContext()) {
Expr *TargetCall = nullptr;
auto *E = dyn_cast<Expr>(S);
if (!E) {
Diag(S->getBeginLoc(), diag::err_omp_dispatch_statement_call);
return StmtError();
}
E = E->IgnoreParenCasts()->IgnoreImplicit();
if (auto *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_Assign)
TargetCall = getDirectCallExpr(BO->getRHS());
} else {
if (auto *COCE = dyn_cast<CXXOperatorCallExpr>(E))
if (COCE->getOperator() == OO_Equal)
TargetCall = getDirectCallExpr(COCE->getArg(1));
if (!TargetCall)
TargetCall = getDirectCallExpr(E);
}
if (!TargetCall) {
Diag(E->getBeginLoc(), diag::err_omp_dispatch_statement_call);
return StmtError();
}
TargetCallLoc = TargetCall->getExprLoc();
}
setFunctionHasBranchProtectedScope();
return OMPDispatchDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
TargetCallLoc);
}
static bool checkGenericLoopLastprivate(Sema &S, ArrayRef<OMPClause *> Clauses,
OpenMPDirectiveKind K,
DSAStackTy *Stack) {
bool ErrorFound = false;
for (OMPClause *C : Clauses) {
if (auto *LPC = dyn_cast<OMPLastprivateClause>(C)) {
for (Expr *RefExpr : LPC->varlists()) {
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(S, SimpleRefExpr, ELoc, ERange);
if (ValueDecl *D = Res.first) {
auto &&Info = Stack->isLoopControlVariable(D);
if (!Info.first) {
S.Diag(ELoc, diag::err_omp_lastprivate_loop_var_non_loop_iteration)
<< getOpenMPDirectiveName(K);
ErrorFound = true;
}
}
}
}
}
return ErrorFound;
}
StmtResult Sema::ActOnOpenMPGenericLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
// OpenMP 5.1 [2.11.7, loop construct, Restrictions]
// A list item may not appear in a lastprivate clause unless it is the
// loop iteration variable of a loop that is associated with the construct.
if (checkGenericLoopLastprivate(*this, Clauses, OMPD_loop, DSAStack))
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
OMPLoopDirective::HelperExprs B;
// In presence of clause 'collapse', it will define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_loop, getCollapseNumberExpr(Clauses), getOrderedNumberExpr(Clauses),
AStmt, *this, *DSAStack, VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp loop exprs were not built");
setFunctionHasBranchProtectedScope();
return OMPGenericLoopDirective::Create(Context, StartLoc, EndLoc,
NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPTeamsGenericLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
// OpenMP 5.1 [2.11.7, loop construct, Restrictions]
// A list item may not appear in a lastprivate clause unless it is the
// loop iteration variable of a loop that is associated with the construct.
if (checkGenericLoopLastprivate(*this, Clauses, OMPD_teams_loop, DSAStack))
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_teams_loop);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopDirective::HelperExprs B;
// In presence of clause 'collapse', it will define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_teams_loop, getCollapseNumberExpr(Clauses),
/*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp loop exprs were not built");
setFunctionHasBranchProtectedScope();
DSAStack->setParentTeamsRegionLoc(StartLoc);
return OMPTeamsGenericLoopDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPTargetTeamsGenericLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
// OpenMP 5.1 [2.11.7, loop construct, Restrictions]
// A list item may not appear in a lastprivate clause unless it is the
// loop iteration variable of a loop that is associated with the construct.
if (checkGenericLoopLastprivate(*this, Clauses, OMPD_target_teams_loop,
DSAStack))
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_teams_loop);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopDirective::HelperExprs B;
// In presence of clause 'collapse', it will define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_target_teams_loop, getCollapseNumberExpr(Clauses),
/*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp loop exprs were not built");
setFunctionHasBranchProtectedScope();
return OMPTargetTeamsGenericLoopDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPParallelGenericLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
// OpenMP 5.1 [2.11.7, loop construct, Restrictions]
// A list item may not appear in a lastprivate clause unless it is the
// loop iteration variable of a loop that is associated with the construct.
if (checkGenericLoopLastprivate(*this, Clauses, OMPD_parallel_loop, DSAStack))
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_parallel_loop);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopDirective::HelperExprs B;
// In presence of clause 'collapse', it will define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_parallel_loop, getCollapseNumberExpr(Clauses),
/*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp loop exprs were not built");
setFunctionHasBranchProtectedScope();
return OMPParallelGenericLoopDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPTargetParallelGenericLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
// OpenMP 5.1 [2.11.7, loop construct, Restrictions]
// A list item may not appear in a lastprivate clause unless it is the
// loop iteration variable of a loop that is associated with the construct.
if (checkGenericLoopLastprivate(*this, Clauses, OMPD_target_parallel_loop,
DSAStack))
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_parallel_loop);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopDirective::HelperExprs B;
// In presence of clause 'collapse', it will define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_target_parallel_loop, getCollapseNumberExpr(Clauses),
/*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp loop exprs were not built");
setFunctionHasBranchProtectedScope();
return OMPTargetParallelGenericLoopDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
setFunctionHasBranchProtectedScope();
// OpenMP [2.7.3, single Construct, Restrictions]
// The copyprivate clause must not be used with the nowait clause.
const OMPClause *Nowait = nullptr;
const OMPClause *Copyprivate = nullptr;
for (const OMPClause *Clause : Clauses) {
if (Clause->getClauseKind() == OMPC_nowait)
Nowait = Clause;
else if (Clause->getClauseKind() == OMPC_copyprivate)
Copyprivate = Clause;
if (Copyprivate && Nowait) {
Diag(Copyprivate->getBeginLoc(),
diag::err_omp_single_copyprivate_with_nowait);
Diag(Nowait->getBeginLoc(), diag::note_omp_nowait_clause_here);
return StmtError();
}
}
return OMPSingleDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
}
StmtResult Sema::ActOnOpenMPMasterDirective(Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPMasterDirective::Create(Context, StartLoc, EndLoc, AStmt);
}
StmtResult Sema::ActOnOpenMPMaskedDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPMaskedDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
}
StmtResult Sema::ActOnOpenMPCriticalDirective(
const DeclarationNameInfo &DirName, ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
bool ErrorFound = false;
llvm::APSInt Hint;
SourceLocation HintLoc;
bool DependentHint = false;
for (const OMPClause *C : Clauses) {
if (C->getClauseKind() == OMPC_hint) {
if (!DirName.getName()) {
Diag(C->getBeginLoc(), diag::err_omp_hint_clause_no_name);
ErrorFound = true;
}
Expr *E = cast<OMPHintClause>(C)->getHint();
if (E->isTypeDependent() || E->isValueDependent() ||
E->isInstantiationDependent()) {
DependentHint = true;
} else {
Hint = E->EvaluateKnownConstInt(Context);
HintLoc = C->getBeginLoc();
}
}
}
if (ErrorFound)
return StmtError();
const auto Pair = DSAStack->getCriticalWithHint(DirName);
if (Pair.first && DirName.getName() && !DependentHint) {
if (llvm::APSInt::compareValues(Hint, Pair.second) != 0) {
Diag(StartLoc, diag::err_omp_critical_with_hint);
if (HintLoc.isValid())
Diag(HintLoc, diag::note_omp_critical_hint_here)
<< 0 << toString(Hint, /*Radix=*/10, /*Signed=*/false);
else
Diag(StartLoc, diag::note_omp_critical_no_hint) << 0;
if (const auto *C = Pair.first->getSingleClause<OMPHintClause>()) {
Diag(C->getBeginLoc(), diag::note_omp_critical_hint_here)
<< 1
<< toString(C->getHint()->EvaluateKnownConstInt(Context),
/*Radix=*/10, /*Signed=*/false);
} else {
Diag(Pair.first->getBeginLoc(), diag::note_omp_critical_no_hint) << 1;
}
}
}
setFunctionHasBranchProtectedScope();
auto *Dir = OMPCriticalDirective::Create(Context, DirName, StartLoc, EndLoc,
Clauses, AStmt);
if (!Pair.first && DirName.getName() && !DependentHint)
DSAStack->addCriticalWithHint(Dir, Hint);
return Dir;
}
StmtResult Sema::ActOnOpenMPParallelForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' or 'ordered' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_parallel_for, getCollapseNumberExpr(Clauses),
getOrderedNumberExpr(Clauses), AStmt, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp parallel for loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
setFunctionHasBranchProtectedScope();
return OMPParallelForDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
}
StmtResult Sema::ActOnOpenMPParallelForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' or 'ordered' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_parallel_for_simd, getCollapseNumberExpr(Clauses),
getOrderedNumberExpr(Clauses), AStmt, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPParallelForSimdDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult
Sema::ActOnOpenMPParallelMasterDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
setFunctionHasBranchProtectedScope();
return OMPParallelMasterDirective::Create(
Context, StartLoc, EndLoc, Clauses, AStmt,
DSAStack->getTaskgroupReductionRef());
}
StmtResult
Sema::ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
auto BaseStmt = AStmt;
while (auto *CS = dyn_cast_or_null<CapturedStmt>(BaseStmt))
BaseStmt = CS->getCapturedStmt();
if (auto *C = dyn_cast_or_null<CompoundStmt>(BaseStmt)) {
auto S = C->children();
if (S.begin() == S.end())
return StmtError();
// All associated statements must be '#pragma omp section' except for
// the first one.
for (Stmt *SectionStmt : llvm::drop_begin(S)) {
if (!SectionStmt || !isa<OMPSectionDirective>(SectionStmt)) {
if (SectionStmt)
Diag(SectionStmt->getBeginLoc(),
diag::err_omp_parallel_sections_substmt_not_section);
return StmtError();
}
cast<OMPSectionDirective>(SectionStmt)
->setHasCancel(DSAStack->isCancelRegion());
}
} else {
Diag(AStmt->getBeginLoc(),
diag::err_omp_parallel_sections_not_compound_stmt);
return StmtError();
}
setFunctionHasBranchProtectedScope();
return OMPParallelSectionsDirective::Create(
Context, StartLoc, EndLoc, Clauses, AStmt,
DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
}
/// Find and diagnose mutually exclusive clause kinds.
static bool checkMutuallyExclusiveClauses(
Sema &S, ArrayRef<OMPClause *> Clauses,
ArrayRef<OpenMPClauseKind> MutuallyExclusiveClauses) {
const OMPClause *PrevClause = nullptr;
bool ErrorFound = false;
for (const OMPClause *C : Clauses) {
if (llvm::is_contained(MutuallyExclusiveClauses, C->getClauseKind())) {
if (!PrevClause) {
PrevClause = C;
} else if (PrevClause->getClauseKind() != C->getClauseKind()) {
S.Diag(C->getBeginLoc(), diag::err_omp_clauses_mutually_exclusive)
<< getOpenMPClauseName(C->getClauseKind())
<< getOpenMPClauseName(PrevClause->getClauseKind());
S.Diag(PrevClause->getBeginLoc(), diag::note_omp_previous_clause)
<< getOpenMPClauseName(PrevClause->getClauseKind());
ErrorFound = true;
}
}
}
return ErrorFound;
}
StmtResult Sema::ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
// OpenMP 5.0, 2.10.1 task Construct
// If a detach clause appears on the directive, then a mergeable clause cannot
// appear on the same directive.
if (checkMutuallyExclusiveClauses(*this, Clauses,
{OMPC_detach, OMPC_mergeable}))
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
setFunctionHasBranchProtectedScope();
return OMPTaskDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
DSAStack->isCancelRegion());
}
StmtResult Sema::ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc,
SourceLocation EndLoc) {
return OMPTaskyieldDirective::Create(Context, StartLoc, EndLoc);
}
StmtResult Sema::ActOnOpenMPBarrierDirective(SourceLocation StartLoc,
SourceLocation EndLoc) {
return OMPBarrierDirective::Create(Context, StartLoc, EndLoc);
}
StmtResult Sema::ActOnOpenMPTaskwaitDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc) {
return OMPTaskwaitDirective::Create(Context, StartLoc, EndLoc, Clauses);
}
StmtResult Sema::ActOnOpenMPTaskgroupDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
setFunctionHasBranchProtectedScope();
return OMPTaskgroupDirective::Create(Context, StartLoc, EndLoc, Clauses,
AStmt,
DSAStack->getTaskgroupReductionRef());
}
StmtResult Sema::ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc) {
OMPFlushClause *FC = nullptr;
OMPClause *OrderClause = nullptr;
for (OMPClause *C : Clauses) {
if (C->getClauseKind() == OMPC_flush)
FC = cast<OMPFlushClause>(C);
else
OrderClause = C;
}
OpenMPClauseKind MemOrderKind = OMPC_unknown;
SourceLocation MemOrderLoc;
for (const OMPClause *C : Clauses) {
if (C->getClauseKind() == OMPC_acq_rel ||
C->getClauseKind() == OMPC_acquire ||
C->getClauseKind() == OMPC_release) {
if (MemOrderKind != OMPC_unknown) {
Diag(C->getBeginLoc(), diag::err_omp_several_mem_order_clauses)
<< getOpenMPDirectiveName(OMPD_flush) << 1
<< SourceRange(C->getBeginLoc(), C->getEndLoc());
Diag(MemOrderLoc, diag::note_omp_previous_mem_order_clause)
<< getOpenMPClauseName(MemOrderKind);
} else {
MemOrderKind = C->getClauseKind();
MemOrderLoc = C->getBeginLoc();
}
}
}
if (FC && OrderClause) {
Diag(FC->getLParenLoc(), diag::err_omp_flush_order_clause_and_list)
<< getOpenMPClauseName(OrderClause->getClauseKind());
Diag(OrderClause->getBeginLoc(), diag::note_omp_flush_order_clause_here)
<< getOpenMPClauseName(OrderClause->getClauseKind());
return StmtError();
}
return OMPFlushDirective::Create(Context, StartLoc, EndLoc, Clauses);
}
StmtResult Sema::ActOnOpenMPDepobjDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc) {
if (Clauses.empty()) {
Diag(StartLoc, diag::err_omp_depobj_expected);
return StmtError();
} else if (Clauses[0]->getClauseKind() != OMPC_depobj) {
Diag(Clauses[0]->getBeginLoc(), diag::err_omp_depobj_expected);
return StmtError();
}
// Only depobj expression and another single clause is allowed.
if (Clauses.size() > 2) {
Diag(Clauses[2]->getBeginLoc(),
diag::err_omp_depobj_single_clause_expected);
return StmtError();
} else if (Clauses.size() < 1) {
Diag(Clauses[0]->getEndLoc(), diag::err_omp_depobj_single_clause_expected);
return StmtError();
}
return OMPDepobjDirective::Create(Context, StartLoc, EndLoc, Clauses);
}
StmtResult Sema::ActOnOpenMPScanDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc) {
// Check that exactly one clause is specified.
if (Clauses.size() != 1) {
Diag(Clauses.empty() ? EndLoc : Clauses[1]->getBeginLoc(),
diag::err_omp_scan_single_clause_expected);
return StmtError();
}
// Check that scan directive is used in the scopeof the OpenMP loop body.
if (Scope *S = DSAStack->getCurScope()) {
Scope *ParentS = S->getParent();
if (!ParentS || ParentS->getParent() != ParentS->getBreakParent() ||
!ParentS->getBreakParent()->isOpenMPLoopScope())
return StmtError(Diag(StartLoc, diag::err_omp_orphaned_device_directive)
<< getOpenMPDirectiveName(OMPD_scan) << 5);
}
// Check that only one instance of scan directives is used in the same outer
// region.
if (DSAStack->doesParentHasScanDirective()) {
Diag(StartLoc, diag::err_omp_several_directives_in_region) << "scan";
Diag(DSAStack->getParentScanDirectiveLoc(),
diag::note_omp_previous_directive)
<< "scan";
return StmtError();
}
DSAStack->setParentHasScanDirective(StartLoc);
return OMPScanDirective::Create(Context, StartLoc, EndLoc, Clauses);
}
StmtResult Sema::ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
const OMPClause *DependFound = nullptr;
const OMPClause *DependSourceClause = nullptr;
const OMPClause *DependSinkClause = nullptr;
bool ErrorFound = false;
const OMPThreadsClause *TC = nullptr;
const OMPSIMDClause *SC = nullptr;
for (const OMPClause *C : Clauses) {
if (auto *DC = dyn_cast<OMPDependClause>(C)) {
DependFound = C;
if (DC->getDependencyKind() == OMPC_DEPEND_source) {
if (DependSourceClause) {
Diag(C->getBeginLoc(), diag::err_omp_more_one_clause)
<< getOpenMPDirectiveName(OMPD_ordered)
<< getOpenMPClauseName(OMPC_depend) << 2;
ErrorFound = true;
} else {
DependSourceClause = C;
}
if (DependSinkClause) {
Diag(C->getBeginLoc(), diag::err_omp_depend_sink_source_not_allowed)
<< 0;
ErrorFound = true;
}
} else if (DC->getDependencyKind() == OMPC_DEPEND_sink) {
if (DependSourceClause) {
Diag(C->getBeginLoc(), diag::err_omp_depend_sink_source_not_allowed)
<< 1;
ErrorFound = true;
}
DependSinkClause = C;
}
} else if (C->getClauseKind() == OMPC_threads) {
TC = cast<OMPThreadsClause>(C);
} else if (C->getClauseKind() == OMPC_simd) {
SC = cast<OMPSIMDClause>(C);
}
}
if (!ErrorFound && !SC &&
isOpenMPSimdDirective(DSAStack->getParentDirective())) {
// OpenMP [2.8.1,simd Construct, Restrictions]
// An ordered construct with the simd clause is the only OpenMP construct
// that can appear in the simd region.
Diag(StartLoc, diag::err_omp_prohibited_region_simd)
<< (LangOpts.OpenMP >= 50 ? 1 : 0);
ErrorFound = true;
} else if (DependFound && (TC || SC)) {
Diag(DependFound->getBeginLoc(), diag::err_omp_depend_clause_thread_simd)
<< getOpenMPClauseName(TC ? TC->getClauseKind() : SC->getClauseKind());
ErrorFound = true;
} else if (DependFound && !DSAStack->getParentOrderedRegionParam().first) {
Diag(DependFound->getBeginLoc(),
diag::err_omp_ordered_directive_without_param);
ErrorFound = true;
} else if (TC || Clauses.empty()) {
if (const Expr *Param = DSAStack->getParentOrderedRegionParam().first) {
SourceLocation ErrLoc = TC ? TC->getBeginLoc() : StartLoc;
Diag(ErrLoc, diag::err_omp_ordered_directive_with_param)
<< (TC != nullptr);
Diag(Param->getBeginLoc(), diag::note_omp_ordered_param) << 1;
ErrorFound = true;
}
}
if ((!AStmt && !DependFound) || ErrorFound)
return StmtError();
// OpenMP 5.0, 2.17.9, ordered Construct, Restrictions.
// During execution of an iteration of a worksharing-loop or a loop nest
// within a worksharing-loop, simd, or worksharing-loop SIMD region, a thread
// must not execute more than one ordered region corresponding to an ordered
// construct without a depend clause.
if (!DependFound) {
if (DSAStack->doesParentHasOrderedDirective()) {
Diag(StartLoc, diag::err_omp_several_directives_in_region) << "ordered";
Diag(DSAStack->getParentOrderedDirectiveLoc(),
diag::note_omp_previous_directive)
<< "ordered";
return StmtError();
}
DSAStack->setParentHasOrderedDirective(StartLoc);
}
if (AStmt) {
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
setFunctionHasBranchProtectedScope();
}
return OMPOrderedDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
}
namespace {
/// Helper class for checking expression in 'omp atomic [update]'
/// construct.
class OpenMPAtomicUpdateChecker {
/// Error results for atomic update expressions.
enum ExprAnalysisErrorCode {
/// A statement is not an expression statement.
NotAnExpression,
/// Expression is not builtin binary or unary operation.
NotABinaryOrUnaryExpression,
/// Unary operation is not post-/pre- increment/decrement operation.
NotAnUnaryIncDecExpression,
/// An expression is not of scalar type.
NotAScalarType,
/// A binary operation is not an assignment operation.
NotAnAssignmentOp,
/// RHS part of the binary operation is not a binary expression.
NotABinaryExpression,
/// RHS part is not additive/multiplicative/shift/biwise binary
/// expression.
NotABinaryOperator,
/// RHS binary operation does not have reference to the updated LHS
/// part.
NotAnUpdateExpression,
/// No errors is found.
NoError
};
/// Reference to Sema.
Sema &SemaRef;
/// A location for note diagnostics (when error is found).
SourceLocation NoteLoc;
/// 'x' lvalue part of the source atomic expression.
Expr *X;
/// 'expr' rvalue part of the source atomic expression.
Expr *E;
/// Helper expression of the form
/// 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' or
/// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'.
Expr *UpdateExpr;
/// Is 'x' a LHS in a RHS part of full update expression. It is
/// important for non-associative operations.
bool IsXLHSInRHSPart;
BinaryOperatorKind Op;
SourceLocation OpLoc;
/// true if the source expression is a postfix unary operation, false
/// if it is a prefix unary operation.
bool IsPostfixUpdate;
public:
OpenMPAtomicUpdateChecker(Sema &SemaRef)
: SemaRef(SemaRef), X(nullptr), E(nullptr), UpdateExpr(nullptr),
IsXLHSInRHSPart(false), Op(BO_PtrMemD), IsPostfixUpdate(false) {}
/// Check specified statement that it is suitable for 'atomic update'
/// constructs and extract 'x', 'expr' and Operation from the original
/// expression. If DiagId and NoteId == 0, then only check is performed
/// without error notification.
/// \param DiagId Diagnostic which should be emitted if error is found.
/// \param NoteId Diagnostic note for the main error message.
/// \return true if statement is not an update expression, false otherwise.
bool checkStatement(Stmt *S, unsigned DiagId = 0, unsigned NoteId = 0);
/// Return the 'x' lvalue part of the source atomic expression.
Expr *getX() const { return X; }
/// Return the 'expr' rvalue part of the source atomic expression.
Expr *getExpr() const { return E; }
/// Return the update expression used in calculation of the updated
/// value. Always has form 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' or
/// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'.
Expr *getUpdateExpr() const { return UpdateExpr; }
/// Return true if 'x' is LHS in RHS part of full update expression,
/// false otherwise.
bool isXLHSInRHSPart() const { return IsXLHSInRHSPart; }
/// true if the source expression is a postfix unary operation, false
/// if it is a prefix unary operation.
bool isPostfixUpdate() const { return IsPostfixUpdate; }
private:
bool checkBinaryOperation(BinaryOperator *AtomicBinOp, unsigned DiagId = 0,
unsigned NoteId = 0);
};
bool OpenMPAtomicUpdateChecker::checkBinaryOperation(
BinaryOperator *AtomicBinOp, unsigned DiagId, unsigned NoteId) {
ExprAnalysisErrorCode ErrorFound = NoError;
SourceLocation ErrorLoc, NoteLoc;
SourceRange ErrorRange, NoteRange;
// Allowed constructs are:
// x = x binop expr;
// x = expr binop x;
if (AtomicBinOp->getOpcode() == BO_Assign) {
X = AtomicBinOp->getLHS();
if (const auto *AtomicInnerBinOp = dyn_cast<BinaryOperator>(
AtomicBinOp->getRHS()->IgnoreParenImpCasts())) {
if (AtomicInnerBinOp->isMultiplicativeOp() ||
AtomicInnerBinOp->isAdditiveOp() || AtomicInnerBinOp->isShiftOp() ||
AtomicInnerBinOp->isBitwiseOp()) {
Op = AtomicInnerBinOp->getOpcode();
OpLoc = AtomicInnerBinOp->getOperatorLoc();
Expr *LHS = AtomicInnerBinOp->getLHS();
Expr *RHS = AtomicInnerBinOp->getRHS();
llvm::FoldingSetNodeID XId, LHSId, RHSId;
X->IgnoreParenImpCasts()->Profile(XId, SemaRef.getASTContext(),
/*Canonical=*/true);
LHS->IgnoreParenImpCasts()->Profile(LHSId, SemaRef.getASTContext(),
/*Canonical=*/true);
RHS->IgnoreParenImpCasts()->Profile(RHSId, SemaRef.getASTContext(),
/*Canonical=*/true);
if (XId == LHSId) {
E = RHS;
IsXLHSInRHSPart = true;
} else if (XId == RHSId) {
E = LHS;
IsXLHSInRHSPart = false;
} else {
ErrorLoc = AtomicInnerBinOp->getExprLoc();
ErrorRange = AtomicInnerBinOp->getSourceRange();
NoteLoc = X->getExprLoc();
NoteRange = X->getSourceRange();
ErrorFound = NotAnUpdateExpression;
}
} else {
ErrorLoc = AtomicInnerBinOp->getExprLoc();
ErrorRange = AtomicInnerBinOp->getSourceRange();
NoteLoc = AtomicInnerBinOp->getOperatorLoc();
NoteRange = SourceRange(NoteLoc, NoteLoc);
ErrorFound = NotABinaryOperator;
}
} else {
NoteLoc = ErrorLoc = AtomicBinOp->getRHS()->getExprLoc();
NoteRange = ErrorRange = AtomicBinOp->getRHS()->getSourceRange();
ErrorFound = NotABinaryExpression;
}
} else {
ErrorLoc = AtomicBinOp->getExprLoc();
ErrorRange = AtomicBinOp->getSourceRange();
NoteLoc = AtomicBinOp->getOperatorLoc();
NoteRange = SourceRange(NoteLoc, NoteLoc);
ErrorFound = NotAnAssignmentOp;
}
if (ErrorFound != NoError && DiagId != 0 && NoteId != 0) {
SemaRef.Diag(ErrorLoc, DiagId) << ErrorRange;
SemaRef.Diag(NoteLoc, NoteId) << ErrorFound << NoteRange;
return true;
}
if (SemaRef.CurContext->isDependentContext())
E = X = UpdateExpr = nullptr;
return ErrorFound != NoError;
}
bool OpenMPAtomicUpdateChecker::checkStatement(Stmt *S, unsigned DiagId,
unsigned NoteId) {
ExprAnalysisErrorCode ErrorFound = NoError;
SourceLocation ErrorLoc, NoteLoc;
SourceRange ErrorRange, NoteRange;
// Allowed constructs are:
// x++;
// x--;
// ++x;
// --x;
// x binop= expr;
// x = x binop expr;
// x = expr binop x;
if (auto *AtomicBody = dyn_cast<Expr>(S)) {
AtomicBody = AtomicBody->IgnoreParenImpCasts();
if (AtomicBody->getType()->isScalarType() ||
AtomicBody->isInstantiationDependent()) {
if (const auto *AtomicCompAssignOp = dyn_cast<CompoundAssignOperator>(
AtomicBody->IgnoreParenImpCasts())) {
// Check for Compound Assignment Operation
Op = BinaryOperator::getOpForCompoundAssignment(
AtomicCompAssignOp->getOpcode());
OpLoc = AtomicCompAssignOp->getOperatorLoc();
E = AtomicCompAssignOp->getRHS();
X = AtomicCompAssignOp->getLHS()->IgnoreParens();
IsXLHSInRHSPart = true;
} else if (auto *AtomicBinOp = dyn_cast<BinaryOperator>(
AtomicBody->IgnoreParenImpCasts())) {
// Check for Binary Operation
if (checkBinaryOperation(AtomicBinOp, DiagId, NoteId))
return true;
} else if (const auto *AtomicUnaryOp = dyn_cast<UnaryOperator>(
AtomicBody->IgnoreParenImpCasts())) {
// Check for Unary Operation
if (AtomicUnaryOp->isIncrementDecrementOp()) {
IsPostfixUpdate = AtomicUnaryOp->isPostfix();
Op = AtomicUnaryOp->isIncrementOp() ? BO_Add : BO_Sub;
OpLoc = AtomicUnaryOp->getOperatorLoc();
X = AtomicUnaryOp->getSubExpr()->IgnoreParens();
E = SemaRef.ActOnIntegerConstant(OpLoc, /*uint64_t Val=*/1).get();
IsXLHSInRHSPart = true;
} else {
ErrorFound = NotAnUnaryIncDecExpression;
ErrorLoc = AtomicUnaryOp->getExprLoc();
ErrorRange = AtomicUnaryOp->getSourceRange();
NoteLoc = AtomicUnaryOp->getOperatorLoc();
NoteRange = SourceRange(NoteLoc, NoteLoc);
}
} else if (!AtomicBody->isInstantiationDependent()) {
ErrorFound = NotABinaryOrUnaryExpression;
NoteLoc = ErrorLoc = AtomicBody->getExprLoc();
NoteRange = ErrorRange = AtomicBody->getSourceRange();
}
} else {
ErrorFound = NotAScalarType;
NoteLoc = ErrorLoc = AtomicBody->getBeginLoc();
NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc);
}
} else {
ErrorFound = NotAnExpression;
NoteLoc = ErrorLoc = S->getBeginLoc();
NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc);
}
if (ErrorFound != NoError && DiagId != 0 && NoteId != 0) {
SemaRef.Diag(ErrorLoc, DiagId) << ErrorRange;
SemaRef.Diag(NoteLoc, NoteId) << ErrorFound << NoteRange;
return true;
}
if (SemaRef.CurContext->isDependentContext())
E = X = UpdateExpr = nullptr;
if (ErrorFound == NoError && E && X) {
// Build an update expression of form 'OpaqueValueExpr(x) binop
// OpaqueValueExpr(expr)' or 'OpaqueValueExpr(expr) binop
// OpaqueValueExpr(x)' and then cast it to the type of the 'x' expression.
auto *OVEX = new (SemaRef.getASTContext())
OpaqueValueExpr(X->getExprLoc(), X->getType(), VK_PRValue);
auto *OVEExpr = new (SemaRef.getASTContext())
OpaqueValueExpr(E->getExprLoc(), E->getType(), VK_PRValue);
ExprResult Update =
SemaRef.CreateBuiltinBinOp(OpLoc, Op, IsXLHSInRHSPart ? OVEX : OVEExpr,
IsXLHSInRHSPart ? OVEExpr : OVEX);
if (Update.isInvalid())
return true;
Update = SemaRef.PerformImplicitConversion(Update.get(), X->getType(),
Sema::AA_Casting);
if (Update.isInvalid())
return true;
UpdateExpr = Update.get();
}
return ErrorFound != NoError;
}
/// Get the node id of the fixed point of an expression \a S.
llvm::FoldingSetNodeID getNodeId(ASTContext &Context, const Expr *S) {
llvm::FoldingSetNodeID Id;
S->IgnoreParenImpCasts()->Profile(Id, Context, true);
return Id;
}
/// Check if two expressions are same.
bool checkIfTwoExprsAreSame(ASTContext &Context, const Expr *LHS,
const Expr *RHS) {
return getNodeId(Context, LHS) == getNodeId(Context, RHS);
}
class OpenMPAtomicCompareChecker {
public:
/// All kinds of errors that can occur in `atomic compare`
enum ErrorTy {
/// Empty compound statement.
NoStmt = 0,
/// More than one statement in a compound statement.
MoreThanOneStmt,
/// Not an assignment binary operator.
NotAnAssignment,
/// Not a conditional operator.
NotCondOp,
/// Wrong false expr. According to the spec, 'x' should be at the false
/// expression of a conditional expression.
WrongFalseExpr,
/// The condition of a conditional expression is not a binary operator.
NotABinaryOp,
/// Invalid binary operator (not <, >, or ==).
InvalidBinaryOp,
/// Invalid comparison (not x == e, e == x, x ordop expr, or expr ordop x).
InvalidComparison,
/// X is not a lvalue.
XNotLValue,
/// Not a scalar.
NotScalar,
/// Not an integer.
NotInteger,
/// 'else' statement is not expected.
UnexpectedElse,
/// Not an equality operator.
NotEQ,
/// Invalid assignment (not v == x).
InvalidAssignment,
/// Not if statement
NotIfStmt,
/// More than two statements in a compund statement.
MoreThanTwoStmts,
/// Not a compound statement.
NotCompoundStmt,
/// No else statement.
NoElse,
/// Not 'if (r)'.
InvalidCondition,
/// No error.
NoError,
};
struct ErrorInfoTy {
ErrorTy Error;
SourceLocation ErrorLoc;
SourceRange ErrorRange;
SourceLocation NoteLoc;
SourceRange NoteRange;
};
OpenMPAtomicCompareChecker(Sema &S) : ContextRef(S.getASTContext()) {}
/// Check if statement \a S is valid for <tt>atomic compare</tt>.
bool checkStmt(Stmt *S, ErrorInfoTy &ErrorInfo);
Expr *getX() const { return X; }
Expr *getE() const { return E; }
Expr *getD() const { return D; }
Expr *getCond() const { return C; }
bool isXBinopExpr() const { return IsXBinopExpr; }
protected:
/// Reference to ASTContext
ASTContext &ContextRef;
/// 'x' lvalue part of the source atomic expression.
Expr *X = nullptr;
/// 'expr' or 'e' rvalue part of the source atomic expression.
Expr *E = nullptr;
/// 'd' rvalue part of the source atomic expression.
Expr *D = nullptr;
/// 'cond' part of the source atomic expression. It is in one of the following
/// forms:
/// expr ordop x
/// x ordop expr
/// x == e
/// e == x
Expr *C = nullptr;
/// True if the cond expr is in the form of 'x ordop expr'.
bool IsXBinopExpr = true;
/// Check if it is a valid conditional update statement (cond-update-stmt).
bool checkCondUpdateStmt(IfStmt *S, ErrorInfoTy &ErrorInfo);
/// Check if it is a valid conditional expression statement (cond-expr-stmt).
bool checkCondExprStmt(Stmt *S, ErrorInfoTy &ErrorInfo);
/// Check if all captured values have right type.
bool checkType(ErrorInfoTy &ErrorInfo) const;
static bool CheckValue(const Expr *E, ErrorInfoTy &ErrorInfo,
bool ShouldBeLValue) {
if (ShouldBeLValue && !E->isLValue()) {
ErrorInfo.Error = ErrorTy::XNotLValue;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = E->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = E->getSourceRange();
return false;
}
if (!E->isInstantiationDependent()) {
QualType QTy = E->getType();
if (!QTy->isScalarType()) {
ErrorInfo.Error = ErrorTy::NotScalar;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = E->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = E->getSourceRange();
return false;
}
if (!QTy->isIntegerType()) {
ErrorInfo.Error = ErrorTy::NotInteger;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = E->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = E->getSourceRange();
return false;
}
}
return true;
}
};
bool OpenMPAtomicCompareChecker::checkCondUpdateStmt(IfStmt *S,
ErrorInfoTy &ErrorInfo) {
auto *Then = S->getThen();
if (auto *CS = dyn_cast<CompoundStmt>(Then)) {
if (CS->body_empty()) {
ErrorInfo.Error = ErrorTy::NoStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
return false;
}
if (CS->size() > 1) {
ErrorInfo.Error = ErrorTy::MoreThanOneStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getSourceRange();
return false;
}
Then = CS->body_front();
}
auto *BO = dyn_cast<BinaryOperator>(Then);
if (!BO) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Then->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Then->getSourceRange();
return false;
}
if (BO->getOpcode() != BO_Assign) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = BO->getExprLoc();
ErrorInfo.NoteLoc = BO->getOperatorLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getSourceRange();
return false;
}
X = BO->getLHS();
auto *Cond = dyn_cast<BinaryOperator>(S->getCond());
if (!Cond) {
ErrorInfo.Error = ErrorTy::NotABinaryOp;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S->getCond()->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getCond()->getSourceRange();
return false;
}
switch (Cond->getOpcode()) {
case BO_EQ: {
C = Cond;
D = BO->getRHS()->IgnoreImpCasts();
if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getLHS())) {
E = Cond->getRHS()->IgnoreImpCasts();
} else if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getRHS())) {
E = Cond->getLHS()->IgnoreImpCasts();
} else {
ErrorInfo.Error = ErrorTy::InvalidComparison;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
return false;
}
break;
}
case BO_LT:
case BO_GT: {
E = BO->getRHS()->IgnoreImpCasts();
if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getLHS()) &&
checkIfTwoExprsAreSame(ContextRef, E, Cond->getRHS())) {
C = Cond;
} else if (checkIfTwoExprsAreSame(ContextRef, E, Cond->getLHS()) &&
checkIfTwoExprsAreSame(ContextRef, X, Cond->getRHS())) {
C = Cond;
IsXBinopExpr = false;
} else {
ErrorInfo.Error = ErrorTy::InvalidComparison;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
return false;
}
break;
}
default:
ErrorInfo.Error = ErrorTy::InvalidBinaryOp;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
return false;
}
if (S->getElse()) {
ErrorInfo.Error = ErrorTy::UnexpectedElse;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S->getElse()->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getElse()->getSourceRange();
return false;
}
return true;
}
bool OpenMPAtomicCompareChecker::checkCondExprStmt(Stmt *S,
ErrorInfoTy &ErrorInfo) {
auto *BO = dyn_cast<BinaryOperator>(S);
if (!BO) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getSourceRange();
return false;
}
if (BO->getOpcode() != BO_Assign) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = BO->getExprLoc();
ErrorInfo.NoteLoc = BO->getOperatorLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getSourceRange();
return false;
}
X = BO->getLHS();
auto *CO = dyn_cast<ConditionalOperator>(BO->getRHS()->IgnoreParenImpCasts());
if (!CO) {
ErrorInfo.Error = ErrorTy::NotCondOp;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = BO->getRHS()->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getRHS()->getSourceRange();
return false;
}
if (!checkIfTwoExprsAreSame(ContextRef, X, CO->getFalseExpr())) {
ErrorInfo.Error = ErrorTy::WrongFalseExpr;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CO->getFalseExpr()->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange =
CO->getFalseExpr()->getSourceRange();
return false;
}
auto *Cond = dyn_cast<BinaryOperator>(CO->getCond());
if (!Cond) {
ErrorInfo.Error = ErrorTy::NotABinaryOp;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CO->getCond()->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange =
CO->getCond()->getSourceRange();
return false;
}
switch (Cond->getOpcode()) {
case BO_EQ: {
C = Cond;
D = CO->getTrueExpr()->IgnoreImpCasts();
if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getLHS())) {
E = Cond->getRHS()->IgnoreImpCasts();
} else if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getRHS())) {
E = Cond->getLHS()->IgnoreImpCasts();
} else {
ErrorInfo.Error = ErrorTy::InvalidComparison;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
return false;
}
break;
}
case BO_LT:
case BO_GT: {
E = CO->getTrueExpr()->IgnoreImpCasts();
if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getLHS()) &&
checkIfTwoExprsAreSame(ContextRef, E, Cond->getRHS())) {
C = Cond;
} else if (checkIfTwoExprsAreSame(ContextRef, E, Cond->getLHS()) &&
checkIfTwoExprsAreSame(ContextRef, X, Cond->getRHS())) {
C = Cond;
IsXBinopExpr = false;
} else {
ErrorInfo.Error = ErrorTy::InvalidComparison;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
return false;
}
break;
}
default:
ErrorInfo.Error = ErrorTy::InvalidBinaryOp;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
return false;
}
return true;
}
bool OpenMPAtomicCompareChecker::checkType(ErrorInfoTy &ErrorInfo) const {
// 'x' and 'e' cannot be nullptr
assert(X && E && "X and E cannot be nullptr");
if (!CheckValue(X, ErrorInfo, true))
return false;
if (!CheckValue(E, ErrorInfo, false))
return false;
if (D && !CheckValue(D, ErrorInfo, false))
return false;
return true;
}
bool OpenMPAtomicCompareChecker::checkStmt(
Stmt *S, OpenMPAtomicCompareChecker::ErrorInfoTy &ErrorInfo) {
auto *CS = dyn_cast<CompoundStmt>(S);
if (CS) {
if (CS->body_empty()) {
ErrorInfo.Error = ErrorTy::NoStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
return false;
}
if (CS->size() != 1) {
ErrorInfo.Error = ErrorTy::MoreThanOneStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
return false;
}
S = CS->body_front();
}
auto Res = false;
if (auto *IS = dyn_cast<IfStmt>(S)) {
// Check if the statement is in one of the following forms
// (cond-update-stmt):
// if (expr ordop x) { x = expr; }
// if (x ordop expr) { x = expr; }
// if (x == e) { x = d; }
Res = checkCondUpdateStmt(IS, ErrorInfo);
} else {
// Check if the statement is in one of the following forms (cond-expr-stmt):
// x = expr ordop x ? expr : x;
// x = x ordop expr ? expr : x;
// x = x == e ? d : x;
Res = checkCondExprStmt(S, ErrorInfo);
}
if (!Res)
return false;
return checkType(ErrorInfo);
}
class OpenMPAtomicCompareCaptureChecker final
: public OpenMPAtomicCompareChecker {
public:
OpenMPAtomicCompareCaptureChecker(Sema &S) : OpenMPAtomicCompareChecker(S) {}
Expr *getV() const { return V; }
Expr *getR() const { return R; }
bool isFailOnly() const { return IsFailOnly; }
/// Check if statement \a S is valid for <tt>atomic compare capture</tt>.
bool checkStmt(Stmt *S, ErrorInfoTy &ErrorInfo);
private:
bool checkType(ErrorInfoTy &ErrorInfo);
// NOTE: Form 3, 4, 5 in the following comments mean the 3rd, 4th, and 5th
// form of 'conditional-update-capture-atomic' structured block on the v5.2
// spec p.p. 82:
// (1) { v = x; cond-update-stmt }
// (2) { cond-update-stmt v = x; }
// (3) if(x == e) { x = d; } else { v = x; }
// (4) { r = x == e; if(r) { x = d; } }
// (5) { r = x == e; if(r) { x = d; } else { v = x; } }
/// Check if it is valid 'if(x == e) { x = d; } else { v = x; }' (form 3)
bool checkForm3(IfStmt *S, ErrorInfoTy &ErrorInfo);
/// Check if it is valid '{ r = x == e; if(r) { x = d; } }',
/// or '{ r = x == e; if(r) { x = d; } else { v = x; } }' (form 4 and 5)
bool checkForm45(Stmt *S, ErrorInfoTy &ErrorInfo);
/// 'v' lvalue part of the source atomic expression.
Expr *V = nullptr;
/// 'r' lvalue part of the source atomic expression.
Expr *R = nullptr;
/// If 'v' is only updated when the comparison fails.
bool IsFailOnly = false;
};
bool OpenMPAtomicCompareCaptureChecker::checkType(ErrorInfoTy &ErrorInfo) {
if (!OpenMPAtomicCompareChecker::checkType(ErrorInfo))
return false;
if (V && !CheckValue(V, ErrorInfo, true))
return false;
if (R && !CheckValue(R, ErrorInfo, true))
return false;
return true;
}
bool OpenMPAtomicCompareCaptureChecker::checkForm3(IfStmt *S,
ErrorInfoTy &ErrorInfo) {
IsFailOnly = true;
auto *Then = S->getThen();
if (auto *CS = dyn_cast<CompoundStmt>(Then)) {
if (CS->body_empty()) {
ErrorInfo.Error = ErrorTy::NoStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
return false;
}
if (CS->size() > 1) {
ErrorInfo.Error = ErrorTy::MoreThanOneStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
return false;
}
Then = CS->body_front();
}
auto *BO = dyn_cast<BinaryOperator>(Then);
if (!BO) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Then->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Then->getSourceRange();
return false;
}
if (BO->getOpcode() != BO_Assign) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = BO->getExprLoc();
ErrorInfo.NoteLoc = BO->getOperatorLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getSourceRange();
return false;
}
X = BO->getLHS();
D = BO->getRHS();
auto *Cond = dyn_cast<BinaryOperator>(S->getCond());
if (!Cond) {
ErrorInfo.Error = ErrorTy::NotABinaryOp;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S->getCond()->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getCond()->getSourceRange();
return false;
}
if (Cond->getOpcode() != BO_EQ) {
ErrorInfo.Error = ErrorTy::NotEQ;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
return false;
}
if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getLHS())) {
E = Cond->getRHS();
} else if (checkIfTwoExprsAreSame(ContextRef, X, Cond->getRHS())) {
E = Cond->getLHS();
} else {
ErrorInfo.Error = ErrorTy::InvalidComparison;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Cond->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Cond->getSourceRange();
return false;
}
C = Cond;
if (!S->getElse()) {
ErrorInfo.Error = ErrorTy::NoElse;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getSourceRange();
return false;
}
auto *Else = S->getElse();
if (auto *CS = dyn_cast<CompoundStmt>(Else)) {
if (CS->body_empty()) {
ErrorInfo.Error = ErrorTy::NoStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
return false;
}
if (CS->size() > 1) {
ErrorInfo.Error = ErrorTy::MoreThanOneStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getSourceRange();
return false;
}
Else = CS->body_front();
}
auto *ElseBO = dyn_cast<BinaryOperator>(Else);
if (!ElseBO) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Else->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Else->getSourceRange();
return false;
}
if (ElseBO->getOpcode() != BO_Assign) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = ElseBO->getExprLoc();
ErrorInfo.NoteLoc = ElseBO->getOperatorLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ElseBO->getSourceRange();
return false;
}
if (!checkIfTwoExprsAreSame(ContextRef, X, ElseBO->getRHS())) {
ErrorInfo.Error = ErrorTy::InvalidAssignment;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = ElseBO->getRHS()->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange =
ElseBO->getRHS()->getSourceRange();
return false;
}
V = ElseBO->getLHS();
return checkType(ErrorInfo);
}
bool OpenMPAtomicCompareCaptureChecker::checkForm45(Stmt *S,
ErrorInfoTy &ErrorInfo) {
// We don't check here as they should be already done before call this
// function.
auto *CS = cast<CompoundStmt>(S);
assert(CS->size() == 2 && "CompoundStmt size is not expected");
auto *S1 = cast<BinaryOperator>(CS->body_front());
auto *S2 = cast<IfStmt>(CS->body_back());
assert(S1->getOpcode() == BO_Assign && "unexpected binary operator");
if (!checkIfTwoExprsAreSame(ContextRef, S1->getLHS(), S2->getCond())) {
ErrorInfo.Error = ErrorTy::InvalidCondition;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S2->getCond()->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S1->getLHS()->getSourceRange();
return false;
}
R = S1->getLHS();
auto *Then = S2->getThen();
if (auto *ThenCS = dyn_cast<CompoundStmt>(Then)) {
if (ThenCS->body_empty()) {
ErrorInfo.Error = ErrorTy::NoStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = ThenCS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ThenCS->getSourceRange();
return false;
}
if (ThenCS->size() > 1) {
ErrorInfo.Error = ErrorTy::MoreThanOneStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = ThenCS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ThenCS->getSourceRange();
return false;
}
Then = ThenCS->body_front();
}
auto *ThenBO = dyn_cast<BinaryOperator>(Then);
if (!ThenBO) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S2->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S2->getSourceRange();
return false;
}
if (ThenBO->getOpcode() != BO_Assign) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = ThenBO->getExprLoc();
ErrorInfo.NoteLoc = ThenBO->getOperatorLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ThenBO->getSourceRange();
return false;
}
X = ThenBO->getLHS();
D = ThenBO->getRHS();
auto *BO = cast<BinaryOperator>(S1->getRHS()->IgnoreImpCasts());
if (BO->getOpcode() != BO_EQ) {
ErrorInfo.Error = ErrorTy::NotEQ;
ErrorInfo.ErrorLoc = BO->getExprLoc();
ErrorInfo.NoteLoc = BO->getOperatorLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getSourceRange();
return false;
}
C = BO;
if (checkIfTwoExprsAreSame(ContextRef, X, BO->getLHS())) {
E = BO->getRHS();
} else if (checkIfTwoExprsAreSame(ContextRef, X, BO->getRHS())) {
E = BO->getLHS();
} else {
ErrorInfo.Error = ErrorTy::InvalidComparison;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = BO->getExprLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getSourceRange();
return false;
}
if (S2->getElse()) {
IsFailOnly = true;
auto *Else = S2->getElse();
if (auto *ElseCS = dyn_cast<CompoundStmt>(Else)) {
if (ElseCS->body_empty()) {
ErrorInfo.Error = ErrorTy::NoStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = ElseCS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ElseCS->getSourceRange();
return false;
}
if (ElseCS->size() > 1) {
ErrorInfo.Error = ErrorTy::MoreThanOneStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = ElseCS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ElseCS->getSourceRange();
return false;
}
Else = ElseCS->body_front();
}
auto *ElseBO = dyn_cast<BinaryOperator>(Else);
if (!ElseBO) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = Else->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = Else->getSourceRange();
return false;
}
if (ElseBO->getOpcode() != BO_Assign) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = ElseBO->getExprLoc();
ErrorInfo.NoteLoc = ElseBO->getOperatorLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = ElseBO->getSourceRange();
return false;
}
if (!checkIfTwoExprsAreSame(ContextRef, X, ElseBO->getRHS())) {
ErrorInfo.Error = ErrorTy::InvalidAssignment;
ErrorInfo.ErrorLoc = ElseBO->getRHS()->getExprLoc();
ErrorInfo.NoteLoc = X->getExprLoc();
ErrorInfo.ErrorRange = ElseBO->getRHS()->getSourceRange();
ErrorInfo.NoteRange = X->getSourceRange();
return false;
}
V = ElseBO->getLHS();
}
return checkType(ErrorInfo);
}
bool OpenMPAtomicCompareCaptureChecker::checkStmt(Stmt *S,
ErrorInfoTy &ErrorInfo) {
// if(x == e) { x = d; } else { v = x; }
if (auto *IS = dyn_cast<IfStmt>(S))
return checkForm3(IS, ErrorInfo);
auto *CS = dyn_cast<CompoundStmt>(S);
if (!CS) {
ErrorInfo.Error = ErrorTy::NotCompoundStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = S->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = S->getSourceRange();
return false;
}
if (CS->body_empty()) {
ErrorInfo.Error = ErrorTy::NoStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
return false;
}
// { if(x == e) { x = d; } else { v = x; } }
if (CS->size() == 1) {
auto *IS = dyn_cast<IfStmt>(CS->body_front());
if (!IS) {
ErrorInfo.Error = ErrorTy::NotIfStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->body_front()->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange =
CS->body_front()->getSourceRange();
return false;
}
return checkForm3(IS, ErrorInfo);
} else if (CS->size() == 2) {
auto *S1 = CS->body_front();
auto *S2 = CS->body_back();
Stmt *UpdateStmt = nullptr;
Stmt *CondUpdateStmt = nullptr;
if (auto *BO = dyn_cast<BinaryOperator>(S1)) {
// { v = x; cond-update-stmt } or form 45.
UpdateStmt = S1;
CondUpdateStmt = S2;
// Check if form 45.
if (dyn_cast<BinaryOperator>(BO->getRHS()->IgnoreImpCasts()) &&
dyn_cast<IfStmt>(S2))
return checkForm45(CS, ErrorInfo);
} else {
// { cond-update-stmt v = x; }
UpdateStmt = S2;
CondUpdateStmt = S1;
}
auto CheckCondUpdateStmt = [this, &ErrorInfo](Stmt *CUS) {
auto *IS = dyn_cast<IfStmt>(CUS);
if (!IS) {
ErrorInfo.Error = ErrorTy::NotIfStmt;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CUS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CUS->getSourceRange();
return false;
}
if (!checkCondUpdateStmt(IS, ErrorInfo))
return false;
return true;
};
// CheckUpdateStmt has to be called *after* CheckCondUpdateStmt.
auto CheckUpdateStmt = [this, &ErrorInfo](Stmt *US) {
auto *BO = dyn_cast<BinaryOperator>(US);
if (!BO) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = US->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = US->getSourceRange();
return false;
}
if (BO->getOpcode() != BO_Assign) {
ErrorInfo.Error = ErrorTy::NotAnAssignment;
ErrorInfo.ErrorLoc = BO->getExprLoc();
ErrorInfo.NoteLoc = BO->getOperatorLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = BO->getSourceRange();
return false;
}
if (!checkIfTwoExprsAreSame(ContextRef, this->X, BO->getRHS())) {
ErrorInfo.Error = ErrorTy::InvalidAssignment;
ErrorInfo.ErrorLoc = BO->getRHS()->getExprLoc();
ErrorInfo.NoteLoc = this->X->getExprLoc();
ErrorInfo.ErrorRange = BO->getRHS()->getSourceRange();
ErrorInfo.NoteRange = this->X->getSourceRange();
return false;
}
this->V = BO->getLHS();
return true;
};
if (!CheckCondUpdateStmt(CondUpdateStmt))
return false;
if (!CheckUpdateStmt(UpdateStmt))
return false;
} else {
ErrorInfo.Error = ErrorTy::MoreThanTwoStmts;
ErrorInfo.ErrorLoc = ErrorInfo.NoteLoc = CS->getBeginLoc();
ErrorInfo.ErrorRange = ErrorInfo.NoteRange = CS->getSourceRange();
return false;
}
return checkType(ErrorInfo);
}
} // namespace
StmtResult Sema::ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
// Register location of the first atomic directive.
DSAStack->addAtomicDirectiveLoc(StartLoc);
if (!AStmt)
return StmtError();
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
OpenMPClauseKind AtomicKind = OMPC_unknown;
SourceLocation AtomicKindLoc;
OpenMPClauseKind MemOrderKind = OMPC_unknown;
SourceLocation MemOrderLoc;
bool MutexClauseEncountered = false;
llvm::SmallSet<OpenMPClauseKind, 2> EncounteredAtomicKinds;
for (const OMPClause *C : Clauses) {
switch (C->getClauseKind()) {
case OMPC_read:
case OMPC_write:
case OMPC_update:
MutexClauseEncountered = true;
LLVM_FALLTHROUGH;
case OMPC_capture:
case OMPC_compare: {
if (AtomicKind != OMPC_unknown && MutexClauseEncountered) {
Diag(C->getBeginLoc(), diag::err_omp_atomic_several_clauses)
<< SourceRange(C->getBeginLoc(), C->getEndLoc());
Diag(AtomicKindLoc, diag::note_omp_previous_mem_order_clause)
<< getOpenMPClauseName(AtomicKind);
} else {
AtomicKind = C->getClauseKind();
AtomicKindLoc = C->getBeginLoc();
if (!EncounteredAtomicKinds.insert(C->getClauseKind()).second) {
Diag(C->getBeginLoc(), diag::err_omp_atomic_several_clauses)
<< SourceRange(C->getBeginLoc(), C->getEndLoc());
Diag(AtomicKindLoc, diag::note_omp_previous_mem_order_clause)
<< getOpenMPClauseName(AtomicKind);
}
}
break;
}
case OMPC_seq_cst:
case OMPC_acq_rel:
case OMPC_acquire:
case OMPC_release:
case OMPC_relaxed: {
if (MemOrderKind != OMPC_unknown) {
Diag(C->getBeginLoc(), diag::err_omp_several_mem_order_clauses)
<< getOpenMPDirectiveName(OMPD_atomic) << 0
<< SourceRange(C->getBeginLoc(), C->getEndLoc());
Diag(MemOrderLoc, diag::note_omp_previous_mem_order_clause)
<< getOpenMPClauseName(MemOrderKind);
} else {
MemOrderKind = C->getClauseKind();
MemOrderLoc = C->getBeginLoc();
}
break;
}
// The following clauses are allowed, but we don't need to do anything here.
case OMPC_hint:
break;
default:
llvm_unreachable("unknown clause is encountered");
}
}
bool IsCompareCapture = false;
if (EncounteredAtomicKinds.contains(OMPC_compare) &&
EncounteredAtomicKinds.contains(OMPC_capture)) {
IsCompareCapture = true;
AtomicKind = OMPC_compare;
}
// OpenMP 5.0, 2.17.7 atomic Construct, Restrictions
// If atomic-clause is read then memory-order-clause must not be acq_rel or
// release.
// If atomic-clause is write then memory-order-clause must not be acq_rel or
// acquire.
// If atomic-clause is update or not present then memory-order-clause must not
// be acq_rel or acquire.
if ((AtomicKind == OMPC_read &&
(MemOrderKind == OMPC_acq_rel || MemOrderKind == OMPC_release)) ||
((AtomicKind == OMPC_write || AtomicKind == OMPC_update ||
AtomicKind == OMPC_unknown) &&
(MemOrderKind == OMPC_acq_rel || MemOrderKind == OMPC_acquire))) {
SourceLocation Loc = AtomicKindLoc;
if (AtomicKind == OMPC_unknown)
Loc = StartLoc;
Diag(Loc, diag::err_omp_atomic_incompatible_mem_order_clause)
<< getOpenMPClauseName(AtomicKind)
<< (AtomicKind == OMPC_unknown ? 1 : 0)
<< getOpenMPClauseName(MemOrderKind);
Diag(MemOrderLoc, diag::note_omp_previous_mem_order_clause)
<< getOpenMPClauseName(MemOrderKind);
}
Stmt *Body = AStmt;
if (auto *EWC = dyn_cast<ExprWithCleanups>(Body))
Body = EWC->getSubExpr();
Expr *X = nullptr;
Expr *V = nullptr;
Expr *E = nullptr;
Expr *UE = nullptr;
Expr *D = nullptr;
Expr *CE = nullptr;
bool IsXLHSInRHSPart = false;
bool IsPostfixUpdate = false;
// OpenMP [2.12.6, atomic Construct]
// In the next expressions:
// * x and v (as applicable) are both l-value expressions with scalar type.
// * During the execution of an atomic region, multiple syntactic
// occurrences of x must designate the same storage location.
// * Neither of v and expr (as applicable) may access the storage location
// designated by x.
// * Neither of x and expr (as applicable) may access the storage location
// designated by v.
// * expr is an expression with scalar type.
// * binop is one of +, *, -, /, &, ^, |, <<, or >>.
// * binop, binop=, ++, and -- are not overloaded operators.
// * The expression x binop expr must be numerically equivalent to x binop
// (expr). This requirement is satisfied if the operators in expr have
// precedence greater than binop, or by using parentheses around expr or
// subexpressions of expr.
// * The expression expr binop x must be numerically equivalent to (expr)
// binop x. This requirement is satisfied if the operators in expr have
// precedence equal to or greater than binop, or by using parentheses around
// expr or subexpressions of expr.
// * For forms that allow multiple occurrences of x, the number of times
// that x is evaluated is unspecified.
if (AtomicKind == OMPC_read) {
enum {
NotAnExpression,
NotAnAssignmentOp,
NotAScalarType,
NotAnLValue,
NoError
} ErrorFound = NoError;
SourceLocation ErrorLoc, NoteLoc;
SourceRange ErrorRange, NoteRange;
// If clause is read:
// v = x;
if (const auto *AtomicBody = dyn_cast<Expr>(Body)) {
const auto *AtomicBinOp =
dyn_cast<BinaryOperator>(AtomicBody->IgnoreParenImpCasts());
if (AtomicBinOp && AtomicBinOp->getOpcode() == BO_Assign) {
X = AtomicBinOp->getRHS()->IgnoreParenImpCasts();
V = AtomicBinOp->getLHS()->IgnoreParenImpCasts();
if ((X->isInstantiationDependent() || X->getType()->isScalarType()) &&
(V->isInstantiationDependent() || V->getType()->isScalarType())) {
if (!X->isLValue() || !V->isLValue()) {
const Expr *NotLValueExpr = X->isLValue() ? V : X;
ErrorFound = NotAnLValue;
ErrorLoc = AtomicBinOp->getExprLoc();
ErrorRange = AtomicBinOp->getSourceRange();
NoteLoc = NotLValueExpr->getExprLoc();
NoteRange = NotLValueExpr->getSourceRange();
}
} else if (!X->isInstantiationDependent() ||
!V->isInstantiationDependent()) {
const Expr *NotScalarExpr =
(X->isInstantiationDependent() || X->getType()->isScalarType())
? V
: X;
ErrorFound = NotAScalarType;
ErrorLoc = AtomicBinOp->getExprLoc();
ErrorRange = AtomicBinOp->getSourceRange();
NoteLoc = NotScalarExpr->getExprLoc();
NoteRange = NotScalarExpr->getSourceRange();
}
} else if (!AtomicBody->isInstantiationDependent()) {
ErrorFound = NotAnAssignmentOp;
ErrorLoc = AtomicBody->getExprLoc();
ErrorRange = AtomicBody->getSourceRange();
NoteLoc = AtomicBinOp ? AtomicBinOp->getOperatorLoc()
: AtomicBody->getExprLoc();
NoteRange = AtomicBinOp ? AtomicBinOp->getSourceRange()
: AtomicBody->getSourceRange();
}
} else {
ErrorFound = NotAnExpression;
NoteLoc = ErrorLoc = Body->getBeginLoc();
NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc);
}
if (ErrorFound != NoError) {
Diag(ErrorLoc, diag::err_omp_atomic_read_not_expression_statement)
<< ErrorRange;
Diag(NoteLoc, diag::note_omp_atomic_read_write)
<< ErrorFound << NoteRange;
return StmtError();
}
if (CurContext->isDependentContext())
V = X = nullptr;
} else if (AtomicKind == OMPC_write) {
enum {
NotAnExpression,
NotAnAssignmentOp,
NotAScalarType,
NotAnLValue,
NoError
} ErrorFound = NoError;
SourceLocation ErrorLoc, NoteLoc;
SourceRange ErrorRange, NoteRange;
// If clause is write:
// x = expr;
if (const auto *AtomicBody = dyn_cast<Expr>(Body)) {
const auto *AtomicBinOp =
dyn_cast<BinaryOperator>(AtomicBody->IgnoreParenImpCasts());
if (AtomicBinOp && AtomicBinOp->getOpcode() == BO_Assign) {
X = AtomicBinOp->getLHS();
E = AtomicBinOp->getRHS();
if ((X->isInstantiationDependent() || X->getType()->isScalarType()) &&
(E->isInstantiationDependent() || E->getType()->isScalarType())) {
if (!X->isLValue()) {
ErrorFound = NotAnLValue;
ErrorLoc = AtomicBinOp->getExprLoc();
ErrorRange = AtomicBinOp->getSourceRange();
NoteLoc = X->getExprLoc();
NoteRange = X->getSourceRange();
}
} else if (!X->isInstantiationDependent() ||
!E->isInstantiationDependent()) {
const Expr *NotScalarExpr =
(X->isInstantiationDependent() || X->getType()->isScalarType())
? E
: X;
ErrorFound = NotAScalarType;
ErrorLoc = AtomicBinOp->getExprLoc();
ErrorRange = AtomicBinOp->getSourceRange();
NoteLoc = NotScalarExpr->getExprLoc();
NoteRange = NotScalarExpr->getSourceRange();
}
} else if (!AtomicBody->isInstantiationDependent()) {
ErrorFound = NotAnAssignmentOp;
ErrorLoc = AtomicBody->getExprLoc();
ErrorRange = AtomicBody->getSourceRange();
NoteLoc = AtomicBinOp ? AtomicBinOp->getOperatorLoc()
: AtomicBody->getExprLoc();
NoteRange = AtomicBinOp ? AtomicBinOp->getSourceRange()
: AtomicBody->getSourceRange();
}
} else {
ErrorFound = NotAnExpression;
NoteLoc = ErrorLoc = Body->getBeginLoc();
NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc);
}
if (ErrorFound != NoError) {
Diag(ErrorLoc, diag::err_omp_atomic_write_not_expression_statement)
<< ErrorRange;
Diag(NoteLoc, diag::note_omp_atomic_read_write)
<< ErrorFound << NoteRange;
return StmtError();
}
if (CurContext->isDependentContext())
E = X = nullptr;
} else if (AtomicKind == OMPC_update || AtomicKind == OMPC_unknown) {
// If clause is update:
// x++;
// x--;
// ++x;
// --x;
// x binop= expr;
// x = x binop expr;
// x = expr binop x;
OpenMPAtomicUpdateChecker Checker(*this);
if (Checker.checkStatement(
Body,
(AtomicKind == OMPC_update)
? diag::err_omp_atomic_update_not_expression_statement
: diag::err_omp_atomic_not_expression_statement,
diag::note_omp_atomic_update))
return StmtError();
if (!CurContext->isDependentContext()) {
E = Checker.getExpr();
X = Checker.getX();
UE = Checker.getUpdateExpr();
IsXLHSInRHSPart = Checker.isXLHSInRHSPart();
}
} else if (AtomicKind == OMPC_capture) {
enum {
NotAnAssignmentOp,
NotACompoundStatement,
NotTwoSubstatements,
NotASpecificExpression,
NoError
} ErrorFound = NoError;
SourceLocation ErrorLoc, NoteLoc;
SourceRange ErrorRange, NoteRange;
if (const auto *AtomicBody = dyn_cast<Expr>(Body)) {
// If clause is a capture:
// v = x++;
// v = x--;
// v = ++x;
// v = --x;
// v = x binop= expr;
// v = x = x binop expr;
// v = x = expr binop x;
const auto *AtomicBinOp =
dyn_cast<BinaryOperator>(AtomicBody->IgnoreParenImpCasts());
if (AtomicBinOp && AtomicBinOp->getOpcode() == BO_Assign) {
V = AtomicBinOp->getLHS();
Body = AtomicBinOp->getRHS()->IgnoreParenImpCasts();
OpenMPAtomicUpdateChecker Checker(*this);
if (Checker.checkStatement(
Body, diag::err_omp_atomic_capture_not_expression_statement,
diag::note_omp_atomic_update))
return StmtError();
E = Checker.getExpr();
X = Checker.getX();
UE = Checker.getUpdateExpr();
IsXLHSInRHSPart = Checker.isXLHSInRHSPart();
IsPostfixUpdate = Checker.isPostfixUpdate();
} else if (!AtomicBody->isInstantiationDependent()) {
ErrorLoc = AtomicBody->getExprLoc();
ErrorRange = AtomicBody->getSourceRange();
NoteLoc = AtomicBinOp ? AtomicBinOp->getOperatorLoc()
: AtomicBody->getExprLoc();
NoteRange = AtomicBinOp ? AtomicBinOp->getSourceRange()
: AtomicBody->getSourceRange();
ErrorFound = NotAnAssignmentOp;
}
if (ErrorFound != NoError) {
Diag(ErrorLoc, diag::err_omp_atomic_capture_not_expression_statement)
<< ErrorRange;
Diag(NoteLoc, diag::note_omp_atomic_capture) << ErrorFound << NoteRange;
return StmtError();
}
if (CurContext->isDependentContext())
UE = V = E = X = nullptr;
} else {
// If clause is a capture:
// { v = x; x = expr; }
// { v = x; x++; }
// { v = x; x--; }
// { v = x; ++x; }
// { v = x; --x; }
// { v = x; x binop= expr; }
// { v = x; x = x binop expr; }
// { v = x; x = expr binop x; }
// { x++; v = x; }
// { x--; v = x; }
// { ++x; v = x; }
// { --x; v = x; }
// { x binop= expr; v = x; }
// { x = x binop expr; v = x; }
// { x = expr binop x; v = x; }
if (auto *CS = dyn_cast<CompoundStmt>(Body)) {
// Check that this is { expr1; expr2; }
if (CS->size() == 2) {
Stmt *First = CS->body_front();
Stmt *Second = CS->body_back();
if (auto *EWC = dyn_cast<ExprWithCleanups>(First))
First = EWC->getSubExpr()->IgnoreParenImpCasts();
if (auto *EWC = dyn_cast<ExprWithCleanups>(Second))
Second = EWC->getSubExpr()->IgnoreParenImpCasts();
// Need to find what subexpression is 'v' and what is 'x'.
OpenMPAtomicUpdateChecker Checker(*this);
bool IsUpdateExprFound = !Checker.checkStatement(Second);
BinaryOperator *BinOp = nullptr;
if (IsUpdateExprFound) {
BinOp = dyn_cast<BinaryOperator>(First);
IsUpdateExprFound = BinOp && BinOp->getOpcode() == BO_Assign;
}
if (IsUpdateExprFound && !CurContext->isDependentContext()) {
// { v = x; x++; }
// { v = x; x--; }
// { v = x; ++x; }
// { v = x; --x; }
// { v = x; x binop= expr; }
// { v = x; x = x binop expr; }
// { v = x; x = expr binop x; }
// Check that the first expression has form v = x.
Expr *PossibleX = BinOp->getRHS()->IgnoreParenImpCasts();
llvm::FoldingSetNodeID XId, PossibleXId;
Checker.getX()->Profile(XId, Context, /*Canonical=*/true);
PossibleX->Profile(PossibleXId, Context, /*Canonical=*/true);
IsUpdateExprFound = XId == PossibleXId;
if (IsUpdateExprFound) {
V = BinOp->getLHS();
X = Checker.getX();
E = Checker.getExpr();
UE = Checker.getUpdateExpr();
IsXLHSInRHSPart = Checker.isXLHSInRHSPart();
IsPostfixUpdate = true;
}
}
if (!IsUpdateExprFound) {
IsUpdateExprFound = !Checker.checkStatement(First);
BinOp = nullptr;
if (IsUpdateExprFound) {
BinOp = dyn_cast<BinaryOperator>(Second);
IsUpdateExprFound = BinOp && BinOp->getOpcode() == BO_Assign;
}
if (IsUpdateExprFound && !CurContext->isDependentContext()) {
// { x++; v = x; }
// { x--; v = x; }
// { ++x; v = x; }
// { --x; v = x; }
// { x binop= expr; v = x; }
// { x = x binop expr; v = x; }
// { x = expr binop x; v = x; }
// Check that the second expression has form v = x.
Expr *PossibleX = BinOp->getRHS()->IgnoreParenImpCasts();
llvm::FoldingSetNodeID XId, PossibleXId;
Checker.getX()->Profile(XId, Context, /*Canonical=*/true);
PossibleX->Profile(PossibleXId, Context, /*Canonical=*/true);
IsUpdateExprFound = XId == PossibleXId;
if (IsUpdateExprFound) {
V = BinOp->getLHS();
X = Checker.getX();
E = Checker.getExpr();
UE = Checker.getUpdateExpr();
IsXLHSInRHSPart = Checker.isXLHSInRHSPart();
IsPostfixUpdate = false;
}
}
}
if (!IsUpdateExprFound) {
// { v = x; x = expr; }
auto *FirstExpr = dyn_cast<Expr>(First);
auto *SecondExpr = dyn_cast<Expr>(Second);
if (!FirstExpr || !SecondExpr ||
!(FirstExpr->isInstantiationDependent() ||
SecondExpr->isInstantiationDependent())) {
auto *FirstBinOp = dyn_cast<BinaryOperator>(First);
if (!FirstBinOp || FirstBinOp->getOpcode() != BO_Assign) {
ErrorFound = NotAnAssignmentOp;
NoteLoc = ErrorLoc = FirstBinOp ? FirstBinOp->getOperatorLoc()
: First->getBeginLoc();
NoteRange = ErrorRange = FirstBinOp
? FirstBinOp->getSourceRange()
: SourceRange(ErrorLoc, ErrorLoc);
} else {
auto *SecondBinOp = dyn_cast<BinaryOperator>(Second);
if (!SecondBinOp || SecondBinOp->getOpcode() != BO_Assign) {
ErrorFound = NotAnAssignmentOp;
NoteLoc = ErrorLoc = SecondBinOp
? SecondBinOp->getOperatorLoc()
: Second->getBeginLoc();
NoteRange = ErrorRange =
SecondBinOp ? SecondBinOp->getSourceRange()
: SourceRange(ErrorLoc, ErrorLoc);
} else {
Expr *PossibleXRHSInFirst =
FirstBinOp->getRHS()->IgnoreParenImpCasts();
Expr *PossibleXLHSInSecond =
SecondBinOp->getLHS()->IgnoreParenImpCasts();
llvm::FoldingSetNodeID X1Id, X2Id;
PossibleXRHSInFirst->Profile(X1Id, Context,
/*Canonical=*/true);
PossibleXLHSInSecond->Profile(X2Id, Context,
/*Canonical=*/true);
IsUpdateExprFound = X1Id == X2Id;
if (IsUpdateExprFound) {
V = FirstBinOp->getLHS();
X = SecondBinOp->getLHS();
E = SecondBinOp->getRHS();
UE = nullptr;
IsXLHSInRHSPart = false;
IsPostfixUpdate = true;
} else {
ErrorFound = NotASpecificExpression;
ErrorLoc = FirstBinOp->getExprLoc();
ErrorRange = FirstBinOp->getSourceRange();
NoteLoc = SecondBinOp->getLHS()->getExprLoc();
NoteRange = SecondBinOp->getRHS()->getSourceRange();
}
}
}
}
}
} else {
NoteLoc = ErrorLoc = Body->getBeginLoc();
NoteRange = ErrorRange =
SourceRange(Body->getBeginLoc(), Body->getBeginLoc());
ErrorFound = NotTwoSubstatements;
}
} else {
NoteLoc = ErrorLoc = Body->getBeginLoc();
NoteRange = ErrorRange =
SourceRange(Body->getBeginLoc(), Body->getBeginLoc());
ErrorFound = NotACompoundStatement;
}
}
if (ErrorFound != NoError) {
Diag(ErrorLoc, diag::err_omp_atomic_capture_not_compound_statement)
<< ErrorRange;
Diag(NoteLoc, diag::note_omp_atomic_capture) << ErrorFound << NoteRange;
return StmtError();
}
if (CurContext->isDependentContext())
UE = V = E = X = nullptr;
} else if (AtomicKind == OMPC_compare) {
if (IsCompareCapture) {
OpenMPAtomicCompareCaptureChecker::ErrorInfoTy ErrorInfo;
OpenMPAtomicCompareCaptureChecker Checker(*this);
if (!Checker.checkStmt(Body, ErrorInfo)) {
Diag(ErrorInfo.ErrorLoc, diag::err_omp_atomic_compare_capture)
<< ErrorInfo.ErrorRange;
Diag(ErrorInfo.NoteLoc, diag::note_omp_atomic_compare)
<< ErrorInfo.Error << ErrorInfo.NoteRange;
return StmtError();
}
// TODO: We don't set X, D, E, etc. here because in code gen we will emit
// error directly.
} else {
OpenMPAtomicCompareChecker::ErrorInfoTy ErrorInfo;
OpenMPAtomicCompareChecker Checker(*this);
if (!Checker.checkStmt(Body, ErrorInfo)) {
Diag(ErrorInfo.ErrorLoc, diag::err_omp_atomic_compare)
<< ErrorInfo.ErrorRange;
Diag(ErrorInfo.NoteLoc, diag::note_omp_atomic_compare)
<< ErrorInfo.Error << ErrorInfo.NoteRange;
return StmtError();
}
X = Checker.getX();
E = Checker.getE();
D = Checker.getD();
CE = Checker.getCond();
// We reuse IsXLHSInRHSPart to tell if it is in the form 'x ordop expr'.
IsXLHSInRHSPart = Checker.isXBinopExpr();
}
}
setFunctionHasBranchProtectedScope();
return OMPAtomicDirective::Create(
Context, StartLoc, EndLoc, Clauses, AStmt,
{X, V, E, UE, D, CE, IsXLHSInRHSPart, IsPostfixUpdate});
}
StmtResult Sema::ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
// OpenMP [2.16, Nesting of Regions]
// If specified, a teams construct must be contained within a target
// construct. That target construct must contain no statements or directives
// outside of the teams construct.
if (DSAStack->hasInnerTeamsRegion()) {
const Stmt *S = CS->IgnoreContainers(/*IgnoreCaptured=*/true);
bool OMPTeamsFound = true;
if (const auto *CS = dyn_cast<CompoundStmt>(S)) {
auto I = CS->body_begin();
while (I != CS->body_end()) {
const auto *OED = dyn_cast<OMPExecutableDirective>(*I);
if (!OED || !isOpenMPTeamsDirective(OED->getDirectiveKind()) ||
OMPTeamsFound) {
OMPTeamsFound = false;
break;
}
++I;
}
assert(I != CS->body_end() && "Not found statement");
S = *I;
} else {
const auto *OED = dyn_cast<OMPExecutableDirective>(S);
OMPTeamsFound = OED && isOpenMPTeamsDirective(OED->getDirectiveKind());
}
if (!OMPTeamsFound) {
Diag(StartLoc, diag::err_omp_target_contains_not_only_teams);
Diag(DSAStack->getInnerTeamsRegionLoc(),
diag::note_omp_nested_teams_construct_here);
Diag(S->getBeginLoc(), diag::note_omp_nested_statement_here)
<< isa<OMPExecutableDirective>(S);
return StmtError();
}
}
setFunctionHasBranchProtectedScope();
return OMPTargetDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
}
StmtResult
Sema::ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_parallel);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
setFunctionHasBranchProtectedScope();
return OMPTargetParallelDirective::Create(
Context, StartLoc, EndLoc, Clauses, AStmt,
DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
}
StmtResult Sema::ActOnOpenMPTargetParallelForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_parallel_for);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' or 'ordered' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_target_parallel_for, getCollapseNumberExpr(Clauses),
getOrderedNumberExpr(Clauses), CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp target parallel for loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
setFunctionHasBranchProtectedScope();
return OMPTargetParallelForDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
}
/// Check for existence of a map clause in the list of clauses.
static bool hasClauses(ArrayRef<OMPClause *> Clauses,
const OpenMPClauseKind K) {
return llvm::any_of(
Clauses, [K](const OMPClause *C) { return C->getClauseKind() == K; });
}
template <typename... Params>
static bool hasClauses(ArrayRef<OMPClause *> Clauses, const OpenMPClauseKind K,
const Params... ClauseTypes) {
return hasClauses(Clauses, K) || hasClauses(Clauses, ClauseTypes...);
}
/// Check if the variables in the mapping clause are externally visible.
static bool isClauseMappable(ArrayRef<OMPClause *> Clauses) {
for (const OMPClause *C : Clauses) {
if (auto *TC = dyn_cast<OMPToClause>(C))
return llvm::all_of(TC->all_decls(), [](ValueDecl *VD) {
return !VD || !VD->hasAttr<OMPDeclareTargetDeclAttr>() ||
(VD->isExternallyVisible() &&
VD->getVisibility() != HiddenVisibility);
});
else if (auto *FC = dyn_cast<OMPFromClause>(C))
return llvm::all_of(FC->all_decls(), [](ValueDecl *VD) {
return !VD || !VD->hasAttr<OMPDeclareTargetDeclAttr>() ||
(VD->isExternallyVisible() &&
VD->getVisibility() != HiddenVisibility);
});
}
return true;
}
StmtResult Sema::ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
// OpenMP [2.12.2, target data Construct, Restrictions]
// At least one map, use_device_addr or use_device_ptr clause must appear on
// the directive.
if (!hasClauses(Clauses, OMPC_map, OMPC_use_device_ptr) &&
(LangOpts.OpenMP < 50 || !hasClauses(Clauses, OMPC_use_device_addr))) {
StringRef Expected;
if (LangOpts.OpenMP < 50)
Expected = "'map' or 'use_device_ptr'";
else
Expected = "'map', 'use_device_ptr', or 'use_device_addr'";
Diag(StartLoc, diag::err_omp_no_clause_for_directive)
<< Expected << getOpenMPDirectiveName(OMPD_target_data);
return StmtError();
}
setFunctionHasBranchProtectedScope();
return OMPTargetDataDirective::Create(Context, StartLoc, EndLoc, Clauses,
AStmt);
}
StmtResult
Sema::ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc, Stmt *AStmt) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_enter_data);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
// OpenMP [2.10.2, Restrictions, p. 99]
// At least one map clause must appear on the directive.
if (!hasClauses(Clauses, OMPC_map)) {
Diag(StartLoc, diag::err_omp_no_clause_for_directive)
<< "'map'" << getOpenMPDirectiveName(OMPD_target_enter_data);
return StmtError();
}
return OMPTargetEnterDataDirective::Create(Context, StartLoc, EndLoc, Clauses,
AStmt);
}
StmtResult
Sema::ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc, Stmt *AStmt) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_exit_data);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
// OpenMP [2.10.3, Restrictions, p. 102]
// At least one map clause must appear on the directive.
if (!hasClauses(Clauses, OMPC_map)) {
Diag(StartLoc, diag::err_omp_no_clause_for_directive)
<< "'map'" << getOpenMPDirectiveName(OMPD_target_exit_data);
return StmtError();
}
return OMPTargetExitDataDirective::Create(Context, StartLoc, EndLoc, Clauses,
AStmt);
}
StmtResult Sema::ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc,
Stmt *AStmt) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_update);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
if (!hasClauses(Clauses, OMPC_to, OMPC_from)) {
Diag(StartLoc, diag::err_omp_at_least_one_motion_clause_required);
return StmtError();
}
if (!isClauseMappable(Clauses)) {
Diag(StartLoc, diag::err_omp_cannot_update_with_internal_linkage);
return StmtError();
}
return OMPTargetUpdateDirective::Create(Context, StartLoc, EndLoc, Clauses,
AStmt);
}
StmtResult Sema::ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
setFunctionHasBranchProtectedScope();
DSAStack->setParentTeamsRegionLoc(StartLoc);
return OMPTeamsDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt);
}
StmtResult
Sema::ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc,
SourceLocation EndLoc,
OpenMPDirectiveKind CancelRegion) {
if (DSAStack->isParentNowaitRegion()) {
Diag(StartLoc, diag::err_omp_parent_cancel_region_nowait) << 0;
return StmtError();
}
if (DSAStack->isParentOrderedRegion()) {
Diag(StartLoc, diag::err_omp_parent_cancel_region_ordered) << 0;
return StmtError();
}
return OMPCancellationPointDirective::Create(Context, StartLoc, EndLoc,
CancelRegion);
}
StmtResult Sema::ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc,
OpenMPDirectiveKind CancelRegion) {
if (DSAStack->isParentNowaitRegion()) {
Diag(StartLoc, diag::err_omp_parent_cancel_region_nowait) << 1;
return StmtError();
}
if (DSAStack->isParentOrderedRegion()) {
Diag(StartLoc, diag::err_omp_parent_cancel_region_ordered) << 1;
return StmtError();
}
DSAStack->setParentCancelRegion(/*Cancel=*/true);
return OMPCancelDirective::Create(Context, StartLoc, EndLoc, Clauses,
CancelRegion);
}
static bool checkReductionClauseWithNogroup(Sema &S,
ArrayRef<OMPClause *> Clauses) {
const OMPClause *ReductionClause = nullptr;
const OMPClause *NogroupClause = nullptr;
for (const OMPClause *C : Clauses) {
if (C->getClauseKind() == OMPC_reduction) {
ReductionClause = C;
if (NogroupClause)
break;
continue;
}
if (C->getClauseKind() == OMPC_nogroup) {
NogroupClause = C;
if (ReductionClause)
break;
continue;
}
}
if (ReductionClause && NogroupClause) {
S.Diag(ReductionClause->getBeginLoc(), diag::err_omp_reduction_with_nogroup)
<< SourceRange(NogroupClause->getBeginLoc(),
NogroupClause->getEndLoc());
return true;
}
return false;
}
StmtResult Sema::ActOnOpenMPTaskLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' or 'ordered' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_taskloop, getCollapseNumberExpr(Clauses),
/*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for loop exprs were not built");
// OpenMP, [2.9.2 taskloop Construct, Restrictions]
// The grainsize clause and num_tasks clause are mutually exclusive and may
// not appear on the same taskloop directive.
if (checkMutuallyExclusiveClauses(*this, Clauses,
{OMPC_grainsize, OMPC_num_tasks}))
return StmtError();
// OpenMP, [2.9.2 taskloop Construct, Restrictions]
// If a reduction clause is present on the taskloop directive, the nogroup
// clause must not be specified.
if (checkReductionClauseWithNogroup(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPTaskLoopDirective::Create(Context, StartLoc, EndLoc,
NestedLoopCount, Clauses, AStmt, B,
DSAStack->isCancelRegion());
}
StmtResult Sema::ActOnOpenMPTaskLoopSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' or 'ordered' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_taskloop_simd, getCollapseNumberExpr(Clauses),
/*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
// OpenMP, [2.9.2 taskloop Construct, Restrictions]
// The grainsize clause and num_tasks clause are mutually exclusive and may
// not appear on the same taskloop directive.
if (checkMutuallyExclusiveClauses(*this, Clauses,
{OMPC_grainsize, OMPC_num_tasks}))
return StmtError();
// OpenMP, [2.9.2 taskloop Construct, Restrictions]
// If a reduction clause is present on the taskloop directive, the nogroup
// clause must not be specified.
if (checkReductionClauseWithNogroup(*this, Clauses))
return StmtError();
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPTaskLoopSimdDirective::Create(Context, StartLoc, EndLoc,
NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPMasterTaskLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' or 'ordered' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_master_taskloop, getCollapseNumberExpr(Clauses),
/*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for loop exprs were not built");
// OpenMP, [2.9.2 taskloop Construct, Restrictions]
// The grainsize clause and num_tasks clause are mutually exclusive and may
// not appear on the same taskloop directive.
if (checkMutuallyExclusiveClauses(*this, Clauses,
{OMPC_grainsize, OMPC_num_tasks}))
return StmtError();
// OpenMP, [2.9.2 taskloop Construct, Restrictions]
// If a reduction clause is present on the taskloop directive, the nogroup
// clause must not be specified.
if (checkReductionClauseWithNogroup(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPMasterTaskLoopDirective::Create(Context, StartLoc, EndLoc,
NestedLoopCount, Clauses, AStmt, B,
DSAStack->isCancelRegion());
}
StmtResult Sema::ActOnOpenMPMasterTaskLoopSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' or 'ordered' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_master_taskloop_simd, getCollapseNumberExpr(Clauses),
/*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
// OpenMP, [2.9.2 taskloop Construct, Restrictions]
// The grainsize clause and num_tasks clause are mutually exclusive and may
// not appear on the same taskloop directive.
if (checkMutuallyExclusiveClauses(*this, Clauses,
{OMPC_grainsize, OMPC_num_tasks}))
return StmtError();
// OpenMP, [2.9.2 taskloop Construct, Restrictions]
// If a reduction clause is present on the taskloop directive, the nogroup
// clause must not be specified.
if (checkReductionClauseWithNogroup(*this, Clauses))
return StmtError();
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPMasterTaskLoopSimdDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPParallelMasterTaskLoopDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel =
getOpenMPCaptureLevels(OMPD_parallel_master_taskloop);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' or 'ordered' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_parallel_master_taskloop, getCollapseNumberExpr(Clauses),
/*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for loop exprs were not built");
// OpenMP, [2.9.2 taskloop Construct, Restrictions]
// The grainsize clause and num_tasks clause are mutually exclusive and may
// not appear on the same taskloop directive.
if (checkMutuallyExclusiveClauses(*this, Clauses,
{OMPC_grainsize, OMPC_num_tasks}))
return StmtError();
// OpenMP, [2.9.2 taskloop Construct, Restrictions]
// If a reduction clause is present on the taskloop directive, the nogroup
// clause must not be specified.
if (checkReductionClauseWithNogroup(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPParallelMasterTaskLoopDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
DSAStack->isCancelRegion());
}
StmtResult Sema::ActOnOpenMPParallelMasterTaskLoopSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel =
getOpenMPCaptureLevels(OMPD_parallel_master_taskloop_simd);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' or 'ordered' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_parallel_master_taskloop_simd, getCollapseNumberExpr(Clauses),
/*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
// OpenMP, [2.9.2 taskloop Construct, Restrictions]
// The grainsize clause and num_tasks clause are mutually exclusive and may
// not appear on the same taskloop directive.
if (checkMutuallyExclusiveClauses(*this, Clauses,
{OMPC_grainsize, OMPC_num_tasks}))
return StmtError();
// OpenMP, [2.9.2 taskloop Construct, Restrictions]
// If a reduction clause is present on the taskloop directive, the nogroup
// clause must not be specified.
if (checkReductionClauseWithNogroup(*this, Clauses))
return StmtError();
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPParallelMasterTaskLoopSimdDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPDistributeDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
assert(isa<CapturedStmt>(AStmt) && "Captured statement expected");
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_distribute, getCollapseNumberExpr(Clauses),
nullptr /*ordered not a clause on distribute*/, AStmt,
*this, *DSAStack, VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for loop exprs were not built");
setFunctionHasBranchProtectedScope();
return OMPDistributeDirective::Create(Context, StartLoc, EndLoc,
NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPDistributeParallelForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel =
getOpenMPCaptureLevels(OMPD_distribute_parallel_for);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_distribute_parallel_for, getCollapseNumberExpr(Clauses),
nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for loop exprs were not built");
setFunctionHasBranchProtectedScope();
return OMPDistributeParallelForDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
}
StmtResult Sema::ActOnOpenMPDistributeParallelForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel =
getOpenMPCaptureLevels(OMPD_distribute_parallel_for_simd);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_distribute_parallel_for_simd, getCollapseNumberExpr(Clauses),
nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPDistributeParallelForSimdDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPDistributeSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_distribute_simd);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_distribute_simd, getCollapseNumberExpr(Clauses),
nullptr /*ordered not a clause on distribute*/, CS, *this,
*DSAStack, VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPDistributeSimdDirective::Create(Context, StartLoc, EndLoc,
NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPTargetParallelForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_parallel_for);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' or 'ordered' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_target_parallel_for_simd, getCollapseNumberExpr(Clauses),
getOrderedNumberExpr(Clauses), CS, *this, *DSAStack, VarsWithImplicitDSA,
B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp target parallel for simd loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPTargetParallelForSimdDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPTargetSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_simd);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' with number of loops, it will define the
// nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_target_simd, getCollapseNumberExpr(Clauses),
getOrderedNumberExpr(Clauses), CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp target simd loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPTargetSimdDirective::Create(Context, StartLoc, EndLoc,
NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPTeamsDistributeDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_teams_distribute);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_teams_distribute, getCollapseNumberExpr(Clauses),
nullptr /*ordered not a clause on distribute*/, CS, *this,
*DSAStack, VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp teams distribute loop exprs were not built");
setFunctionHasBranchProtectedScope();
DSAStack->setParentTeamsRegionLoc(StartLoc);
return OMPTeamsDistributeDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPTeamsDistributeSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel =
getOpenMPCaptureLevels(OMPD_teams_distribute_simd);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_teams_distribute_simd, getCollapseNumberExpr(Clauses),
nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp teams distribute simd loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
DSAStack->setParentTeamsRegionLoc(StartLoc);
return OMPTeamsDistributeSimdDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPTeamsDistributeParallelForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel =
getOpenMPCaptureLevels(OMPD_teams_distribute_parallel_for_simd);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_teams_distribute_parallel_for_simd, getCollapseNumberExpr(Clauses),
nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
DSAStack->setParentTeamsRegionLoc(StartLoc);
return OMPTeamsDistributeParallelForSimdDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPTeamsDistributeParallelForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel =
getOpenMPCaptureLevels(OMPD_teams_distribute_parallel_for);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_teams_distribute_parallel_for, getCollapseNumberExpr(Clauses),
nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp for loop exprs were not built");
setFunctionHasBranchProtectedScope();
DSAStack->setParentTeamsRegionLoc(StartLoc);
return OMPTeamsDistributeParallelForDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
}
StmtResult Sema::ActOnOpenMPTargetTeamsDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_teams);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
setFunctionHasBranchProtectedScope();
return OMPTargetTeamsDirective::Create(Context, StartLoc, EndLoc, Clauses,
AStmt);
}
StmtResult Sema::ActOnOpenMPTargetTeamsDistributeDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel =
getOpenMPCaptureLevels(OMPD_target_teams_distribute);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_target_teams_distribute, getCollapseNumberExpr(Clauses),
nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp target teams distribute loop exprs were not built");
setFunctionHasBranchProtectedScope();
return OMPTargetTeamsDistributeDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPTargetTeamsDistributeParallelForDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel =
getOpenMPCaptureLevels(OMPD_target_teams_distribute_parallel_for);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_target_teams_distribute_parallel_for, getCollapseNumberExpr(Clauses),
nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp target teams distribute parallel for loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
setFunctionHasBranchProtectedScope();
return OMPTargetTeamsDistributeParallelForDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B,
DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion());
}
StmtResult Sema::ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel = getOpenMPCaptureLevels(
OMPD_target_teams_distribute_parallel_for_simd);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount =
checkOpenMPLoop(OMPD_target_teams_distribute_parallel_for_simd,
getCollapseNumberExpr(Clauses),
nullptr /*ordered not a clause on distribute*/, CS, *this,
*DSAStack, VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp target teams distribute parallel for simd loop exprs were not "
"built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPTargetTeamsDistributeParallelForSimdDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
StmtResult Sema::ActOnOpenMPTargetTeamsDistributeSimdDirective(
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) {
if (!AStmt)
return StmtError();
auto *CS = cast<CapturedStmt>(AStmt);
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
for (int ThisCaptureLevel =
getOpenMPCaptureLevels(OMPD_target_teams_distribute_simd);
ThisCaptureLevel > 1; --ThisCaptureLevel) {
CS = cast<CapturedStmt>(CS->getCapturedStmt());
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CS->getCapturedDecl()->setNothrow();
}
OMPLoopBasedDirective::HelperExprs B;
// In presence of clause 'collapse' with number of loops, it will
// define the nested loops number.
unsigned NestedLoopCount = checkOpenMPLoop(
OMPD_target_teams_distribute_simd, getCollapseNumberExpr(Clauses),
nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack,
VarsWithImplicitDSA, B);
if (NestedLoopCount == 0)
return StmtError();
assert((CurContext->isDependentContext() || B.builtAll()) &&
"omp target teams distribute simd loop exprs were not built");
if (!CurContext->isDependentContext()) {
// Finalize the clauses that need pre-built expressions for CodeGen.
for (OMPClause *C : Clauses) {
if (auto *LC = dyn_cast<OMPLinearClause>(C))
if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef),
B.NumIterations, *this, CurScope,
DSAStack))
return StmtError();
}
}
if (checkSimdlenSafelenSpecified(*this, Clauses))
return StmtError();
setFunctionHasBranchProtectedScope();
return OMPTargetTeamsDistributeSimdDirective::Create(
Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B);
}
bool Sema::checkTransformableLoopNest(
OpenMPDirectiveKind Kind, Stmt *AStmt, int NumLoops,
SmallVectorImpl<OMPLoopBasedDirective::HelperExprs> &LoopHelpers,
Stmt *&Body,
SmallVectorImpl<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>>
&OriginalInits) {
OriginalInits.emplace_back();
bool Result = OMPLoopBasedDirective::doForAllLoops(
AStmt->IgnoreContainers(), /*TryImperfectlyNestedLoops=*/false, NumLoops,
[this, &LoopHelpers, &Body, &OriginalInits, Kind](unsigned Cnt,
Stmt *CurStmt) {
VarsWithInheritedDSAType TmpDSA;
unsigned SingleNumLoops =
checkOpenMPLoop(Kind, nullptr, nullptr, CurStmt, *this, *DSAStack,
TmpDSA, LoopHelpers[Cnt]);
if (SingleNumLoops == 0)
return true;
assert(SingleNumLoops == 1 && "Expect single loop iteration space");
if (auto *For = dyn_cast<ForStmt>(CurStmt)) {
OriginalInits.back().push_back(For->getInit());
Body = For->getBody();
} else {
assert(isa<CXXForRangeStmt>(CurStmt) &&
"Expected canonical for or range-based for loops.");
auto *CXXFor = cast<CXXForRangeStmt>(CurStmt);
OriginalInits.back().push_back(CXXFor->getBeginStmt());
Body = CXXFor->getBody();
}
OriginalInits.emplace_back();
return false;
},
[&OriginalInits](OMPLoopBasedDirective *Transform) {
Stmt *DependentPreInits;
if (auto *Dir = dyn_cast<OMPTileDirective>(Transform))
DependentPreInits = Dir->getPreInits();
else if (auto *Dir = dyn_cast<OMPUnrollDirective>(Transform))
DependentPreInits = Dir->getPreInits();
else
llvm_unreachable("Unhandled loop transformation");
if (!DependentPreInits)
return;
llvm::append_range(OriginalInits.back(),
cast<DeclStmt>(DependentPreInits)->getDeclGroup());
});
assert(OriginalInits.back().empty() && "No preinit after innermost loop");
OriginalInits.pop_back();
return Result;
}
StmtResult Sema::ActOnOpenMPTileDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt, SourceLocation StartLoc,
SourceLocation EndLoc) {
auto SizesClauses =
OMPExecutableDirective::getClausesOfKind<OMPSizesClause>(Clauses);
if (SizesClauses.empty()) {
// A missing 'sizes' clause is already reported by the parser.
return StmtError();
}
const OMPSizesClause *SizesClause = *SizesClauses.begin();
unsigned NumLoops = SizesClause->getNumSizes();
// Empty statement should only be possible if there already was an error.
if (!AStmt)
return StmtError();
// Verify and diagnose loop nest.
SmallVector<OMPLoopBasedDirective::HelperExprs, 4> LoopHelpers(NumLoops);
Stmt *Body = nullptr;
SmallVector<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>, 4>
OriginalInits;
if (!checkTransformableLoopNest(OMPD_tile, AStmt, NumLoops, LoopHelpers, Body,
OriginalInits))
return StmtError();
// Delay tiling to when template is completely instantiated.
if (CurContext->isDependentContext())
return OMPTileDirective::Create(Context, StartLoc, EndLoc, Clauses,
NumLoops, AStmt, nullptr, nullptr);
SmallVector<Decl *, 4> PreInits;
// Create iteration variables for the generated loops.
SmallVector<VarDecl *, 4> FloorIndVars;
SmallVector<VarDecl *, 4> TileIndVars;
FloorIndVars.resize(NumLoops);
TileIndVars.resize(NumLoops);
for (unsigned I = 0; I < NumLoops; ++I) {
OMPLoopBasedDirective::HelperExprs &LoopHelper = LoopHelpers[I];
assert(LoopHelper.Counters.size() == 1 &&
"Expect single-dimensional loop iteration space");
auto *OrigCntVar = cast<DeclRefExpr>(LoopHelper.Counters.front());
std::string OrigVarName = OrigCntVar->getNameInfo().getAsString();
DeclRefExpr *IterVarRef = cast<DeclRefExpr>(LoopHelper.IterationVarRef);
QualType CntTy = IterVarRef->getType();
// Iteration variable for the floor (i.e. outer) loop.
{
std::string FloorCntName =
(Twine(".floor_") + llvm::utostr(I) + ".iv." + OrigVarName).str();
VarDecl *FloorCntDecl =
buildVarDecl(*this, {}, CntTy, FloorCntName, nullptr, OrigCntVar);
FloorIndVars[I] = FloorCntDecl;
}
// Iteration variable for the tile (i.e. inner) loop.
{
std::string TileCntName =
(Twine(".tile_") + llvm::utostr(I) + ".iv." + OrigVarName).str();
// Reuse the iteration variable created by checkOpenMPLoop. It is also
// used by the expressions to derive the original iteration variable's
// value from the logical iteration number.
auto *TileCntDecl = cast<VarDecl>(IterVarRef->getDecl());
TileCntDecl->setDeclName(&PP.getIdentifierTable().get(TileCntName));
TileIndVars[I] = TileCntDecl;
}
for (auto &P : OriginalInits[I]) {
if (auto *D = P.dyn_cast<Decl *>())
PreInits.push_back(D);
else if (auto *PI = dyn_cast_or_null<DeclStmt>(P.dyn_cast<Stmt *>()))
PreInits.append(PI->decl_begin(), PI->decl_end());
}
if (auto *PI = cast_or_null<DeclStmt>(LoopHelper.PreInits))
PreInits.append(PI->decl_begin(), PI->decl_end());
// Gather declarations for the data members used as counters.
for (Expr *CounterRef : LoopHelper.Counters) {
auto *CounterDecl = cast<DeclRefExpr>(CounterRef)->getDecl();
if (isa<OMPCapturedExprDecl>(CounterDecl))
PreInits.push_back(CounterDecl);
}
}
// Once the original iteration values are set, append the innermost body.
Stmt *Inner = Body;
// Create tile loops from the inside to the outside.
for (int I = NumLoops - 1; I >= 0; --I) {
OMPLoopBasedDirective::HelperExprs &LoopHelper = LoopHelpers[I];
Expr *NumIterations = LoopHelper.NumIterations;
auto *OrigCntVar = cast<DeclRefExpr>(LoopHelper.Counters[0]);
QualType CntTy = OrigCntVar->getType();
Expr *DimTileSize = SizesClause->getSizesRefs()[I];
Scope *CurScope = getCurScope();
// Commonly used variables.
DeclRefExpr *TileIV = buildDeclRefExpr(*this, TileIndVars[I], CntTy,
OrigCntVar->getExprLoc());
DeclRefExpr *FloorIV = buildDeclRefExpr(*this, FloorIndVars[I], CntTy,
OrigCntVar->getExprLoc());
// For init-statement: auto .tile.iv = .floor.iv
AddInitializerToDecl(TileIndVars[I], DefaultLvalueConversion(FloorIV).get(),
/*DirectInit=*/false);
Decl *CounterDecl = TileIndVars[I];
StmtResult InitStmt = new (Context)
DeclStmt(DeclGroupRef::Create(Context, &CounterDecl, 1),
OrigCntVar->getBeginLoc(), OrigCntVar->getEndLoc());
if (!InitStmt.isUsable())
return StmtError();
// For cond-expression: .tile.iv < min(.floor.iv + DimTileSize,
// NumIterations)
ExprResult EndOfTile = BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(),
BO_Add, FloorIV, DimTileSize);
if (!EndOfTile.isUsable())
return StmtError();
ExprResult IsPartialTile =
BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(), BO_LT,
NumIterations, EndOfTile.get());
if (!IsPartialTile.isUsable())
return StmtError();
ExprResult MinTileAndIterSpace = ActOnConditionalOp(
LoopHelper.Cond->getBeginLoc(), LoopHelper.Cond->getEndLoc(),
IsPartialTile.get(), NumIterations, EndOfTile.get());
if (!MinTileAndIterSpace.isUsable())
return StmtError();
ExprResult CondExpr = BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(),
BO_LT, TileIV, MinTileAndIterSpace.get());
if (!CondExpr.isUsable())
return StmtError();
// For incr-statement: ++.tile.iv
ExprResult IncrStmt =
BuildUnaryOp(CurScope, LoopHelper.Inc->getExprLoc(), UO_PreInc, TileIV);
if (!IncrStmt.isUsable())
return StmtError();
// Statements to set the original iteration variable's value from the
// logical iteration number.
// Generated for loop is:
// Original_for_init;
// for (auto .tile.iv = .floor.iv; .tile.iv < min(.floor.iv + DimTileSize,
// NumIterations); ++.tile.iv) {
// Original_Body;
// Original_counter_update;
// }
// FIXME: If the innermost body is an loop itself, inserting these
// statements stops it being recognized as a perfectly nested loop (e.g.
// for applying tiling again). If this is the case, sink the expressions
// further into the inner loop.
SmallVector<Stmt *, 4> BodyParts;
BodyParts.append(LoopHelper.Updates.begin(), LoopHelper.Updates.end());
BodyParts.push_back(Inner);
Inner = CompoundStmt::Create(Context, BodyParts, Inner->getBeginLoc(),
Inner->getEndLoc());
Inner = new (Context)
ForStmt(Context, InitStmt.get(), CondExpr.get(), nullptr,
IncrStmt.get(), Inner, LoopHelper.Init->getBeginLoc(),
LoopHelper.Init->getBeginLoc(), LoopHelper.Inc->getEndLoc());
}
// Create floor loops from the inside to the outside.
for (int I = NumLoops - 1; I >= 0; --I) {
auto &LoopHelper = LoopHelpers[I];
Expr *NumIterations = LoopHelper.NumIterations;
DeclRefExpr *OrigCntVar = cast<DeclRefExpr>(LoopHelper.Counters[0]);
QualType CntTy = OrigCntVar->getType();
Expr *DimTileSize = SizesClause->getSizesRefs()[I];
Scope *CurScope = getCurScope();
// Commonly used variables.
DeclRefExpr *FloorIV = buildDeclRefExpr(*this, FloorIndVars[I], CntTy,
OrigCntVar->getExprLoc());
// For init-statement: auto .floor.iv = 0
AddInitializerToDecl(
FloorIndVars[I],
ActOnIntegerConstant(LoopHelper.Init->getExprLoc(), 0).get(),
/*DirectInit=*/false);
Decl *CounterDecl = FloorIndVars[I];
StmtResult InitStmt = new (Context)
DeclStmt(DeclGroupRef::Create(Context, &CounterDecl, 1),
OrigCntVar->getBeginLoc(), OrigCntVar->getEndLoc());
if (!InitStmt.isUsable())
return StmtError();
// For cond-expression: .floor.iv < NumIterations
ExprResult CondExpr = BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(),
BO_LT, FloorIV, NumIterations);
if (!CondExpr.isUsable())
return StmtError();
// For incr-statement: .floor.iv += DimTileSize
ExprResult IncrStmt = BuildBinOp(CurScope, LoopHelper.Inc->getExprLoc(),
BO_AddAssign, FloorIV, DimTileSize);
if (!IncrStmt.isUsable())
return StmtError();
Inner = new (Context)
ForStmt(Context, InitStmt.get(), CondExpr.get(), nullptr,
IncrStmt.get(), Inner, LoopHelper.Init->getBeginLoc(),
LoopHelper.Init->getBeginLoc(), LoopHelper.Inc->getEndLoc());
}
return OMPTileDirective::Create(Context, StartLoc, EndLoc, Clauses, NumLoops,
AStmt, Inner,
buildPreInits(Context, PreInits));
}
StmtResult Sema::ActOnOpenMPUnrollDirective(ArrayRef<OMPClause *> Clauses,
Stmt *AStmt,
SourceLocation StartLoc,
SourceLocation EndLoc) {
// Empty statement should only be possible if there already was an error.
if (!AStmt)
return StmtError();
if (checkMutuallyExclusiveClauses(*this, Clauses, {OMPC_partial, OMPC_full}))
return StmtError();
const OMPFullClause *FullClause =
OMPExecutableDirective::getSingleClause<OMPFullClause>(Clauses);
const OMPPartialClause *PartialClause =
OMPExecutableDirective::getSingleClause<OMPPartialClause>(Clauses);
assert(!(FullClause && PartialClause) &&
"mutual exclusivity must have been checked before");
constexpr unsigned NumLoops = 1;
Stmt *Body = nullptr;
SmallVector<OMPLoopBasedDirective::HelperExprs, NumLoops> LoopHelpers(
NumLoops);
SmallVector<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>, NumLoops + 1>
OriginalInits;
if (!checkTransformableLoopNest(OMPD_unroll, AStmt, NumLoops, LoopHelpers,
Body, OriginalInits))
return StmtError();
unsigned NumGeneratedLoops = PartialClause ? 1 : 0;
// Delay unrolling to when template is completely instantiated.
if (CurContext->isDependentContext())
return OMPUnrollDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
NumGeneratedLoops, nullptr, nullptr);
OMPLoopBasedDirective::HelperExprs &LoopHelper = LoopHelpers.front();
if (FullClause) {
if (!VerifyPositiveIntegerConstantInClause(
LoopHelper.NumIterations, OMPC_full, /*StrictlyPositive=*/false,
/*SuppressExprDiags=*/true)
.isUsable()) {
Diag(AStmt->getBeginLoc(), diag::err_omp_unroll_full_variable_trip_count);
Diag(FullClause->getBeginLoc(), diag::note_omp_directive_here)
<< "#pragma omp unroll full";
return StmtError();
}
}
// The generated loop may only be passed to other loop-associated directive
// when a partial clause is specified. Without the requirement it is
// sufficient to generate loop unroll metadata at code-generation.
if (NumGeneratedLoops == 0)
return OMPUnrollDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
NumGeneratedLoops, nullptr, nullptr);
// Otherwise, we need to provide a de-sugared/transformed AST that can be
// associated with another loop directive.
//
// The canonical loop analysis return by checkTransformableLoopNest assumes
// the following structure to be the same loop without transformations or
// directives applied: \code OriginalInits; LoopHelper.PreInits;
// LoopHelper.Counters;
// for (; IV < LoopHelper.NumIterations; ++IV) {
// LoopHelper.Updates;
// Body;
// }
// \endcode
// where IV is a variable declared and initialized to 0 in LoopHelper.PreInits
// and referenced by LoopHelper.IterationVarRef.
//
// The unrolling directive transforms this into the following loop:
// \code
// OriginalInits; \
// LoopHelper.PreInits; > NewPreInits
// LoopHelper.Counters; /
// for (auto UIV = 0; UIV < LoopHelper.NumIterations; UIV+=Factor) {
// #pragma clang loop unroll_count(Factor)
// for (IV = UIV; IV < UIV + Factor && UIV < LoopHelper.NumIterations; ++IV)
// {
// LoopHelper.Updates;
// Body;
// }
// }
// \endcode
// where UIV is a new logical iteration counter. IV must be the same VarDecl
// as the original LoopHelper.IterationVarRef because LoopHelper.Updates
// references it. If the partially unrolled loop is associated with another
// loop directive (like an OMPForDirective), it will use checkOpenMPLoop to
// analyze this loop, i.e. the outer loop must fulfill the constraints of an
// OpenMP canonical loop. The inner loop is not an associable canonical loop
// and only exists to defer its unrolling to LLVM's LoopUnroll instead of
// doing it in the frontend (by adding loop metadata). NewPreInits becomes a
// property of the OMPLoopBasedDirective instead of statements in
// CompoundStatement. This is to allow the loop to become a non-outermost loop
// of a canonical loop nest where these PreInits are emitted before the
// outermost directive.
// Determine the PreInit declarations.
SmallVector<Decl *, 4> PreInits;
assert(OriginalInits.size() == 1 &&
"Expecting a single-dimensional loop iteration space");
for (auto &P : OriginalInits[0]) {
if (auto *D = P.dyn_cast<Decl *>())
PreInits.push_back(D);
else if (auto *PI = dyn_cast_or_null<DeclStmt>(P.dyn_cast<Stmt *>()))
PreInits.append(PI->decl_begin(), PI->decl_end());
}
if (auto *PI = cast_or_null<DeclStmt>(LoopHelper.PreInits))
PreInits.append(PI->decl_begin(), PI->decl_end());
// Gather declarations for the data members used as counters.
for (Expr *CounterRef : LoopHelper.Counters) {
auto *CounterDecl = cast<DeclRefExpr>(CounterRef)->getDecl();
if (isa<OMPCapturedExprDecl>(CounterDecl))
PreInits.push_back(CounterDecl);
}
auto *IterationVarRef = cast<DeclRefExpr>(LoopHelper.IterationVarRef);
QualType IVTy = IterationVarRef->getType();
assert(LoopHelper.Counters.size() == 1 &&
"Expecting a single-dimensional loop iteration space");
auto *OrigVar = cast<DeclRefExpr>(LoopHelper.Counters.front());
// Determine the unroll factor.
uint64_t Factor;
SourceLocation FactorLoc;
if (Expr *FactorVal = PartialClause->getFactor()) {
Factor =
FactorVal->getIntegerConstantExpr(Context).getValue().getZExtValue();
FactorLoc = FactorVal->getExprLoc();
} else {
// TODO: Use a better profitability model.
Factor = 2;
}
assert(Factor > 0 && "Expected positive unroll factor");
auto MakeFactorExpr = [this, Factor, IVTy, FactorLoc]() {
return IntegerLiteral::Create(
Context, llvm::APInt(Context.getIntWidth(IVTy), Factor), IVTy,
FactorLoc);
};
// Iteration variable SourceLocations.
SourceLocation OrigVarLoc = OrigVar->getExprLoc();
SourceLocation OrigVarLocBegin = OrigVar->getBeginLoc();
SourceLocation OrigVarLocEnd = OrigVar->getEndLoc();
// Internal variable names.
std::string OrigVarName = OrigVar->getNameInfo().getAsString();
std::string OuterIVName = (Twine(".unrolled.iv.") + OrigVarName).str();
std::string InnerIVName = (Twine(".unroll_inner.iv.") + OrigVarName).str();
std::string InnerTripCountName =
(Twine(".unroll_inner.tripcount.") + OrigVarName).str();
// Create the iteration variable for the unrolled loop.
VarDecl *OuterIVDecl =
buildVarDecl(*this, {}, IVTy, OuterIVName, nullptr, OrigVar);
auto MakeOuterRef = [this, OuterIVDecl, IVTy, OrigVarLoc]() {
return buildDeclRefExpr(*this, OuterIVDecl, IVTy, OrigVarLoc);
};
// Iteration variable for the inner loop: Reuse the iteration variable created
// by checkOpenMPLoop.
auto *InnerIVDecl = cast<VarDecl>(IterationVarRef->getDecl());
InnerIVDecl->setDeclName(&PP.getIdentifierTable().get(InnerIVName));
auto MakeInnerRef = [this, InnerIVDecl, IVTy, OrigVarLoc]() {
return buildDeclRefExpr(*this, InnerIVDecl, IVTy, OrigVarLoc);
};
// Make a copy of the NumIterations expression for each use: By the AST
// constraints, every expression object in a DeclContext must be unique.
CaptureVars CopyTransformer(*this);
auto MakeNumIterations = [&CopyTransformer, &LoopHelper]() -> Expr * {
return AssertSuccess(
CopyTransformer.TransformExpr(LoopHelper.NumIterations));
};
// Inner For init-statement: auto .unroll_inner.iv = .unrolled.iv
ExprResult LValueConv = DefaultLvalueConversion(MakeOuterRef());
AddInitializerToDecl(InnerIVDecl, LValueConv.get(), /*DirectInit=*/false);
StmtResult InnerInit = new (Context)
DeclStmt(DeclGroupRef(InnerIVDecl), OrigVarLocBegin, OrigVarLocEnd);
if (!InnerInit.isUsable())
return StmtError();
// Inner For cond-expression:
// \code
// .unroll_inner.iv < .unrolled.iv + Factor &&
// .unroll_inner.iv < NumIterations
// \endcode
// This conjunction of two conditions allows ScalarEvolution to derive the
// maximum trip count of the inner loop.
ExprResult EndOfTile = BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(),
BO_Add, MakeOuterRef(), MakeFactorExpr());
if (!EndOfTile.isUsable())
return StmtError();
ExprResult InnerCond1 = BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(),
BO_LE, MakeInnerRef(), EndOfTile.get());
if (!InnerCond1.isUsable())
return StmtError();
ExprResult InnerCond2 =
BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(), BO_LE, MakeInnerRef(),
MakeNumIterations());
if (!InnerCond2.isUsable())
return StmtError();
ExprResult InnerCond =
BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(), BO_LAnd,
InnerCond1.get(), InnerCond2.get());
if (!InnerCond.isUsable())
return StmtError();
// Inner For incr-statement: ++.unroll_inner.iv
ExprResult InnerIncr = BuildUnaryOp(CurScope, LoopHelper.Inc->getExprLoc(),
UO_PreInc, MakeInnerRef());
if (!InnerIncr.isUsable())
return StmtError();
// Inner For statement.
SmallVector<Stmt *> InnerBodyStmts;
InnerBodyStmts.append(LoopHelper.Updates.begin(), LoopHelper.Updates.end());
InnerBodyStmts.push_back(Body);
CompoundStmt *InnerBody = CompoundStmt::Create(
Context, InnerBodyStmts, Body->getBeginLoc(), Body->getEndLoc());
ForStmt *InnerFor = new (Context)
ForStmt(Context, InnerInit.get(), InnerCond.get(), nullptr,
InnerIncr.get(), InnerBody, LoopHelper.Init->getBeginLoc(),
LoopHelper.Init->getBeginLoc(), LoopHelper.Inc->getEndLoc());
// Unroll metadata for the inner loop.
// This needs to take into account the remainder portion of the unrolled loop,
// hence `unroll(full)` does not apply here, even though the LoopUnroll pass
// supports multiple loop exits. Instead, unroll using a factor equivalent to
// the maximum trip count, which will also generate a remainder loop. Just
// `unroll(enable)` (which could have been useful if the user has not
// specified a concrete factor; even though the outer loop cannot be
// influenced anymore, would avoid more code bloat than necessary) will refuse
// the loop because "Won't unroll; remainder loop could not be generated when
// assuming runtime trip count". Even if it did work, it must not choose a
// larger unroll factor than the maximum loop length, or it would always just
// execute the remainder loop.
LoopHintAttr *UnrollHintAttr =
LoopHintAttr::CreateImplicit(Context, LoopHintAttr::UnrollCount,
LoopHintAttr::Numeric, MakeFactorExpr());
AttributedStmt *InnerUnrolled =
AttributedStmt::Create(Context, StartLoc, {UnrollHintAttr}, InnerFor);
// Outer For init-statement: auto .unrolled.iv = 0
AddInitializerToDecl(
OuterIVDecl, ActOnIntegerConstant(LoopHelper.Init->getExprLoc(), 0).get(),
/*DirectInit=*/false);
StmtResult OuterInit = new (Context)
DeclStmt(DeclGroupRef(OuterIVDecl), OrigVarLocBegin, OrigVarLocEnd);
if (!OuterInit.isUsable())
return StmtError();
// Outer For cond-expression: .unrolled.iv < NumIterations
ExprResult OuterConde =
BuildBinOp(CurScope, LoopHelper.Cond->getExprLoc(), BO_LT, MakeOuterRef(),
MakeNumIterations());
if (!OuterConde.isUsable())
return StmtError();
// Outer For incr-statement: .unrolled.iv += Factor
ExprResult OuterIncr =
BuildBinOp(CurScope, LoopHelper.Inc->getExprLoc(), BO_AddAssign,
MakeOuterRef(), MakeFactorExpr());
if (!OuterIncr.isUsable())
return StmtError();
// Outer For statement.
ForStmt *OuterFor = new (Context)
ForStmt(Context, OuterInit.get(), OuterConde.get(), nullptr,
OuterIncr.get(), InnerUnrolled, LoopHelper.Init->getBeginLoc(),
LoopHelper.Init->getBeginLoc(), LoopHelper.Inc->getEndLoc());
return OMPUnrollDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt,
NumGeneratedLoops, OuterFor,
buildPreInits(Context, PreInits));
}
OMPClause *Sema::ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind, Expr *Expr,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
OMPClause *Res = nullptr;
switch (Kind) {
case OMPC_final:
Res = ActOnOpenMPFinalClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_num_threads:
Res = ActOnOpenMPNumThreadsClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_safelen:
Res = ActOnOpenMPSafelenClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_simdlen:
Res = ActOnOpenMPSimdlenClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_allocator:
Res = ActOnOpenMPAllocatorClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_collapse:
Res = ActOnOpenMPCollapseClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_ordered:
Res = ActOnOpenMPOrderedClause(StartLoc, EndLoc, LParenLoc, Expr);
break;
case OMPC_num_teams:
Res = ActOnOpenMPNumTeamsClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_thread_limit:
Res = ActOnOpenMPThreadLimitClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_priority:
Res = ActOnOpenMPPriorityClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_grainsize:
Res = ActOnOpenMPGrainsizeClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_num_tasks:
Res = ActOnOpenMPNumTasksClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_hint:
Res = ActOnOpenMPHintClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_depobj:
Res = ActOnOpenMPDepobjClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_detach:
Res = ActOnOpenMPDetachClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_novariants:
Res = ActOnOpenMPNovariantsClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_nocontext:
Res = ActOnOpenMPNocontextClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_filter:
Res = ActOnOpenMPFilterClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_partial:
Res = ActOnOpenMPPartialClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_align:
Res = ActOnOpenMPAlignClause(Expr, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_device:
case OMPC_if:
case OMPC_default:
case OMPC_proc_bind:
case OMPC_schedule:
case OMPC_private:
case OMPC_firstprivate:
case OMPC_lastprivate:
case OMPC_shared:
case OMPC_reduction:
case OMPC_task_reduction:
case OMPC_in_reduction:
case OMPC_linear:
case OMPC_aligned:
case OMPC_copyin:
case OMPC_copyprivate:
case OMPC_nowait:
case OMPC_untied:
case OMPC_mergeable:
case OMPC_threadprivate:
case OMPC_sizes:
case OMPC_allocate:
case OMPC_flush:
case OMPC_read:
case OMPC_write:
case OMPC_update:
case OMPC_capture:
case OMPC_compare:
case OMPC_seq_cst:
case OMPC_acq_rel:
case OMPC_acquire:
case OMPC_release:
case OMPC_relaxed:
case OMPC_depend:
case OMPC_threads:
case OMPC_simd:
case OMPC_map:
case OMPC_nogroup:
case OMPC_dist_schedule:
case OMPC_defaultmap:
case OMPC_unknown:
case OMPC_uniform:
case OMPC_to:
case OMPC_from:
case OMPC_use_device_ptr:
case OMPC_use_device_addr:
case OMPC_is_device_ptr:
case OMPC_unified_address:
case OMPC_unified_shared_memory:
case OMPC_reverse_offload:
case OMPC_dynamic_allocators:
case OMPC_atomic_default_mem_order:
case OMPC_device_type:
case OMPC_match:
case OMPC_nontemporal:
case OMPC_order:
case OMPC_destroy:
case OMPC_inclusive:
case OMPC_exclusive:
case OMPC_uses_allocators:
case OMPC_affinity:
case OMPC_when:
case OMPC_bind:
default:
llvm_unreachable("Clause is not allowed.");
}
return Res;
}
// An OpenMP directive such as 'target parallel' has two captured regions:
// for the 'target' and 'parallel' respectively. This function returns
// the region in which to capture expressions associated with a clause.
// A return value of OMPD_unknown signifies that the expression should not
// be captured.
static OpenMPDirectiveKind getOpenMPCaptureRegionForClause(
OpenMPDirectiveKind DKind, OpenMPClauseKind CKind, unsigned OpenMPVersion,
OpenMPDirectiveKind NameModifier = OMPD_unknown) {
OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
switch (CKind) {
case OMPC_if:
switch (DKind) {
case OMPD_target_parallel_for_simd:
if (OpenMPVersion >= 50 &&
(NameModifier == OMPD_unknown || NameModifier == OMPD_simd)) {
CaptureRegion = OMPD_parallel;
break;
}
LLVM_FALLTHROUGH;
case OMPD_target_parallel:
case OMPD_target_parallel_for:
case OMPD_target_parallel_loop:
// If this clause applies to the nested 'parallel' region, capture within
// the 'target' region, otherwise do not capture.
if (NameModifier == OMPD_unknown || NameModifier == OMPD_parallel)
CaptureRegion = OMPD_target;
break;
case OMPD_target_teams_distribute_parallel_for_simd:
if (OpenMPVersion >= 50 &&
(NameModifier == OMPD_unknown || NameModifier == OMPD_simd)) {
CaptureRegion = OMPD_parallel;
break;
}
LLVM_FALLTHROUGH;
case OMPD_target_teams_distribute_parallel_for:
// If this clause applies to the nested 'parallel' region, capture within
// the 'teams' region, otherwise do not capture.
if (NameModifier == OMPD_unknown || NameModifier == OMPD_parallel)
CaptureRegion = OMPD_teams;
break;
case OMPD_teams_distribute_parallel_for_simd:
if (OpenMPVersion >= 50 &&
(NameModifier == OMPD_unknown || NameModifier == OMPD_simd)) {
CaptureRegion = OMPD_parallel;
break;
}
LLVM_FALLTHROUGH;
case OMPD_teams_distribute_parallel_for:
CaptureRegion = OMPD_teams;
break;
case OMPD_target_update:
case OMPD_target_enter_data:
case OMPD_target_exit_data:
CaptureRegion = OMPD_task;
break;
case OMPD_parallel_master_taskloop:
if (NameModifier == OMPD_unknown || NameModifier == OMPD_taskloop)
CaptureRegion = OMPD_parallel;
break;
case OMPD_parallel_master_taskloop_simd:
if ((OpenMPVersion <= 45 && NameModifier == OMPD_unknown) ||
NameModifier == OMPD_taskloop) {
CaptureRegion = OMPD_parallel;
break;
}
if (OpenMPVersion <= 45)
break;
if (NameModifier == OMPD_unknown || NameModifier == OMPD_simd)
CaptureRegion = OMPD_taskloop;
break;
case OMPD_parallel_for_simd:
if (OpenMPVersion <= 45)
break;
if (NameModifier == OMPD_unknown || NameModifier == OMPD_simd)
CaptureRegion = OMPD_parallel;
break;
case OMPD_taskloop_simd:
case OMPD_master_taskloop_simd:
if (OpenMPVersion <= 45)
break;
if (NameModifier == OMPD_unknown || NameModifier == OMPD_simd)
CaptureRegion = OMPD_taskloop;
break;
case OMPD_distribute_parallel_for_simd:
if (OpenMPVersion <= 45)
break;
if (NameModifier == OMPD_unknown || NameModifier == OMPD_simd)
CaptureRegion = OMPD_parallel;
break;
case OMPD_target_simd:
if (OpenMPVersion >= 50 &&
(NameModifier == OMPD_unknown || NameModifier == OMPD_simd))
CaptureRegion = OMPD_target;
break;
case OMPD_teams_distribute_simd:
case OMPD_target_teams_distribute_simd:
if (OpenMPVersion >= 50 &&
(NameModifier == OMPD_unknown || NameModifier == OMPD_simd))
CaptureRegion = OMPD_teams;
break;
case OMPD_cancel:
case OMPD_parallel:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_parallel_for:
case OMPD_parallel_loop:
case OMPD_target:
case OMPD_target_teams:
case OMPD_target_teams_distribute:
case OMPD_target_teams_loop:
case OMPD_distribute_parallel_for:
case OMPD_task:
case OMPD_taskloop:
case OMPD_master_taskloop:
case OMPD_target_data:
case OMPD_simd:
case OMPD_for_simd:
case OMPD_distribute_simd:
// Do not capture if-clause expressions.
break;
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_cancellation_point:
case OMPD_flush:
case OMPD_depobj:
case OMPD_scan:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_loop:
case OMPD_teams_loop:
case OMPD_teams:
case OMPD_tile:
case OMPD_unroll:
case OMPD_for:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_masked:
case OMPD_critical:
case OMPD_taskgroup:
case OMPD_distribute:
case OMPD_ordered:
case OMPD_atomic:
case OMPD_teams_distribute:
case OMPD_requires:
case OMPD_metadirective:
llvm_unreachable("Unexpected OpenMP directive with if-clause");
case OMPD_unknown:
default:
llvm_unreachable("Unknown OpenMP directive");
}
break;
case OMPC_num_threads:
switch (DKind) {
case OMPD_target_parallel:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_parallel_loop:
CaptureRegion = OMPD_target;
break;
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
CaptureRegion = OMPD_teams;
break;
case OMPD_parallel:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_parallel_for:
case OMPD_parallel_for_simd:
case OMPD_parallel_loop:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
// Do not capture num_threads-clause expressions.
break;
case OMPD_target_data:
case OMPD_target_enter_data:
case OMPD_target_exit_data:
case OMPD_target_update:
case OMPD_target:
case OMPD_target_simd:
case OMPD_target_teams:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_cancel:
case OMPD_task:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_cancellation_point:
case OMPD_flush:
case OMPD_depobj:
case OMPD_scan:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_loop:
case OMPD_teams_loop:
case OMPD_target_teams_loop:
case OMPD_teams:
case OMPD_simd:
case OMPD_tile:
case OMPD_unroll:
case OMPD_for:
case OMPD_for_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_masked:
case OMPD_critical:
case OMPD_taskgroup:
case OMPD_distribute:
case OMPD_ordered:
case OMPD_atomic:
case OMPD_distribute_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_requires:
case OMPD_metadirective:
llvm_unreachable("Unexpected OpenMP directive with num_threads-clause");
case OMPD_unknown:
default:
llvm_unreachable("Unknown OpenMP directive");
}
break;
case OMPC_num_teams:
switch (DKind) {
case OMPD_target_teams:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
case OMPD_target_teams_loop:
CaptureRegion = OMPD_target;
break;
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_teams:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_loop:
// Do not capture num_teams-clause expressions.
break;
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_task:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_target_data:
case OMPD_target_enter_data:
case OMPD_target_exit_data:
case OMPD_target_update:
case OMPD_cancel:
case OMPD_parallel:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_parallel_for:
case OMPD_parallel_for_simd:
case OMPD_parallel_loop:
case OMPD_target:
case OMPD_target_simd:
case OMPD_target_parallel:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_parallel_loop:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_cancellation_point:
case OMPD_flush:
case OMPD_depobj:
case OMPD_scan:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_loop:
case OMPD_simd:
case OMPD_tile:
case OMPD_unroll:
case OMPD_for:
case OMPD_for_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_masked:
case OMPD_critical:
case OMPD_taskgroup:
case OMPD_distribute:
case OMPD_ordered:
case OMPD_atomic:
case OMPD_distribute_simd:
case OMPD_requires:
case OMPD_metadirective:
llvm_unreachable("Unexpected OpenMP directive with num_teams-clause");
case OMPD_unknown:
default:
llvm_unreachable("Unknown OpenMP directive");
}
break;
case OMPC_thread_limit:
switch (DKind) {
case OMPD_target_teams:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
case OMPD_target_teams_loop:
CaptureRegion = OMPD_target;
break;
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_teams:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_loop:
// Do not capture thread_limit-clause expressions.
break;
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_task:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_target_data:
case OMPD_target_enter_data:
case OMPD_target_exit_data:
case OMPD_target_update:
case OMPD_cancel:
case OMPD_parallel:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_parallel_for:
case OMPD_parallel_for_simd:
case OMPD_parallel_loop:
case OMPD_target:
case OMPD_target_simd:
case OMPD_target_parallel:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_parallel_loop:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_cancellation_point:
case OMPD_flush:
case OMPD_depobj:
case OMPD_scan:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_loop:
case OMPD_simd:
case OMPD_tile:
case OMPD_unroll:
case OMPD_for:
case OMPD_for_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_masked:
case OMPD_critical:
case OMPD_taskgroup:
case OMPD_distribute:
case OMPD_ordered:
case OMPD_atomic:
case OMPD_distribute_simd:
case OMPD_requires:
case OMPD_metadirective:
llvm_unreachable("Unexpected OpenMP directive with thread_limit-clause");
case OMPD_unknown:
default:
llvm_unreachable("Unknown OpenMP directive");
}
break;
case OMPC_schedule:
switch (DKind) {
case OMPD_parallel_for:
case OMPD_parallel_for_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
CaptureRegion = OMPD_parallel;
break;
case OMPD_for:
case OMPD_for_simd:
// Do not capture schedule-clause expressions.
break;
case OMPD_task:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_target_data:
case OMPD_target_enter_data:
case OMPD_target_exit_data:
case OMPD_target_update:
case OMPD_teams:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_target:
case OMPD_target_simd:
case OMPD_target_parallel:
case OMPD_cancel:
case OMPD_parallel:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_cancellation_point:
case OMPD_flush:
case OMPD_depobj:
case OMPD_scan:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_loop:
case OMPD_teams_loop:
case OMPD_target_teams_loop:
case OMPD_parallel_loop:
case OMPD_target_parallel_loop:
case OMPD_simd:
case OMPD_tile:
case OMPD_unroll:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_masked:
case OMPD_critical:
case OMPD_taskgroup:
case OMPD_distribute:
case OMPD_ordered:
case OMPD_atomic:
case OMPD_distribute_simd:
case OMPD_target_teams:
case OMPD_requires:
case OMPD_metadirective:
llvm_unreachable("Unexpected OpenMP directive with schedule clause");
case OMPD_unknown:
default:
llvm_unreachable("Unknown OpenMP directive");
}
break;
case OMPC_dist_schedule:
switch (DKind) {
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
CaptureRegion = OMPD_teams;
break;
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_distribute:
case OMPD_distribute_simd:
// Do not capture dist_schedule-clause expressions.
break;
case OMPD_parallel_for:
case OMPD_parallel_for_simd:
case OMPD_target_parallel_for_simd:
case OMPD_target_parallel_for:
case OMPD_task:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_target_data:
case OMPD_target_enter_data:
case OMPD_target_exit_data:
case OMPD_target_update:
case OMPD_teams:
case OMPD_target:
case OMPD_target_simd:
case OMPD_target_parallel:
case OMPD_cancel:
case OMPD_parallel:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_cancellation_point:
case OMPD_flush:
case OMPD_depobj:
case OMPD_scan:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_loop:
case OMPD_teams_loop:
case OMPD_target_teams_loop:
case OMPD_parallel_loop:
case OMPD_target_parallel_loop:
case OMPD_simd:
case OMPD_tile:
case OMPD_unroll:
case OMPD_for:
case OMPD_for_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_masked:
case OMPD_critical:
case OMPD_taskgroup:
case OMPD_ordered:
case OMPD_atomic:
case OMPD_target_teams:
case OMPD_requires:
case OMPD_metadirective:
llvm_unreachable("Unexpected OpenMP directive with dist_schedule clause");
case OMPD_unknown:
default:
llvm_unreachable("Unknown OpenMP directive");
}
break;
case OMPC_device:
switch (DKind) {
case OMPD_target_update:
case OMPD_target_enter_data:
case OMPD_target_exit_data:
case OMPD_target:
case OMPD_target_simd:
case OMPD_target_teams:
case OMPD_target_parallel:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_parallel_loop:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
case OMPD_target_teams_loop:
case OMPD_dispatch:
CaptureRegion = OMPD_task;
break;
case OMPD_target_data:
case OMPD_interop:
// Do not capture device-clause expressions.
break;
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_teams:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_task:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_cancel:
case OMPD_parallel:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_parallel_for:
case OMPD_parallel_for_simd:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_cancellation_point:
case OMPD_flush:
case OMPD_depobj:
case OMPD_scan:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_loop:
case OMPD_teams_loop:
case OMPD_parallel_loop:
case OMPD_simd:
case OMPD_tile:
case OMPD_unroll:
case OMPD_for:
case OMPD_for_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_masked:
case OMPD_critical:
case OMPD_taskgroup:
case OMPD_distribute:
case OMPD_ordered:
case OMPD_atomic:
case OMPD_distribute_simd:
case OMPD_requires:
case OMPD_metadirective:
llvm_unreachable("Unexpected OpenMP directive with device-clause");
case OMPD_unknown:
default:
llvm_unreachable("Unknown OpenMP directive");
}
break;
case OMPC_grainsize:
case OMPC_num_tasks:
case OMPC_final:
case OMPC_priority:
switch (DKind) {
case OMPD_task:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
break;
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
CaptureRegion = OMPD_parallel;
break;
case OMPD_target_update:
case OMPD_target_enter_data:
case OMPD_target_exit_data:
case OMPD_target:
case OMPD_target_simd:
case OMPD_target_teams:
case OMPD_target_parallel:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
case OMPD_target_data:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_teams:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_cancel:
case OMPD_parallel:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_parallel_for:
case OMPD_parallel_for_simd:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_cancellation_point:
case OMPD_flush:
case OMPD_depobj:
case OMPD_scan:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_loop:
case OMPD_teams_loop:
case OMPD_target_teams_loop:
case OMPD_parallel_loop:
case OMPD_target_parallel_loop:
case OMPD_simd:
case OMPD_tile:
case OMPD_unroll:
case OMPD_for:
case OMPD_for_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_masked:
case OMPD_critical:
case OMPD_taskgroup:
case OMPD_distribute:
case OMPD_ordered:
case OMPD_atomic:
case OMPD_distribute_simd:
case OMPD_requires:
case OMPD_metadirective:
llvm_unreachable("Unexpected OpenMP directive with grainsize-clause");
case OMPD_unknown:
default:
llvm_unreachable("Unknown OpenMP directive");
}
break;
case OMPC_novariants:
case OMPC_nocontext:
switch (DKind) {
case OMPD_dispatch:
CaptureRegion = OMPD_task;
break;
default:
llvm_unreachable("Unexpected OpenMP directive");
}
break;
case OMPC_filter:
// Do not capture filter-clause expressions.
break;
case OMPC_when:
if (DKind == OMPD_metadirective) {
CaptureRegion = OMPD_metadirective;
} else if (DKind == OMPD_unknown) {
llvm_unreachable("Unknown OpenMP directive");
} else {
llvm_unreachable("Unexpected OpenMP directive with when clause");
}
break;
case OMPC_firstprivate:
case OMPC_lastprivate:
case OMPC_reduction:
case OMPC_task_reduction:
case OMPC_in_reduction:
case OMPC_linear:
case OMPC_default:
case OMPC_proc_bind:
case OMPC_safelen:
case OMPC_simdlen:
case OMPC_sizes:
case OMPC_allocator:
case OMPC_collapse:
case OMPC_private:
case OMPC_shared:
case OMPC_aligned:
case OMPC_copyin:
case OMPC_copyprivate:
case OMPC_ordered:
case OMPC_nowait:
case OMPC_untied:
case OMPC_mergeable:
case OMPC_threadprivate:
case OMPC_allocate:
case OMPC_flush:
case OMPC_depobj:
case OMPC_read:
case OMPC_write:
case OMPC_update:
case OMPC_capture:
case OMPC_compare:
case OMPC_seq_cst:
case OMPC_acq_rel:
case OMPC_acquire:
case OMPC_release:
case OMPC_relaxed:
case OMPC_depend:
case OMPC_threads:
case OMPC_simd:
case OMPC_map:
case OMPC_nogroup:
case OMPC_hint:
case OMPC_defaultmap:
case OMPC_unknown:
case OMPC_uniform:
case OMPC_to:
case OMPC_from:
case OMPC_use_device_ptr:
case OMPC_use_device_addr:
case OMPC_is_device_ptr:
case OMPC_unified_address:
case OMPC_unified_shared_memory:
case OMPC_reverse_offload:
case OMPC_dynamic_allocators:
case OMPC_atomic_default_mem_order:
case OMPC_device_type:
case OMPC_match:
case OMPC_nontemporal:
case OMPC_order:
case OMPC_destroy:
case OMPC_detach:
case OMPC_inclusive:
case OMPC_exclusive:
case OMPC_uses_allocators:
case OMPC_affinity:
case OMPC_bind:
default:
llvm_unreachable("Unexpected OpenMP clause.");
}
return CaptureRegion;
}
OMPClause *Sema::ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier,
Expr *Condition, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation NameModifierLoc,
SourceLocation ColonLoc,
SourceLocation EndLoc) {
Expr *ValExpr = Condition;
Stmt *HelperValStmt = nullptr;
OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
if (!Condition->isValueDependent() && !Condition->isTypeDependent() &&
!Condition->isInstantiationDependent() &&
!Condition->containsUnexpandedParameterPack()) {
ExprResult Val = CheckBooleanCondition(StartLoc, Condition);
if (Val.isInvalid())
return nullptr;
ValExpr = Val.get();
OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
CaptureRegion = getOpenMPCaptureRegionForClause(
DKind, OMPC_if, LangOpts.OpenMP, NameModifier);
if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
ValExpr = MakeFullExpr(ValExpr).get();
llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
HelperValStmt = buildPreInits(Context, Captures);
}
}
return new (Context)
OMPIfClause(NameModifier, ValExpr, HelperValStmt, CaptureRegion, StartLoc,
LParenLoc, NameModifierLoc, ColonLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPFinalClause(Expr *Condition,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
Expr *ValExpr = Condition;
Stmt *HelperValStmt = nullptr;
OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
if (!Condition->isValueDependent() && !Condition->isTypeDependent() &&
!Condition->isInstantiationDependent() &&
!Condition->containsUnexpandedParameterPack()) {
ExprResult Val = CheckBooleanCondition(StartLoc, Condition);
if (Val.isInvalid())
return nullptr;
ValExpr = MakeFullExpr(Val.get()).get();
OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
CaptureRegion =
getOpenMPCaptureRegionForClause(DKind, OMPC_final, LangOpts.OpenMP);
if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
ValExpr = MakeFullExpr(ValExpr).get();
llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
HelperValStmt = buildPreInits(Context, Captures);
}
}
return new (Context) OMPFinalClause(ValExpr, HelperValStmt, CaptureRegion,
StartLoc, LParenLoc, EndLoc);
}
ExprResult Sema::PerformOpenMPImplicitIntegerConversion(SourceLocation Loc,
Expr *Op) {
if (!Op)
return ExprError();
class IntConvertDiagnoser : public ICEConvertDiagnoser {
public:
IntConvertDiagnoser()
: ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false, false, true) {}
SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_omp_not_integral) << T;
}
SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_omp_incomplete_type) << T;
}
SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
QualType T,
QualType ConvTy) override {
return S.Diag(Loc, diag::err_omp_explicit_conversion) << T << ConvTy;
}
SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_omp_conversion_here)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_omp_ambiguous_conversion) << T;
}
SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_omp_conversion_here)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaDiagnosticBuilder diagnoseConversion(Sema &, SourceLocation, QualType,
QualType) override {
llvm_unreachable("conversion functions are permitted");
}
} ConvertDiagnoser;
return PerformContextualImplicitConversion(Loc, Op, ConvertDiagnoser);
}
static bool
isNonNegativeIntegerValue(Expr *&ValExpr, Sema &SemaRef, OpenMPClauseKind CKind,
bool StrictlyPositive, bool BuildCapture = false,
OpenMPDirectiveKind DKind = OMPD_unknown,
OpenMPDirectiveKind *CaptureRegion = nullptr,
Stmt **HelperValStmt = nullptr) {
if (!ValExpr->isTypeDependent() && !ValExpr->isValueDependent() &&
!ValExpr->isInstantiationDependent()) {
SourceLocation Loc = ValExpr->getExprLoc();
ExprResult Value =
SemaRef.PerformOpenMPImplicitIntegerConversion(Loc, ValExpr);
if (Value.isInvalid())
return false;
ValExpr = Value.get();
// The expression must evaluate to a non-negative integer value.
if (Optional<llvm::APSInt> Result =
ValExpr->getIntegerConstantExpr(SemaRef.Context)) {
if (Result->isSigned() &&
!((!StrictlyPositive && Result->isNonNegative()) ||
(StrictlyPositive && Result->isStrictlyPositive()))) {
SemaRef.Diag(Loc, diag::err_omp_negative_expression_in_clause)
<< getOpenMPClauseName(CKind) << (StrictlyPositive ? 1 : 0)
<< ValExpr->getSourceRange();
return false;
}
}
if (!BuildCapture)
return true;
*CaptureRegion =
getOpenMPCaptureRegionForClause(DKind, CKind, SemaRef.LangOpts.OpenMP);
if (*CaptureRegion != OMPD_unknown &&
!SemaRef.CurContext->isDependentContext()) {
ValExpr = SemaRef.MakeFullExpr(ValExpr).get();
llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
ValExpr = tryBuildCapture(SemaRef, ValExpr, Captures).get();
*HelperValStmt = buildPreInits(SemaRef.Context, Captures);
}
}
return true;
}
OMPClause *Sema::ActOnOpenMPNumThreadsClause(Expr *NumThreads,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
Expr *ValExpr = NumThreads;
Stmt *HelperValStmt = nullptr;
// OpenMP [2.5, Restrictions]
// The num_threads expression must evaluate to a positive integer value.
if (!isNonNegativeIntegerValue(ValExpr, *this, OMPC_num_threads,
/*StrictlyPositive=*/true))
return nullptr;
OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
OpenMPDirectiveKind CaptureRegion =
getOpenMPCaptureRegionForClause(DKind, OMPC_num_threads, LangOpts.OpenMP);
if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
ValExpr = MakeFullExpr(ValExpr).get();
llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
HelperValStmt = buildPreInits(Context, Captures);
}
return new (Context) OMPNumThreadsClause(
ValExpr, HelperValStmt, CaptureRegion, StartLoc, LParenLoc, EndLoc);
}
ExprResult Sema::VerifyPositiveIntegerConstantInClause(Expr *E,
OpenMPClauseKind CKind,
bool StrictlyPositive,
bool SuppressExprDiags) {
if (!E)
return ExprError();
if (E->isValueDependent() || E->isTypeDependent() ||
E->isInstantiationDependent() || E->containsUnexpandedParameterPack())
return E;
llvm::APSInt Result;
ExprResult ICE;
if (SuppressExprDiags) {
// Use a custom diagnoser that suppresses 'note' diagnostics about the
// expression.
struct SuppressedDiagnoser : public Sema::VerifyICEDiagnoser {
SuppressedDiagnoser() : VerifyICEDiagnoser(/*Suppress=*/true) {}
Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
SourceLocation Loc) override {
llvm_unreachable("Diagnostic suppressed");
}
} Diagnoser;
ICE = VerifyIntegerConstantExpression(E, &Result, Diagnoser, AllowFold);
} else {
ICE = VerifyIntegerConstantExpression(E, &Result, /*FIXME*/ AllowFold);
}
if (ICE.isInvalid())
return ExprError();
if ((StrictlyPositive && !Result.isStrictlyPositive()) ||
(!StrictlyPositive && !Result.isNonNegative())) {
Diag(E->getExprLoc(), diag::err_omp_negative_expression_in_clause)
<< getOpenMPClauseName(CKind) << (StrictlyPositive ? 1 : 0)
<< E->getSourceRange();
return ExprError();
}
if ((CKind == OMPC_aligned || CKind == OMPC_align) && !Result.isPowerOf2()) {
Diag(E->getExprLoc(), diag::warn_omp_alignment_not_power_of_two)
<< E->getSourceRange();
return ExprError();
}
if (CKind == OMPC_collapse && DSAStack->getAssociatedLoops() == 1)
DSAStack->setAssociatedLoops(Result.getExtValue());
else if (CKind == OMPC_ordered)
DSAStack->setAssociatedLoops(Result.getExtValue());
return ICE;
}
OMPClause *Sema::ActOnOpenMPSafelenClause(Expr *Len, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
// OpenMP [2.8.1, simd construct, Description]
// The parameter of the safelen clause must be a constant
// positive integer expression.
ExprResult Safelen = VerifyPositiveIntegerConstantInClause(Len, OMPC_safelen);
if (Safelen.isInvalid())
return nullptr;
return new (Context)
OMPSafelenClause(Safelen.get(), StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPSimdlenClause(Expr *Len, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
// OpenMP [2.8.1, simd construct, Description]
// The parameter of the simdlen clause must be a constant
// positive integer expression.
ExprResult Simdlen = VerifyPositiveIntegerConstantInClause(Len, OMPC_simdlen);
if (Simdlen.isInvalid())
return nullptr;
return new (Context)
OMPSimdlenClause(Simdlen.get(), StartLoc, LParenLoc, EndLoc);
}
/// Tries to find omp_allocator_handle_t type.
static bool findOMPAllocatorHandleT(Sema &S, SourceLocation Loc,
DSAStackTy *Stack) {
QualType OMPAllocatorHandleT = Stack->getOMPAllocatorHandleT();
if (!OMPAllocatorHandleT.isNull())
return true;
// Build the predefined allocator expressions.
bool ErrorFound = false;
for (int I = 0; I < OMPAllocateDeclAttr::OMPUserDefinedMemAlloc; ++I) {
auto AllocatorKind = static_cast<OMPAllocateDeclAttr::AllocatorTypeTy>(I);
StringRef Allocator =
OMPAllocateDeclAttr::ConvertAllocatorTypeTyToStr(AllocatorKind);
DeclarationName AllocatorName = &S.getASTContext().Idents.get(Allocator);
auto *VD = dyn_cast_or_null<ValueDecl>(
S.LookupSingleName(S.TUScope, AllocatorName, Loc, Sema::LookupAnyName));
if (!VD) {
ErrorFound = true;
break;
}
QualType AllocatorType =
VD->getType().getNonLValueExprType(S.getASTContext());
ExprResult Res = S.BuildDeclRefExpr(VD, AllocatorType, VK_LValue, Loc);
if (!Res.isUsable()) {
ErrorFound = true;
break;
}
if (OMPAllocatorHandleT.isNull())
OMPAllocatorHandleT = AllocatorType;
if (!S.getASTContext().hasSameType(OMPAllocatorHandleT, AllocatorType)) {
ErrorFound = true;
break;
}
Stack->setAllocator(AllocatorKind, Res.get());
}
if (ErrorFound) {
S.Diag(Loc, diag::err_omp_implied_type_not_found)
<< "omp_allocator_handle_t";
return false;
}
OMPAllocatorHandleT.addConst();
Stack->setOMPAllocatorHandleT(OMPAllocatorHandleT);
return true;
}
OMPClause *Sema::ActOnOpenMPAllocatorClause(Expr *A, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
// OpenMP [2.11.3, allocate Directive, Description]
// allocator is an expression of omp_allocator_handle_t type.
if (!findOMPAllocatorHandleT(*this, A->getExprLoc(), DSAStack))
return nullptr;
ExprResult Allocator = DefaultLvalueConversion(A);
if (Allocator.isInvalid())
return nullptr;
Allocator = PerformImplicitConversion(Allocator.get(),
DSAStack->getOMPAllocatorHandleT(),
Sema::AA_Initializing,
/*AllowExplicit=*/true);
if (Allocator.isInvalid())
return nullptr;
return new (Context)
OMPAllocatorClause(Allocator.get(), StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPCollapseClause(Expr *NumForLoops,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
// OpenMP [2.7.1, loop construct, Description]
// OpenMP [2.8.1, simd construct, Description]
// OpenMP [2.9.6, distribute construct, Description]
// The parameter of the collapse clause must be a constant
// positive integer expression.
ExprResult NumForLoopsResult =
VerifyPositiveIntegerConstantInClause(NumForLoops, OMPC_collapse);
if (NumForLoopsResult.isInvalid())
return nullptr;
return new (Context)
OMPCollapseClause(NumForLoopsResult.get(), StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPOrderedClause(SourceLocation StartLoc,
SourceLocation EndLoc,
SourceLocation LParenLoc,
Expr *NumForLoops) {
// OpenMP [2.7.1, loop construct, Description]
// OpenMP [2.8.1, simd construct, Description]
// OpenMP [2.9.6, distribute construct, Description]
// The parameter of the ordered clause must be a constant
// positive integer expression if any.
if (NumForLoops && LParenLoc.isValid()) {
ExprResult NumForLoopsResult =
VerifyPositiveIntegerConstantInClause(NumForLoops, OMPC_ordered);
if (NumForLoopsResult.isInvalid())
return nullptr;
NumForLoops = NumForLoopsResult.get();
} else {
NumForLoops = nullptr;
}
auto *Clause = OMPOrderedClause::Create(
Context, NumForLoops, NumForLoops ? DSAStack->getAssociatedLoops() : 0,
StartLoc, LParenLoc, EndLoc);
DSAStack->setOrderedRegion(/*IsOrdered=*/true, NumForLoops, Clause);
return Clause;
}
OMPClause *Sema::ActOnOpenMPSimpleClause(
OpenMPClauseKind Kind, unsigned Argument, SourceLocation ArgumentLoc,
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) {
OMPClause *Res = nullptr;
switch (Kind) {
case OMPC_default:
Res = ActOnOpenMPDefaultClause(static_cast<DefaultKind>(Argument),
ArgumentLoc, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_proc_bind:
Res = ActOnOpenMPProcBindClause(static_cast<ProcBindKind>(Argument),
ArgumentLoc, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_atomic_default_mem_order:
Res = ActOnOpenMPAtomicDefaultMemOrderClause(
static_cast<OpenMPAtomicDefaultMemOrderClauseKind>(Argument),
ArgumentLoc, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_order:
Res = ActOnOpenMPOrderClause(static_cast<OpenMPOrderClauseKind>(Argument),
ArgumentLoc, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_update:
Res = ActOnOpenMPUpdateClause(static_cast<OpenMPDependClauseKind>(Argument),
ArgumentLoc, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_bind:
Res = ActOnOpenMPBindClause(static_cast<OpenMPBindClauseKind>(Argument),
ArgumentLoc, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_if:
case OMPC_final:
case OMPC_num_threads:
case OMPC_safelen:
case OMPC_simdlen:
case OMPC_sizes:
case OMPC_allocator:
case OMPC_collapse:
case OMPC_schedule:
case OMPC_private:
case OMPC_firstprivate:
case OMPC_lastprivate:
case OMPC_shared:
case OMPC_reduction:
case OMPC_task_reduction:
case OMPC_in_reduction:
case OMPC_linear:
case OMPC_aligned:
case OMPC_copyin:
case OMPC_copyprivate:
case OMPC_ordered:
case OMPC_nowait:
case OMPC_untied:
case OMPC_mergeable:
case OMPC_threadprivate:
case OMPC_allocate:
case OMPC_flush:
case OMPC_depobj:
case OMPC_read:
case OMPC_write:
case OMPC_capture:
case OMPC_compare:
case OMPC_seq_cst:
case OMPC_acq_rel:
case OMPC_acquire:
case OMPC_release:
case OMPC_relaxed:
case OMPC_depend:
case OMPC_device:
case OMPC_threads:
case OMPC_simd:
case OMPC_map:
case OMPC_num_teams:
case OMPC_thread_limit:
case OMPC_priority:
case OMPC_grainsize:
case OMPC_nogroup:
case OMPC_num_tasks:
case OMPC_hint:
case OMPC_dist_schedule:
case OMPC_defaultmap:
case OMPC_unknown:
case OMPC_uniform:
case OMPC_to:
case OMPC_from:
case OMPC_use_device_ptr:
case OMPC_use_device_addr:
case OMPC_is_device_ptr:
case OMPC_has_device_addr:
case OMPC_unified_address:
case OMPC_unified_shared_memory:
case OMPC_reverse_offload:
case OMPC_dynamic_allocators:
case OMPC_device_type:
case OMPC_match:
case OMPC_nontemporal:
case OMPC_destroy:
case OMPC_novariants:
case OMPC_nocontext:
case OMPC_detach:
case OMPC_inclusive:
case OMPC_exclusive:
case OMPC_uses_allocators:
case OMPC_affinity:
case OMPC_when:
default:
llvm_unreachable("Clause is not allowed.");
}
return Res;
}
static std::string
getListOfPossibleValues(OpenMPClauseKind K, unsigned First, unsigned Last,
ArrayRef<unsigned> Exclude = llvm::None) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
unsigned Skipped = Exclude.size();
auto S = Exclude.begin(), E = Exclude.end();
for (unsigned I = First; I < Last; ++I) {
if (std::find(S, E, I) != E) {
--Skipped;
continue;
}
Out << "'" << getOpenMPSimpleClauseTypeName(K, I) << "'";
if (I + Skipped + 2 == Last)
Out << " or ";
else if (I + Skipped + 1 != Last)
Out << ", ";
}
return std::string(Out.str());
}
OMPClause *Sema::ActOnOpenMPDefaultClause(DefaultKind Kind,
SourceLocation KindKwLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
if (Kind == OMP_DEFAULT_unknown) {
Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
<< getListOfPossibleValues(OMPC_default, /*First=*/0,
/*Last=*/unsigned(OMP_DEFAULT_unknown))
<< getOpenMPClauseName(OMPC_default);
return nullptr;
}
switch (Kind) {
case OMP_DEFAULT_none:
DSAStack->setDefaultDSANone(KindKwLoc);
break;
case OMP_DEFAULT_shared:
DSAStack->setDefaultDSAShared(KindKwLoc);
break;
case OMP_DEFAULT_firstprivate:
DSAStack->setDefaultDSAFirstPrivate(KindKwLoc);
break;
default:
llvm_unreachable("DSA unexpected in OpenMP default clause");
}
return new (Context)
OMPDefaultClause(Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPProcBindClause(ProcBindKind Kind,
SourceLocation KindKwLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
if (Kind == OMP_PROC_BIND_unknown) {
Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
<< getListOfPossibleValues(OMPC_proc_bind,
/*First=*/unsigned(OMP_PROC_BIND_master),
/*Last=*/
unsigned(LangOpts.OpenMP > 50
? OMP_PROC_BIND_primary
: OMP_PROC_BIND_spread) +
1)
<< getOpenMPClauseName(OMPC_proc_bind);
return nullptr;
}
if (Kind == OMP_PROC_BIND_primary && LangOpts.OpenMP < 51)
Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
<< getListOfPossibleValues(OMPC_proc_bind,
/*First=*/unsigned(OMP_PROC_BIND_master),
/*Last=*/
unsigned(OMP_PROC_BIND_spread) + 1)
<< getOpenMPClauseName(OMPC_proc_bind);
return new (Context)
OMPProcBindClause(Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPAtomicDefaultMemOrderClause(
OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindKwLoc,
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) {
if (Kind == OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown) {
Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
<< getListOfPossibleValues(
OMPC_atomic_default_mem_order, /*First=*/0,
/*Last=*/OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown)
<< getOpenMPClauseName(OMPC_atomic_default_mem_order);
return nullptr;
}
return new (Context) OMPAtomicDefaultMemOrderClause(Kind, KindKwLoc, StartLoc,
LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPOrderClause(OpenMPOrderClauseKind Kind,
SourceLocation KindKwLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
if (Kind == OMPC_ORDER_unknown) {
static_assert(OMPC_ORDER_unknown > 0,
"OMPC_ORDER_unknown not greater than 0");
Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
<< getListOfPossibleValues(OMPC_order, /*First=*/0,
/*Last=*/OMPC_ORDER_unknown)
<< getOpenMPClauseName(OMPC_order);
return nullptr;
}
return new (Context)
OMPOrderClause(Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPUpdateClause(OpenMPDependClauseKind Kind,
SourceLocation KindKwLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
if (Kind == OMPC_DEPEND_unknown || Kind == OMPC_DEPEND_source ||
Kind == OMPC_DEPEND_sink || Kind == OMPC_DEPEND_depobj) {
SmallVector<unsigned> Except = {OMPC_DEPEND_source, OMPC_DEPEND_sink,
OMPC_DEPEND_depobj};
if (LangOpts.OpenMP < 51)
Except.push_back(OMPC_DEPEND_inoutset);
Diag(KindKwLoc, diag::err_omp_unexpected_clause_value)
<< getListOfPossibleValues(OMPC_depend, /*First=*/0,
/*Last=*/OMPC_DEPEND_unknown, Except)
<< getOpenMPClauseName(OMPC_update);
return nullptr;
}
return OMPUpdateClause::Create(Context, StartLoc, LParenLoc, KindKwLoc, Kind,
EndLoc);
}
OMPClause *Sema::ActOnOpenMPSizesClause(ArrayRef<Expr *> SizeExprs,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
for (Expr *SizeExpr : SizeExprs) {
ExprResult NumForLoopsResult = VerifyPositiveIntegerConstantInClause(
SizeExpr, OMPC_sizes, /*StrictlyPositive=*/true);
if (!NumForLoopsResult.isUsable())
return nullptr;
}
DSAStack->setAssociatedLoops(SizeExprs.size());
return OMPSizesClause::Create(Context, StartLoc, LParenLoc, EndLoc,
SizeExprs);
}
OMPClause *Sema::ActOnOpenMPFullClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return OMPFullClause::Create(Context, StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPPartialClause(Expr *FactorExpr,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
if (FactorExpr) {
// If an argument is specified, it must be a constant (or an unevaluated
// template expression).
ExprResult FactorResult = VerifyPositiveIntegerConstantInClause(
FactorExpr, OMPC_partial, /*StrictlyPositive=*/true);
if (FactorResult.isInvalid())
return nullptr;
FactorExpr = FactorResult.get();
}
return OMPPartialClause::Create(Context, StartLoc, LParenLoc, EndLoc,
FactorExpr);
}
OMPClause *Sema::ActOnOpenMPAlignClause(Expr *A, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
ExprResult AlignVal;
AlignVal = VerifyPositiveIntegerConstantInClause(A, OMPC_align);
if (AlignVal.isInvalid())
return nullptr;
return OMPAlignClause::Create(Context, AlignVal.get(), StartLoc, LParenLoc,
EndLoc);
}
OMPClause *Sema::ActOnOpenMPSingleExprWithArgClause(
OpenMPClauseKind Kind, ArrayRef<unsigned> Argument, Expr *Expr,
SourceLocation StartLoc, SourceLocation LParenLoc,
ArrayRef<SourceLocation> ArgumentLoc, SourceLocation DelimLoc,
SourceLocation EndLoc) {
OMPClause *Res = nullptr;
switch (Kind) {
case OMPC_schedule:
enum { Modifier1, Modifier2, ScheduleKind, NumberOfElements };
assert(Argument.size() == NumberOfElements &&
ArgumentLoc.size() == NumberOfElements);
Res = ActOnOpenMPScheduleClause(
static_cast<OpenMPScheduleClauseModifier>(Argument[Modifier1]),
static_cast<OpenMPScheduleClauseModifier>(Argument[Modifier2]),
static_cast<OpenMPScheduleClauseKind>(Argument[ScheduleKind]), Expr,
StartLoc, LParenLoc, ArgumentLoc[Modifier1], ArgumentLoc[Modifier2],
ArgumentLoc[ScheduleKind], DelimLoc, EndLoc);
break;
case OMPC_if:
assert(Argument.size() == 1 && ArgumentLoc.size() == 1);
Res = ActOnOpenMPIfClause(static_cast<OpenMPDirectiveKind>(Argument.back()),
Expr, StartLoc, LParenLoc, ArgumentLoc.back(),
DelimLoc, EndLoc);
break;
case OMPC_dist_schedule:
Res = ActOnOpenMPDistScheduleClause(
static_cast<OpenMPDistScheduleClauseKind>(Argument.back()), Expr,
StartLoc, LParenLoc, ArgumentLoc.back(), DelimLoc, EndLoc);
break;
case OMPC_defaultmap:
enum { Modifier, DefaultmapKind };
Res = ActOnOpenMPDefaultmapClause(
static_cast<OpenMPDefaultmapClauseModifier>(Argument[Modifier]),
static_cast<OpenMPDefaultmapClauseKind>(Argument[DefaultmapKind]),
StartLoc, LParenLoc, ArgumentLoc[Modifier], ArgumentLoc[DefaultmapKind],
EndLoc);
break;
case OMPC_device:
assert(Argument.size() == 1 && ArgumentLoc.size() == 1);
Res = ActOnOpenMPDeviceClause(
static_cast<OpenMPDeviceClauseModifier>(Argument.back()), Expr,
StartLoc, LParenLoc, ArgumentLoc.back(), EndLoc);
break;
case OMPC_final:
case OMPC_num_threads:
case OMPC_safelen:
case OMPC_simdlen:
case OMPC_sizes:
case OMPC_allocator:
case OMPC_collapse:
case OMPC_default:
case OMPC_proc_bind:
case OMPC_private:
case OMPC_firstprivate:
case OMPC_lastprivate:
case OMPC_shared:
case OMPC_reduction:
case OMPC_task_reduction:
case OMPC_in_reduction:
case OMPC_linear:
case OMPC_aligned:
case OMPC_copyin:
case OMPC_copyprivate:
case OMPC_ordered:
case OMPC_nowait:
case OMPC_untied:
case OMPC_mergeable:
case OMPC_threadprivate:
case OMPC_allocate:
case OMPC_flush:
case OMPC_depobj:
case OMPC_read:
case OMPC_write:
case OMPC_update:
case OMPC_capture:
case OMPC_compare:
case OMPC_seq_cst:
case OMPC_acq_rel:
case OMPC_acquire:
case OMPC_release:
case OMPC_relaxed:
case OMPC_depend:
case OMPC_threads:
case OMPC_simd:
case OMPC_map:
case OMPC_num_teams:
case OMPC_thread_limit:
case OMPC_priority:
case OMPC_grainsize:
case OMPC_nogroup:
case OMPC_num_tasks:
case OMPC_hint:
case OMPC_unknown:
case OMPC_uniform:
case OMPC_to:
case OMPC_from:
case OMPC_use_device_ptr:
case OMPC_use_device_addr:
case OMPC_is_device_ptr:
case OMPC_has_device_addr:
case OMPC_unified_address:
case OMPC_unified_shared_memory:
case OMPC_reverse_offload:
case OMPC_dynamic_allocators:
case OMPC_atomic_default_mem_order:
case OMPC_device_type:
case OMPC_match:
case OMPC_nontemporal:
case OMPC_order:
case OMPC_destroy:
case OMPC_novariants:
case OMPC_nocontext:
case OMPC_detach:
case OMPC_inclusive:
case OMPC_exclusive:
case OMPC_uses_allocators:
case OMPC_affinity:
case OMPC_when:
case OMPC_bind:
default:
llvm_unreachable("Clause is not allowed.");
}
return Res;
}
static bool checkScheduleModifiers(Sema &S, OpenMPScheduleClauseModifier M1,
OpenMPScheduleClauseModifier M2,
SourceLocation M1Loc, SourceLocation M2Loc) {
if (M1 == OMPC_SCHEDULE_MODIFIER_unknown && M1Loc.isValid()) {
SmallVector<unsigned, 2> Excluded;
if (M2 != OMPC_SCHEDULE_MODIFIER_unknown)
Excluded.push_back(M2);
if (M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)
Excluded.push_back(OMPC_SCHEDULE_MODIFIER_monotonic);
if (M2 == OMPC_SCHEDULE_MODIFIER_monotonic)
Excluded.push_back(OMPC_SCHEDULE_MODIFIER_nonmonotonic);
S.Diag(M1Loc, diag::err_omp_unexpected_clause_value)
<< getListOfPossibleValues(OMPC_schedule,
/*First=*/OMPC_SCHEDULE_MODIFIER_unknown + 1,
/*Last=*/OMPC_SCHEDULE_MODIFIER_last,
Excluded)
<< getOpenMPClauseName(OMPC_schedule);
return true;
}
return false;
}
OMPClause *Sema::ActOnOpenMPScheduleClause(
OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc) {
if (checkScheduleModifiers(*this, M1, M2, M1Loc, M2Loc) ||
checkScheduleModifiers(*this, M2, M1, M2Loc, M1Loc))
return nullptr;
// OpenMP, 2.7.1, Loop Construct, Restrictions
// Either the monotonic modifier or the nonmonotonic modifier can be specified
// but not both.
if ((M1 == M2 && M1 != OMPC_SCHEDULE_MODIFIER_unknown) ||
(M1 == OMPC_SCHEDULE_MODIFIER_monotonic &&
M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic) ||
(M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic &&
M2 == OMPC_SCHEDULE_MODIFIER_monotonic)) {
Diag(M2Loc, diag::err_omp_unexpected_schedule_modifier)
<< getOpenMPSimpleClauseTypeName(OMPC_schedule, M2)
<< getOpenMPSimpleClauseTypeName(OMPC_schedule, M1);
return nullptr;
}
if (Kind == OMPC_SCHEDULE_unknown) {
std::string Values;
if (M1Loc.isInvalid() && M2Loc.isInvalid()) {
unsigned Exclude[] = {OMPC_SCHEDULE_unknown};
Values = getListOfPossibleValues(OMPC_schedule, /*First=*/0,
/*Last=*/OMPC_SCHEDULE_MODIFIER_last,
Exclude);
} else {
Values = getListOfPossibleValues(OMPC_schedule, /*First=*/0,
/*Last=*/OMPC_SCHEDULE_unknown);
}
Diag(KindLoc, diag::err_omp_unexpected_clause_value)
<< Values << getOpenMPClauseName(OMPC_schedule);
return nullptr;
}
// OpenMP, 2.7.1, Loop Construct, Restrictions
// The nonmonotonic modifier can only be specified with schedule(dynamic) or
// schedule(guided).
// OpenMP 5.0 does not have this restriction.
if (LangOpts.OpenMP < 50 &&
(M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic ||
M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic) &&
Kind != OMPC_SCHEDULE_dynamic && Kind != OMPC_SCHEDULE_guided) {
Diag(M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic ? M1Loc : M2Loc,
diag::err_omp_schedule_nonmonotonic_static);
return nullptr;
}
Expr *ValExpr = ChunkSize;
Stmt *HelperValStmt = nullptr;
if (ChunkSize) {
if (!ChunkSize->isValueDependent() && !ChunkSize->isTypeDependent() &&
!ChunkSize->isInstantiationDependent() &&
!ChunkSize->containsUnexpandedParameterPack()) {
SourceLocation ChunkSizeLoc = ChunkSize->getBeginLoc();
ExprResult Val =
PerformOpenMPImplicitIntegerConversion(ChunkSizeLoc, ChunkSize);
if (Val.isInvalid())
return nullptr;
ValExpr = Val.get();
// OpenMP [2.7.1, Restrictions]
// chunk_size must be a loop invariant integer expression with a positive
// value.
if (Optional<llvm::APSInt> Result =
ValExpr->getIntegerConstantExpr(Context)) {
if (Result->isSigned() && !Result->isStrictlyPositive()) {
Diag(ChunkSizeLoc, diag::err_omp_negative_expression_in_clause)
<< "schedule" << 1 << ChunkSize->getSourceRange();
return nullptr;
}
} else if (getOpenMPCaptureRegionForClause(
DSAStack->getCurrentDirective(), OMPC_schedule,
LangOpts.OpenMP) != OMPD_unknown &&
!CurContext->isDependentContext()) {
ValExpr = MakeFullExpr(ValExpr).get();
llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
HelperValStmt = buildPreInits(Context, Captures);
}
}
}
return new (Context)
OMPScheduleClause(StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc, Kind,
ValExpr, HelperValStmt, M1, M1Loc, M2, M2Loc);
}
OMPClause *Sema::ActOnOpenMPClause(OpenMPClauseKind Kind,
SourceLocation StartLoc,
SourceLocation EndLoc) {
OMPClause *Res = nullptr;
switch (Kind) {
case OMPC_ordered:
Res = ActOnOpenMPOrderedClause(StartLoc, EndLoc);
break;
case OMPC_nowait:
Res = ActOnOpenMPNowaitClause(StartLoc, EndLoc);
break;
case OMPC_untied:
Res = ActOnOpenMPUntiedClause(StartLoc, EndLoc);
break;
case OMPC_mergeable:
Res = ActOnOpenMPMergeableClause(StartLoc, EndLoc);
break;
case OMPC_read:
Res = ActOnOpenMPReadClause(StartLoc, EndLoc);
break;
case OMPC_write:
Res = ActOnOpenMPWriteClause(StartLoc, EndLoc);
break;
case OMPC_update:
Res = ActOnOpenMPUpdateClause(StartLoc, EndLoc);
break;
case OMPC_capture:
Res = ActOnOpenMPCaptureClause(StartLoc, EndLoc);
break;
case OMPC_compare:
Res = ActOnOpenMPCompareClause(StartLoc, EndLoc);
break;
case OMPC_seq_cst:
Res = ActOnOpenMPSeqCstClause(StartLoc, EndLoc);
break;
case OMPC_acq_rel:
Res = ActOnOpenMPAcqRelClause(StartLoc, EndLoc);
break;
case OMPC_acquire:
Res = ActOnOpenMPAcquireClause(StartLoc, EndLoc);
break;
case OMPC_release:
Res = ActOnOpenMPReleaseClause(StartLoc, EndLoc);
break;
case OMPC_relaxed:
Res = ActOnOpenMPRelaxedClause(StartLoc, EndLoc);
break;
case OMPC_threads:
Res = ActOnOpenMPThreadsClause(StartLoc, EndLoc);
break;
case OMPC_simd:
Res = ActOnOpenMPSIMDClause(StartLoc, EndLoc);
break;
case OMPC_nogroup:
Res = ActOnOpenMPNogroupClause(StartLoc, EndLoc);
break;
case OMPC_unified_address:
Res = ActOnOpenMPUnifiedAddressClause(StartLoc, EndLoc);
break;
case OMPC_unified_shared_memory:
Res = ActOnOpenMPUnifiedSharedMemoryClause(StartLoc, EndLoc);
break;
case OMPC_reverse_offload:
Res = ActOnOpenMPReverseOffloadClause(StartLoc, EndLoc);
break;
case OMPC_dynamic_allocators:
Res = ActOnOpenMPDynamicAllocatorsClause(StartLoc, EndLoc);
break;
case OMPC_destroy:
Res = ActOnOpenMPDestroyClause(/*InteropVar=*/nullptr, StartLoc,
/*LParenLoc=*/SourceLocation(),
/*VarLoc=*/SourceLocation(), EndLoc);
break;
case OMPC_full:
Res = ActOnOpenMPFullClause(StartLoc, EndLoc);
break;
case OMPC_partial:
Res = ActOnOpenMPPartialClause(nullptr, StartLoc, /*LParenLoc=*/{}, EndLoc);
break;
case OMPC_if:
case OMPC_final:
case OMPC_num_threads:
case OMPC_safelen:
case OMPC_simdlen:
case OMPC_sizes:
case OMPC_allocator:
case OMPC_collapse:
case OMPC_schedule:
case OMPC_private:
case OMPC_firstprivate:
case OMPC_lastprivate:
case OMPC_shared:
case OMPC_reduction:
case OMPC_task_reduction:
case OMPC_in_reduction:
case OMPC_linear:
case OMPC_aligned:
case OMPC_copyin:
case OMPC_copyprivate:
case OMPC_default:
case OMPC_proc_bind:
case OMPC_threadprivate:
case OMPC_allocate:
case OMPC_flush:
case OMPC_depobj:
case OMPC_depend:
case OMPC_device:
case OMPC_map:
case OMPC_num_teams:
case OMPC_thread_limit:
case OMPC_priority:
case OMPC_grainsize:
case OMPC_num_tasks:
case OMPC_hint:
case OMPC_dist_schedule:
case OMPC_defaultmap:
case OMPC_unknown:
case OMPC_uniform:
case OMPC_to:
case OMPC_from:
case OMPC_use_device_ptr:
case OMPC_use_device_addr:
case OMPC_is_device_ptr:
case OMPC_has_device_addr:
case OMPC_atomic_default_mem_order:
case OMPC_device_type:
case OMPC_match:
case OMPC_nontemporal:
case OMPC_order:
case OMPC_novariants:
case OMPC_nocontext:
case OMPC_detach:
case OMPC_inclusive:
case OMPC_exclusive:
case OMPC_uses_allocators:
case OMPC_affinity:
case OMPC_when:
default:
llvm_unreachable("Clause is not allowed.");
}
return Res;
}
OMPClause *Sema::ActOnOpenMPNowaitClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
DSAStack->setNowaitRegion();
return new (Context) OMPNowaitClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPUntiedClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
DSAStack->setUntiedRegion();
return new (Context) OMPUntiedClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPMergeableClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPMergeableClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPReadClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPReadClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPWriteClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPWriteClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPUpdateClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return OMPUpdateClause::Create(Context, StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPCaptureClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPCaptureClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPCompareClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPCompareClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPSeqCstClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPSeqCstClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPAcqRelClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPAcqRelClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPAcquireClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPAcquireClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPReleaseClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPReleaseClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPRelaxedClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPRelaxedClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPThreadsClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPThreadsClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPSIMDClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPSIMDClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPNogroupClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPNogroupClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPUnifiedAddressClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPUnifiedSharedMemoryClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPReverseOffloadClause(StartLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc,
SourceLocation EndLoc) {
return new (Context) OMPDynamicAllocatorsClause(StartLoc, EndLoc);
}
StmtResult Sema::ActOnOpenMPInteropDirective(ArrayRef<OMPClause *> Clauses,
SourceLocation StartLoc,
SourceLocation EndLoc) {
// OpenMP 5.1 [2.15.1, interop Construct, Restrictions]
// At least one action-clause must appear on a directive.
if (!hasClauses(Clauses, OMPC_init, OMPC_use, OMPC_destroy, OMPC_nowait)) {
StringRef Expected = "'init', 'use', 'destroy', or 'nowait'";
Diag(StartLoc, diag::err_omp_no_clause_for_directive)
<< Expected << getOpenMPDirectiveName(OMPD_interop);
return StmtError();
}
// OpenMP 5.1 [2.15.1, interop Construct, Restrictions]
// A depend clause can only appear on the directive if a targetsync
// interop-type is present or the interop-var was initialized with
// the targetsync interop-type.
// If there is any 'init' clause diagnose if there is no 'init' clause with
// interop-type of 'targetsync'. Cases involving other directives cannot be
// diagnosed.
const OMPDependClause *DependClause = nullptr;
bool HasInitClause = false;
bool IsTargetSync = false;
for (const OMPClause *C : Clauses) {
if (IsTargetSync)
break;
if (const auto *InitClause = dyn_cast<OMPInitClause>(C)) {
HasInitClause = true;
if (InitClause->getIsTargetSync())
IsTargetSync = true;
} else if (const auto *DC = dyn_cast<OMPDependClause>(C)) {
DependClause = DC;
}
}
if (DependClause && HasInitClause && !IsTargetSync) {
Diag(DependClause->getBeginLoc(), diag::err_omp_interop_bad_depend_clause);
return StmtError();
}
// OpenMP 5.1 [2.15.1, interop Construct, Restrictions]
// Each interop-var may be specified for at most one action-clause of each
// interop construct.
llvm::SmallPtrSet<const VarDecl *, 4> InteropVars;
for (const OMPClause *C : Clauses) {
OpenMPClauseKind ClauseKind = C->getClauseKind();
const DeclRefExpr *DRE = nullptr;
SourceLocation VarLoc;
if (ClauseKind == OMPC_init) {
const auto *IC = cast<OMPInitClause>(C);
VarLoc = IC->getVarLoc();
DRE = dyn_cast_or_null<DeclRefExpr>(IC->getInteropVar());
} else if (ClauseKind == OMPC_use) {
const auto *UC = cast<OMPUseClause>(C);
VarLoc = UC->getVarLoc();
DRE = dyn_cast_or_null<DeclRefExpr>(UC->getInteropVar());
} else if (ClauseKind == OMPC_destroy) {
const auto *DC = cast<OMPDestroyClause>(C);
VarLoc = DC->getVarLoc();
DRE = dyn_cast_or_null<DeclRefExpr>(DC->getInteropVar());
}
if (!DRE)
continue;
if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
if (!InteropVars.insert(VD->getCanonicalDecl()).second) {
Diag(VarLoc, diag::err_omp_interop_var_multiple_actions) << VD;
return StmtError();
}
}
}
return OMPInteropDirective::Create(Context, StartLoc, EndLoc, Clauses);
}
static bool isValidInteropVariable(Sema &SemaRef, Expr *InteropVarExpr,
SourceLocation VarLoc,
OpenMPClauseKind Kind) {
if (InteropVarExpr->isValueDependent() || InteropVarExpr->isTypeDependent() ||
InteropVarExpr->isInstantiationDependent() ||
InteropVarExpr->containsUnexpandedParameterPack())
return true;
const auto *DRE = dyn_cast<DeclRefExpr>(InteropVarExpr);
if (!DRE || !isa<VarDecl>(DRE->getDecl())) {
SemaRef.Diag(VarLoc, diag::err_omp_interop_variable_expected) << 0;
return false;
}
// Interop variable should be of type omp_interop_t.
bool HasError = false;
QualType InteropType;
LookupResult Result(SemaRef, &SemaRef.Context.Idents.get("omp_interop_t"),
VarLoc, Sema::LookupOrdinaryName);
if (SemaRef.LookupName(Result, SemaRef.getCurScope())) {
NamedDecl *ND = Result.getFoundDecl();
if (const auto *TD = dyn_cast<TypeDecl>(ND)) {
InteropType = QualType(TD->getTypeForDecl(), 0);
} else {
HasError = true;
}
} else {
HasError = true;
}
if (HasError) {
SemaRef.Diag(VarLoc, diag::err_omp_implied_type_not_found)
<< "omp_interop_t";
return false;
}
QualType VarType = InteropVarExpr->getType().getUnqualifiedType();
if (!SemaRef.Context.hasSameType(InteropType, VarType)) {
SemaRef.Diag(VarLoc, diag::err_omp_interop_variable_wrong_type);
return false;
}
// OpenMP 5.1 [2.15.1, interop Construct, Restrictions]
// The interop-var passed to init or destroy must be non-const.
if ((Kind == OMPC_init || Kind == OMPC_destroy) &&
isConstNotMutableType(SemaRef, InteropVarExpr->getType())) {
SemaRef.Diag(VarLoc, diag::err_omp_interop_variable_expected)
<< /*non-const*/ 1;
return false;
}
return true;
}
OMPClause *
Sema::ActOnOpenMPInitClause(Expr *InteropVar, ArrayRef<Expr *> PrefExprs,
bool IsTarget, bool IsTargetSync,
SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation VarLoc, SourceLocation EndLoc) {
if (!isValidInteropVariable(*this, InteropVar, VarLoc, OMPC_init))
return nullptr;
// Check prefer_type values. These foreign-runtime-id values are either
// string literals or constant integral expressions.
for (const Expr *E : PrefExprs) {
if (E->isValueDependent() || E->isTypeDependent() ||
E->isInstantiationDependent() || E->containsUnexpandedParameterPack())
continue;
if (E->isIntegerConstantExpr(Context))
continue;
if (isa<StringLiteral>(E))
continue;
Diag(E->getExprLoc(), diag::err_omp_interop_prefer_type);
return nullptr;
}
return OMPInitClause::Create(Context, InteropVar, PrefExprs, IsTarget,
IsTargetSync, StartLoc, LParenLoc, VarLoc,
EndLoc);
}
OMPClause *Sema::ActOnOpenMPUseClause(Expr *InteropVar, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation VarLoc,
SourceLocation EndLoc) {
if (!isValidInteropVariable(*this, InteropVar, VarLoc, OMPC_use))
return nullptr;
return new (Context)
OMPUseClause(InteropVar, StartLoc, LParenLoc, VarLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPDestroyClause(Expr *InteropVar,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation VarLoc,
SourceLocation EndLoc) {
if (InteropVar &&
!isValidInteropVariable(*this, InteropVar, VarLoc, OMPC_destroy))
return nullptr;
return new (Context)
OMPDestroyClause(InteropVar, StartLoc, LParenLoc, VarLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPNovariantsClause(Expr *Condition,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
Expr *ValExpr = Condition;
Stmt *HelperValStmt = nullptr;
OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
if (!Condition->isValueDependent() && !Condition->isTypeDependent() &&
!Condition->isInstantiationDependent() &&
!Condition->containsUnexpandedParameterPack()) {
ExprResult Val = CheckBooleanCondition(StartLoc, Condition);
if (Val.isInvalid())
return nullptr;
ValExpr = MakeFullExpr(Val.get()).get();
OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
CaptureRegion = getOpenMPCaptureRegionForClause(DKind, OMPC_novariants,
LangOpts.OpenMP);
if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
ValExpr = MakeFullExpr(ValExpr).get();
llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
HelperValStmt = buildPreInits(Context, Captures);
}
}
return new (Context) OMPNovariantsClause(
ValExpr, HelperValStmt, CaptureRegion, StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPNocontextClause(Expr *Condition,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
Expr *ValExpr = Condition;
Stmt *HelperValStmt = nullptr;
OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
if (!Condition->isValueDependent() && !Condition->isTypeDependent() &&
!Condition->isInstantiationDependent() &&
!Condition->containsUnexpandedParameterPack()) {
ExprResult Val = CheckBooleanCondition(StartLoc, Condition);
if (Val.isInvalid())
return nullptr;
ValExpr = MakeFullExpr(Val.get()).get();
OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
CaptureRegion =
getOpenMPCaptureRegionForClause(DKind, OMPC_nocontext, LangOpts.OpenMP);
if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
ValExpr = MakeFullExpr(ValExpr).get();
llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
HelperValStmt = buildPreInits(Context, Captures);
}
}
return new (Context) OMPNocontextClause(ValExpr, HelperValStmt, CaptureRegion,
StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPFilterClause(Expr *ThreadID,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
Expr *ValExpr = ThreadID;
Stmt *HelperValStmt = nullptr;
OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
OpenMPDirectiveKind CaptureRegion =
getOpenMPCaptureRegionForClause(DKind, OMPC_filter, LangOpts.OpenMP);
if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
ValExpr = MakeFullExpr(ValExpr).get();
llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
HelperValStmt = buildPreInits(Context, Captures);
}
return new (Context) OMPFilterClause(ValExpr, HelperValStmt, CaptureRegion,
StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPVarListClause(
OpenMPClauseKind Kind, ArrayRef<Expr *> VarList, Expr *DepModOrTailExpr,
const OMPVarListLocTy &Locs, SourceLocation ColonLoc,
CXXScopeSpec &ReductionOrMapperIdScopeSpec,
DeclarationNameInfo &ReductionOrMapperId, int ExtraModifier,
ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
ArrayRef<SourceLocation> MapTypeModifiersLoc, bool IsMapTypeImplicit,
SourceLocation ExtraModifierLoc,
ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
ArrayRef<SourceLocation> MotionModifiersLoc) {
SourceLocation StartLoc = Locs.StartLoc;
SourceLocation LParenLoc = Locs.LParenLoc;
SourceLocation EndLoc = Locs.EndLoc;
OMPClause *Res = nullptr;
switch (Kind) {
case OMPC_private:
Res = ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_firstprivate:
Res = ActOnOpenMPFirstprivateClause(VarList, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_lastprivate:
assert(0 <= ExtraModifier && ExtraModifier <= OMPC_LASTPRIVATE_unknown &&
"Unexpected lastprivate modifier.");
Res = ActOnOpenMPLastprivateClause(
VarList, static_cast<OpenMPLastprivateModifier>(ExtraModifier),
ExtraModifierLoc, ColonLoc, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_shared:
Res = ActOnOpenMPSharedClause(VarList, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_reduction:
assert(0 <= ExtraModifier && ExtraModifier <= OMPC_REDUCTION_unknown &&
"Unexpected lastprivate modifier.");
Res = ActOnOpenMPReductionClause(
VarList, static_cast<OpenMPReductionClauseModifier>(ExtraModifier),
StartLoc, LParenLoc, ExtraModifierLoc, ColonLoc, EndLoc,
ReductionOrMapperIdScopeSpec, ReductionOrMapperId);
break;
case OMPC_task_reduction:
Res = ActOnOpenMPTaskReductionClause(VarList, StartLoc, LParenLoc, ColonLoc,
EndLoc, ReductionOrMapperIdScopeSpec,
ReductionOrMapperId);
break;
case OMPC_in_reduction:
Res = ActOnOpenMPInReductionClause(VarList, StartLoc, LParenLoc, ColonLoc,
EndLoc, ReductionOrMapperIdScopeSpec,
ReductionOrMapperId);
break;
case OMPC_linear:
assert(0 <= ExtraModifier && ExtraModifier <= OMPC_LINEAR_unknown &&
"Unexpected linear modifier.");
Res = ActOnOpenMPLinearClause(
VarList, DepModOrTailExpr, StartLoc, LParenLoc,
static_cast<OpenMPLinearClauseKind>(ExtraModifier), ExtraModifierLoc,
ColonLoc, EndLoc);
break;
case OMPC_aligned:
Res = ActOnOpenMPAlignedClause(VarList, DepModOrTailExpr, StartLoc,
LParenLoc, ColonLoc, EndLoc);
break;
case OMPC_copyin:
Res = ActOnOpenMPCopyinClause(VarList, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_copyprivate:
Res = ActOnOpenMPCopyprivateClause(VarList, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_flush:
Res = ActOnOpenMPFlushClause(VarList, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_depend:
assert(0 <= ExtraModifier && ExtraModifier <= OMPC_DEPEND_unknown &&
"Unexpected depend modifier.");
Res = ActOnOpenMPDependClause(
DepModOrTailExpr, static_cast<OpenMPDependClauseKind>(ExtraModifier),
ExtraModifierLoc, ColonLoc, VarList, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_map:
assert(0 <= ExtraModifier && ExtraModifier <= OMPC_MAP_unknown &&
"Unexpected map modifier.");
Res = ActOnOpenMPMapClause(
MapTypeModifiers, MapTypeModifiersLoc, ReductionOrMapperIdScopeSpec,
ReductionOrMapperId, static_cast<OpenMPMapClauseKind>(ExtraModifier),
IsMapTypeImplicit, ExtraModifierLoc, ColonLoc, VarList, Locs);
break;
case OMPC_to:
Res = ActOnOpenMPToClause(MotionModifiers, MotionModifiersLoc,
ReductionOrMapperIdScopeSpec, ReductionOrMapperId,
ColonLoc, VarList, Locs);
break;
case OMPC_from:
Res = ActOnOpenMPFromClause(MotionModifiers, MotionModifiersLoc,
ReductionOrMapperIdScopeSpec,
ReductionOrMapperId, ColonLoc, VarList, Locs);
break;
case OMPC_use_device_ptr:
Res = ActOnOpenMPUseDevicePtrClause(VarList, Locs);
break;
case OMPC_use_device_addr:
Res = ActOnOpenMPUseDeviceAddrClause(VarList, Locs);
break;
case OMPC_is_device_ptr:
Res = ActOnOpenMPIsDevicePtrClause(VarList, Locs);
break;
case OMPC_has_device_addr:
Res = ActOnOpenMPHasDeviceAddrClause(VarList, Locs);
break;
case OMPC_allocate:
Res = ActOnOpenMPAllocateClause(DepModOrTailExpr, VarList, StartLoc,
LParenLoc, ColonLoc, EndLoc);
break;
case OMPC_nontemporal:
Res = ActOnOpenMPNontemporalClause(VarList, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_inclusive:
Res = ActOnOpenMPInclusiveClause(VarList, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_exclusive:
Res = ActOnOpenMPExclusiveClause(VarList, StartLoc, LParenLoc, EndLoc);
break;
case OMPC_affinity:
Res = ActOnOpenMPAffinityClause(StartLoc, LParenLoc, ColonLoc, EndLoc,
DepModOrTailExpr, VarList);
break;
case OMPC_if:
case OMPC_depobj:
case OMPC_final:
case OMPC_num_threads:
case OMPC_safelen:
case OMPC_simdlen:
case OMPC_sizes:
case OMPC_allocator:
case OMPC_collapse:
case OMPC_default:
case OMPC_proc_bind:
case OMPC_schedule:
case OMPC_ordered:
case OMPC_nowait:
case OMPC_untied:
case OMPC_mergeable:
case OMPC_threadprivate:
case OMPC_read:
case OMPC_write:
case OMPC_update:
case OMPC_capture:
case OMPC_compare:
case OMPC_seq_cst:
case OMPC_acq_rel:
case OMPC_acquire:
case OMPC_release:
case OMPC_relaxed:
case OMPC_device:
case OMPC_threads:
case OMPC_simd:
case OMPC_num_teams:
case OMPC_thread_limit:
case OMPC_priority:
case OMPC_grainsize:
case OMPC_nogroup:
case OMPC_num_tasks:
case OMPC_hint:
case OMPC_dist_schedule:
case OMPC_defaultmap:
case OMPC_unknown:
case OMPC_uniform:
case OMPC_unified_address:
case OMPC_unified_shared_memory:
case OMPC_reverse_offload:
case OMPC_dynamic_allocators:
case OMPC_atomic_default_mem_order:
case OMPC_device_type:
case OMPC_match:
case OMPC_order:
case OMPC_destroy:
case OMPC_novariants:
case OMPC_nocontext:
case OMPC_detach:
case OMPC_uses_allocators:
case OMPC_when:
case OMPC_bind:
default:
llvm_unreachable("Clause is not allowed.");
}
return Res;
}
ExprResult Sema::getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK,
ExprObjectKind OK, SourceLocation Loc) {
ExprResult Res = BuildDeclRefExpr(
Capture, Capture->getType().getNonReferenceType(), VK_LValue, Loc);
if (!Res.isUsable())
return ExprError();
if (OK == OK_Ordinary && !getLangOpts().CPlusPlus) {
Res = CreateBuiltinUnaryOp(Loc, UO_Deref, Res.get());
if (!Res.isUsable())
return ExprError();
}
if (VK != VK_LValue && Res.get()->isGLValue()) {
Res = DefaultLvalueConversion(Res.get());
if (!Res.isUsable())
return ExprError();
}
return Res;
}
OMPClause *Sema::ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
SmallVector<Expr *, 8> Vars;
SmallVector<Expr *, 8> PrivateCopies;
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP private clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
if (Res.second) {
// It will be analyzed later.
Vars.push_back(RefExpr);
PrivateCopies.push_back(nullptr);
}
ValueDecl *D = Res.first;
if (!D)
continue;
QualType Type = D->getType();
auto *VD = dyn_cast<VarDecl>(D);
// OpenMP [2.9.3.3, Restrictions, C/C++, p.3]
// A variable that appears in a private clause must not have an incomplete
// type or a reference type.
if (RequireCompleteType(ELoc, Type, diag::err_omp_private_incomplete_type))
continue;
Type = Type.getNonReferenceType();
// OpenMP 5.0 [2.19.3, List Item Privatization, Restrictions]
// A variable that is privatized must not have a const-qualified type
// unless it is of class type with a mutable member. This restriction does
// not apply to the firstprivate clause.
//
// OpenMP 3.1 [2.9.3.3, private clause, Restrictions]
// A variable that appears in a private clause must not have a
// const-qualified type unless it is of class type with a mutable member.
if (rejectConstNotMutableType(*this, D, Type, OMPC_private, ELoc))
continue;
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct]
// Variables with the predetermined data-sharing attributes may not be
// listed in data-sharing attributes clauses, except for the cases
// listed below. For these exceptions only, listing a predetermined
// variable in a data-sharing attribute clause is allowed and overrides
// the variable's predetermined data-sharing attributes.
DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(D, /*FromParent=*/false);
if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_private) {
Diag(ELoc, diag::err_omp_wrong_dsa) << getOpenMPClauseName(DVar.CKind)
<< getOpenMPClauseName(OMPC_private);
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
OpenMPDirectiveKind CurrDir = DSAStack->getCurrentDirective();
// Variably modified types are not supported for tasks.
if (!Type->isAnyPointerType() && Type->isVariablyModifiedType() &&
isOpenMPTaskingDirective(CurrDir)) {
Diag(ELoc, diag::err_omp_variably_modified_type_not_supported)
<< getOpenMPClauseName(OMPC_private) << Type
<< getOpenMPDirectiveName(CurrDir);
bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
VarDecl::DeclarationOnly;
Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
continue;
}
// OpenMP 4.5 [2.15.5.1, Restrictions, p.3]
// A list item cannot appear in both a map clause and a data-sharing
// attribute clause on the same construct
//
// OpenMP 5.0 [2.19.7.1, Restrictions, p.7]
// A list item cannot appear in both a map clause and a data-sharing
// attribute clause on the same construct unless the construct is a
// combined construct.
if ((LangOpts.OpenMP <= 45 && isOpenMPTargetExecutionDirective(CurrDir)) ||
CurrDir == OMPD_target) {
OpenMPClauseKind ConflictKind;
if (DSAStack->checkMappableExprComponentListsForDecl(
VD, /*CurrentRegionOnly=*/true,
[&](OMPClauseMappableExprCommon::MappableExprComponentListRef,
OpenMPClauseKind WhereFoundClauseKind) -> bool {
ConflictKind = WhereFoundClauseKind;
return true;
})) {
Diag(ELoc, diag::err_omp_variable_in_given_clause_and_dsa)
<< getOpenMPClauseName(OMPC_private)
<< getOpenMPClauseName(ConflictKind)
<< getOpenMPDirectiveName(CurrDir);
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
}
// OpenMP [2.9.3.3, Restrictions, C/C++, p.1]
// A variable of class type (or array thereof) that appears in a private
// clause requires an accessible, unambiguous default constructor for the
// class type.
// Generate helper private variable and initialize it with the default
// value. The address of the original variable is replaced by the address of
// the new private variable in CodeGen. This new variable is not added to
// IdResolver, so the code in the OpenMP region uses original variable for
// proper diagnostics.
Type = Type.getUnqualifiedType();
VarDecl *VDPrivate =
buildVarDecl(*this, ELoc, Type, D->getName(),
D->hasAttrs() ? &D->getAttrs() : nullptr,
VD ? cast<DeclRefExpr>(SimpleRefExpr) : nullptr);
ActOnUninitializedDecl(VDPrivate);
if (VDPrivate->isInvalidDecl())
continue;
DeclRefExpr *VDPrivateRefExpr = buildDeclRefExpr(
*this, VDPrivate, RefExpr->getType().getUnqualifiedType(), ELoc);
DeclRefExpr *Ref = nullptr;
if (!VD && !CurContext->isDependentContext())
Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/false);
DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_private, Ref);
Vars.push_back((VD || CurContext->isDependentContext())
? RefExpr->IgnoreParens()
: Ref);
PrivateCopies.push_back(VDPrivateRefExpr);
}
if (Vars.empty())
return nullptr;
return OMPPrivateClause::Create(Context, StartLoc, LParenLoc, EndLoc, Vars,
PrivateCopies);
}
OMPClause *Sema::ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
SmallVector<Expr *, 8> Vars;
SmallVector<Expr *, 8> PrivateCopies;
SmallVector<Expr *, 8> Inits;
SmallVector<Decl *, 4> ExprCaptures;
bool IsImplicitClause =
StartLoc.isInvalid() && LParenLoc.isInvalid() && EndLoc.isInvalid();
SourceLocation ImplicitClauseLoc = DSAStack->getConstructLoc();
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP firstprivate clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
if (Res.second) {
// It will be analyzed later.
Vars.push_back(RefExpr);
PrivateCopies.push_back(nullptr);
Inits.push_back(nullptr);
}
ValueDecl *D = Res.first;
if (!D)
continue;
ELoc = IsImplicitClause ? ImplicitClauseLoc : ELoc;
QualType Type = D->getType();
auto *VD = dyn_cast<VarDecl>(D);
// OpenMP [2.9.3.3, Restrictions, C/C++, p.3]
// A variable that appears in a private clause must not have an incomplete
// type or a reference type.
if (RequireCompleteType(ELoc, Type,
diag::err_omp_firstprivate_incomplete_type))
continue;
Type = Type.getNonReferenceType();
// OpenMP [2.9.3.4, Restrictions, C/C++, p.1]
// A variable of class type (or array thereof) that appears in a private
// clause requires an accessible, unambiguous copy constructor for the
// class type.
QualType ElemType = Context.getBaseElementType(Type).getNonReferenceType();
// If an implicit firstprivate variable found it was checked already.
DSAStackTy::DSAVarData TopDVar;
if (!IsImplicitClause) {
DSAStackTy::DSAVarData DVar =
DSAStack->getTopDSA(D, /*FromParent=*/false);
TopDVar = DVar;
OpenMPDirectiveKind CurrDir = DSAStack->getCurrentDirective();
bool IsConstant = ElemType.isConstant(Context);
// OpenMP [2.4.13, Data-sharing Attribute Clauses]
// A list item that specifies a given variable may not appear in more
// than one clause on the same directive, except that a variable may be
// specified in both firstprivate and lastprivate clauses.
// OpenMP 4.5 [2.10.8, Distribute Construct, p.3]
// A list item may appear in a firstprivate or lastprivate clause but not
// both.
if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_firstprivate &&
(isOpenMPDistributeDirective(CurrDir) ||
DVar.CKind != OMPC_lastprivate) &&
DVar.RefExpr) {
Diag(ELoc, diag::err_omp_wrong_dsa)
<< getOpenMPClauseName(DVar.CKind)
<< getOpenMPClauseName(OMPC_firstprivate);
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct]
// Variables with the predetermined data-sharing attributes may not be
// listed in data-sharing attributes clauses, except for the cases
// listed below. For these exceptions only, listing a predetermined
// variable in a data-sharing attribute clause is allowed and overrides
// the variable's predetermined data-sharing attributes.
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct, C/C++, p.2]
// Variables with const-qualified type having no mutable member may be
// listed in a firstprivate clause, even if they are static data members.
if (!(IsConstant || (VD && VD->isStaticDataMember())) && !DVar.RefExpr &&
DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_shared) {
Diag(ELoc, diag::err_omp_wrong_dsa)
<< getOpenMPClauseName(DVar.CKind)
<< getOpenMPClauseName(OMPC_firstprivate);
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
// OpenMP [2.9.3.4, Restrictions, p.2]
// A list item that is private within a parallel region must not appear
// in a firstprivate clause on a worksharing construct if any of the
// worksharing regions arising from the worksharing construct ever bind
// to any of the parallel regions arising from the parallel construct.
// OpenMP 4.5 [2.15.3.4, Restrictions, p.3]
// A list item that is private within a teams region must not appear in a
// firstprivate clause on a distribute construct if any of the distribute
// regions arising from the distribute construct ever bind to any of the
// teams regions arising from the teams construct.
// OpenMP 4.5 [2.15.3.4, Restrictions, p.3]
// A list item that appears in a reduction clause of a teams construct
// must not appear in a firstprivate clause on a distribute construct if
// any of the distribute regions arising from the distribute construct
// ever bind to any of the teams regions arising from the teams construct.
if ((isOpenMPWorksharingDirective(CurrDir) ||
isOpenMPDistributeDirective(CurrDir)) &&
!isOpenMPParallelDirective(CurrDir) &&
!isOpenMPTeamsDirective(CurrDir)) {
DVar = DSAStack->getImplicitDSA(D, true);
if (DVar.CKind != OMPC_shared &&
(isOpenMPParallelDirective(DVar.DKind) ||
isOpenMPTeamsDirective(DVar.DKind) ||
DVar.DKind == OMPD_unknown)) {
Diag(ELoc, diag::err_omp_required_access)
<< getOpenMPClauseName(OMPC_firstprivate)
<< getOpenMPClauseName(OMPC_shared);
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
}
// OpenMP [2.9.3.4, Restrictions, p.3]
// A list item that appears in a reduction clause of a parallel construct
// must not appear in a firstprivate clause on a worksharing or task
// construct if any of the worksharing or task regions arising from the
// worksharing or task construct ever bind to any of the parallel regions
// arising from the parallel construct.
// OpenMP [2.9.3.4, Restrictions, p.4]
// A list item that appears in a reduction clause in worksharing
// construct must not appear in a firstprivate clause in a task construct
// encountered during execution of any of the worksharing regions arising
// from the worksharing construct.
if (isOpenMPTaskingDirective(CurrDir)) {
DVar = DSAStack->hasInnermostDSA(
D,
[](OpenMPClauseKind C, bool AppliedToPointee) {
return C == OMPC_reduction && !AppliedToPointee;
},
[](OpenMPDirectiveKind K) {
return isOpenMPParallelDirective(K) ||
isOpenMPWorksharingDirective(K) ||
isOpenMPTeamsDirective(K);
},
/*FromParent=*/true);
if (DVar.CKind == OMPC_reduction &&
(isOpenMPParallelDirective(DVar.DKind) ||
isOpenMPWorksharingDirective(DVar.DKind) ||
isOpenMPTeamsDirective(DVar.DKind))) {
Diag(ELoc, diag::err_omp_parallel_reduction_in_task_firstprivate)
<< getOpenMPDirectiveName(DVar.DKind);
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
}
// OpenMP 4.5 [2.15.5.1, Restrictions, p.3]
// A list item cannot appear in both a map clause and a data-sharing
// attribute clause on the same construct
//
// OpenMP 5.0 [2.19.7.1, Restrictions, p.7]
// A list item cannot appear in both a map clause and a data-sharing
// attribute clause on the same construct unless the construct is a
// combined construct.
if ((LangOpts.OpenMP <= 45 &&
isOpenMPTargetExecutionDirective(CurrDir)) ||
CurrDir == OMPD_target) {
OpenMPClauseKind ConflictKind;
if (DSAStack->checkMappableExprComponentListsForDecl(
VD, /*CurrentRegionOnly=*/true,
[&ConflictKind](
OMPClauseMappableExprCommon::MappableExprComponentListRef,
OpenMPClauseKind WhereFoundClauseKind) {
ConflictKind = WhereFoundClauseKind;
return true;
})) {
Diag(ELoc, diag::err_omp_variable_in_given_clause_and_dsa)
<< getOpenMPClauseName(OMPC_firstprivate)
<< getOpenMPClauseName(ConflictKind)
<< getOpenMPDirectiveName(DSAStack->getCurrentDirective());
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
}
}
// Variably modified types are not supported for tasks.
if (!Type->isAnyPointerType() && Type->isVariablyModifiedType() &&
isOpenMPTaskingDirective(DSAStack->getCurrentDirective())) {
Diag(ELoc, diag::err_omp_variably_modified_type_not_supported)
<< getOpenMPClauseName(OMPC_firstprivate) << Type
<< getOpenMPDirectiveName(DSAStack->getCurrentDirective());
bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
VarDecl::DeclarationOnly;
Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
continue;
}
Type = Type.getUnqualifiedType();
VarDecl *VDPrivate =
buildVarDecl(*this, ELoc, Type, D->getName(),
D->hasAttrs() ? &D->getAttrs() : nullptr,
VD ? cast<DeclRefExpr>(SimpleRefExpr) : nullptr);
// Generate helper private variable and initialize it with the value of the
// original variable. The address of the original variable is replaced by
// the address of the new private variable in the CodeGen. This new variable
// is not added to IdResolver, so the code in the OpenMP region uses
// original variable for proper diagnostics and variable capturing.
Expr *VDInitRefExpr = nullptr;
// For arrays generate initializer for single element and replace it by the
// original array element in CodeGen.
if (Type->isArrayType()) {
VarDecl *VDInit =
buildVarDecl(*this, RefExpr->getExprLoc(), ElemType, D->getName());
VDInitRefExpr = buildDeclRefExpr(*this, VDInit, ElemType, ELoc);
Expr *Init = DefaultLvalueConversion(VDInitRefExpr).get();
ElemType = ElemType.getUnqualifiedType();
VarDecl *VDInitTemp = buildVarDecl(*this, RefExpr->getExprLoc(), ElemType,
".firstprivate.temp");
InitializedEntity Entity =
InitializedEntity::InitializeVariable(VDInitTemp);
InitializationKind Kind = InitializationKind::CreateCopy(ELoc, ELoc);
InitializationSequence InitSeq(*this, Entity, Kind, Init);
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Init);
if (Result.isInvalid())
VDPrivate->setInvalidDecl();
else
VDPrivate->setInit(Result.getAs<Expr>());
// Remove temp variable declaration.
Context.Deallocate(VDInitTemp);
} else {
VarDecl *VDInit = buildVarDecl(*this, RefExpr->getExprLoc(), Type,
".firstprivate.temp");
VDInitRefExpr = buildDeclRefExpr(*this, VDInit, RefExpr->getType(),
RefExpr->getExprLoc());
AddInitializerToDecl(VDPrivate,
DefaultLvalueConversion(VDInitRefExpr).get(),
/*DirectInit=*/false);
}
if (VDPrivate->isInvalidDecl()) {
if (IsImplicitClause) {
Diag(RefExpr->getExprLoc(),
diag::note_omp_task_predetermined_firstprivate_here);
}
continue;
}
CurContext->addDecl(VDPrivate);
DeclRefExpr *VDPrivateRefExpr = buildDeclRefExpr(
*this, VDPrivate, RefExpr->getType().getUnqualifiedType(),
RefExpr->getExprLoc());
DeclRefExpr *Ref = nullptr;
if (!VD && !CurContext->isDependentContext()) {
if (TopDVar.CKind == OMPC_lastprivate) {
Ref = TopDVar.PrivateCopy;
} else {
Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/true);
if (!isOpenMPCapturedDecl(D))
ExprCaptures.push_back(Ref->getDecl());
}
}
if (!IsImplicitClause)
DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_firstprivate, Ref);
Vars.push_back((VD || CurContext->isDependentContext())
? RefExpr->IgnoreParens()
: Ref);
PrivateCopies.push_back(VDPrivateRefExpr);
Inits.push_back(VDInitRefExpr);
}
if (Vars.empty())
return nullptr;
return OMPFirstprivateClause::Create(Context, StartLoc, LParenLoc, EndLoc,
Vars, PrivateCopies, Inits,
buildPreInits(Context, ExprCaptures));
}
OMPClause *Sema::ActOnOpenMPLastprivateClause(
ArrayRef<Expr *> VarList, OpenMPLastprivateModifier LPKind,
SourceLocation LPKindLoc, SourceLocation ColonLoc, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation EndLoc) {
if (LPKind == OMPC_LASTPRIVATE_unknown && LPKindLoc.isValid()) {
assert(ColonLoc.isValid() && "Colon location must be valid.");
Diag(LPKindLoc, diag::err_omp_unexpected_clause_value)
<< getListOfPossibleValues(OMPC_lastprivate, /*First=*/0,
/*Last=*/OMPC_LASTPRIVATE_unknown)
<< getOpenMPClauseName(OMPC_lastprivate);
return nullptr;
}
SmallVector<Expr *, 8> Vars;
SmallVector<Expr *, 8> SrcExprs;
SmallVector<Expr *, 8> DstExprs;
SmallVector<Expr *, 8> AssignmentOps;
SmallVector<Decl *, 4> ExprCaptures;
SmallVector<Expr *, 4> ExprPostUpdates;
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP lastprivate clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
if (Res.second) {
// It will be analyzed later.
Vars.push_back(RefExpr);
SrcExprs.push_back(nullptr);
DstExprs.push_back(nullptr);
AssignmentOps.push_back(nullptr);
}
ValueDecl *D = Res.first;
if (!D)
continue;
QualType Type = D->getType();
auto *VD = dyn_cast<VarDecl>(D);
// OpenMP [2.14.3.5, Restrictions, C/C++, p.2]
// A variable that appears in a lastprivate clause must not have an
// incomplete type or a reference type.
if (RequireCompleteType(ELoc, Type,
diag::err_omp_lastprivate_incomplete_type))
continue;
Type = Type.getNonReferenceType();
// OpenMP 5.0 [2.19.3, List Item Privatization, Restrictions]
// A variable that is privatized must not have a const-qualified type
// unless it is of class type with a mutable member. This restriction does
// not apply to the firstprivate clause.
//
// OpenMP 3.1 [2.9.3.5, lastprivate clause, Restrictions]
// A variable that appears in a lastprivate clause must not have a
// const-qualified type unless it is of class type with a mutable member.
if (rejectConstNotMutableType(*this, D, Type, OMPC_lastprivate, ELoc))
continue;
// OpenMP 5.0 [2.19.4.5 lastprivate Clause, Restrictions]
// A list item that appears in a lastprivate clause with the conditional
// modifier must be a scalar variable.
if (LPKind == OMPC_LASTPRIVATE_conditional && !Type->isScalarType()) {
Diag(ELoc, diag::err_omp_lastprivate_conditional_non_scalar);
bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
VarDecl::DeclarationOnly;
Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
continue;
}
OpenMPDirectiveKind CurrDir = DSAStack->getCurrentDirective();
// OpenMP [2.14.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct]
// Variables with the predetermined data-sharing attributes may not be
// listed in data-sharing attributes clauses, except for the cases
// listed below.
// OpenMP 4.5 [2.10.8, Distribute Construct, p.3]
// A list item may appear in a firstprivate or lastprivate clause but not
// both.
DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(D, /*FromParent=*/false);
if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_lastprivate &&
(isOpenMPDistributeDirective(CurrDir) ||
DVar.CKind != OMPC_firstprivate) &&
(DVar.CKind != OMPC_private || DVar.RefExpr != nullptr)) {
Diag(ELoc, diag::err_omp_wrong_dsa)
<< getOpenMPClauseName(DVar.CKind)
<< getOpenMPClauseName(OMPC_lastprivate);
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
// OpenMP [2.14.3.5, Restrictions, p.2]
// A list item that is private within a parallel region, or that appears in
// the reduction clause of a parallel construct, must not appear in a
// lastprivate clause on a worksharing construct if any of the corresponding
// worksharing regions ever binds to any of the corresponding parallel
// regions.
DSAStackTy::DSAVarData TopDVar = DVar;
if (isOpenMPWorksharingDirective(CurrDir) &&
!isOpenMPParallelDirective(CurrDir) &&
!isOpenMPTeamsDirective(CurrDir)) {
DVar = DSAStack->getImplicitDSA(D, true);
if (DVar.CKind != OMPC_shared) {
Diag(ELoc, diag::err_omp_required_access)
<< getOpenMPClauseName(OMPC_lastprivate)
<< getOpenMPClauseName(OMPC_shared);
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
}
// OpenMP [2.14.3.5, Restrictions, C++, p.1,2]
// A variable of class type (or array thereof) that appears in a
// lastprivate clause requires an accessible, unambiguous default
// constructor for the class type, unless the list item is also specified
// in a firstprivate clause.
// A variable of class type (or array thereof) that appears in a
// lastprivate clause requires an accessible, unambiguous copy assignment
// operator for the class type.
Type = Context.getBaseElementType(Type).getNonReferenceType();
VarDecl *SrcVD = buildVarDecl(*this, ERange.getBegin(),
Type.getUnqualifiedType(), ".lastprivate.src",
D->hasAttrs() ? &D->getAttrs() : nullptr);
DeclRefExpr *PseudoSrcExpr =
buildDeclRefExpr(*this, SrcVD, Type.getUnqualifiedType(), ELoc);
VarDecl *DstVD =
buildVarDecl(*this, ERange.getBegin(), Type, ".lastprivate.dst",
D->hasAttrs() ? &D->getAttrs() : nullptr);
DeclRefExpr *PseudoDstExpr = buildDeclRefExpr(*this, DstVD, Type, ELoc);
// For arrays generate assignment operation for single element and replace
// it by the original array element in CodeGen.
ExprResult AssignmentOp = BuildBinOp(/*S=*/nullptr, ELoc, BO_Assign,
PseudoDstExpr, PseudoSrcExpr);
if (AssignmentOp.isInvalid())
continue;
AssignmentOp =
ActOnFinishFullExpr(AssignmentOp.get(), ELoc, /*DiscardedValue*/ false);
if (AssignmentOp.isInvalid())
continue;
DeclRefExpr *Ref = nullptr;
if (!VD && !CurContext->isDependentContext()) {
if (TopDVar.CKind == OMPC_firstprivate) {
Ref = TopDVar.PrivateCopy;
} else {
Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/false);
if (!isOpenMPCapturedDecl(D))
ExprCaptures.push_back(Ref->getDecl());
}
if ((TopDVar.CKind == OMPC_firstprivate && !TopDVar.PrivateCopy) ||
(!isOpenMPCapturedDecl(D) &&
Ref->getDecl()->hasAttr<OMPCaptureNoInitAttr>())) {
ExprResult RefRes = DefaultLvalueConversion(Ref);
if (!RefRes.isUsable())
continue;
ExprResult PostUpdateRes =
BuildBinOp(DSAStack->getCurScope(), ELoc, BO_Assign, SimpleRefExpr,
RefRes.get());
if (!PostUpdateRes.isUsable())
continue;
ExprPostUpdates.push_back(
IgnoredValueConversions(PostUpdateRes.get()).get());
}
}
DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_lastprivate, Ref);
Vars.push_back((VD || CurContext->isDependentContext())
? RefExpr->IgnoreParens()
: Ref);
SrcExprs.push_back(PseudoSrcExpr);
DstExprs.push_back(PseudoDstExpr);
AssignmentOps.push_back(AssignmentOp.get());
}
if (Vars.empty())
return nullptr;
return OMPLastprivateClause::Create(Context, StartLoc, LParenLoc, EndLoc,
Vars, SrcExprs, DstExprs, AssignmentOps,
LPKind, LPKindLoc, ColonLoc,
buildPreInits(Context, ExprCaptures),
buildPostUpdate(*this, ExprPostUpdates));
}
OMPClause *Sema::ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
SmallVector<Expr *, 8> Vars;
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP lastprivate clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
if (Res.second) {
// It will be analyzed later.
Vars.push_back(RefExpr);
}
ValueDecl *D = Res.first;
if (!D)
continue;
auto *VD = dyn_cast<VarDecl>(D);
// OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct]
// Variables with the predetermined data-sharing attributes may not be
// listed in data-sharing attributes clauses, except for the cases
// listed below. For these exceptions only, listing a predetermined
// variable in a data-sharing attribute clause is allowed and overrides
// the variable's predetermined data-sharing attributes.
DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(D, /*FromParent=*/false);
if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_shared &&
DVar.RefExpr) {
Diag(ELoc, diag::err_omp_wrong_dsa) << getOpenMPClauseName(DVar.CKind)
<< getOpenMPClauseName(OMPC_shared);
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
DeclRefExpr *Ref = nullptr;
if (!VD && isOpenMPCapturedDecl(D) && !CurContext->isDependentContext())
Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/true);
DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_shared, Ref);
Vars.push_back((VD || !Ref || CurContext->isDependentContext())
? RefExpr->IgnoreParens()
: Ref);
}
if (Vars.empty())
return nullptr;
return OMPSharedClause::Create(Context, StartLoc, LParenLoc, EndLoc, Vars);
}
namespace {
class DSARefChecker : public StmtVisitor<DSARefChecker, bool> {
DSAStackTy *Stack;
public:
bool VisitDeclRefExpr(DeclRefExpr *E) {
if (auto *VD = dyn_cast<VarDecl>(E->getDecl())) {
DSAStackTy::DSAVarData DVar = Stack->getTopDSA(VD, /*FromParent=*/false);
if (DVar.CKind == OMPC_shared && !DVar.RefExpr)
return false;
if (DVar.CKind != OMPC_unknown)
return true;
DSAStackTy::DSAVarData DVarPrivate = Stack->hasDSA(
VD,
[](OpenMPClauseKind C, bool AppliedToPointee) {
return isOpenMPPrivate(C) && !AppliedToPointee;
},
[](OpenMPDirectiveKind) { return true; },
/*FromParent=*/true);
return DVarPrivate.CKind != OMPC_unknown;
}
return false;
}
bool VisitStmt(Stmt *S) {
for (Stmt *Child : S->children()) {
if (Child && Visit(Child))
return true;
}
return false;
}
explicit DSARefChecker(DSAStackTy *S) : Stack(S) {}
};
} // namespace
namespace {
// Transform MemberExpression for specified FieldDecl of current class to
// DeclRefExpr to specified OMPCapturedExprDecl.
class TransformExprToCaptures : public TreeTransform<TransformExprToCaptures> {
typedef TreeTransform<TransformExprToCaptures> BaseTransform;
ValueDecl *Field = nullptr;
DeclRefExpr *CapturedExpr = nullptr;
public:
TransformExprToCaptures(Sema &SemaRef, ValueDecl *FieldDecl)
: BaseTransform(SemaRef), Field(FieldDecl), CapturedExpr(nullptr) {}
ExprResult TransformMemberExpr(MemberExpr *E) {
if (isa<CXXThisExpr>(E->getBase()->IgnoreParenImpCasts()) &&
E->getMemberDecl() == Field) {
CapturedExpr = buildCapture(SemaRef, Field, E, /*WithInit=*/false);
return CapturedExpr;
}
return BaseTransform::TransformMemberExpr(E);
}
DeclRefExpr *getCapturedExpr() { return CapturedExpr; }
};
} // namespace
template <typename T, typename U>
static T filterLookupForUDReductionAndMapper(
SmallVectorImpl<U> &Lookups, const llvm::function_ref<T(ValueDecl *)> Gen) {
for (U &Set : Lookups) {
for (auto *D : Set) {
if (T Res = Gen(cast<ValueDecl>(D)))
return Res;
}
}
return T();
}
static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
for (auto RD : D->redecls()) {
// Don't bother with extra checks if we already know this one isn't visible.
if (RD == D)
continue;
auto ND = cast<NamedDecl>(RD);
if (LookupResult::isVisible(SemaRef, ND))
return ND;
}
return nullptr;
}
static void
argumentDependentLookup(Sema &SemaRef, const DeclarationNameInfo &Id,
SourceLocation Loc, QualType Ty,
SmallVectorImpl<UnresolvedSet<8>> &Lookups) {
// Find all of the associated namespaces and classes based on the
// arguments we have.
Sema::AssociatedNamespaceSet AssociatedNamespaces;
Sema::AssociatedClassSet AssociatedClasses;
OpaqueValueExpr OVE(Loc, Ty, VK_LValue);
SemaRef.FindAssociatedClassesAndNamespaces(Loc, &OVE, AssociatedNamespaces,
AssociatedClasses);
// C++ [basic.lookup.argdep]p3:
// Let X be the lookup set produced by unqualified lookup (3.4.1)
// and let Y be the lookup set produced by argument dependent
// lookup (defined as follows). If X contains [...] then Y is
// empty. Otherwise Y is the set of declarations found in the
// namespaces associated with the argument types as described
// below. The set of declarations found by the lookup of the name
// is the union of X and Y.
//
// Here, we compute Y and add its members to the overloaded
// candidate set.
for (auto *NS : AssociatedNamespaces) {
// When considering an associated namespace, the lookup is the
// same as the lookup performed when the associated namespace is
// used as a qualifier (3.4.3.2) except that:
//
// -- Any using-directives in the associated namespace are
// ignored.
//
// -- Any namespace-scope friend functions declared in
// associated classes are visible within their respective
// namespaces even if they are not visible during an ordinary
// lookup (11.4).
DeclContext::lookup_result R = NS->lookup(Id.getName());
for (auto *D : R) {
auto *Underlying = D;
if (auto *USD = dyn_cast<UsingShadowDecl>(D))
Underlying = USD->getTargetDecl();
if (!isa<OMPDeclareReductionDecl>(Underlying) &&
!isa<OMPDeclareMapperDecl>(Underlying))
continue;
if (!SemaRef.isVisible(D)) {
D = findAcceptableDecl(SemaRef, D);
if (!D)
continue;
if (auto *USD = dyn_cast<UsingShadowDecl>(D))
Underlying = USD->getTargetDecl();
}
Lookups.emplace_back();
Lookups.back().addDecl(Underlying);
}
}
}
static ExprResult
buildDeclareReductionRef(Sema &SemaRef, SourceLocation Loc, SourceRange Range,
Scope *S, CXXScopeSpec &ReductionIdScopeSpec,
const DeclarationNameInfo &ReductionId, QualType Ty,
CXXCastPath &BasePath, Expr *UnresolvedReduction) {
if (ReductionIdScopeSpec.isInvalid())
return ExprError();
SmallVector<UnresolvedSet<8>, 4> Lookups;
if (S) {
LookupResult Lookup(SemaRef, ReductionId, Sema::LookupOMPReductionName);
Lookup.suppressDiagnostics();
while (S && SemaRef.LookupParsedName(Lookup, S, &ReductionIdScopeSpec)) {
NamedDecl *D = Lookup.getRepresentativeDecl();
do {
S = S->getParent();
} while (S && !S->isDeclScope(D));
if (S)
S = S->getParent();
Lookups.emplace_back();
Lookups.back().append(Lookup.begin(), Lookup.end());
Lookup.clear();
}
} else if (auto *ULE =
cast_or_null<UnresolvedLookupExpr>(UnresolvedReduction)) {
Lookups.push_back(UnresolvedSet<8>());
Decl *PrevD = nullptr;
for (NamedDecl *D : ULE->decls()) {
if (D == PrevD)
Lookups.push_back(UnresolvedSet<8>());
else if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(D))
Lookups.back().addDecl(DRD);
PrevD = D;
}
}
if (SemaRef.CurContext->isDependentContext() || Ty->isDependentType() ||
Ty->isInstantiationDependentType() ||
Ty->containsUnexpandedParameterPack() ||
filterLookupForUDReductionAndMapper<bool>(Lookups, [](ValueDecl *D) {
return !D->isInvalidDecl() &&
(D->getType()->isDependentType() ||
D->getType()->isInstantiationDependentType() ||
D->getType()->containsUnexpandedParameterPack());
})) {
UnresolvedSet<8> ResSet;
for (const UnresolvedSet<8> &Set : Lookups) {
if (Set.empty())
continue;
ResSet.append(Set.begin(), Set.end());
// The last item marks the end of all declarations at the specified scope.
ResSet.addDecl(Set[Set.size() - 1]);
}
return UnresolvedLookupExpr::Create(
SemaRef.Context, /*NamingClass=*/nullptr,
ReductionIdScopeSpec.getWithLocInContext(SemaRef.Context), ReductionId,
/*ADL=*/true, /*Overloaded=*/true, ResSet.begin(), ResSet.end());
}
// Lookup inside the classes.
// C++ [over.match.oper]p3:
// For a unary operator @ with an operand of a type whose
// cv-unqualified version is T1, and for a binary operator @ with
// a left operand of a type whose cv-unqualified version is T1 and
// a right operand of a type whose cv-unqualified version is T2,
// three sets of candidate functions, designated member
// candidates, non-member candidates and built-in candidates, are
// constructed as follows:
// -- If T1 is a complete class type or a class currently being
// defined, the set of member candidates is the result of the
// qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
// the set of member candidates is empty.
LookupResult Lookup(SemaRef, ReductionId, Sema::LookupOMPReductionName);
Lookup.suppressDiagnostics();
if (const auto *TyRec = Ty->getAs<RecordType>()) {
// Complete the type if it can be completed.
// If the type is neither complete nor being defined, bail out now.
if (SemaRef.isCompleteType(Loc, Ty) || TyRec->isBeingDefined() ||
TyRec->getDecl()->getDefinition()) {
Lookup.clear();
SemaRef.LookupQualifiedName(Lookup, TyRec->getDecl());
if (Lookup.empty()) {
Lookups.emplace_back();
Lookups.back().append(Lookup.begin(), Lookup.end());
}
}
}
// Perform ADL.
if (SemaRef.getLangOpts().CPlusPlus)
argumentDependentLookup(SemaRef, ReductionId, Loc, Ty, Lookups);
if (auto *VD = filterLookupForUDReductionAndMapper<ValueDecl *>(
Lookups, [&SemaRef, Ty](ValueDecl *D) -> ValueDecl * {
if (!D->isInvalidDecl() &&
SemaRef.Context.hasSameType(D->getType(), Ty))
return D;
return nullptr;
}))
return SemaRef.BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(),
VK_LValue, Loc);
if (SemaRef.getLangOpts().CPlusPlus) {
if (auto *VD = filterLookupForUDReductionAndMapper<ValueDecl *>(
Lookups, [&SemaRef, Ty, Loc](ValueDecl *D) -> ValueDecl * {
if (!D->isInvalidDecl() &&
SemaRef.IsDerivedFrom(Loc, Ty, D->getType()) &&
!Ty.isMoreQualifiedThan(D->getType()))
return D;
return nullptr;
})) {
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
/*DetectVirtual=*/false);
if (SemaRef.IsDerivedFrom(Loc, Ty, VD->getType(), Paths)) {
if (!Paths.isAmbiguous(SemaRef.Context.getCanonicalType(
VD->getType().getUnqualifiedType()))) {
if (SemaRef.CheckBaseClassAccess(
Loc, VD->getType(), Ty, Paths.front(),
/*DiagID=*/0) != Sema::AR_inaccessible) {
SemaRef.BuildBasePathArray(Paths, BasePath);
return SemaRef.BuildDeclRefExpr(
VD, VD->getType().getNonReferenceType(), VK_LValue, Loc);
}
}
}
}
}
if (ReductionIdScopeSpec.isSet()) {
SemaRef.Diag(Loc, diag::err_omp_not_resolved_reduction_identifier)
<< Ty << Range;
return ExprError();
}
return ExprEmpty();
}
namespace {
/// Data for the reduction-based clauses.
struct ReductionData {
/// List of original reduction items.
SmallVector<Expr *, 8> Vars;
/// List of private copies of the reduction items.
SmallVector<Expr *, 8> Privates;
/// LHS expressions for the reduction_op expressions.
SmallVector<Expr *, 8> LHSs;
/// RHS expressions for the reduction_op expressions.
SmallVector<Expr *, 8> RHSs;
/// Reduction operation expression.
SmallVector<Expr *, 8> ReductionOps;
/// inscan copy operation expressions.
SmallVector<Expr *, 8> InscanCopyOps;
/// inscan copy temp array expressions for prefix sums.
SmallVector<Expr *, 8> InscanCopyArrayTemps;
/// inscan copy temp array element expressions for prefix sums.
SmallVector<Expr *, 8> InscanCopyArrayElems;
/// Taskgroup descriptors for the corresponding reduction items in
/// in_reduction clauses.
SmallVector<Expr *, 8> TaskgroupDescriptors;
/// List of captures for clause.
SmallVector<Decl *, 4> ExprCaptures;
/// List of postupdate expressions.
SmallVector<Expr *, 4> ExprPostUpdates;
/// Reduction modifier.
unsigned RedModifier = 0;
ReductionData() = delete;
/// Reserves required memory for the reduction data.
ReductionData(unsigned Size, unsigned Modifier = 0) : RedModifier(Modifier) {
Vars.reserve(Size);
Privates.reserve(Size);
LHSs.reserve(Size);
RHSs.reserve(Size);
ReductionOps.reserve(Size);
if (RedModifier == OMPC_REDUCTION_inscan) {
InscanCopyOps.reserve(Size);
InscanCopyArrayTemps.reserve(Size);
InscanCopyArrayElems.reserve(Size);
}
TaskgroupDescriptors.reserve(Size);
ExprCaptures.reserve(Size);
ExprPostUpdates.reserve(Size);
}
/// Stores reduction item and reduction operation only (required for dependent
/// reduction item).
void push(Expr *Item, Expr *ReductionOp) {
Vars.emplace_back(Item);
Privates.emplace_back(nullptr);
LHSs.emplace_back(nullptr);
RHSs.emplace_back(nullptr);
ReductionOps.emplace_back(ReductionOp);
TaskgroupDescriptors.emplace_back(nullptr);
if (RedModifier == OMPC_REDUCTION_inscan) {
InscanCopyOps.push_back(nullptr);
InscanCopyArrayTemps.push_back(nullptr);
InscanCopyArrayElems.push_back(nullptr);
}
}
/// Stores reduction data.
void push(Expr *Item, Expr *Private, Expr *LHS, Expr *RHS, Expr *ReductionOp,
Expr *TaskgroupDescriptor, Expr *CopyOp, Expr *CopyArrayTemp,
Expr *CopyArrayElem) {
Vars.emplace_back(Item);
Privates.emplace_back(Private);
LHSs.emplace_back(LHS);
RHSs.emplace_back(RHS);
ReductionOps.emplace_back(ReductionOp);
TaskgroupDescriptors.emplace_back(TaskgroupDescriptor);
if (RedModifier == OMPC_REDUCTION_inscan) {
InscanCopyOps.push_back(CopyOp);
InscanCopyArrayTemps.push_back(CopyArrayTemp);
InscanCopyArrayElems.push_back(CopyArrayElem);
} else {
assert(CopyOp == nullptr && CopyArrayTemp == nullptr &&
CopyArrayElem == nullptr &&
"Copy operation must be used for inscan reductions only.");
}
}
};
} // namespace
static bool checkOMPArraySectionConstantForReduction(
ASTContext &Context, const OMPArraySectionExpr *OASE, bool &SingleElement,
SmallVectorImpl<llvm::APSInt> &ArraySizes) {
const Expr *Length = OASE->getLength();
if (Length == nullptr) {
// For array sections of the form [1:] or [:], we would need to analyze
// the lower bound...
if (OASE->getColonLocFirst().isValid())
return false;
// This is an array subscript which has implicit length 1!
SingleElement = true;
ArraySizes.push_back(llvm::APSInt::get(1));
} else {
Expr::EvalResult Result;
if (!Length->EvaluateAsInt(Result, Context))
return false;
llvm::APSInt ConstantLengthValue = Result.Val.getInt();
SingleElement = (ConstantLengthValue.getSExtValue() == 1);
ArraySizes.push_back(ConstantLengthValue);
}
// Get the base of this array section and walk up from there.
const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
// We require length = 1 for all array sections except the right-most to
// guarantee that the memory region is contiguous and has no holes in it.
while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) {
Length = TempOASE->getLength();
if (Length == nullptr) {
// For array sections of the form [1:] or [:], we would need to analyze
// the lower bound...
if (OASE->getColonLocFirst().isValid())
return false;
// This is an array subscript which has implicit length 1!
ArraySizes.push_back(llvm::APSInt::get(1));
} else {
Expr::EvalResult Result;
if (!Length->EvaluateAsInt(Result, Context))
return false;
llvm::APSInt ConstantLengthValue = Result.Val.getInt();
if (ConstantLengthValue.getSExtValue() != 1)
return false;
ArraySizes.push_back(ConstantLengthValue);
}
Base = TempOASE->getBase()->IgnoreParenImpCasts();
}
// If we have a single element, we don't need to add the implicit lengths.
if (!SingleElement) {
while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) {
// Has implicit length 1!
ArraySizes.push_back(llvm::APSInt::get(1));
Base = TempASE->getBase()->IgnoreParenImpCasts();
}
}
// This array section can be privatized as a single value or as a constant
// sized array.
return true;
}
static BinaryOperatorKind
getRelatedCompoundReductionOp(BinaryOperatorKind BOK) {
if (BOK == BO_Add)
return BO_AddAssign;
if (BOK == BO_Mul)
return BO_MulAssign;
if (BOK == BO_And)
return BO_AndAssign;
if (BOK == BO_Or)
return BO_OrAssign;
if (BOK == BO_Xor)
return BO_XorAssign;
return BOK;
}
static bool actOnOMPReductionKindClause(
Sema &S, DSAStackTy *Stack, OpenMPClauseKind ClauseKind,
ArrayRef<Expr *> VarList, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation ColonLoc, SourceLocation EndLoc,
CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId,
ArrayRef<Expr *> UnresolvedReductions, ReductionData &RD) {
DeclarationName DN = ReductionId.getName();
OverloadedOperatorKind OOK = DN.getCXXOverloadedOperator();
BinaryOperatorKind BOK = BO_Comma;
ASTContext &Context = S.Context;
// OpenMP [2.14.3.6, reduction clause]
// C
// reduction-identifier is either an identifier or one of the following
// operators: +, -, *, &, |, ^, && and ||
// C++
// reduction-identifier is either an id-expression or one of the following
// operators: +, -, *, &, |, ^, && and ||
switch (OOK) {
case OO_Plus:
case OO_Minus:
BOK = BO_Add;
break;
case OO_Star:
BOK = BO_Mul;
break;
case OO_Amp:
BOK = BO_And;
break;
case OO_Pipe:
BOK = BO_Or;
break;
case OO_Caret:
BOK = BO_Xor;
break;
case OO_AmpAmp:
BOK = BO_LAnd;
break;
case OO_PipePipe:
BOK = BO_LOr;
break;
case OO_New:
case OO_Delete:
case OO_Array_New:
case OO_Array_Delete:
case OO_Slash:
case OO_Percent:
case OO_Tilde:
case OO_Exclaim:
case OO_Equal:
case OO_Less:
case OO_Greater:
case OO_LessEqual:
case OO_GreaterEqual:
case OO_PlusEqual:
case OO_MinusEqual:
case OO_StarEqual:
case OO_SlashEqual:
case OO_PercentEqual:
case OO_CaretEqual:
case OO_AmpEqual:
case OO_PipeEqual:
case OO_LessLess:
case OO_GreaterGreater:
case OO_LessLessEqual:
case OO_GreaterGreaterEqual:
case OO_EqualEqual:
case OO_ExclaimEqual:
case OO_Spaceship:
case OO_PlusPlus:
case OO_MinusMinus:
case OO_Comma:
case OO_ArrowStar:
case OO_Arrow:
case OO_Call:
case OO_Subscript:
case OO_Conditional:
case OO_Coawait:
case NUM_OVERLOADED_OPERATORS:
llvm_unreachable("Unexpected reduction identifier");
case OO_None:
if (IdentifierInfo *II = DN.getAsIdentifierInfo()) {
if (II->isStr("max"))
BOK = BO_GT;
else if (II->isStr("min"))
BOK = BO_LT;
}
break;
}
SourceRange ReductionIdRange;
if (ReductionIdScopeSpec.isValid())
ReductionIdRange.setBegin(ReductionIdScopeSpec.getBeginLoc());
else
ReductionIdRange.setBegin(ReductionId.getBeginLoc());
ReductionIdRange.setEnd(ReductionId.getEndLoc());
auto IR = UnresolvedReductions.begin(), ER = UnresolvedReductions.end();
bool FirstIter = true;
for (Expr *RefExpr : VarList) {
assert(RefExpr && "nullptr expr in OpenMP reduction clause.");
// OpenMP [2.1, C/C++]
// A list item is a variable or array section, subject to the restrictions
// specified in Section 2.4 on page 42 and in each of the sections
// describing clauses and directives for which a list appears.
// OpenMP [2.14.3.3, Restrictions, p.1]
// A variable that is part of another variable (as an array or
// structure element) cannot appear in a private clause.
if (!FirstIter && IR != ER)
++IR;
FirstIter = false;
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(S, SimpleRefExpr, ELoc, ERange,
/*AllowArraySection=*/true);
if (Res.second) {
// Try to find 'declare reduction' corresponding construct before using
// builtin/overloaded operators.
QualType Type = Context.DependentTy;
CXXCastPath BasePath;
ExprResult DeclareReductionRef = buildDeclareReductionRef(
S, ELoc, ERange, Stack->getCurScope(), ReductionIdScopeSpec,
ReductionId, Type, BasePath, IR == ER ? nullptr : *IR);
Expr *ReductionOp = nullptr;
if (S.CurContext->isDependentContext() &&
(DeclareReductionRef.isUnset() ||
isa<UnresolvedLookupExpr>(DeclareReductionRef.get())))
ReductionOp = DeclareReductionRef.get();
// It will be analyzed later.
RD.push(RefExpr, ReductionOp);
}
ValueDecl *D = Res.first;
if (!D)
continue;
Expr *TaskgroupDescriptor = nullptr;
QualType Type;
auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr->IgnoreParens());
auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr->IgnoreParens());
if (ASE) {
Type = ASE->getType().getNonReferenceType();
} else if (OASE) {
QualType BaseType =
OMPArraySectionExpr::getBaseOriginalType(OASE->getBase());
if (const auto *ATy = BaseType->getAsArrayTypeUnsafe())
Type = ATy->getElementType();
else
Type = BaseType->getPointeeType();
Type = Type.getNonReferenceType();
} else {
Type = Context.getBaseElementType(D->getType().getNonReferenceType());
}
auto *VD = dyn_cast<VarDecl>(D);
// OpenMP [2.9.3.3, Restrictions, C/C++, p.3]
// A variable that appears in a private clause must not have an incomplete
// type or a reference type.
if (S.RequireCompleteType(ELoc, D->getType(),
diag::err_omp_reduction_incomplete_type))
continue;
// OpenMP [2.14.3.6, reduction clause, Restrictions]
// A list item that appears in a reduction clause must not be
// const-qualified.
if (rejectConstNotMutableType(S, D, Type, ClauseKind, ELoc,
/*AcceptIfMutable*/ false, ASE || OASE))
continue;
OpenMPDirectiveKind CurrDir = Stack->getCurrentDirective();
// OpenMP [2.9.3.6, Restrictions, C/C++, p.4]
// If a list-item is a reference type then it must bind to the same object
// for all threads of the team.
if (!ASE && !OASE) {
if (VD) {
VarDecl *VDDef = VD->getDefinition();
if (VD->getType()->isReferenceType() && VDDef && VDDef->hasInit()) {
DSARefChecker Check(Stack);
if (Check.Visit(VDDef->getInit())) {
S.Diag(ELoc, diag::err_omp_reduction_ref_type_arg)
<< getOpenMPClauseName(ClauseKind) << ERange;
S.Diag(VDDef->getLocation(), diag::note_defined_here) << VDDef;
continue;
}
}
}
// OpenMP [2.14.1.1, Data-sharing Attribute Rules for Variables Referenced
// in a Construct]
// Variables with the predetermined data-sharing attributes may not be
// listed in data-sharing attributes clauses, except for the cases
// listed below. For these exceptions only, listing a predetermined
// variable in a data-sharing attribute clause is allowed and overrides
// the variable's predetermined data-sharing attributes.
// OpenMP [2.14.3.6, Restrictions, p.3]
// Any number of reduction clauses can be specified on the directive,
// but a list item can appear only once in the reduction clauses for that
// directive.
DSAStackTy::DSAVarData DVar = Stack->getTopDSA(D, /*FromParent=*/false);
if (DVar.CKind == OMPC_reduction) {
S.Diag(ELoc, diag::err_omp_once_referenced)
<< getOpenMPClauseName(ClauseKind);
if (DVar.RefExpr)
S.Diag(DVar.RefExpr->getExprLoc(), diag::note_omp_referenced);
continue;
}
if (DVar.CKind != OMPC_unknown) {
S.Diag(ELoc, diag::err_omp_wrong_dsa)
<< getOpenMPClauseName(DVar.CKind)
<< getOpenMPClauseName(OMPC_reduction);
reportOriginalDsa(S, Stack, D, DVar);
continue;
}
// OpenMP [2.14.3.6, Restrictions, p.1]
// A list item that appears in a reduction clause of a worksharing
// construct must be shared in the parallel regions to which any of the
// worksharing regions arising from the worksharing construct bind.
if (isOpenMPWorksharingDirective(CurrDir) &&
!isOpenMPParallelDirective(CurrDir) &&
!isOpenMPTeamsDirective(CurrDir)) {
DVar = Stack->getImplicitDSA(D, true);
if (DVar.CKind != OMPC_shared) {
S.Diag(ELoc, diag::err_omp_required_access)
<< getOpenMPClauseName(OMPC_reduction)
<< getOpenMPClauseName(OMPC_shared);
reportOriginalDsa(S, Stack, D, DVar);
continue;
}
}
} else {
// Threadprivates cannot be shared between threads, so dignose if the base
// is a threadprivate variable.
DSAStackTy::DSAVarData DVar = Stack->getTopDSA(D, /*FromParent=*/false);
if (DVar.CKind == OMPC_threadprivate) {
S.Diag(ELoc, diag::err_omp_wrong_dsa)
<< getOpenMPClauseName(DVar.CKind)
<< getOpenMPClauseName(OMPC_reduction);
reportOriginalDsa(S, Stack, D, DVar);
continue;
}
}
// Try to find 'declare reduction' corresponding construct before using
// builtin/overloaded operators.
CXXCastPath BasePath;
ExprResult DeclareReductionRef = buildDeclareReductionRef(
S, ELoc, ERange, Stack->getCurScope(), ReductionIdScopeSpec,
ReductionId, Type, BasePath, IR == ER ? nullptr : *IR);
if (DeclareReductionRef.isInvalid())
continue;
if (S.CurContext->isDependentContext() &&
(DeclareReductionRef.isUnset() ||
isa<UnresolvedLookupExpr>(DeclareReductionRef.get()))) {
RD.push(RefExpr, DeclareReductionRef.get());
continue;
}
if (BOK == BO_Comma && DeclareReductionRef.isUnset()) {
// Not allowed reduction identifier is found.
S.Diag(ReductionId.getBeginLoc(),
diag::err_omp_unknown_reduction_identifier)
<< Type << ReductionIdRange;
continue;
}
// OpenMP [2.14.3.6, reduction clause, Restrictions]
// The type of a list item that appears in a reduction clause must be valid
// for the reduction-identifier. For a max or min reduction in C, the type
// of the list item must be an allowed arithmetic data type: char, int,
// float, double, or _Bool, possibly modified with long, short, signed, or
// unsigned. For a max or min reduction in C++, the type of the list item
// must be an allowed arithmetic data type: char, wchar_t, int, float,
// double, or bool, possibly modified with long, short, signed, or unsigned.
if (DeclareReductionRef.isUnset()) {
if ((BOK == BO_GT || BOK == BO_LT) &&
!(Type->isScalarType() ||
(S.getLangOpts().CPlusPlus && Type->isArithmeticType()))) {
S.Diag(ELoc, diag::err_omp_clause_not_arithmetic_type_arg)
<< getOpenMPClauseName(ClauseKind) << S.getLangOpts().CPlusPlus;
if (!ASE && !OASE) {
bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
VarDecl::DeclarationOnly;
S.Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
}
continue;
}
if ((BOK == BO_OrAssign || BOK == BO_AndAssign || BOK == BO_XorAssign) &&
!S.getLangOpts().CPlusPlus && Type->isFloatingType()) {
S.Diag(ELoc, diag::err_omp_clause_floating_type_arg)
<< getOpenMPClauseName(ClauseKind);
if (!ASE && !OASE) {
bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
VarDecl::DeclarationOnly;
S.Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
}
continue;
}
}
Type = Type.getNonLValueExprType(Context).getUnqualifiedType();
VarDecl *LHSVD = buildVarDecl(S, ELoc, Type, ".reduction.lhs",
D->hasAttrs() ? &D->getAttrs() : nullptr);
VarDecl *RHSVD = buildVarDecl(S, ELoc, Type, D->getName(),
D->hasAttrs() ? &D->getAttrs() : nullptr);
QualType PrivateTy = Type;
// Try if we can determine constant lengths for all array sections and avoid
// the VLA.
bool ConstantLengthOASE = false;
if (OASE) {
bool SingleElement;
llvm::SmallVector<llvm::APSInt, 4> ArraySizes;
ConstantLengthOASE = checkOMPArraySectionConstantForReduction(
Context, OASE, SingleElement, ArraySizes);
// If we don't have a single element, we must emit a constant array type.
if (ConstantLengthOASE && !SingleElement) {
for (llvm::APSInt &Size : ArraySizes)
PrivateTy = Context.getConstantArrayType(PrivateTy, Size, nullptr,
ArrayType::Normal,
/*IndexTypeQuals=*/0);
}
}
if ((OASE && !ConstantLengthOASE) ||
(!OASE && !ASE &&
D->getType().getNonReferenceType()->isVariablyModifiedType())) {
if (!Context.getTargetInfo().isVLASupported()) {
if (isOpenMPTargetExecutionDirective(Stack->getCurrentDirective())) {
S.Diag(ELoc, diag::err_omp_reduction_vla_unsupported) << !!OASE;
S.Diag(ELoc, diag::note_vla_unsupported);
continue;
} else {
S.targetDiag(ELoc, diag::err_omp_reduction_vla_unsupported) << !!OASE;
S.targetDiag(ELoc, diag::note_vla_unsupported);
}
}
// For arrays/array sections only:
// Create pseudo array type for private copy. The size for this array will
// be generated during codegen.
// For array subscripts or single variables Private Ty is the same as Type
// (type of the variable or single array element).
PrivateTy = Context.getVariableArrayType(
Type,
new (Context)
OpaqueValueExpr(ELoc, Context.getSizeType(), VK_PRValue),
ArrayType::Normal, /*IndexTypeQuals=*/0, SourceRange());
} else if (!ASE && !OASE &&
Context.getAsArrayType(D->getType().getNonReferenceType())) {
PrivateTy = D->getType().getNonReferenceType();
}
// Private copy.
VarDecl *PrivateVD =
buildVarDecl(S, ELoc, PrivateTy, D->getName(),
D->hasAttrs() ? &D->getAttrs() : nullptr,
VD ? cast<DeclRefExpr>(SimpleRefExpr) : nullptr);
// Add initializer for private variable.
Expr *Init = nullptr;
DeclRefExpr *LHSDRE = buildDeclRefExpr(S, LHSVD, Type, ELoc);
DeclRefExpr *RHSDRE = buildDeclRefExpr(S, RHSVD, Type, ELoc);
if (DeclareReductionRef.isUsable()) {
auto *DRDRef = DeclareReductionRef.getAs<DeclRefExpr>();
auto *DRD = cast<OMPDeclareReductionDecl>(DRDRef->getDecl());
if (DRD->getInitializer()) {
Init = DRDRef;
RHSVD->setInit(DRDRef);
RHSVD->setInitStyle(VarDecl::CallInit);
}
} else {
switch (BOK) {
case BO_Add:
case BO_Xor:
case BO_Or:
case BO_LOr:
// '+', '-', '^', '|', '||' reduction ops - initializer is '0'.
if (Type->isScalarType() || Type->isAnyComplexType())
Init = S.ActOnIntegerConstant(ELoc, /*Val=*/0).get();
break;
case BO_Mul:
case BO_LAnd:
if (Type->isScalarType() || Type->isAnyComplexType()) {
// '*' and '&&' reduction ops - initializer is '1'.
Init = S.ActOnIntegerConstant(ELoc, /*Val=*/1).get();
}
break;
case BO_And: {
// '&' reduction op - initializer is '~0'.
QualType OrigType = Type;
if (auto *ComplexTy = OrigType->getAs<ComplexType>())
Type = ComplexTy->getElementType();
if (Type->isRealFloatingType()) {
llvm::APFloat InitValue = llvm::APFloat::getAllOnesValue(
Context.getFloatTypeSemantics(Type));
Init = FloatingLiteral::Create(Context, InitValue, /*isexact=*/true,
Type, ELoc);
} else if (Type->isScalarType()) {
uint64_t Size = Context.getTypeSize(Type);
QualType IntTy = Context.getIntTypeForBitwidth(Size, /*Signed=*/0);
llvm::APInt InitValue = llvm::APInt::getAllOnes(Size);
Init = IntegerLiteral::Create(Context, InitValue, IntTy, ELoc);
}
if (Init && OrigType->isAnyComplexType()) {
// Init = 0xFFFF + 0xFFFFi;
auto *Im = new (Context) ImaginaryLiteral(Init, OrigType);
Init = S.CreateBuiltinBinOp(ELoc, BO_Add, Init, Im).get();
}
Type = OrigType;
break;
}
case BO_LT:
case BO_GT: {
// 'min' reduction op - initializer is 'Largest representable number in
// the reduction list item type'.
// 'max' reduction op - initializer is 'Least representable number in
// the reduction list item type'.
if (Type->isIntegerType() || Type->isPointerType()) {
bool IsSigned = Type->hasSignedIntegerRepresentation();
uint64_t Size = Context.getTypeSize(Type);
QualType IntTy =
Context.getIntTypeForBitwidth(Size, /*Signed=*/IsSigned);
llvm::APInt InitValue =
(BOK != BO_LT) ? IsSigned ? llvm::APInt::getSignedMinValue(Size)
: llvm::APInt::getMinValue(Size)
: IsSigned ? llvm::APInt::getSignedMaxValue(Size)
: llvm::APInt::getMaxValue(Size);
Init = IntegerLiteral::Create(Context, InitValue, IntTy, ELoc);
if (Type->isPointerType()) {
// Cast to pointer type.
ExprResult CastExpr = S.BuildCStyleCastExpr(
ELoc, Context.getTrivialTypeSourceInfo(Type, ELoc), ELoc, Init);
if (CastExpr.isInvalid())
continue;
Init = CastExpr.get();
}
} else if (Type->isRealFloatingType()) {
llvm::APFloat InitValue = llvm::APFloat::getLargest(
Context.getFloatTypeSemantics(Type), BOK != BO_LT);
Init = FloatingLiteral::Create(Context, InitValue, /*isexact=*/true,
Type, ELoc);
}
break;
}
case BO_PtrMemD:
case BO_PtrMemI:
case BO_MulAssign:
case BO_Div:
case BO_Rem:
case BO_Sub:
case BO_Shl:
case BO_Shr:
case BO_LE:
case BO_GE:
case BO_EQ:
case BO_NE:
case BO_Cmp:
case BO_AndAssign:
case BO_XorAssign:
case BO_OrAssign:
case BO_Assign:
case BO_AddAssign:
case BO_SubAssign:
case BO_DivAssign:
case BO_RemAssign:
case BO_ShlAssign:
case BO_ShrAssign:
case BO_Comma:
llvm_unreachable("Unexpected reduction operation");
}
}
if (Init && DeclareReductionRef.isUnset()) {
S.AddInitializerToDecl(RHSVD, Init, /*DirectInit=*/false);
// Store initializer for single element in private copy. Will be used
// during codegen.
PrivateVD->setInit(RHSVD->getInit());
PrivateVD->setInitStyle(RHSVD->getInitStyle());
} else if (!Init) {
S.ActOnUninitializedDecl(RHSVD);
// Store initializer for single element in private copy. Will be used
// during codegen.
PrivateVD->setInit(RHSVD->getInit());
PrivateVD->setInitStyle(RHSVD->getInitStyle());
}
if (RHSVD->isInvalidDecl())
continue;
if (!RHSVD->hasInit() && DeclareReductionRef.isUnset()) {
S.Diag(ELoc, diag::err_omp_reduction_id_not_compatible)
<< Type << ReductionIdRange;
bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
VarDecl::DeclarationOnly;
S.Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
continue;
}
DeclRefExpr *PrivateDRE = buildDeclRefExpr(S, PrivateVD, PrivateTy, ELoc);
ExprResult ReductionOp;
if (DeclareReductionRef.isUsable()) {
QualType RedTy = DeclareReductionRef.get()->getType();
QualType PtrRedTy = Context.getPointerType(RedTy);
ExprResult LHS = S.CreateBuiltinUnaryOp(ELoc, UO_AddrOf, LHSDRE);
ExprResult RHS = S.CreateBuiltinUnaryOp(ELoc, UO_AddrOf, RHSDRE);
if (!BasePath.empty()) {
LHS = S.DefaultLvalueConversion(LHS.get());
RHS = S.DefaultLvalueConversion(RHS.get());
LHS = ImplicitCastExpr::Create(
Context, PtrRedTy, CK_UncheckedDerivedToBase, LHS.get(), &BasePath,
LHS.get()->getValueKind(), FPOptionsOverride());
RHS = ImplicitCastExpr::Create(
Context, PtrRedTy, CK_UncheckedDerivedToBase, RHS.get(), &BasePath,
RHS.get()->getValueKind(), FPOptionsOverride());
}
FunctionProtoType::ExtProtoInfo EPI;
QualType Params[] = {PtrRedTy, PtrRedTy};
QualType FnTy = Context.getFunctionType(Context.VoidTy, Params, EPI);
auto *OVE = new (Context) OpaqueValueExpr(
ELoc, Context.getPointerType(FnTy), VK_PRValue, OK_Ordinary,
S.DefaultLvalueConversion(DeclareReductionRef.get()).get());
Expr *Args[] = {LHS.get(), RHS.get()};
ReductionOp =
CallExpr::Create(Context, OVE, Args, Context.VoidTy, VK_PRValue, ELoc,
S.CurFPFeatureOverrides());
} else {
BinaryOperatorKind CombBOK = getRelatedCompoundReductionOp(BOK);
if (Type->isRecordType() && CombBOK != BOK) {
Sema::TentativeAnalysisScope Trap(S);
ReductionOp =
S.BuildBinOp(Stack->getCurScope(), ReductionId.getBeginLoc(),
CombBOK, LHSDRE, RHSDRE);
}
if (!ReductionOp.isUsable()) {
ReductionOp =
S.BuildBinOp(Stack->getCurScope(), ReductionId.getBeginLoc(), BOK,
LHSDRE, RHSDRE);
if (ReductionOp.isUsable()) {
if (BOK != BO_LT && BOK != BO_GT) {
ReductionOp =
S.BuildBinOp(Stack->getCurScope(), ReductionId.getBeginLoc(),
BO_Assign, LHSDRE, ReductionOp.get());
} else {
auto *ConditionalOp = new (Context)
ConditionalOperator(ReductionOp.get(), ELoc, LHSDRE, ELoc,
RHSDRE, Type, VK_LValue, OK_Ordinary);
ReductionOp =
S.BuildBinOp(Stack->getCurScope(), ReductionId.getBeginLoc(),
BO_Assign, LHSDRE, ConditionalOp);
}
}
}
if (ReductionOp.isUsable())
ReductionOp = S.ActOnFinishFullExpr(ReductionOp.get(),
/*DiscardedValue*/ false);
if (!ReductionOp.isUsable())
continue;
}
// Add copy operations for inscan reductions.
// LHS = RHS;
ExprResult CopyOpRes, TempArrayRes, TempArrayElem;
if (ClauseKind == OMPC_reduction &&
RD.RedModifier == OMPC_REDUCTION_inscan) {
ExprResult RHS = S.DefaultLvalueConversion(RHSDRE);
CopyOpRes = S.BuildBinOp(Stack->getCurScope(), ELoc, BO_Assign, LHSDRE,
RHS.get());
if (!CopyOpRes.isUsable())
continue;
CopyOpRes =
S.ActOnFinishFullExpr(CopyOpRes.get(), /*DiscardedValue=*/true);
if (!CopyOpRes.isUsable())
continue;
// For simd directive and simd-based directives in simd mode no need to
// construct temp array, need just a single temp element.
if (Stack->getCurrentDirective() == OMPD_simd ||
(S.getLangOpts().OpenMPSimd &&
isOpenMPSimdDirective(Stack->getCurrentDirective()))) {
VarDecl *TempArrayVD =
buildVarDecl(S, ELoc, PrivateTy, D->getName(),
D->hasAttrs() ? &D->getAttrs() : nullptr);
// Add a constructor to the temp decl.
S.ActOnUninitializedDecl(TempArrayVD);
TempArrayRes = buildDeclRefExpr(S, TempArrayVD, PrivateTy, ELoc);
} else {
// Build temp array for prefix sum.
auto *Dim = new (S.Context)
OpaqueValueExpr(ELoc, S.Context.getSizeType(), VK_PRValue);
QualType ArrayTy =
S.Context.getVariableArrayType(PrivateTy, Dim, ArrayType::Normal,
/*IndexTypeQuals=*/0, {ELoc, ELoc});
VarDecl *TempArrayVD =
buildVarDecl(S, ELoc, ArrayTy, D->getName(),
D->hasAttrs() ? &D->getAttrs() : nullptr);
// Add a constructor to the temp decl.
S.ActOnUninitializedDecl(TempArrayVD);
TempArrayRes = buildDeclRefExpr(S, TempArrayVD, ArrayTy, ELoc);
TempArrayElem =
S.DefaultFunctionArrayLvalueConversion(TempArrayRes.get());
auto *Idx = new (S.Context)
OpaqueValueExpr(ELoc, S.Context.getSizeType(), VK_PRValue);
TempArrayElem = S.CreateBuiltinArraySubscriptExpr(TempArrayElem.get(),
ELoc, Idx, ELoc);
}
}
// OpenMP [2.15.4.6, Restrictions, p.2]
// A list item that appears in an in_reduction clause of a task construct
// must appear in a task_reduction clause of a construct associated with a
// taskgroup region that includes the participating task in its taskgroup
// set. The construct associated with the innermost region that meets this
// condition must specify the same reduction-identifier as the in_reduction
// clause.
if (ClauseKind == OMPC_in_reduction) {
SourceRange ParentSR;
BinaryOperatorKind ParentBOK;
const Expr *ParentReductionOp = nullptr;
Expr *ParentBOKTD = nullptr, *ParentReductionOpTD = nullptr;
DSAStackTy::DSAVarData ParentBOKDSA =
Stack->getTopMostTaskgroupReductionData(D, ParentSR, ParentBOK,
ParentBOKTD);
DSAStackTy::DSAVarData ParentReductionOpDSA =
Stack->getTopMostTaskgroupReductionData(
D, ParentSR, ParentReductionOp, ParentReductionOpTD);
bool IsParentBOK = ParentBOKDSA.DKind != OMPD_unknown;
bool IsParentReductionOp = ParentReductionOpDSA.DKind != OMPD_unknown;
if ((DeclareReductionRef.isUnset() && IsParentReductionOp) ||
(DeclareReductionRef.isUsable() && IsParentBOK) ||
(IsParentBOK && BOK != ParentBOK) || IsParentReductionOp) {
bool EmitError = true;
if (IsParentReductionOp && DeclareReductionRef.isUsable()) {
llvm::FoldingSetNodeID RedId, ParentRedId;
ParentReductionOp->Profile(ParentRedId, Context, /*Canonical=*/true);
DeclareReductionRef.get()->Profile(RedId, Context,
/*Canonical=*/true);
EmitError = RedId != ParentRedId;
}
if (EmitError) {
S.Diag(ReductionId.getBeginLoc(),
diag::err_omp_reduction_identifier_mismatch)
<< ReductionIdRange << RefExpr->getSourceRange();
S.Diag(ParentSR.getBegin(),
diag::note_omp_previous_reduction_identifier)
<< ParentSR
<< (IsParentBOK ? ParentBOKDSA.RefExpr
: ParentReductionOpDSA.RefExpr)
->getSourceRange();
continue;
}
}
TaskgroupDescriptor = IsParentBOK ? ParentBOKTD : ParentReductionOpTD;
}
DeclRefExpr *Ref = nullptr;
Expr *VarsExpr = RefExpr->IgnoreParens();
if (!VD && !S.CurContext->isDependentContext()) {
if (ASE || OASE) {
TransformExprToCaptures RebuildToCapture(S, D);
VarsExpr =
RebuildToCapture.TransformExpr(RefExpr->IgnoreParens()).get();
Ref = RebuildToCapture.getCapturedExpr();
} else {
VarsExpr = Ref = buildCapture(S, D, SimpleRefExpr, /*WithInit=*/false);
}
if (!S.isOpenMPCapturedDecl(D)) {
RD.ExprCaptures.emplace_back(Ref->getDecl());
if (Ref->getDecl()->hasAttr<OMPCaptureNoInitAttr>()) {
ExprResult RefRes = S.DefaultLvalueConversion(Ref);
if (!RefRes.isUsable())
continue;
ExprResult PostUpdateRes =
S.BuildBinOp(Stack->getCurScope(), ELoc, BO_Assign, SimpleRefExpr,
RefRes.get());
if (!PostUpdateRes.isUsable())
continue;
if (isOpenMPTaskingDirective(Stack->getCurrentDirective()) ||
Stack->getCurrentDirective() == OMPD_taskgroup) {
S.Diag(RefExpr->getExprLoc(),
diag::err_omp_reduction_non_addressable_expression)
<< RefExpr->getSourceRange();
continue;
}
RD.ExprPostUpdates.emplace_back(
S.IgnoredValueConversions(PostUpdateRes.get()).get());
}
}
}
// All reduction items are still marked as reduction (to do not increase
// code base size).
unsigned Modifier = RD.RedModifier;
// Consider task_reductions as reductions with task modifier. Required for
// correct analysis of in_reduction clauses.
if (CurrDir == OMPD_taskgroup && ClauseKind == OMPC_task_reduction)
Modifier = OMPC_REDUCTION_task;
Stack->addDSA(D, RefExpr->IgnoreParens(), OMPC_reduction, Ref, Modifier,
ASE || OASE);
if (Modifier == OMPC_REDUCTION_task &&
(CurrDir == OMPD_taskgroup ||
((isOpenMPParallelDirective(CurrDir) ||
isOpenMPWorksharingDirective(CurrDir)) &&
!isOpenMPSimdDirective(CurrDir)))) {
if (DeclareReductionRef.isUsable())
Stack->addTaskgroupReductionData(D, ReductionIdRange,
DeclareReductionRef.get());
else
Stack->addTaskgroupReductionData(D, ReductionIdRange, BOK);
}
RD.push(VarsExpr, PrivateDRE, LHSDRE, RHSDRE, ReductionOp.get(),
TaskgroupDescriptor, CopyOpRes.get(), TempArrayRes.get(),
TempArrayElem.get());
}
return RD.Vars.empty();
}
OMPClause *Sema::ActOnOpenMPReductionClause(
ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId,
ArrayRef<Expr *> UnresolvedReductions) {
if (ModifierLoc.isValid() && Modifier == OMPC_REDUCTION_unknown) {
Diag(LParenLoc, diag::err_omp_unexpected_clause_value)
<< getListOfPossibleValues(OMPC_reduction, /*First=*/0,
/*Last=*/OMPC_REDUCTION_unknown)
<< getOpenMPClauseName(OMPC_reduction);
return nullptr;
}
// OpenMP 5.0, 2.19.5.4 reduction Clause, Restrictions
// A reduction clause with the inscan reduction-modifier may only appear on a
// worksharing-loop construct, a worksharing-loop SIMD construct, a simd
// construct, a parallel worksharing-loop construct or a parallel
// worksharing-loop SIMD construct.
if (Modifier == OMPC_REDUCTION_inscan &&
(DSAStack->getCurrentDirective() != OMPD_for &&
DSAStack->getCurrentDirective() != OMPD_for_simd &&
DSAStack->getCurrentDirective() != OMPD_simd &&
DSAStack->getCurrentDirective() != OMPD_parallel_for &&
DSAStack->getCurrentDirective() != OMPD_parallel_for_simd)) {
Diag(ModifierLoc, diag::err_omp_wrong_inscan_reduction);
return nullptr;
}
ReductionData RD(VarList.size(), Modifier);
if (actOnOMPReductionKindClause(*this, DSAStack, OMPC_reduction, VarList,
StartLoc, LParenLoc, ColonLoc, EndLoc,
ReductionIdScopeSpec, ReductionId,
UnresolvedReductions, RD))
return nullptr;
return OMPReductionClause::Create(
Context, StartLoc, LParenLoc, ModifierLoc, ColonLoc, EndLoc, Modifier,
RD.Vars, ReductionIdScopeSpec.getWithLocInContext(Context), ReductionId,
RD.Privates, RD.LHSs, RD.RHSs, RD.ReductionOps, RD.InscanCopyOps,
RD.InscanCopyArrayTemps, RD.InscanCopyArrayElems,
buildPreInits(Context, RD.ExprCaptures),
buildPostUpdate(*this, RD.ExprPostUpdates));
}
OMPClause *Sema::ActOnOpenMPTaskReductionClause(
ArrayRef<Expr *> VarList, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation ColonLoc, SourceLocation EndLoc,
CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId,
ArrayRef<Expr *> UnresolvedReductions) {
ReductionData RD(VarList.size());
if (actOnOMPReductionKindClause(*this, DSAStack, OMPC_task_reduction, VarList,
StartLoc, LParenLoc, ColonLoc, EndLoc,
ReductionIdScopeSpec, ReductionId,
UnresolvedReductions, RD))
return nullptr;
return OMPTaskReductionClause::Create(
Context, StartLoc, LParenLoc, ColonLoc, EndLoc, RD.Vars,
ReductionIdScopeSpec.getWithLocInContext(Context), ReductionId,
RD.Privates, RD.LHSs, RD.RHSs, RD.ReductionOps,
buildPreInits(Context, RD.ExprCaptures),
buildPostUpdate(*this, RD.ExprPostUpdates));
}
OMPClause *Sema::ActOnOpenMPInReductionClause(
ArrayRef<Expr *> VarList, SourceLocation StartLoc, SourceLocation LParenLoc,
SourceLocation ColonLoc, SourceLocation EndLoc,
CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId,
ArrayRef<Expr *> UnresolvedReductions) {
ReductionData RD(VarList.size());
if (actOnOMPReductionKindClause(*this, DSAStack, OMPC_in_reduction, VarList,
StartLoc, LParenLoc, ColonLoc, EndLoc,
ReductionIdScopeSpec, ReductionId,
UnresolvedReductions, RD))
return nullptr;
return OMPInReductionClause::Create(
Context, StartLoc, LParenLoc, ColonLoc, EndLoc, RD.Vars,
ReductionIdScopeSpec.getWithLocInContext(Context), ReductionId,
RD.Privates, RD.LHSs, RD.RHSs, RD.ReductionOps, RD.TaskgroupDescriptors,
buildPreInits(Context, RD.ExprCaptures),
buildPostUpdate(*this, RD.ExprPostUpdates));
}
bool Sema::CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
SourceLocation LinLoc) {
if ((!LangOpts.CPlusPlus && LinKind != OMPC_LINEAR_val) ||
LinKind == OMPC_LINEAR_unknown) {
Diag(LinLoc, diag::err_omp_wrong_linear_modifier) << LangOpts.CPlusPlus;
return true;
}
return false;
}
bool Sema::CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc,
OpenMPLinearClauseKind LinKind, QualType Type,
bool IsDeclareSimd) {
const auto *VD = dyn_cast_or_null<VarDecl>(D);
// A variable must not have an incomplete type or a reference type.
if (RequireCompleteType(ELoc, Type, diag::err_omp_linear_incomplete_type))
return true;
if ((LinKind == OMPC_LINEAR_uval || LinKind == OMPC_LINEAR_ref) &&
!Type->isReferenceType()) {
Diag(ELoc, diag::err_omp_wrong_linear_modifier_non_reference)
<< Type << getOpenMPSimpleClauseTypeName(OMPC_linear, LinKind);
return true;
}
Type = Type.getNonReferenceType();
// OpenMP 5.0 [2.19.3, List Item Privatization, Restrictions]
// A variable that is privatized must not have a const-qualified type
// unless it is of class type with a mutable member. This restriction does
// not apply to the firstprivate clause, nor to the linear clause on
// declarative directives (like declare simd).
if (!IsDeclareSimd &&
rejectConstNotMutableType(*this, D, Type, OMPC_linear, ELoc))
return true;
// A list item must be of integral or pointer type.
Type = Type.getUnqualifiedType().getCanonicalType();
const auto *Ty = Type.getTypePtrOrNull();
if (!Ty || (LinKind != OMPC_LINEAR_ref && !Ty->isDependentType() &&
!Ty->isIntegralType(Context) && !Ty->isPointerType())) {
Diag(ELoc, diag::err_omp_linear_expected_int_or_ptr) << Type;
if (D) {
bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
VarDecl::DeclarationOnly;
Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
}
return true;
}
return false;
}
OMPClause *Sema::ActOnOpenMPLinearClause(
ArrayRef<Expr *> VarList, Expr *Step, SourceLocation StartLoc,
SourceLocation LParenLoc, OpenMPLinearClauseKind LinKind,
SourceLocation LinLoc, SourceLocation ColonLoc, SourceLocation EndLoc) {
SmallVector<Expr *, 8> Vars;
SmallVector<Expr *, 8> Privates;
SmallVector<Expr *, 8> Inits;
SmallVector<Decl *, 4> ExprCaptures;
SmallVector<Expr *, 4> ExprPostUpdates;
if (CheckOpenMPLinearModifier(LinKind, LinLoc))
LinKind = OMPC_LINEAR_val;
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP linear clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
if (Res.second) {
// It will be analyzed later.
Vars.push_back(RefExpr);
Privates.push_back(nullptr);
Inits.push_back(nullptr);
}
ValueDecl *D = Res.first;
if (!D)
continue;
QualType Type = D->getType();
auto *VD = dyn_cast<VarDecl>(D);
// OpenMP [2.14.3.7, linear clause]
// A list-item cannot appear in more than one linear clause.
// A list-item that appears in a linear clause cannot appear in any
// other data-sharing attribute clause.
DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(D, /*FromParent=*/false);
if (DVar.RefExpr) {
Diag(ELoc, diag::err_omp_wrong_dsa) << getOpenMPClauseName(DVar.CKind)
<< getOpenMPClauseName(OMPC_linear);
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
if (CheckOpenMPLinearDecl(D, ELoc, LinKind, Type))
continue;
Type = Type.getNonReferenceType().getUnqualifiedType().getCanonicalType();
// Build private copy of original var.
VarDecl *Private =
buildVarDecl(*this, ELoc, Type, D->getName(),
D->hasAttrs() ? &D->getAttrs() : nullptr,
VD ? cast<DeclRefExpr>(SimpleRefExpr) : nullptr);
DeclRefExpr *PrivateRef = buildDeclRefExpr(*this, Private, Type, ELoc);
// Build var to save initial value.
VarDecl *Init = buildVarDecl(*this, ELoc, Type, ".linear.start");
Expr *InitExpr;
DeclRefExpr *Ref = nullptr;
if (!VD && !CurContext->isDependentContext()) {
Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/false);
if (!isOpenMPCapturedDecl(D)) {
ExprCaptures.push_back(Ref->getDecl());
if (Ref->getDecl()->hasAttr<OMPCaptureNoInitAttr>()) {
ExprResult RefRes = DefaultLvalueConversion(Ref);
if (!RefRes.isUsable())
continue;
ExprResult PostUpdateRes =
BuildBinOp(DSAStack->getCurScope(), ELoc, BO_Assign,
SimpleRefExpr, RefRes.get());
if (!PostUpdateRes.isUsable())
continue;
ExprPostUpdates.push_back(
IgnoredValueConversions(PostUpdateRes.get()).get());
}
}
}
if (LinKind == OMPC_LINEAR_uval)
InitExpr = VD ? VD->getInit() : SimpleRefExpr;
else
InitExpr = VD ? SimpleRefExpr : Ref;
AddInitializerToDecl(Init, DefaultLvalueConversion(InitExpr).get(),
/*DirectInit=*/false);
DeclRefExpr *InitRef = buildDeclRefExpr(*this, Init, Type, ELoc);
DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_linear, Ref);
Vars.push_back((VD || CurContext->isDependentContext())
? RefExpr->IgnoreParens()
: Ref);
Privates.push_back(PrivateRef);
Inits.push_back(InitRef);
}
if (Vars.empty())
return nullptr;
Expr *StepExpr = Step;
Expr *CalcStepExpr = nullptr;
if (Step && !Step->isValueDependent() && !Step->isTypeDependent() &&
!Step->isInstantiationDependent() &&
!Step->containsUnexpandedParameterPack()) {
SourceLocation StepLoc = Step->getBeginLoc();
ExprResult Val = PerformOpenMPImplicitIntegerConversion(StepLoc, Step);
if (Val.isInvalid())
return nullptr;
StepExpr = Val.get();
// Build var to save the step value.
VarDecl *SaveVar =
buildVarDecl(*this, StepLoc, StepExpr->getType(), ".linear.step");
ExprResult SaveRef =
buildDeclRefExpr(*this, SaveVar, StepExpr->getType(), StepLoc);
ExprResult CalcStep =
BuildBinOp(CurScope, StepLoc, BO_Assign, SaveRef.get(), StepExpr);
CalcStep = ActOnFinishFullExpr(CalcStep.get(), /*DiscardedValue*/ false);
// Warn about zero linear step (it would be probably better specified as
// making corresponding variables 'const').
if (Optional<llvm::APSInt> Result =
StepExpr->getIntegerConstantExpr(Context)) {
if (!Result->isNegative() && !Result->isStrictlyPositive())
Diag(StepLoc, diag::warn_omp_linear_step_zero)
<< Vars[0] << (Vars.size() > 1);
} else if (CalcStep.isUsable()) {
// Calculate the step beforehand instead of doing this on each iteration.
// (This is not used if the number of iterations may be kfold-ed).
CalcStepExpr = CalcStep.get();
}
}
return OMPLinearClause::Create(Context, StartLoc, LParenLoc, LinKind, LinLoc,
ColonLoc, EndLoc, Vars, Privates, Inits,
StepExpr, CalcStepExpr,
buildPreInits(Context, ExprCaptures),
buildPostUpdate(*this, ExprPostUpdates));
}
static bool FinishOpenMPLinearClause(OMPLinearClause &Clause, DeclRefExpr *IV,
Expr *NumIterations, Sema &SemaRef,
Scope *S, DSAStackTy *Stack) {
// Walk the vars and build update/final expressions for the CodeGen.
SmallVector<Expr *, 8> Updates;
SmallVector<Expr *, 8> Finals;
SmallVector<Expr *, 8> UsedExprs;
Expr *Step = Clause.getStep();
Expr *CalcStep = Clause.getCalcStep();
// OpenMP [2.14.3.7, linear clause]
// If linear-step is not specified it is assumed to be 1.
if (!Step)
Step = SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get();
else if (CalcStep)
Step = cast<BinaryOperator>(CalcStep)->getLHS();
bool HasErrors = false;
auto CurInit = Clause.inits().begin();
auto CurPrivate = Clause.privates().begin();
OpenMPLinearClauseKind LinKind = Clause.getModifier();
for (Expr *RefExpr : Clause.varlists()) {
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(SemaRef, SimpleRefExpr, ELoc, ERange);
ValueDecl *D = Res.first;
if (Res.second || !D) {
Updates.push_back(nullptr);
Finals.push_back(nullptr);
HasErrors = true;
continue;
}
auto &&Info = Stack->isLoopControlVariable(D);
// OpenMP [2.15.11, distribute simd Construct]
// A list item may not appear in a linear clause, unless it is the loop
// iteration variable.
if (isOpenMPDistributeDirective(Stack->getCurrentDirective()) &&
isOpenMPSimdDirective(Stack->getCurrentDirective()) && !Info.first) {
SemaRef.Diag(ELoc,
diag::err_omp_linear_distribute_var_non_loop_iteration);
Updates.push_back(nullptr);
Finals.push_back(nullptr);
HasErrors = true;
continue;
}
Expr *InitExpr = *CurInit;
// Build privatized reference to the current linear var.
auto *DE = cast<DeclRefExpr>(SimpleRefExpr);
Expr *CapturedRef;
if (LinKind == OMPC_LINEAR_uval)
CapturedRef = cast<VarDecl>(DE->getDecl())->getInit();
else
CapturedRef =
buildDeclRefExpr(SemaRef, cast<VarDecl>(DE->getDecl()),
DE->getType().getUnqualifiedType(), DE->getExprLoc(),
/*RefersToCapture=*/true);
// Build update: Var = InitExpr + IV * Step
ExprResult Update;
if (!Info.first)
Update = buildCounterUpdate(
SemaRef, S, RefExpr->getExprLoc(), *CurPrivate, InitExpr, IV, Step,
/*Subtract=*/false, /*IsNonRectangularLB=*/false);
else
Update = *CurPrivate;
Update = SemaRef.ActOnFinishFullExpr(Update.get(), DE->getBeginLoc(),
/*DiscardedValue*/ false);
// Build final: Var = PrivCopy;
ExprResult Final;
if (!Info.first)
Final = SemaRef.BuildBinOp(
S, RefExpr->getExprLoc(), BO_Assign, CapturedRef,
SemaRef.DefaultLvalueConversion(*CurPrivate).get());
else
Final = *CurPrivate;
Final = SemaRef.ActOnFinishFullExpr(Final.get(), DE->getBeginLoc(),
/*DiscardedValue*/ false);
if (!Update.isUsable() || !Final.isUsable()) {
Updates.push_back(nullptr);
Finals.push_back(nullptr);
UsedExprs.push_back(nullptr);
HasErrors = true;
} else {
Updates.push_back(Update.get());
Finals.push_back(Final.get());
if (!Info.first)
UsedExprs.push_back(SimpleRefExpr);
}
++CurInit;
++CurPrivate;
}
if (Expr *S = Clause.getStep())
UsedExprs.push_back(S);
// Fill the remaining part with the nullptr.
UsedExprs.append(Clause.varlist_size() + 1 - UsedExprs.size(), nullptr);
Clause.setUpdates(Updates);
Clause.setFinals(Finals);
Clause.setUsedExprs(UsedExprs);
return HasErrors;
}
OMPClause *Sema::ActOnOpenMPAlignedClause(
ArrayRef<Expr *> VarList, Expr *Alignment, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc) {
SmallVector<Expr *, 8> Vars;
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP linear clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
if (Res.second) {
// It will be analyzed later.
Vars.push_back(RefExpr);
}
ValueDecl *D = Res.first;
if (!D)
continue;
QualType QType = D->getType();
auto *VD = dyn_cast<VarDecl>(D);
// OpenMP [2.8.1, simd construct, Restrictions]
// The type of list items appearing in the aligned clause must be
// array, pointer, reference to array, or reference to pointer.
QType = QType.getNonReferenceType().getUnqualifiedType().getCanonicalType();
const Type *Ty = QType.getTypePtrOrNull();
if (!Ty || (!Ty->isArrayType() && !Ty->isPointerType())) {
Diag(ELoc, diag::err_omp_aligned_expected_array_or_ptr)
<< QType << getLangOpts().CPlusPlus << ERange;
bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
VarDecl::DeclarationOnly;
Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
continue;
}
// OpenMP [2.8.1, simd construct, Restrictions]
// A list-item cannot appear in more than one aligned clause.
if (const Expr *PrevRef = DSAStack->addUniqueAligned(D, SimpleRefExpr)) {
Diag(ELoc, diag::err_omp_used_in_clause_twice)
<< 0 << getOpenMPClauseName(OMPC_aligned) << ERange;
Diag(PrevRef->getExprLoc(), diag::note_omp_explicit_dsa)
<< getOpenMPClauseName(OMPC_aligned);
continue;
}
DeclRefExpr *Ref = nullptr;
if (!VD && isOpenMPCapturedDecl(D))
Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/true);
Vars.push_back(DefaultFunctionArrayConversion(
(VD || !Ref) ? RefExpr->IgnoreParens() : Ref)
.get());
}
// OpenMP [2.8.1, simd construct, Description]
// The parameter of the aligned clause, alignment, must be a constant
// positive integer expression.
// If no optional parameter is specified, implementation-defined default
// alignments for SIMD instructions on the target platforms are assumed.
if (Alignment != nullptr) {
ExprResult AlignResult =
VerifyPositiveIntegerConstantInClause(Alignment, OMPC_aligned);
if (AlignResult.isInvalid())
return nullptr;
Alignment = AlignResult.get();
}
if (Vars.empty())
return nullptr;
return OMPAlignedClause::Create(Context, StartLoc, LParenLoc, ColonLoc,
EndLoc, Vars, Alignment);
}
OMPClause *Sema::ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
SmallVector<Expr *, 8> Vars;
SmallVector<Expr *, 8> SrcExprs;
SmallVector<Expr *, 8> DstExprs;
SmallVector<Expr *, 8> AssignmentOps;
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP copyin clause.");
if (isa<DependentScopeDeclRefExpr>(RefExpr)) {
// It will be analyzed later.
Vars.push_back(RefExpr);
SrcExprs.push_back(nullptr);
DstExprs.push_back(nullptr);
AssignmentOps.push_back(nullptr);
continue;
}
SourceLocation ELoc = RefExpr->getExprLoc();
// OpenMP [2.1, C/C++]
// A list item is a variable name.
// OpenMP [2.14.4.1, Restrictions, p.1]
// A list item that appears in a copyin clause must be threadprivate.
auto *DE = dyn_cast<DeclRefExpr>(RefExpr);
if (!DE || !isa<VarDecl>(DE->getDecl())) {
Diag(ELoc, diag::err_omp_expected_var_name_member_expr)
<< 0 << RefExpr->getSourceRange();
continue;
}
Decl *D = DE->getDecl();
auto *VD = cast<VarDecl>(D);
QualType Type = VD->getType();
if (Type->isDependentType() || Type->isInstantiationDependentType()) {
// It will be analyzed later.
Vars.push_back(DE);
SrcExprs.push_back(nullptr);
DstExprs.push_back(nullptr);
AssignmentOps.push_back(nullptr);
continue;
}
// OpenMP [2.14.4.1, Restrictions, C/C++, p.1]
// A list item that appears in a copyin clause must be threadprivate.
if (!DSAStack->isThreadPrivate(VD)) {
Diag(ELoc, diag::err_omp_required_access)
<< getOpenMPClauseName(OMPC_copyin)
<< getOpenMPDirectiveName(OMPD_threadprivate);
continue;
}
// OpenMP [2.14.4.1, Restrictions, C/C++, p.2]
// A variable of class type (or array thereof) that appears in a
// copyin clause requires an accessible, unambiguous copy assignment
// operator for the class type.
QualType ElemType = Context.getBaseElementType(Type).getNonReferenceType();
VarDecl *SrcVD =
buildVarDecl(*this, DE->getBeginLoc(), ElemType.getUnqualifiedType(),
".copyin.src", VD->hasAttrs() ? &VD->getAttrs() : nullptr);
DeclRefExpr *PseudoSrcExpr = buildDeclRefExpr(
*this, SrcVD, ElemType.getUnqualifiedType(), DE->getExprLoc());
VarDecl *DstVD =
buildVarDecl(*this, DE->getBeginLoc(), ElemType, ".copyin.dst",
VD->hasAttrs() ? &VD->getAttrs() : nullptr);
DeclRefExpr *PseudoDstExpr =
buildDeclRefExpr(*this, DstVD, ElemType, DE->getExprLoc());
// For arrays generate assignment operation for single element and replace
// it by the original array element in CodeGen.
ExprResult AssignmentOp =
BuildBinOp(/*S=*/nullptr, DE->getExprLoc(), BO_Assign, PseudoDstExpr,
PseudoSrcExpr);
if (AssignmentOp.isInvalid())
continue;
AssignmentOp = ActOnFinishFullExpr(AssignmentOp.get(), DE->getExprLoc(),
/*DiscardedValue*/ false);
if (AssignmentOp.isInvalid())
continue;
DSAStack->addDSA(VD, DE, OMPC_copyin);
Vars.push_back(DE);
SrcExprs.push_back(PseudoSrcExpr);
DstExprs.push_back(PseudoDstExpr);
AssignmentOps.push_back(AssignmentOp.get());
}
if (Vars.empty())
return nullptr;
return OMPCopyinClause::Create(Context, StartLoc, LParenLoc, EndLoc, Vars,
SrcExprs, DstExprs, AssignmentOps);
}
OMPClause *Sema::ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
SmallVector<Expr *, 8> Vars;
SmallVector<Expr *, 8> SrcExprs;
SmallVector<Expr *, 8> DstExprs;
SmallVector<Expr *, 8> AssignmentOps;
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP linear clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
if (Res.second) {
// It will be analyzed later.
Vars.push_back(RefExpr);
SrcExprs.push_back(nullptr);
DstExprs.push_back(nullptr);
AssignmentOps.push_back(nullptr);
}
ValueDecl *D = Res.first;
if (!D)
continue;
QualType Type = D->getType();
auto *VD = dyn_cast<VarDecl>(D);
// OpenMP [2.14.4.2, Restrictions, p.2]
// A list item that appears in a copyprivate clause may not appear in a
// private or firstprivate clause on the single construct.
if (!VD || !DSAStack->isThreadPrivate(VD)) {
DSAStackTy::DSAVarData DVar =
DSAStack->getTopDSA(D, /*FromParent=*/false);
if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_copyprivate &&
DVar.RefExpr) {
Diag(ELoc, diag::err_omp_wrong_dsa)
<< getOpenMPClauseName(DVar.CKind)
<< getOpenMPClauseName(OMPC_copyprivate);
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
// OpenMP [2.11.4.2, Restrictions, p.1]
// All list items that appear in a copyprivate clause must be either
// threadprivate or private in the enclosing context.
if (DVar.CKind == OMPC_unknown) {
DVar = DSAStack->getImplicitDSA(D, false);
if (DVar.CKind == OMPC_shared) {
Diag(ELoc, diag::err_omp_required_access)
<< getOpenMPClauseName(OMPC_copyprivate)
<< "threadprivate or private in the enclosing context";
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
}
}
// Variably modified types are not supported.
if (!Type->isAnyPointerType() && Type->isVariablyModifiedType()) {
Diag(ELoc, diag::err_omp_variably_modified_type_not_supported)
<< getOpenMPClauseName(OMPC_copyprivate) << Type
<< getOpenMPDirectiveName(DSAStack->getCurrentDirective());
bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) ==
VarDecl::DeclarationOnly;
Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
continue;
}
// OpenMP [2.14.4.1, Restrictions, C/C++, p.2]
// A variable of class type (or array thereof) that appears in a
// copyin clause requires an accessible, unambiguous copy assignment
// operator for the class type.
Type = Context.getBaseElementType(Type.getNonReferenceType())
.getUnqualifiedType();
VarDecl *SrcVD =
buildVarDecl(*this, RefExpr->getBeginLoc(), Type, ".copyprivate.src",
D->hasAttrs() ? &D->getAttrs() : nullptr);
DeclRefExpr *PseudoSrcExpr = buildDeclRefExpr(*this, SrcVD, Type, ELoc);
VarDecl *DstVD =
buildVarDecl(*this, RefExpr->getBeginLoc(), Type, ".copyprivate.dst",
D->hasAttrs() ? &D->getAttrs() : nullptr);
DeclRefExpr *PseudoDstExpr = buildDeclRefExpr(*this, DstVD, Type, ELoc);
ExprResult AssignmentOp = BuildBinOp(
DSAStack->getCurScope(), ELoc, BO_Assign, PseudoDstExpr, PseudoSrcExpr);
if (AssignmentOp.isInvalid())
continue;
AssignmentOp =
ActOnFinishFullExpr(AssignmentOp.get(), ELoc, /*DiscardedValue*/ false);
if (AssignmentOp.isInvalid())
continue;
// No need to mark vars as copyprivate, they are already threadprivate or
// implicitly private.
assert(VD || isOpenMPCapturedDecl(D));
Vars.push_back(
VD ? RefExpr->IgnoreParens()
: buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/false));
SrcExprs.push_back(PseudoSrcExpr);
DstExprs.push_back(PseudoDstExpr);
AssignmentOps.push_back(AssignmentOp.get());
}
if (Vars.empty())
return nullptr;
return OMPCopyprivateClause::Create(Context, StartLoc, LParenLoc, EndLoc,
Vars, SrcExprs, DstExprs, AssignmentOps);
}
OMPClause *Sema::ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
if (VarList.empty())
return nullptr;
return OMPFlushClause::Create(Context, StartLoc, LParenLoc, EndLoc, VarList);
}
/// Tries to find omp_depend_t. type.
static bool findOMPDependT(Sema &S, SourceLocation Loc, DSAStackTy *Stack,
bool Diagnose = true) {
QualType OMPDependT = Stack->getOMPDependT();
if (!OMPDependT.isNull())
return true;
IdentifierInfo *II = &S.PP.getIdentifierTable().get("omp_depend_t");
ParsedType PT = S.getTypeName(*II, Loc, S.getCurScope());
if (!PT.getAsOpaquePtr() || PT.get().isNull()) {
if (Diagnose)
S.Diag(Loc, diag::err_omp_implied_type_not_found) << "omp_depend_t";
return false;
}
Stack->setOMPDependT(PT.get());
return true;
}
OMPClause *Sema::ActOnOpenMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
if (!Depobj)
return nullptr;
bool OMPDependTFound = findOMPDependT(*this, StartLoc, DSAStack);
// OpenMP 5.0, 2.17.10.1 depobj Construct
// depobj is an lvalue expression of type omp_depend_t.
if (!Depobj->isTypeDependent() && !Depobj->isValueDependent() &&
!Depobj->isInstantiationDependent() &&
!Depobj->containsUnexpandedParameterPack() &&
(OMPDependTFound &&
!Context.typesAreCompatible(DSAStack->getOMPDependT(), Depobj->getType(),
/*CompareUnqualified=*/true))) {
Diag(Depobj->getExprLoc(), diag::err_omp_expected_omp_depend_t_lvalue)
<< 0 << Depobj->getType() << Depobj->getSourceRange();
}
if (!Depobj->isLValue()) {
Diag(Depobj->getExprLoc(), diag::err_omp_expected_omp_depend_t_lvalue)
<< 1 << Depobj->getSourceRange();
}
return OMPDepobjClause::Create(Context, StartLoc, LParenLoc, EndLoc, Depobj);
}
OMPClause *
Sema::ActOnOpenMPDependClause(Expr *DepModifier, OpenMPDependClauseKind DepKind,
SourceLocation DepLoc, SourceLocation ColonLoc,
ArrayRef<Expr *> VarList, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation EndLoc) {
if (DSAStack->getCurrentDirective() == OMPD_ordered &&
DepKind != OMPC_DEPEND_source && DepKind != OMPC_DEPEND_sink) {
Diag(DepLoc, diag::err_omp_unexpected_clause_value)
<< "'source' or 'sink'" << getOpenMPClauseName(OMPC_depend);
return nullptr;
}
if (DSAStack->getCurrentDirective() == OMPD_taskwait &&
DepKind == OMPC_DEPEND_mutexinoutset) {
Diag(DepLoc, diag::err_omp_taskwait_depend_mutexinoutset_not_allowed);
return nullptr;
}
if ((DSAStack->getCurrentDirective() != OMPD_ordered ||
DSAStack->getCurrentDirective() == OMPD_depobj) &&
(DepKind == OMPC_DEPEND_unknown || DepKind == OMPC_DEPEND_source ||
DepKind == OMPC_DEPEND_sink ||
((LangOpts.OpenMP < 50 ||
DSAStack->getCurrentDirective() == OMPD_depobj) &&
DepKind == OMPC_DEPEND_depobj))) {
SmallVector<unsigned, 3> Except;
Except.push_back(OMPC_DEPEND_source);
Except.push_back(OMPC_DEPEND_sink);
if (LangOpts.OpenMP < 50 || DSAStack->getCurrentDirective() == OMPD_depobj)
Except.push_back(OMPC_DEPEND_depobj);
if (LangOpts.OpenMP < 51)
Except.push_back(OMPC_DEPEND_inoutset);
std::string Expected = (LangOpts.OpenMP >= 50 && !DepModifier)
? "depend modifier(iterator) or "
: "";
Diag(DepLoc, diag::err_omp_unexpected_clause_value)
<< Expected + getListOfPossibleValues(OMPC_depend, /*First=*/0,
/*Last=*/OMPC_DEPEND_unknown,
Except)
<< getOpenMPClauseName(OMPC_depend);
return nullptr;
}
if (DepModifier &&
(DepKind == OMPC_DEPEND_source || DepKind == OMPC_DEPEND_sink)) {
Diag(DepModifier->getExprLoc(),
diag::err_omp_depend_sink_source_with_modifier);
return nullptr;
}
if (DepModifier &&
!DepModifier->getType()->isSpecificBuiltinType(BuiltinType::OMPIterator))
Diag(DepModifier->getExprLoc(), diag::err_omp_depend_modifier_not_iterator);
SmallVector<Expr *, 8> Vars;
DSAStackTy::OperatorOffsetTy OpsOffs;
llvm::APSInt DepCounter(/*BitWidth=*/32);
llvm::APSInt TotalDepCount(/*BitWidth=*/32);
if (DepKind == OMPC_DEPEND_sink || DepKind == OMPC_DEPEND_source) {
if (const Expr *OrderedCountExpr =
DSAStack->getParentOrderedRegionParam().first) {
TotalDepCount = OrderedCountExpr->EvaluateKnownConstInt(Context);
TotalDepCount.setIsUnsigned(/*Val=*/true);
}
}
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP shared clause.");
if (isa<DependentScopeDeclRefExpr>(RefExpr)) {
// It will be analyzed later.
Vars.push_back(RefExpr);
continue;
}
SourceLocation ELoc = RefExpr->getExprLoc();
Expr *SimpleExpr = RefExpr->IgnoreParenCasts();
if (DepKind == OMPC_DEPEND_sink) {
if (DSAStack->getParentOrderedRegionParam().first &&
DepCounter >= TotalDepCount) {
Diag(ELoc, diag::err_omp_depend_sink_unexpected_expr);
continue;
}
++DepCounter;
// OpenMP [2.13.9, Summary]
// depend(dependence-type : vec), where dependence-type is:
// 'sink' and where vec is the iteration vector, which has the form:
// x1 [+- d1], x2 [+- d2 ], . . . , xn [+- dn]
// where n is the value specified by the ordered clause in the loop
// directive, xi denotes the loop iteration variable of the i-th nested
// loop associated with the loop directive, and di is a constant
// non-negative integer.
if (CurContext->isDependentContext()) {
// It will be analyzed later.
Vars.push_back(RefExpr);
continue;
}
SimpleExpr = SimpleExpr->IgnoreImplicit();
OverloadedOperatorKind OOK = OO_None;
SourceLocation OOLoc;
Expr *LHS = SimpleExpr;
Expr *RHS = nullptr;
if (auto *BO = dyn_cast<BinaryOperator>(SimpleExpr)) {
OOK = BinaryOperator::getOverloadedOperator(BO->getOpcode());
OOLoc = BO->getOperatorLoc();
LHS = BO->getLHS()->IgnoreParenImpCasts();
RHS = BO->getRHS()->IgnoreParenImpCasts();
} else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(SimpleExpr)) {
OOK = OCE->getOperator();
OOLoc = OCE->getOperatorLoc();
LHS = OCE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
RHS = OCE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
} else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SimpleExpr)) {
OOK = MCE->getMethodDecl()
->getNameInfo()
.getName()
.getCXXOverloadedOperator();
OOLoc = MCE->getCallee()->getExprLoc();
LHS = MCE->getImplicitObjectArgument()->IgnoreParenImpCasts();
RHS = MCE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
}
SourceLocation ELoc;
SourceRange ERange;
auto Res = getPrivateItem(*this, LHS, ELoc, ERange);
if (Res.second) {
// It will be analyzed later.
Vars.push_back(RefExpr);
}
ValueDecl *D = Res.first;
if (!D)
continue;
if (OOK != OO_Plus && OOK != OO_Minus && (RHS || OOK != OO_None)) {
Diag(OOLoc, diag::err_omp_depend_sink_expected_plus_minus);
continue;
}
if (RHS) {
ExprResult RHSRes = VerifyPositiveIntegerConstantInClause(
RHS, OMPC_depend, /*StrictlyPositive=*/false);
if (RHSRes.isInvalid())
continue;
}
if (!CurContext->isDependentContext() &&
DSAStack->getParentOrderedRegionParam().first &&
DepCounter != DSAStack->isParentLoopControlVariable(D).first) {
const ValueDecl *VD =
DSAStack->getParentLoopControlVariable(DepCounter.getZExtValue());
if (VD)
Diag(ELoc, diag::err_omp_depend_sink_expected_loop_iteration)
<< 1 << VD;
else
Diag(ELoc, diag::err_omp_depend_sink_expected_loop_iteration) << 0;
continue;
}
OpsOffs.emplace_back(RHS, OOK);
} else {
bool OMPDependTFound = LangOpts.OpenMP >= 50;
if (OMPDependTFound)
OMPDependTFound = findOMPDependT(*this, StartLoc, DSAStack,
DepKind == OMPC_DEPEND_depobj);
if (DepKind == OMPC_DEPEND_depobj) {
// OpenMP 5.0, 2.17.11 depend Clause, Restrictions, C/C++
// List items used in depend clauses with the depobj dependence type
// must be expressions of the omp_depend_t type.
if (!RefExpr->isValueDependent() && !RefExpr->isTypeDependent() &&
!RefExpr->isInstantiationDependent() &&
!RefExpr->containsUnexpandedParameterPack() &&
(OMPDependTFound &&
!Context.hasSameUnqualifiedType(DSAStack->getOMPDependT(),
RefExpr->getType()))) {
Diag(ELoc, diag::err_omp_expected_omp_depend_t_lvalue)
<< 0 << RefExpr->getType() << RefExpr->getSourceRange();
continue;
}
if (!RefExpr->isLValue()) {
Diag(ELoc, diag::err_omp_expected_omp_depend_t_lvalue)
<< 1 << RefExpr->getType() << RefExpr->getSourceRange();
continue;
}
} else {
// OpenMP 5.0 [2.17.11, Restrictions]
// List items used in depend clauses cannot be zero-length array
// sections.
QualType ExprTy = RefExpr->getType().getNonReferenceType();
const auto *OASE = dyn_cast<OMPArraySectionExpr>(SimpleExpr);
if (OASE) {
QualType BaseType =
OMPArraySectionExpr::getBaseOriginalType(OASE->getBase());
if (const auto *ATy = BaseType->getAsArrayTypeUnsafe())
ExprTy = ATy->getElementType();
else
ExprTy = BaseType->getPointeeType();
ExprTy = ExprTy.getNonReferenceType();
const Expr *Length = OASE->getLength();
Expr::EvalResult Result;
if (Length && !Length->isValueDependent() &&
Length->EvaluateAsInt(Result, Context) &&
Result.Val.getInt().isZero()) {
Diag(ELoc,
diag::err_omp_depend_zero_length_array_section_not_allowed)
<< SimpleExpr->getSourceRange();
continue;
}
}
// OpenMP 5.0, 2.17.11 depend Clause, Restrictions, C/C++
// List items used in depend clauses with the in, out, inout,
// inoutset, or mutexinoutset dependence types cannot be
// expressions of the omp_depend_t type.
if (!RefExpr->isValueDependent() && !RefExpr->isTypeDependent() &&
!RefExpr->isInstantiationDependent() &&
!RefExpr->containsUnexpandedParameterPack() &&
(!RefExpr->IgnoreParenImpCasts()->isLValue() ||
(OMPDependTFound &&
DSAStack->getOMPDependT().getTypePtr() == ExprTy.getTypePtr()))) {
Diag(ELoc, diag::err_omp_expected_addressable_lvalue_or_array_item)
<< (LangOpts.OpenMP >= 50 ? 1 : 0)
<< (LangOpts.OpenMP >= 50 ? 1 : 0) << RefExpr->getSourceRange();
continue;
}
auto *ASE = dyn_cast<ArraySubscriptExpr>(SimpleExpr);
if (ASE && !ASE->getBase()->isTypeDependent() &&
!ASE->getBase()->getType().getNonReferenceType()->isPointerType() &&
!ASE->getBase()->getType().getNonReferenceType()->isArrayType()) {
Diag(ELoc, diag::err_omp_expected_addressable_lvalue_or_array_item)
<< (LangOpts.OpenMP >= 50 ? 1 : 0)
<< (LangOpts.OpenMP >= 50 ? 1 : 0) << RefExpr->getSourceRange();
continue;
}
ExprResult Res;
{
Sema::TentativeAnalysisScope Trap(*this);
Res = CreateBuiltinUnaryOp(ELoc, UO_AddrOf,
RefExpr->IgnoreParenImpCasts());
}
if (!Res.isUsable() && !isa<OMPArraySectionExpr>(SimpleExpr) &&
!isa<OMPArrayShapingExpr>(SimpleExpr)) {
Diag(ELoc, diag::err_omp_expected_addressable_lvalue_or_array_item)
<< (LangOpts.OpenMP >= 50 ? 1 : 0)
<< (LangOpts.OpenMP >= 50 ? 1 : 0) << RefExpr->getSourceRange();
continue;
}
}
}
Vars.push_back(RefExpr->IgnoreParenImpCasts());
}
if (!CurContext->isDependentContext() && DepKind == OMPC_DEPEND_sink &&
TotalDepCount > VarList.size() &&
DSAStack->getParentOrderedRegionParam().first &&
DSAStack->getParentLoopControlVariable(VarList.size() + 1)) {
Diag(EndLoc, diag::err_omp_depend_sink_expected_loop_iteration)
<< 1 << DSAStack->getParentLoopControlVariable(VarList.size() + 1);
}
if (DepKind != OMPC_DEPEND_source && DepKind != OMPC_DEPEND_sink &&
Vars.empty())
return nullptr;
auto *C = OMPDependClause::Create(Context, StartLoc, LParenLoc, EndLoc,
DepModifier, DepKind, DepLoc, ColonLoc,
Vars, TotalDepCount.getZExtValue());
if ((DepKind == OMPC_DEPEND_sink || DepKind == OMPC_DEPEND_source) &&
DSAStack->isParentOrderedRegion())
DSAStack->addDoacrossDependClause(C, OpsOffs);
return C;
}
OMPClause *Sema::ActOnOpenMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
Expr *Device, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation ModifierLoc,
SourceLocation EndLoc) {
assert((ModifierLoc.isInvalid() || LangOpts.OpenMP >= 50) &&
"Unexpected device modifier in OpenMP < 50.");
bool ErrorFound = false;
if (ModifierLoc.isValid() && Modifier == OMPC_DEVICE_unknown) {
std::string Values =
getListOfPossibleValues(OMPC_device, /*First=*/0, OMPC_DEVICE_unknown);
Diag(ModifierLoc, diag::err_omp_unexpected_clause_value)
<< Values << getOpenMPClauseName(OMPC_device);
ErrorFound = true;
}
Expr *ValExpr = Device;
Stmt *HelperValStmt = nullptr;
// OpenMP [2.9.1, Restrictions]
// The device expression must evaluate to a non-negative integer value.
ErrorFound = !isNonNegativeIntegerValue(ValExpr, *this, OMPC_device,
/*StrictlyPositive=*/false) ||
ErrorFound;
if (ErrorFound)
return nullptr;
// OpenMP 5.0 [2.12.5, Restrictions]
// In case of ancestor device-modifier, a requires directive with
// the reverse_offload clause must be specified.
if (Modifier == OMPC_DEVICE_ancestor) {
if (!DSAStack->hasRequiresDeclWithClause<OMPReverseOffloadClause>()) {
targetDiag(
StartLoc,
diag::err_omp_device_ancestor_without_requires_reverse_offload);
ErrorFound = true;
}
}
OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
OpenMPDirectiveKind CaptureRegion =
getOpenMPCaptureRegionForClause(DKind, OMPC_device, LangOpts.OpenMP);
if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
ValExpr = MakeFullExpr(ValExpr).get();
llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
HelperValStmt = buildPreInits(Context, Captures);
}
return new (Context)
OMPDeviceClause(Modifier, ValExpr, HelperValStmt, CaptureRegion, StartLoc,
LParenLoc, ModifierLoc, EndLoc);
}
static bool checkTypeMappable(SourceLocation SL, SourceRange SR, Sema &SemaRef,
DSAStackTy *Stack, QualType QTy,
bool FullCheck = true) {
if (SemaRef.RequireCompleteType(SL, QTy, diag::err_incomplete_type))
return false;
if (FullCheck && !SemaRef.CurContext->isDependentContext() &&
!QTy.isTriviallyCopyableType(SemaRef.Context))
SemaRef.Diag(SL, diag::warn_omp_non_trivial_type_mapped) << QTy << SR;
return true;
}
/// Return true if it can be proven that the provided array expression
/// (array section or array subscript) does NOT specify the whole size of the
/// array whose base type is \a BaseQTy.
static bool checkArrayExpressionDoesNotReferToWholeSize(Sema &SemaRef,
const Expr *E,
QualType BaseQTy) {
const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
// If this is an array subscript, it refers to the whole size if the size of
// the dimension is constant and equals 1. Also, an array section assumes the
// format of an array subscript if no colon is used.
if (isa<ArraySubscriptExpr>(E) ||
(OASE && OASE->getColonLocFirst().isInvalid())) {
if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
return ATy->getSize().getSExtValue() != 1;
// Size can't be evaluated statically.
return false;
}
assert(OASE && "Expecting array section if not an array subscript.");
const Expr *LowerBound = OASE->getLowerBound();
const Expr *Length = OASE->getLength();
// If there is a lower bound that does not evaluates to zero, we are not
// covering the whole dimension.
if (LowerBound) {
Expr::EvalResult Result;
if (!LowerBound->EvaluateAsInt(Result, SemaRef.getASTContext()))
return false; // Can't get the integer value as a constant.
llvm::APSInt ConstLowerBound = Result.Val.getInt();
if (ConstLowerBound.getSExtValue())
return true;
}
// If we don't have a length we covering the whole dimension.
if (!Length)
return false;
// If the base is a pointer, we don't have a way to get the size of the
// pointee.
if (BaseQTy->isPointerType())
return false;
// We can only check if the length is the same as the size of the dimension
// if we have a constant array.
const auto *CATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr());
if (!CATy)
return false;
Expr::EvalResult Result;
if (!Length->EvaluateAsInt(Result, SemaRef.getASTContext()))
return false; // Can't get the integer value as a constant.
llvm::APSInt ConstLength = Result.Val.getInt();
return CATy->getSize().getSExtValue() != ConstLength.getSExtValue();
}
// Return true if it can be proven that the provided array expression (array
// section or array subscript) does NOT specify a single element of the array
// whose base type is \a BaseQTy.
static bool checkArrayExpressionDoesNotReferToUnitySize(Sema &SemaRef,
const Expr *E,
QualType BaseQTy) {
const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
// An array subscript always refer to a single element. Also, an array section
// assumes the format of an array subscript if no colon is used.
if (isa<ArraySubscriptExpr>(E) ||
(OASE && OASE->getColonLocFirst().isInvalid()))
return false;
assert(OASE && "Expecting array section if not an array subscript.");
const Expr *Length = OASE->getLength();
// If we don't have a length we have to check if the array has unitary size
// for this dimension. Also, we should always expect a length if the base type
// is pointer.
if (!Length) {
if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
return ATy->getSize().getSExtValue() != 1;
// We cannot assume anything.
return false;
}
// Check if the length evaluates to 1.
Expr::EvalResult Result;
if (!Length->EvaluateAsInt(Result, SemaRef.getASTContext()))
return false; // Can't get the integer value as a constant.
llvm::APSInt ConstLength = Result.Val.getInt();
return ConstLength.getSExtValue() != 1;
}
// The base of elements of list in a map clause have to be either:
// - a reference to variable or field.
// - a member expression.
// - an array expression.
//
// E.g. if we have the expression 'r.S.Arr[:12]', we want to retrieve the
// reference to 'r'.
//
// If we have:
//
// struct SS {
// Bla S;
// foo() {
// #pragma omp target map (S.Arr[:12]);
// }
// }
//
// We want to retrieve the member expression 'this->S';
// OpenMP 5.0 [2.19.7.1, map Clause, Restrictions, p.2]
// If a list item is an array section, it must specify contiguous storage.
//
// For this restriction it is sufficient that we make sure only references
// to variables or fields and array expressions, and that no array sections
// exist except in the rightmost expression (unless they cover the whole
// dimension of the array). E.g. these would be invalid:
//
// r.ArrS[3:5].Arr[6:7]
//
// r.ArrS[3:5].x
//
// but these would be valid:
// r.ArrS[3].Arr[6:7]
//
// r.ArrS[3].x
namespace {
class MapBaseChecker final : public StmtVisitor<MapBaseChecker, bool> {
Sema &SemaRef;
OpenMPClauseKind CKind = OMPC_unknown;
OpenMPDirectiveKind DKind = OMPD_unknown;
OMPClauseMappableExprCommon::MappableExprComponentList &Components;
bool IsNonContiguous = false;
bool NoDiagnose = false;
const Expr *RelevantExpr = nullptr;
bool AllowUnitySizeArraySection = true;
bool AllowWholeSizeArraySection = true;
bool AllowAnotherPtr = true;
SourceLocation ELoc;
SourceRange ERange;
void emitErrorMsg() {
// If nothing else worked, this is not a valid map clause expression.
if (SemaRef.getLangOpts().OpenMP < 50) {
SemaRef.Diag(ELoc,
diag::err_omp_expected_named_var_member_or_array_expression)
<< ERange;
} else {
SemaRef.Diag(ELoc, diag::err_omp_non_lvalue_in_map_or_motion_clauses)
<< getOpenMPClauseName(CKind) << ERange;
}
}
public:
bool VisitDeclRefExpr(DeclRefExpr *DRE) {
if (!isa<VarDecl>(DRE->getDecl())) {
emitErrorMsg();
return false;
}
assert(!RelevantExpr && "RelevantExpr is expected to be nullptr");
RelevantExpr = DRE;
// Record the component.
Components.emplace_back(DRE, DRE->getDecl(), IsNonContiguous);
return true;
}
bool VisitMemberExpr(MemberExpr *ME) {
Expr *E = ME;
Expr *BaseE = ME->getBase()->IgnoreParenCasts();
if (isa<CXXThisExpr>(BaseE)) {
assert(!RelevantExpr && "RelevantExpr is expected to be nullptr");
// We found a base expression: this->Val.
RelevantExpr = ME;
} else {
E = BaseE;
}
if (!isa<FieldDecl>(ME->getMemberDecl())) {
if (!NoDiagnose) {
SemaRef.Diag(ELoc, diag::err_omp_expected_access_to_data_field)
<< ME->getSourceRange();
return false;
}
if (RelevantExpr)
return false;
return Visit(E);
}
auto *FD = cast<FieldDecl>(ME->getMemberDecl());
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C/C++, p.3]
// A bit-field cannot appear in a map clause.
//
if (FD->isBitField()) {
if (!NoDiagnose) {
SemaRef.Diag(ELoc, diag::err_omp_bit_fields_forbidden_in_clause)
<< ME->getSourceRange() << getOpenMPClauseName(CKind);
return false;
}
if (RelevantExpr)
return false;
return Visit(E);
}
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C++, p.1]
// If the type of a list item is a reference to a type T then the type
// will be considered to be T for all purposes of this clause.
QualType CurType = BaseE->getType().getNonReferenceType();
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C/C++, p.2]
// A list item cannot be a variable that is a member of a structure with
// a union type.
//
if (CurType->isUnionType()) {
if (!NoDiagnose) {
SemaRef.Diag(ELoc, diag::err_omp_union_type_not_allowed)
<< ME->getSourceRange();
return false;
}
return RelevantExpr || Visit(E);
}
// If we got a member expression, we should not expect any array section
// before that:
//
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.7]
// If a list item is an element of a structure, only the rightmost symbol
// of the variable reference can be an array section.
//
AllowUnitySizeArraySection = false;
AllowWholeSizeArraySection = false;
// Record the component.
Components.emplace_back(ME, FD, IsNonContiguous);
return RelevantExpr || Visit(E);
}
bool VisitArraySubscriptExpr(ArraySubscriptExpr *AE) {
Expr *E = AE->getBase()->IgnoreParenImpCasts();
if (!E->getType()->isAnyPointerType() && !E->getType()->isArrayType()) {
if (!NoDiagnose) {
SemaRef.Diag(ELoc, diag::err_omp_expected_base_var_name)
<< 0 << AE->getSourceRange();
return false;
}
return RelevantExpr || Visit(E);
}
// If we got an array subscript that express the whole dimension we
// can have any array expressions before. If it only expressing part of
// the dimension, we can only have unitary-size array expressions.
if (checkArrayExpressionDoesNotReferToWholeSize(SemaRef, AE, E->getType()))
AllowWholeSizeArraySection = false;
if (const auto *TE = dyn_cast<CXXThisExpr>(E->IgnoreParenCasts())) {
Expr::EvalResult Result;
if (!AE->getIdx()->isValueDependent() &&
AE->getIdx()->EvaluateAsInt(Result, SemaRef.getASTContext()) &&
!Result.Val.getInt().isZero()) {
SemaRef.Diag(AE->getIdx()->getExprLoc(),
diag::err_omp_invalid_map_this_expr);
SemaRef.Diag(AE->getIdx()->getExprLoc(),
diag::note_omp_invalid_subscript_on_this_ptr_map);
}
assert(!RelevantExpr && "RelevantExpr is expected to be nullptr");
RelevantExpr = TE;
}
// Record the component - we don't have any declaration associated.
Components.emplace_back(AE, nullptr, IsNonContiguous);
return RelevantExpr || Visit(E);
}
bool VisitOMPArraySectionExpr(OMPArraySectionExpr *OASE) {
// After OMP 5.0 Array section in reduction clause will be implicitly
// mapped
assert(!(SemaRef.getLangOpts().OpenMP < 50 && NoDiagnose) &&
"Array sections cannot be implicitly mapped.");
Expr *E = OASE->getBase()->IgnoreParenImpCasts();
QualType CurType =
OMPArraySectionExpr::getBaseOriginalType(E).getCanonicalType();
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C++, p.1]
// If the type of a list item is a reference to a type T then the type
// will be considered to be T for all purposes of this clause.
if (CurType->isReferenceType())
CurType = CurType->getPointeeType();
bool IsPointer = CurType->isAnyPointerType();
if (!IsPointer && !CurType->isArrayType()) {
SemaRef.Diag(ELoc, diag::err_omp_expected_base_var_name)
<< 0 << OASE->getSourceRange();
return false;
}
bool NotWhole =
checkArrayExpressionDoesNotReferToWholeSize(SemaRef, OASE, CurType);
bool NotUnity =
checkArrayExpressionDoesNotReferToUnitySize(SemaRef, OASE, CurType);
if (AllowWholeSizeArraySection) {
// Any array section is currently allowed. Allowing a whole size array
// section implies allowing a unity array section as well.
//
// If this array section refers to the whole dimension we can still
// accept other array sections before this one, except if the base is a
// pointer. Otherwise, only unitary sections are accepted.
if (NotWhole || IsPointer)
AllowWholeSizeArraySection = false;
} else if (DKind == OMPD_target_update &&
SemaRef.getLangOpts().OpenMP >= 50) {
if (IsPointer && !AllowAnotherPtr)
SemaRef.Diag(ELoc, diag::err_omp_section_length_undefined)
<< /*array of unknown bound */ 1;
else
IsNonContiguous = true;
} else if (AllowUnitySizeArraySection && NotUnity) {
// A unity or whole array section is not allowed and that is not
// compatible with the properties of the current array section.
if (NoDiagnose)
return false;
SemaRef.Diag(ELoc,
diag::err_array_section_does_not_specify_contiguous_storage)
<< OASE->getSourceRange();
return false;
}
if (IsPointer)
AllowAnotherPtr = false;
if (const auto *TE = dyn_cast<CXXThisExpr>(E)) {
Expr::EvalResult ResultR;
Expr::EvalResult ResultL;
if (!OASE->getLength()->isValueDependent() &&
OASE->getLength()->EvaluateAsInt(ResultR, SemaRef.getASTContext()) &&
!ResultR.Val.getInt().isOne()) {
SemaRef.Diag(OASE->getLength()->getExprLoc(),
diag::err_omp_invalid_map_this_expr);
SemaRef.Diag(OASE->getLength()->getExprLoc(),
diag::note_omp_invalid_length_on_this_ptr_mapping);
}
if (OASE->getLowerBound() && !OASE->getLowerBound()->isValueDependent() &&
OASE->getLowerBound()->EvaluateAsInt(ResultL,
SemaRef.getASTContext()) &&
!ResultL.Val.getInt().isZero()) {
SemaRef.Diag(OASE->getLowerBound()->getExprLoc(),
diag::err_omp_invalid_map_this_expr);
SemaRef.Diag(OASE->getLowerBound()->getExprLoc(),
diag::note_omp_invalid_lower_bound_on_this_ptr_mapping);
}
assert(!RelevantExpr && "RelevantExpr is expected to be nullptr");
RelevantExpr = TE;
}
// Record the component - we don't have any declaration associated.
Components.emplace_back(OASE, nullptr, /*IsNonContiguous=*/false);
return RelevantExpr || Visit(E);
}
bool VisitOMPArrayShapingExpr(OMPArrayShapingExpr *E) {
Expr *Base = E->getBase();
// Record the component - we don't have any declaration associated.
Components.emplace_back(E, nullptr, IsNonContiguous);
return Visit(Base->IgnoreParenImpCasts());
}
bool VisitUnaryOperator(UnaryOperator *UO) {
if (SemaRef.getLangOpts().OpenMP < 50 || !UO->isLValue() ||
UO->getOpcode() != UO_Deref) {
emitErrorMsg();
return false;
}
if (!RelevantExpr) {
// Record the component if haven't found base decl.
Components.emplace_back(UO, nullptr, /*IsNonContiguous=*/false);
}
return RelevantExpr || Visit(UO->getSubExpr()->IgnoreParenImpCasts());
}
bool VisitBinaryOperator(BinaryOperator *BO) {
if (SemaRef.getLangOpts().OpenMP < 50 || !BO->getType()->isPointerType()) {
emitErrorMsg();
return false;
}
// Pointer arithmetic is the only thing we expect to happen here so after we
// make sure the binary operator is a pointer type, the we only thing need
// to to is to visit the subtree that has the same type as root (so that we
// know the other subtree is just an offset)
Expr *LE = BO->getLHS()->IgnoreParenImpCasts();
Expr *RE = BO->getRHS()->IgnoreParenImpCasts();
Components.emplace_back(BO, nullptr, false);
assert((LE->getType().getTypePtr() == BO->getType().getTypePtr() ||
RE->getType().getTypePtr() == BO->getType().getTypePtr()) &&
"Either LHS or RHS have base decl inside");
if (BO->getType().getTypePtr() == LE->getType().getTypePtr())
return RelevantExpr || Visit(LE);
return RelevantExpr || Visit(RE);
}
bool VisitCXXThisExpr(CXXThisExpr *CTE) {
assert(!RelevantExpr && "RelevantExpr is expected to be nullptr");
RelevantExpr = CTE;
Components.emplace_back(CTE, nullptr, IsNonContiguous);
return true;
}
bool VisitCXXOperatorCallExpr(CXXOperatorCallExpr *COCE) {
assert(!RelevantExpr && "RelevantExpr is expected to be nullptr");
Components.emplace_back(COCE, nullptr, IsNonContiguous);
return true;
}
bool VisitOpaqueValueExpr(OpaqueValueExpr *E) {
Expr *Source = E->getSourceExpr();
if (!Source) {
emitErrorMsg();
return false;
}
return Visit(Source);
}
bool VisitStmt(Stmt *) {
emitErrorMsg();
return false;
}
const Expr *getFoundBase() const { return RelevantExpr; }
explicit MapBaseChecker(
Sema &SemaRef, OpenMPClauseKind CKind, OpenMPDirectiveKind DKind,
OMPClauseMappableExprCommon::MappableExprComponentList &Components,
bool NoDiagnose, SourceLocation &ELoc, SourceRange &ERange)
: SemaRef(SemaRef), CKind(CKind), DKind(DKind), Components(Components),
NoDiagnose(NoDiagnose), ELoc(ELoc), ERange(ERange) {}
};
} // namespace
/// Return the expression of the base of the mappable expression or null if it
/// cannot be determined and do all the necessary checks to see if the
/// expression is valid as a standalone mappable expression. In the process,
/// record all the components of the expression.
static const Expr *checkMapClauseExpressionBase(
Sema &SemaRef, Expr *E,
OMPClauseMappableExprCommon::MappableExprComponentList &CurComponents,
OpenMPClauseKind CKind, OpenMPDirectiveKind DKind, bool NoDiagnose) {
SourceLocation ELoc = E->getExprLoc();
SourceRange ERange = E->getSourceRange();
MapBaseChecker Checker(SemaRef, CKind, DKind, CurComponents, NoDiagnose, ELoc,
ERange);
if (Checker.Visit(E->IgnoreParens())) {
// Check if the highest dimension array section has length specified
if (SemaRef.getLangOpts().OpenMP >= 50 && !CurComponents.empty() &&
(CKind == OMPC_to || CKind == OMPC_from)) {
auto CI = CurComponents.rbegin();
auto CE = CurComponents.rend();
for (; CI != CE; ++CI) {
const auto *OASE =
dyn_cast<OMPArraySectionExpr>(CI->getAssociatedExpression());
if (!OASE)
continue;
if (OASE && OASE->getLength())
break;
SemaRef.Diag(ELoc, diag::err_array_section_does_not_specify_length)
<< ERange;
}
}
return Checker.getFoundBase();
}
return nullptr;
}
// Return true if expression E associated with value VD has conflicts with other
// map information.
static bool checkMapConflicts(
Sema &SemaRef, DSAStackTy *DSAS, const ValueDecl *VD, const Expr *E,
bool CurrentRegionOnly,
OMPClauseMappableExprCommon::MappableExprComponentListRef CurComponents,
OpenMPClauseKind CKind) {
assert(VD && E);
SourceLocation ELoc = E->getExprLoc();
SourceRange ERange = E->getSourceRange();
// In order to easily check the conflicts we need to match each component of
// the expression under test with the components of the expressions that are
// already in the stack.
assert(!CurComponents.empty() && "Map clause expression with no components!");
assert(CurComponents.back().getAssociatedDeclaration() == VD &&
"Map clause expression with unexpected base!");
// Variables to help detecting enclosing problems in data environment nests.
bool IsEnclosedByDataEnvironmentExpr = false;
const Expr *EnclosingExpr = nullptr;
bool FoundError = DSAS->checkMappableExprComponentListsForDecl(
VD, CurrentRegionOnly,
[&IsEnclosedByDataEnvironmentExpr, &SemaRef, VD, CurrentRegionOnly, ELoc,
ERange, CKind, &EnclosingExpr,
CurComponents](OMPClauseMappableExprCommon::MappableExprComponentListRef
StackComponents,
OpenMPClauseKind Kind) {
if (CKind == Kind && SemaRef.LangOpts.OpenMP >= 50)
return false;
assert(!StackComponents.empty() &&
"Map clause expression with no components!");
assert(StackComponents.back().getAssociatedDeclaration() == VD &&
"Map clause expression with unexpected base!");
(void)VD;
// The whole expression in the stack.
const Expr *RE = StackComponents.front().getAssociatedExpression();
// Expressions must start from the same base. Here we detect at which
// point both expressions diverge from each other and see if we can
// detect if the memory referred to both expressions is contiguous and
// do not overlap.
auto CI = CurComponents.rbegin();
auto CE = CurComponents.rend();
auto SI = StackComponents.rbegin();
auto SE = StackComponents.rend();
for (; CI != CE && SI != SE; ++CI, ++SI) {
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.3]
// At most one list item can be an array item derived from a given
// variable in map clauses of the same construct.
if (CurrentRegionOnly &&
(isa<ArraySubscriptExpr>(CI->getAssociatedExpression()) ||
isa<OMPArraySectionExpr>(CI->getAssociatedExpression()) ||
isa<OMPArrayShapingExpr>(CI->getAssociatedExpression())) &&
(isa<ArraySubscriptExpr>(SI->getAssociatedExpression()) ||
isa<OMPArraySectionExpr>(SI->getAssociatedExpression()) ||
isa<OMPArrayShapingExpr>(SI->getAssociatedExpression()))) {
SemaRef.Diag(CI->getAssociatedExpression()->getExprLoc(),
diag::err_omp_multiple_array_items_in_map_clause)
<< CI->getAssociatedExpression()->getSourceRange();
SemaRef.Diag(SI->getAssociatedExpression()->getExprLoc(),
diag::note_used_here)
<< SI->getAssociatedExpression()->getSourceRange();
return true;
}
// Do both expressions have the same kind?
if (CI->getAssociatedExpression()->getStmtClass() !=
SI->getAssociatedExpression()->getStmtClass())
break;
// Are we dealing with different variables/fields?
if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
break;
}
// Check if the extra components of the expressions in the enclosing
// data environment are redundant for the current base declaration.
// If they are, the maps completely overlap, which is legal.
for (; SI != SE; ++SI) {
QualType Type;
if (const auto *ASE =
dyn_cast<ArraySubscriptExpr>(SI->getAssociatedExpression())) {
Type = ASE->getBase()->IgnoreParenImpCasts()->getType();
} else if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(
SI->getAssociatedExpression())) {
const Expr *E = OASE->getBase()->IgnoreParenImpCasts();
Type =
OMPArraySectionExpr::getBaseOriginalType(E).getCanonicalType();
} else if (const auto *OASE = dyn_cast<OMPArrayShapingExpr>(
SI->getAssociatedExpression())) {
Type = OASE->getBase()->getType()->getPointeeType();
}
if (Type.isNull() || Type->isAnyPointerType() ||
checkArrayExpressionDoesNotReferToWholeSize(
SemaRef, SI->getAssociatedExpression(), Type))
break;
}
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.4]
// List items of map clauses in the same construct must not share
// original storage.
//
// If the expressions are exactly the same or one is a subset of the
// other, it means they are sharing storage.
if (CI == CE && SI == SE) {
if (CurrentRegionOnly) {
if (CKind == OMPC_map) {
SemaRef.Diag(ELoc, diag::err_omp_map_shared_storage) << ERange;
} else {
assert(CKind == OMPC_to || CKind == OMPC_from);
SemaRef.Diag(ELoc, diag::err_omp_once_referenced_in_target_update)
<< ERange;
}
SemaRef.Diag(RE->getExprLoc(), diag::note_used_here)
<< RE->getSourceRange();
return true;
}
// If we find the same expression in the enclosing data environment,
// that is legal.
IsEnclosedByDataEnvironmentExpr = true;
return false;
}
QualType DerivedType =
std::prev(CI)->getAssociatedDeclaration()->getType();
SourceLocation DerivedLoc =
std::prev(CI)->getAssociatedExpression()->getExprLoc();
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C++, p.1]
// If the type of a list item is a reference to a type T then the type
// will be considered to be T for all purposes of this clause.
DerivedType = DerivedType.getNonReferenceType();
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C/C++, p.1]
// A variable for which the type is pointer and an array section
// derived from that variable must not appear as list items of map
// clauses of the same construct.
//
// Also, cover one of the cases in:
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.5]
// If any part of the original storage of a list item has corresponding
// storage in the device data environment, all of the original storage
// must have corresponding storage in the device data environment.
//
if (DerivedType->isAnyPointerType()) {
if (CI == CE || SI == SE) {
SemaRef.Diag(
DerivedLoc,
diag::err_omp_pointer_mapped_along_with_derived_section)
<< DerivedLoc;
SemaRef.Diag(RE->getExprLoc(), diag::note_used_here)
<< RE->getSourceRange();
return true;
}
if (CI->getAssociatedExpression()->getStmtClass() !=
SI->getAssociatedExpression()->getStmtClass() ||
CI->getAssociatedDeclaration()->getCanonicalDecl() ==
SI->getAssociatedDeclaration()->getCanonicalDecl()) {
assert(CI != CE && SI != SE);
SemaRef.Diag(DerivedLoc, diag::err_omp_same_pointer_dereferenced)
<< DerivedLoc;
SemaRef.Diag(RE->getExprLoc(), diag::note_used_here)
<< RE->getSourceRange();
return true;
}
}
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.4]
// List items of map clauses in the same construct must not share
// original storage.
//
// An expression is a subset of the other.
if (CurrentRegionOnly && (CI == CE || SI == SE)) {
if (CKind == OMPC_map) {
if (CI != CE || SI != SE) {
// Allow constructs like this: map(s, s.ptr[0:1]), where s.ptr is
// a pointer.
auto Begin =
CI != CE ? CurComponents.begin() : StackComponents.begin();
auto End = CI != CE ? CurComponents.end() : StackComponents.end();
auto It = Begin;
while (It != End && !It->getAssociatedDeclaration())
std::advance(It, 1);
assert(It != End &&
"Expected at least one component with the declaration.");
if (It != Begin && It->getAssociatedDeclaration()
->getType()
.getCanonicalType()
->isAnyPointerType()) {
IsEnclosedByDataEnvironmentExpr = false;
EnclosingExpr = nullptr;
return false;
}
}
SemaRef.Diag(ELoc, diag::err_omp_map_shared_storage) << ERange;
} else {
assert(CKind == OMPC_to || CKind == OMPC_from);
SemaRef.Diag(ELoc, diag::err_omp_once_referenced_in_target_update)
<< ERange;
}
SemaRef.Diag(RE->getExprLoc(), diag::note_used_here)
<< RE->getSourceRange();
return true;
}
// The current expression uses the same base as other expression in the
// data environment but does not contain it completely.
if (!CurrentRegionOnly && SI != SE)
EnclosingExpr = RE;
// The current expression is a subset of the expression in the data
// environment.
IsEnclosedByDataEnvironmentExpr |=
(!CurrentRegionOnly && CI != CE && SI == SE);
return false;
});
if (CurrentRegionOnly)
return FoundError;
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.5]
// If any part of the original storage of a list item has corresponding
// storage in the device data environment, all of the original storage must
// have corresponding storage in the device data environment.
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.6]
// If a list item is an element of a structure, and a different element of
// the structure has a corresponding list item in the device data environment
// prior to a task encountering the construct associated with the map clause,
// then the list item must also have a corresponding list item in the device
// data environment prior to the task encountering the construct.
//
if (EnclosingExpr && !IsEnclosedByDataEnvironmentExpr) {
SemaRef.Diag(ELoc,
diag::err_omp_original_storage_is_shared_and_does_not_contain)
<< ERange;
SemaRef.Diag(EnclosingExpr->getExprLoc(), diag::note_used_here)
<< EnclosingExpr->getSourceRange();
return true;
}
return FoundError;
}
// Look up the user-defined mapper given the mapper name and mapped type, and
// build a reference to it.
static ExprResult buildUserDefinedMapperRef(Sema &SemaRef, Scope *S,
CXXScopeSpec &MapperIdScopeSpec,
const DeclarationNameInfo &MapperId,
QualType Type,
Expr *UnresolvedMapper) {
if (MapperIdScopeSpec.isInvalid())
return ExprError();
// Get the actual type for the array type.
if (Type->isArrayType()) {
assert(Type->getAsArrayTypeUnsafe() && "Expect to get a valid array type");
Type = Type->getAsArrayTypeUnsafe()->getElementType().getCanonicalType();
}
// Find all user-defined mappers with the given MapperId.
SmallVector<UnresolvedSet<8>, 4> Lookups;
LookupResult Lookup(SemaRef, MapperId, Sema::LookupOMPMapperName);
Lookup.suppressDiagnostics();
if (S) {
while (S && SemaRef.LookupParsedName(Lookup, S, &MapperIdScopeSpec)) {
NamedDecl *D = Lookup.getRepresentativeDecl();
while (S && !S->isDeclScope(D))
S = S->getParent();
if (S)
S = S->getParent();
Lookups.emplace_back();
Lookups.back().append(Lookup.begin(), Lookup.end());
Lookup.clear();
}
} else if (auto *ULE = cast_or_null<UnresolvedLookupExpr>(UnresolvedMapper)) {
// Extract the user-defined mappers with the given MapperId.
Lookups.push_back(UnresolvedSet<8>());
for (NamedDecl *D : ULE->decls()) {
auto *DMD = cast<OMPDeclareMapperDecl>(D);
assert(DMD && "Expect valid OMPDeclareMapperDecl during instantiation.");
Lookups.back().addDecl(DMD);
}
}
// Defer the lookup for dependent types. The results will be passed through
// UnresolvedMapper on instantiation.
if (SemaRef.CurContext->isDependentContext() || Type->isDependentType() ||
Type->isInstantiationDependentType() ||
Type->containsUnexpandedParameterPack() ||
filterLookupForUDReductionAndMapper<bool>(Lookups, [](ValueDecl *D) {
return !D->isInvalidDecl() &&
(D->getType()->isDependentType() ||
D->getType()->isInstantiationDependentType() ||
D->getType()->containsUnexpandedParameterPack());
})) {
UnresolvedSet<8> URS;
for (const UnresolvedSet<8> &Set : Lookups) {
if (Set.empty())
continue;
URS.append(Set.begin(), Set.end());
}
return UnresolvedLookupExpr::Create(
SemaRef.Context, /*NamingClass=*/nullptr,
MapperIdScopeSpec.getWithLocInContext(SemaRef.Context), MapperId,
/*ADL=*/false, /*Overloaded=*/true, URS.begin(), URS.end());
}
SourceLocation Loc = MapperId.getLoc();
// [OpenMP 5.0], 2.19.7.3 declare mapper Directive, Restrictions
// The type must be of struct, union or class type in C and C++
if (!Type->isStructureOrClassType() && !Type->isUnionType() &&
(MapperIdScopeSpec.isSet() || MapperId.getAsString() != "default")) {
SemaRef.Diag(Loc, diag::err_omp_mapper_wrong_type);
return ExprError();
}
// Perform argument dependent lookup.
if (SemaRef.getLangOpts().CPlusPlus && !MapperIdScopeSpec.isSet())
argumentDependentLookup(SemaRef, MapperId, Loc, Type, Lookups);
// Return the first user-defined mapper with the desired type.
if (auto *VD = filterLookupForUDReductionAndMapper<ValueDecl *>(
Lookups, [&SemaRef, Type](ValueDecl *D) -> ValueDecl * {
if (!D->isInvalidDecl() &&
SemaRef.Context.hasSameType(D->getType(), Type))
return D;
return nullptr;
}))
return SemaRef.BuildDeclRefExpr(VD, Type, VK_LValue, Loc);
// Find the first user-defined mapper with a type derived from the desired
// type.
if (auto *VD = filterLookupForUDReductionAndMapper<ValueDecl *>(
Lookups, [&SemaRef, Type, Loc](ValueDecl *D) -> ValueDecl * {
if (!D->isInvalidDecl() &&
SemaRef.IsDerivedFrom(Loc, Type, D->getType()) &&
!Type.isMoreQualifiedThan(D->getType()))
return D;
return nullptr;
})) {
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
/*DetectVirtual=*/false);
if (SemaRef.IsDerivedFrom(Loc, Type, VD->getType(), Paths)) {
if (!Paths.isAmbiguous(SemaRef.Context.getCanonicalType(
VD->getType().getUnqualifiedType()))) {
if (SemaRef.CheckBaseClassAccess(
Loc, VD->getType(), Type, Paths.front(),
/*DiagID=*/0) != Sema::AR_inaccessible) {
return SemaRef.BuildDeclRefExpr(VD, Type, VK_LValue, Loc);
}
}
}
}
// Report error if a mapper is specified, but cannot be found.
if (MapperIdScopeSpec.isSet() || MapperId.getAsString() != "default") {
SemaRef.Diag(Loc, diag::err_omp_invalid_mapper)
<< Type << MapperId.getName();
return ExprError();
}
return ExprEmpty();
}
namespace {
// Utility struct that gathers all the related lists associated with a mappable
// expression.
struct MappableVarListInfo {
// The list of expressions.
ArrayRef<Expr *> VarList;
// The list of processed expressions.
SmallVector<Expr *, 16> ProcessedVarList;
// The mappble components for each expression.
OMPClauseMappableExprCommon::MappableExprComponentLists VarComponents;
// The base declaration of the variable.
SmallVector<ValueDecl *, 16> VarBaseDeclarations;
// The reference to the user-defined mapper associated with every expression.
SmallVector<Expr *, 16> UDMapperList;
MappableVarListInfo(ArrayRef<Expr *> VarList) : VarList(VarList) {
// We have a list of components and base declarations for each entry in the
// variable list.
VarComponents.reserve(VarList.size());
VarBaseDeclarations.reserve(VarList.size());
}
};
} // namespace
// Check the validity of the provided variable list for the provided clause kind
// \a CKind. In the check process the valid expressions, mappable expression
// components, variables, and user-defined mappers are extracted and used to
// fill \a ProcessedVarList, \a VarComponents, \a VarBaseDeclarations, and \a
// UDMapperList in MVLI. \a MapType, \a IsMapTypeImplicit, \a MapperIdScopeSpec,
// and \a MapperId are expected to be valid if the clause kind is 'map'.
static void checkMappableExpressionList(
Sema &SemaRef, DSAStackTy *DSAS, OpenMPClauseKind CKind,
MappableVarListInfo &MVLI, SourceLocation StartLoc,
CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo MapperId,
ArrayRef<Expr *> UnresolvedMappers,
OpenMPMapClauseKind MapType = OMPC_MAP_unknown,
ArrayRef<OpenMPMapModifierKind> Modifiers = None,
bool IsMapTypeImplicit = false, bool NoDiagnose = false) {
// We only expect mappable expressions in 'to', 'from', and 'map' clauses.
assert((CKind == OMPC_map || CKind == OMPC_to || CKind == OMPC_from) &&
"Unexpected clause kind with mappable expressions!");
// If the identifier of user-defined mapper is not specified, it is "default".
// We do not change the actual name in this clause to distinguish whether a
// mapper is specified explicitly, i.e., it is not explicitly specified when
// MapperId.getName() is empty.
if (!MapperId.getName() || MapperId.getName().isEmpty()) {
auto &DeclNames = SemaRef.getASTContext().DeclarationNames;
MapperId.setName(DeclNames.getIdentifier(
&SemaRef.getASTContext().Idents.get("default")));
MapperId.setLoc(StartLoc);
}
// Iterators to find the current unresolved mapper expression.
auto UMIt = UnresolvedMappers.begin(), UMEnd = UnresolvedMappers.end();
bool UpdateUMIt = false;
Expr *UnresolvedMapper = nullptr;
bool HasHoldModifier =
llvm::is_contained(Modifiers, OMPC_MAP_MODIFIER_ompx_hold);
// Keep track of the mappable components and base declarations in this clause.
// Each entry in the list is going to have a list of components associated. We
// record each set of the components so that we can build the clause later on.
// In the end we should have the same amount of declarations and component
// lists.
for (Expr *RE : MVLI.VarList) {
assert(RE && "Null expr in omp to/from/map clause");
SourceLocation ELoc = RE->getExprLoc();
// Find the current unresolved mapper expression.
if (UpdateUMIt && UMIt != UMEnd) {
UMIt++;
assert(
UMIt != UMEnd &&
"Expect the size of UnresolvedMappers to match with that of VarList");
}
UpdateUMIt = true;
if (UMIt != UMEnd)
UnresolvedMapper = *UMIt;
const Expr *VE = RE->IgnoreParenLValueCasts();
if (VE->isValueDependent() || VE->isTypeDependent() ||
VE->isInstantiationDependent() ||
VE->containsUnexpandedParameterPack()) {
// Try to find the associated user-defined mapper.
ExprResult ER = buildUserDefinedMapperRef(
SemaRef, DSAS->getCurScope(), MapperIdScopeSpec, MapperId,
VE->getType().getCanonicalType(), UnresolvedMapper);
if (ER.isInvalid())
continue;
MVLI.UDMapperList.push_back(ER.get());
// We can only analyze this information once the missing information is
// resolved.
MVLI.ProcessedVarList.push_back(RE);
continue;
}
Expr *SimpleExpr = RE->IgnoreParenCasts();
if (!RE->isLValue()) {
if (SemaRef.getLangOpts().OpenMP < 50) {
SemaRef.Diag(
ELoc, diag::err_omp_expected_named_var_member_or_array_expression)
<< RE->getSourceRange();
} else {
SemaRef.Diag(ELoc, diag::err_omp_non_lvalue_in_map_or_motion_clauses)
<< getOpenMPClauseName(CKind) << RE->getSourceRange();
}
continue;
}
OMPClauseMappableExprCommon::MappableExprComponentList CurComponents;
ValueDecl *CurDeclaration = nullptr;
// Obtain the array or member expression bases if required. Also, fill the
// components array with all the components identified in the process.
const Expr *BE =
checkMapClauseExpressionBase(SemaRef, SimpleExpr, CurComponents, CKind,
DSAS->getCurrentDirective(), NoDiagnose);
if (!BE)
continue;
assert(!CurComponents.empty() &&
"Invalid mappable expression information.");
if (const auto *TE = dyn_cast<CXXThisExpr>(BE)) {
// Add store "this" pointer to class in DSAStackTy for future checking
DSAS->addMappedClassesQualTypes(TE->getType());
// Try to find the associated user-defined mapper.
ExprResult ER = buildUserDefinedMapperRef(
SemaRef, DSAS->getCurScope(), MapperIdScopeSpec, MapperId,
VE->getType().getCanonicalType(), UnresolvedMapper);
if (ER.isInvalid())
continue;
MVLI.UDMapperList.push_back(ER.get());
// Skip restriction checking for variable or field declarations
MVLI.ProcessedVarList.push_back(RE);
MVLI.VarComponents.resize(MVLI.VarComponents.size() + 1);
MVLI.VarComponents.back().append(CurComponents.begin(),
CurComponents.end());
MVLI.VarBaseDeclarations.push_back(nullptr);
continue;
}
// For the following checks, we rely on the base declaration which is
// expected to be associated with the last component. The declaration is
// expected to be a variable or a field (if 'this' is being mapped).
CurDeclaration = CurComponents.back().getAssociatedDeclaration();
assert(CurDeclaration && "Null decl on map clause.");
assert(
CurDeclaration->isCanonicalDecl() &&
"Expecting components to have associated only canonical declarations.");
auto *VD = dyn_cast<VarDecl>(CurDeclaration);
const auto *FD = dyn_cast<FieldDecl>(CurDeclaration);
assert((VD || FD) && "Only variables or fields are expected here!");
(void)FD;
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.10]
// threadprivate variables cannot appear in a map clause.
// OpenMP 4.5 [2.10.5, target update Construct]
// threadprivate variables cannot appear in a from clause.
if (VD && DSAS->isThreadPrivate(VD)) {
if (NoDiagnose)
continue;
DSAStackTy::DSAVarData DVar = DSAS->getTopDSA(VD, /*FromParent=*/false);
SemaRef.Diag(ELoc, diag::err_omp_threadprivate_in_clause)
<< getOpenMPClauseName(CKind);
reportOriginalDsa(SemaRef, DSAS, VD, DVar);
continue;
}
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.9]
// A list item cannot appear in both a map clause and a data-sharing
// attribute clause on the same construct.
// Check conflicts with other map clause expressions. We check the conflicts
// with the current construct separately from the enclosing data
// environment, because the restrictions are different. We only have to
// check conflicts across regions for the map clauses.
if (checkMapConflicts(SemaRef, DSAS, CurDeclaration, SimpleExpr,
/*CurrentRegionOnly=*/true, CurComponents, CKind))
break;
if (CKind == OMPC_map &&
(SemaRef.getLangOpts().OpenMP <= 45 || StartLoc.isValid()) &&
checkMapConflicts(SemaRef, DSAS, CurDeclaration, SimpleExpr,
/*CurrentRegionOnly=*/false, CurComponents, CKind))
break;
// OpenMP 4.5 [2.10.5, target update Construct]
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C++, p.1]
// If the type of a list item is a reference to a type T then the type will
// be considered to be T for all purposes of this clause.
auto I = llvm::find_if(
CurComponents,
[](const OMPClauseMappableExprCommon::MappableComponent &MC) {
return MC.getAssociatedDeclaration();
});
assert(I != CurComponents.end() && "Null decl on map clause.");
(void)I;
QualType Type;
auto *ASE = dyn_cast<ArraySubscriptExpr>(VE->IgnoreParens());
auto *OASE = dyn_cast<OMPArraySectionExpr>(VE->IgnoreParens());
auto *OAShE = dyn_cast<OMPArrayShapingExpr>(VE->IgnoreParens());
if (ASE) {
Type = ASE->getType().getNonReferenceType();
} else if (OASE) {
QualType BaseType =
OMPArraySectionExpr::getBaseOriginalType(OASE->getBase());
if (const auto *ATy = BaseType->getAsArrayTypeUnsafe())
Type = ATy->getElementType();
else
Type = BaseType->getPointeeType();
Type = Type.getNonReferenceType();
} else if (OAShE) {
Type = OAShE->getBase()->getType()->getPointeeType();
} else {
Type = VE->getType();
}
// OpenMP 4.5 [2.10.5, target update Construct, Restrictions, p.4]
// A list item in a to or from clause must have a mappable type.
// OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.9]
// A list item must have a mappable type.
if (!checkTypeMappable(VE->getExprLoc(), VE->getSourceRange(), SemaRef,
DSAS, Type, /*FullCheck=*/true))
continue;
if (CKind == OMPC_map) {
// target enter data
// OpenMP [2.10.2, Restrictions, p. 99]
// A map-type must be specified in all map clauses and must be either
// to or alloc.
OpenMPDirectiveKind DKind = DSAS->getCurrentDirective();
if (DKind == OMPD_target_enter_data &&
!(MapType == OMPC_MAP_to || MapType == OMPC_MAP_alloc)) {
SemaRef.Diag(StartLoc, diag::err_omp_invalid_map_type_for_directive)
<< (IsMapTypeImplicit ? 1 : 0)
<< getOpenMPSimpleClauseTypeName(OMPC_map, MapType)
<< getOpenMPDirectiveName(DKind);
continue;
}
// target exit_data
// OpenMP [2.10.3, Restrictions, p. 102]
// A map-type must be specified in all map clauses and must be either
// from, release, or delete.
if (DKind == OMPD_target_exit_data &&
!(MapType == OMPC_MAP_from || MapType == OMPC_MAP_release ||
MapType == OMPC_MAP_delete)) {
SemaRef.Diag(StartLoc, diag::err_omp_invalid_map_type_for_directive)
<< (IsMapTypeImplicit ? 1 : 0)
<< getOpenMPSimpleClauseTypeName(OMPC_map, MapType)
<< getOpenMPDirectiveName(DKind);
continue;
}
// The 'ompx_hold' modifier is specifically intended to be used on a
// 'target' or 'target data' directive to prevent data from being unmapped
// during the associated statement. It is not permitted on a 'target
// enter data' or 'target exit data' directive, which have no associated
// statement.
if ((DKind == OMPD_target_enter_data || DKind == OMPD_target_exit_data) &&
HasHoldModifier) {
SemaRef.Diag(StartLoc,
diag::err_omp_invalid_map_type_modifier_for_directive)
<< getOpenMPSimpleClauseTypeName(OMPC_map,
OMPC_MAP_MODIFIER_ompx_hold)
<< getOpenMPDirectiveName(DKind);
continue;
}
// target, target data
// OpenMP 5.0 [2.12.2, Restrictions, p. 163]
// OpenMP 5.0 [2.12.5, Restrictions, p. 174]
// A map-type in a map clause must be to, from, tofrom or alloc
if ((DKind == OMPD_target_data ||
isOpenMPTargetExecutionDirective(DKind)) &&
!(MapType == OMPC_MAP_to || MapType == OMPC_MAP_from ||
MapType == OMPC_MAP_tofrom || MapType == OMPC_MAP_alloc)) {
SemaRef.Diag(StartLoc, diag::err_omp_invalid_map_type_for_directive)
<< (IsMapTypeImplicit ? 1 : 0)
<< getOpenMPSimpleClauseTypeName(OMPC_map, MapType)
<< getOpenMPDirectiveName(DKind);
continue;
}
// OpenMP 4.5 [2.15.5.1, Restrictions, p.3]
// A list item cannot appear in both a map clause and a data-sharing
// attribute clause on the same construct
//
// OpenMP 5.0 [2.19.7.1, Restrictions, p.7]
// A list item cannot appear in both a map clause and a data-sharing
// attribute clause on the same construct unless the construct is a
// combined construct.
if (VD && ((SemaRef.LangOpts.OpenMP <= 45 &&
isOpenMPTargetExecutionDirective(DKind)) ||
DKind == OMPD_target)) {
DSAStackTy::DSAVarData DVar = DSAS->getTopDSA(VD, /*FromParent=*/false);
if (isOpenMPPrivate(DVar.CKind)) {
SemaRef.Diag(ELoc, diag::err_omp_variable_in_given_clause_and_dsa)
<< getOpenMPClauseName(DVar.CKind)
<< getOpenMPClauseName(OMPC_map)
<< getOpenMPDirectiveName(DSAS->getCurrentDirective());
reportOriginalDsa(SemaRef, DSAS, CurDeclaration, DVar);
continue;
}
}
}
// Try to find the associated user-defined mapper.
ExprResult ER = buildUserDefinedMapperRef(
SemaRef, DSAS->getCurScope(), MapperIdScopeSpec, MapperId,
Type.getCanonicalType(), UnresolvedMapper);
if (ER.isInvalid())
continue;
MVLI.UDMapperList.push_back(ER.get());
// Save the current expression.
MVLI.ProcessedVarList.push_back(RE);
// Store the components in the stack so that they can be used to check
// against other clauses later on.
DSAS->addMappableExpressionComponents(CurDeclaration, CurComponents,
/*WhereFoundClauseKind=*/OMPC_map);
// Save the components and declaration to create the clause. For purposes of
// the clause creation, any component list that has has base 'this' uses
// null as base declaration.
MVLI.VarComponents.resize(MVLI.VarComponents.size() + 1);
MVLI.VarComponents.back().append(CurComponents.begin(),
CurComponents.end());
MVLI.VarBaseDeclarations.push_back(isa<MemberExpr>(BE) ? nullptr
: CurDeclaration);
}
}
OMPClause *Sema::ActOnOpenMPMapClause(
ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
ArrayRef<SourceLocation> MapTypeModifiersLoc,
CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId,
OpenMPMapClauseKind MapType, bool IsMapTypeImplicit, SourceLocation MapLoc,
SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs, bool NoDiagnose,
ArrayRef<Expr *> UnresolvedMappers) {
OpenMPMapModifierKind Modifiers[] = {
OMPC_MAP_MODIFIER_unknown, OMPC_MAP_MODIFIER_unknown,
OMPC_MAP_MODIFIER_unknown, OMPC_MAP_MODIFIER_unknown,
OMPC_MAP_MODIFIER_unknown};
SourceLocation ModifiersLoc[NumberOfOMPMapClauseModifiers];
// Process map-type-modifiers, flag errors for duplicate modifiers.
unsigned Count = 0;
for (unsigned I = 0, E = MapTypeModifiers.size(); I < E; ++I) {
if (MapTypeModifiers[I] != OMPC_MAP_MODIFIER_unknown &&
llvm::is_contained(Modifiers, MapTypeModifiers[I])) {
Diag(MapTypeModifiersLoc[I], diag::err_omp_duplicate_map_type_modifier);
continue;
}
assert(Count < NumberOfOMPMapClauseModifiers &&
"Modifiers exceed the allowed number of map type modifiers");
Modifiers[Count] = MapTypeModifiers[I];
ModifiersLoc[Count] = MapTypeModifiersLoc[I];
++Count;
}
MappableVarListInfo MVLI(VarList);
checkMappableExpressionList(*this, DSAStack, OMPC_map, MVLI, Locs.StartLoc,
MapperIdScopeSpec, MapperId, UnresolvedMappers,
MapType, Modifiers, IsMapTypeImplicit,
NoDiagnose);
// We need to produce a map clause even if we don't have variables so that
// other diagnostics related with non-existing map clauses are accurate.
return OMPMapClause::Create(Context, Locs, MVLI.ProcessedVarList,
MVLI.VarBaseDeclarations, MVLI.VarComponents,
MVLI.UDMapperList, Modifiers, ModifiersLoc,
MapperIdScopeSpec.getWithLocInContext(Context),
MapperId, MapType, IsMapTypeImplicit, MapLoc);
}
QualType Sema::ActOnOpenMPDeclareReductionType(SourceLocation TyLoc,
TypeResult ParsedType) {
assert(ParsedType.isUsable());
QualType ReductionType = GetTypeFromParser(ParsedType.get());
if (ReductionType.isNull())
return QualType();
// [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions, C\C++
// A type name in a declare reduction directive cannot be a function type, an
// array type, a reference type, or a type qualified with const, volatile or
// restrict.
if (ReductionType.hasQualifiers()) {
Diag(TyLoc, diag::err_omp_reduction_wrong_type) << 0;
return QualType();
}
if (ReductionType->isFunctionType()) {
Diag(TyLoc, diag::err_omp_reduction_wrong_type) << 1;
return QualType();
}
if (ReductionType->isReferenceType()) {
Diag(TyLoc, diag::err_omp_reduction_wrong_type) << 2;
return QualType();
}
if (ReductionType->isArrayType()) {
Diag(TyLoc, diag::err_omp_reduction_wrong_type) << 3;
return QualType();
}
return ReductionType;
}
Sema::DeclGroupPtrTy Sema::ActOnOpenMPDeclareReductionDirectiveStart(
Scope *S, DeclContext *DC, DeclarationName Name,
ArrayRef<std::pair<QualType, SourceLocation>> ReductionTypes,
AccessSpecifier AS, Decl *PrevDeclInScope) {
SmallVector<Decl *, 8> Decls;
Decls.reserve(ReductionTypes.size());
LookupResult Lookup(*this, Name, SourceLocation(), LookupOMPReductionName,
forRedeclarationInCurContext());
// [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
// A reduction-identifier may not be re-declared in the current scope for the
// same type or for a type that is compatible according to the base language
// rules.
llvm::DenseMap<QualType, SourceLocation> PreviousRedeclTypes;
OMPDeclareReductionDecl *PrevDRD = nullptr;
bool InCompoundScope = true;
if (S != nullptr) {
// Find previous declaration with the same name not referenced in other
// declarations.
FunctionScopeInfo *ParentFn = getEnclosingFunction();
InCompoundScope =
(ParentFn != nullptr) && !ParentFn->CompoundScopes.empty();
LookupName(Lookup, S);
FilterLookupForScope(Lookup, DC, S, /*ConsiderLinkage=*/false,
/*AllowInlineNamespace=*/false);
llvm::DenseMap<OMPDeclareReductionDecl *, bool> UsedAsPrevious;
LookupResult::Filter Filter = Lookup.makeFilter();
while (Filter.hasNext()) {
auto *PrevDecl = cast<OMPDeclareReductionDecl>(Filter.next());
if (InCompoundScope) {
auto I = UsedAsPrevious.find(PrevDecl);
if (I == UsedAsPrevious.end())
UsedAsPrevious[PrevDecl] = false;
if (OMPDeclareReductionDecl *D = PrevDecl->getPrevDeclInScope())
UsedAsPrevious[D] = true;
}
PreviousRedeclTypes[PrevDecl->getType().getCanonicalType()] =
PrevDecl->getLocation();
}
Filter.done();
if (InCompoundScope) {
for (const auto &PrevData : UsedAsPrevious) {
if (!PrevData.second) {
PrevDRD = PrevData.first;
break;
}
}
}
} else if (PrevDeclInScope != nullptr) {
auto *PrevDRDInScope = PrevDRD =
cast<OMPDeclareReductionDecl>(PrevDeclInScope);
do {
PreviousRedeclTypes[PrevDRDInScope->getType().getCanonicalType()] =
PrevDRDInScope->getLocation();
PrevDRDInScope = PrevDRDInScope->getPrevDeclInScope();
} while (PrevDRDInScope != nullptr);
}
for (const auto &TyData : ReductionTypes) {
const auto I = PreviousRedeclTypes.find(TyData.first.getCanonicalType());
bool Invalid = false;
if (I != PreviousRedeclTypes.end()) {
Diag(TyData.second, diag::err_omp_declare_reduction_redefinition)
<< TyData.first;
Diag(I->second, diag::note_previous_definition);
Invalid = true;
}
PreviousRedeclTypes[TyData.first.getCanonicalType()] = TyData.second;
auto *DRD = OMPDeclareReductionDecl::Create(Context, DC, TyData.second,
Name, TyData.first, PrevDRD);
DC->addDecl(DRD);
DRD->setAccess(AS);
Decls.push_back(DRD);
if (Invalid)
DRD->setInvalidDecl();
else
PrevDRD = DRD;
}
return DeclGroupPtrTy::make(
DeclGroupRef::Create(Context, Decls.begin(), Decls.size()));
}
void Sema::ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D) {
auto *DRD = cast<OMPDeclareReductionDecl>(D);
// Enter new function scope.
PushFunctionScope();
setFunctionHasBranchProtectedScope();
getCurFunction()->setHasOMPDeclareReductionCombiner();
if (S != nullptr)
PushDeclContext(S, DRD);
else
CurContext = DRD;
PushExpressionEvaluationContext(
ExpressionEvaluationContext::PotentiallyEvaluated);
QualType ReductionType = DRD->getType();
// Create 'T* omp_parm;T omp_in;'. All references to 'omp_in' will
// be replaced by '*omp_parm' during codegen. This required because 'omp_in'
// uses semantics of argument handles by value, but it should be passed by
// reference. C lang does not support references, so pass all parameters as
// pointers.
// Create 'T omp_in;' variable.
VarDecl *OmpInParm =
buildVarDecl(*this, D->getLocation(), ReductionType, "omp_in");
// Create 'T* omp_parm;T omp_out;'. All references to 'omp_out' will
// be replaced by '*omp_parm' during codegen. This required because 'omp_out'
// uses semantics of argument handles by value, but it should be passed by
// reference. C lang does not support references, so pass all parameters as
// pointers.
// Create 'T omp_out;' variable.
VarDecl *OmpOutParm =
buildVarDecl(*this, D->getLocation(), ReductionType, "omp_out");
if (S != nullptr) {
PushOnScopeChains(OmpInParm, S);
PushOnScopeChains(OmpOutParm, S);
} else {
DRD->addDecl(OmpInParm);
DRD->addDecl(OmpOutParm);
}
Expr *InE =
::buildDeclRefExpr(*this, OmpInParm, ReductionType, D->getLocation());
Expr *OutE =
::buildDeclRefExpr(*this, OmpOutParm, ReductionType, D->getLocation());
DRD->setCombinerData(InE, OutE);
}
void Sema::ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner) {
auto *DRD = cast<OMPDeclareReductionDecl>(D);
DiscardCleanupsInEvaluationContext();
PopExpressionEvaluationContext();
PopDeclContext();
PopFunctionScopeInfo();
if (Combiner != nullptr)
DRD->setCombiner(Combiner);
else
DRD->setInvalidDecl();
}
VarDecl *Sema::ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D) {
auto *DRD = cast<OMPDeclareReductionDecl>(D);
// Enter new function scope.
PushFunctionScope();
setFunctionHasBranchProtectedScope();
if (S != nullptr)
PushDeclContext(S, DRD);
else
CurContext = DRD;
PushExpressionEvaluationContext(
ExpressionEvaluationContext::PotentiallyEvaluated);
QualType ReductionType = DRD->getType();
// Create 'T* omp_parm;T omp_priv;'. All references to 'omp_priv' will
// be replaced by '*omp_parm' during codegen. This required because 'omp_priv'
// uses semantics of argument handles by value, but it should be passed by
// reference. C lang does not support references, so pass all parameters as
// pointers.
// Create 'T omp_priv;' variable.
VarDecl *OmpPrivParm =
buildVarDecl(*this, D->getLocation(), ReductionType, "omp_priv");
// Create 'T* omp_parm;T omp_orig;'. All references to 'omp_orig' will
// be replaced by '*omp_parm' during codegen. This required because 'omp_orig'
// uses semantics of argument handles by value, but it should be passed by
// reference. C lang does not support references, so pass all parameters as
// pointers.
// Create 'T omp_orig;' variable.
VarDecl *OmpOrigParm =
buildVarDecl(*this, D->getLocation(), ReductionType, "omp_orig");
if (S != nullptr) {
PushOnScopeChains(OmpPrivParm, S);
PushOnScopeChains(OmpOrigParm, S);
} else {
DRD->addDecl(OmpPrivParm);
DRD->addDecl(OmpOrigParm);
}
Expr *OrigE =
::buildDeclRefExpr(*this, OmpOrigParm, ReductionType, D->getLocation());
Expr *PrivE =
::buildDeclRefExpr(*this, OmpPrivParm, ReductionType, D->getLocation());
DRD->setInitializerData(OrigE, PrivE);
return OmpPrivParm;
}
void Sema::ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer,
VarDecl *OmpPrivParm) {
auto *DRD = cast<OMPDeclareReductionDecl>(D);
DiscardCleanupsInEvaluationContext();
PopExpressionEvaluationContext();
PopDeclContext();
PopFunctionScopeInfo();
if (Initializer != nullptr) {
DRD->setInitializer(Initializer, OMPDeclareReductionDecl::CallInit);
} else if (OmpPrivParm->hasInit()) {
DRD->setInitializer(OmpPrivParm->getInit(),
OmpPrivParm->isDirectInit()
? OMPDeclareReductionDecl::DirectInit
: OMPDeclareReductionDecl::CopyInit);
} else {
DRD->setInvalidDecl();
}
}
Sema::DeclGroupPtrTy Sema::ActOnOpenMPDeclareReductionDirectiveEnd(
Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid) {
for (Decl *D : DeclReductions.get()) {
if (IsValid) {
if (S)
PushOnScopeChains(cast<OMPDeclareReductionDecl>(D), S,
/*AddToContext=*/false);
} else {
D->setInvalidDecl();
}
}
return DeclReductions;
}
TypeResult Sema::ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D) {
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
QualType T = TInfo->getType();
if (D.isInvalidType())
return true;
if (getLangOpts().CPlusPlus) {
// Check that there are no default arguments (C++ only).
CheckExtraCXXDefaultArguments(D);
}
return CreateParsedType(T, TInfo);
}
QualType Sema::ActOnOpenMPDeclareMapperType(SourceLocation TyLoc,
TypeResult ParsedType) {
assert(ParsedType.isUsable() && "Expect usable parsed mapper type");
QualType MapperType = GetTypeFromParser(ParsedType.get());
assert(!MapperType.isNull() && "Expect valid mapper type");
// [OpenMP 5.0], 2.19.7.3 declare mapper Directive, Restrictions
// The type must be of struct, union or class type in C and C++
if (!MapperType->isStructureOrClassType() && !MapperType->isUnionType()) {
Diag(TyLoc, diag::err_omp_mapper_wrong_type);
return QualType();
}
return MapperType;
}
Sema::DeclGroupPtrTy Sema::ActOnOpenMPDeclareMapperDirective(
Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType,
SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS,
Expr *MapperVarRef, ArrayRef<OMPClause *> Clauses, Decl *PrevDeclInScope) {
LookupResult Lookup(*this, Name, SourceLocation(), LookupOMPMapperName,
forRedeclarationInCurContext());
// [OpenMP 5.0], 2.19.7.3 declare mapper Directive, Restrictions
// A mapper-identifier may not be redeclared in the current scope for the
// same type or for a type that is compatible according to the base language
// rules.
llvm::DenseMap<QualType, SourceLocation> PreviousRedeclTypes;
OMPDeclareMapperDecl *PrevDMD = nullptr;
bool InCompoundScope = true;
if (S != nullptr) {
// Find previous declaration with the same name not referenced in other
// declarations.
FunctionScopeInfo *ParentFn = getEnclosingFunction();
InCompoundScope =
(ParentFn != nullptr) && !ParentFn->CompoundScopes.empty();
LookupName(Lookup, S);
FilterLookupForScope(Lookup, DC, S, /*ConsiderLinkage=*/false,
/*AllowInlineNamespace=*/false);
llvm::DenseMap<OMPDeclareMapperDecl *, bool> UsedAsPrevious;
LookupResult::Filter Filter = Lookup.makeFilter();
while (Filter.hasNext()) {
auto *PrevDecl = cast<OMPDeclareMapperDecl>(Filter.next());
if (InCompoundScope) {
auto I = UsedAsPrevious.find(PrevDecl);
if (I == UsedAsPrevious.end())
UsedAsPrevious[PrevDecl] = false;
if (OMPDeclareMapperDecl *D = PrevDecl->getPrevDeclInScope())
UsedAsPrevious[D] = true;
}
PreviousRedeclTypes[PrevDecl->getType().getCanonicalType()] =
PrevDecl->getLocation();
}
Filter.done();
if (InCompoundScope) {
for (const auto &PrevData : UsedAsPrevious) {
if (!PrevData.second) {
PrevDMD = PrevData.first;
break;
}
}
}
} else if (PrevDeclInScope) {
auto *PrevDMDInScope = PrevDMD =
cast<OMPDeclareMapperDecl>(PrevDeclInScope);
do {
PreviousRedeclTypes[PrevDMDInScope->getType().getCanonicalType()] =
PrevDMDInScope->getLocation();
PrevDMDInScope = PrevDMDInScope->getPrevDeclInScope();
} while (PrevDMDInScope != nullptr);
}
const auto I = PreviousRedeclTypes.find(MapperType.getCanonicalType());
bool Invalid = false;
if (I != PreviousRedeclTypes.end()) {
Diag(StartLoc, diag::err_omp_declare_mapper_redefinition)
<< MapperType << Name;
Diag(I->second, diag::note_previous_definition);
Invalid = true;
}
// Build expressions for implicit maps of data members with 'default'
// mappers.
SmallVector<OMPClause *, 4> ClausesWithImplicit(Clauses.begin(),
Clauses.end());
if (LangOpts.OpenMP >= 50)
processImplicitMapsWithDefaultMappers(*this, DSAStack, ClausesWithImplicit);
auto *DMD =
OMPDeclareMapperDecl::Create(Context, DC, StartLoc, Name, MapperType, VN,
ClausesWithImplicit, PrevDMD);
if (S)
PushOnScopeChains(DMD, S);
else
DC->addDecl(DMD);
DMD->setAccess(AS);
if (Invalid)
DMD->setInvalidDecl();
auto *VD = cast<DeclRefExpr>(MapperVarRef)->getDecl();
VD->setDeclContext(DMD);
VD->setLexicalDeclContext(DMD);
DMD->addDecl(VD);
DMD->setMapperVarRef(MapperVarRef);
return DeclGroupPtrTy::make(DeclGroupRef(DMD));
}
ExprResult
Sema::ActOnOpenMPDeclareMapperDirectiveVarDecl(Scope *S, QualType MapperType,
SourceLocation StartLoc,
DeclarationName VN) {
TypeSourceInfo *TInfo =
Context.getTrivialTypeSourceInfo(MapperType, StartLoc);
auto *VD = VarDecl::Create(Context, Context.getTranslationUnitDecl(),
StartLoc, StartLoc, VN.getAsIdentifierInfo(),
MapperType, TInfo, SC_None);
if (S)
PushOnScopeChains(VD, S, /*AddToContext=*/false);
Expr *E = buildDeclRefExpr(*this, VD, MapperType, StartLoc);
DSAStack->addDeclareMapperVarRef(E);
return E;
}
bool Sema::isOpenMPDeclareMapperVarDeclAllowed(const VarDecl *VD) const {
assert(LangOpts.OpenMP && "Expected OpenMP mode.");
const Expr *Ref = DSAStack->getDeclareMapperVarRef();
if (const auto *DRE = cast_or_null<DeclRefExpr>(Ref)) {
if (VD->getCanonicalDecl() == DRE->getDecl()->getCanonicalDecl())
return true;
if (VD->isUsableInConstantExpressions(Context))
return true;
return false;
}
return true;
}
const ValueDecl *Sema::getOpenMPDeclareMapperVarName() const {
assert(LangOpts.OpenMP && "Expected OpenMP mode.");
return cast<DeclRefExpr>(DSAStack->getDeclareMapperVarRef())->getDecl();
}
OMPClause *Sema::ActOnOpenMPNumTeamsClause(Expr *NumTeams,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
Expr *ValExpr = NumTeams;
Stmt *HelperValStmt = nullptr;
// OpenMP [teams Constrcut, Restrictions]
// The num_teams expression must evaluate to a positive integer value.
if (!isNonNegativeIntegerValue(ValExpr, *this, OMPC_num_teams,
/*StrictlyPositive=*/true))
return nullptr;
OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
OpenMPDirectiveKind CaptureRegion =
getOpenMPCaptureRegionForClause(DKind, OMPC_num_teams, LangOpts.OpenMP);
if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
ValExpr = MakeFullExpr(ValExpr).get();
llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
HelperValStmt = buildPreInits(Context, Captures);
}
return new (Context) OMPNumTeamsClause(ValExpr, HelperValStmt, CaptureRegion,
StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPThreadLimitClause(Expr *ThreadLimit,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
Expr *ValExpr = ThreadLimit;
Stmt *HelperValStmt = nullptr;
// OpenMP [teams Constrcut, Restrictions]
// The thread_limit expression must evaluate to a positive integer value.
if (!isNonNegativeIntegerValue(ValExpr, *this, OMPC_thread_limit,
/*StrictlyPositive=*/true))
return nullptr;
OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective();
OpenMPDirectiveKind CaptureRegion = getOpenMPCaptureRegionForClause(
DKind, OMPC_thread_limit, LangOpts.OpenMP);
if (CaptureRegion != OMPD_unknown && !CurContext->isDependentContext()) {
ValExpr = MakeFullExpr(ValExpr).get();
llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
HelperValStmt = buildPreInits(Context, Captures);
}
return new (Context) OMPThreadLimitClause(
ValExpr, HelperValStmt, CaptureRegion, StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPPriorityClause(Expr *Priority,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
Expr *ValExpr = Priority;
Stmt *HelperValStmt = nullptr;
OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
// OpenMP [2.9.1, task Constrcut]
// The priority-value is a non-negative numerical scalar expression.
if (!isNonNegativeIntegerValue(
ValExpr, *this, OMPC_priority,
/*StrictlyPositive=*/false, /*BuildCapture=*/true,
DSAStack->getCurrentDirective(), &CaptureRegion, &HelperValStmt))
return nullptr;
return new (Context) OMPPriorityClause(ValExpr, HelperValStmt, CaptureRegion,
StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPGrainsizeClause(Expr *Grainsize,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
Expr *ValExpr = Grainsize;
Stmt *HelperValStmt = nullptr;
OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
// OpenMP [2.9.2, taskloop Constrcut]
// The parameter of the grainsize clause must be a positive integer
// expression.
if (!isNonNegativeIntegerValue(
ValExpr, *this, OMPC_grainsize,
/*StrictlyPositive=*/true, /*BuildCapture=*/true,
DSAStack->getCurrentDirective(), &CaptureRegion, &HelperValStmt))
return nullptr;
return new (Context) OMPGrainsizeClause(ValExpr, HelperValStmt, CaptureRegion,
StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPNumTasksClause(Expr *NumTasks,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
Expr *ValExpr = NumTasks;
Stmt *HelperValStmt = nullptr;
OpenMPDirectiveKind CaptureRegion = OMPD_unknown;
// OpenMP [2.9.2, taskloop Constrcut]
// The parameter of the num_tasks clause must be a positive integer
// expression.
if (!isNonNegativeIntegerValue(
ValExpr, *this, OMPC_num_tasks,
/*StrictlyPositive=*/true, /*BuildCapture=*/true,
DSAStack->getCurrentDirective(), &CaptureRegion, &HelperValStmt))
return nullptr;
return new (Context) OMPNumTasksClause(ValExpr, HelperValStmt, CaptureRegion,
StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
// OpenMP [2.13.2, critical construct, Description]
// ... where hint-expression is an integer constant expression that evaluates
// to a valid lock hint.
ExprResult HintExpr =
VerifyPositiveIntegerConstantInClause(Hint, OMPC_hint, false);
if (HintExpr.isInvalid())
return nullptr;
return new (Context)
OMPHintClause(HintExpr.get(), StartLoc, LParenLoc, EndLoc);
}
/// Tries to find omp_event_handle_t type.
static bool findOMPEventHandleT(Sema &S, SourceLocation Loc,
DSAStackTy *Stack) {
QualType OMPEventHandleT = Stack->getOMPEventHandleT();
if (!OMPEventHandleT.isNull())
return true;
IdentifierInfo *II = &S.PP.getIdentifierTable().get("omp_event_handle_t");
ParsedType PT = S.getTypeName(*II, Loc, S.getCurScope());
if (!PT.getAsOpaquePtr() || PT.get().isNull()) {
S.Diag(Loc, diag::err_omp_implied_type_not_found) << "omp_event_handle_t";
return false;
}
Stack->setOMPEventHandleT(PT.get());
return true;
}
OMPClause *Sema::ActOnOpenMPDetachClause(Expr *Evt, SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
if (!Evt->isValueDependent() && !Evt->isTypeDependent() &&
!Evt->isInstantiationDependent() &&
!Evt->containsUnexpandedParameterPack()) {
if (!findOMPEventHandleT(*this, Evt->getExprLoc(), DSAStack))
return nullptr;
// OpenMP 5.0, 2.10.1 task Construct.
// event-handle is a variable of the omp_event_handle_t type.
auto *Ref = dyn_cast<DeclRefExpr>(Evt->IgnoreParenImpCasts());
if (!Ref) {
Diag(Evt->getExprLoc(), diag::err_omp_var_expected)
<< "omp_event_handle_t" << 0 << Evt->getSourceRange();
return nullptr;
}
auto *VD = dyn_cast_or_null<VarDecl>(Ref->getDecl());
if (!VD) {
Diag(Evt->getExprLoc(), diag::err_omp_var_expected)
<< "omp_event_handle_t" << 0 << Evt->getSourceRange();
return nullptr;
}
if (!Context.hasSameUnqualifiedType(DSAStack->getOMPEventHandleT(),
VD->getType()) ||
VD->getType().isConstant(Context)) {
Diag(Evt->getExprLoc(), diag::err_omp_var_expected)
<< "omp_event_handle_t" << 1 << VD->getType()
<< Evt->getSourceRange();
return nullptr;
}
// OpenMP 5.0, 2.10.1 task Construct
// [detach clause]... The event-handle will be considered as if it was
// specified on a firstprivate clause.
DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(VD, /*FromParent=*/false);
if (DVar.CKind != OMPC_unknown && DVar.CKind != OMPC_firstprivate &&
DVar.RefExpr) {
Diag(Evt->getExprLoc(), diag::err_omp_wrong_dsa)
<< getOpenMPClauseName(DVar.CKind)
<< getOpenMPClauseName(OMPC_firstprivate);
reportOriginalDsa(*this, DSAStack, VD, DVar);
return nullptr;
}
}
return new (Context) OMPDetachClause(Evt, StartLoc, LParenLoc, EndLoc);
}
OMPClause *Sema::ActOnOpenMPDistScheduleClause(
OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
SourceLocation LParenLoc, SourceLocation KindLoc, SourceLocation CommaLoc,
SourceLocation EndLoc) {
if (Kind == OMPC_DIST_SCHEDULE_unknown) {
std::string Values;
Values += "'";
Values += getOpenMPSimpleClauseTypeName(OMPC_dist_schedule, 0);
Values += "'";
Diag(KindLoc, diag::err_omp_unexpected_clause_value)
<< Values << getOpenMPClauseName(OMPC_dist_schedule);
return nullptr;
}
Expr *ValExpr = ChunkSize;
Stmt *HelperValStmt = nullptr;
if (ChunkSize) {
if (!ChunkSize->isValueDependent() && !ChunkSize->isTypeDependent() &&
!ChunkSize->isInstantiationDependent() &&
!ChunkSize->containsUnexpandedParameterPack()) {
SourceLocation ChunkSizeLoc = ChunkSize->getBeginLoc();
ExprResult Val =
PerformOpenMPImplicitIntegerConversion(ChunkSizeLoc, ChunkSize);
if (Val.isInvalid())
return nullptr;
ValExpr = Val.get();
// OpenMP [2.7.1, Restrictions]
// chunk_size must be a loop invariant integer expression with a positive
// value.
if (Optional<llvm::APSInt> Result =
ValExpr->getIntegerConstantExpr(Context)) {
if (Result->isSigned() && !Result->isStrictlyPositive()) {
Diag(ChunkSizeLoc, diag::err_omp_negative_expression_in_clause)
<< "dist_schedule" << ChunkSize->getSourceRange();
return nullptr;
}
} else if (getOpenMPCaptureRegionForClause(
DSAStack->getCurrentDirective(), OMPC_dist_schedule,
LangOpts.OpenMP) != OMPD_unknown &&
!CurContext->isDependentContext()) {
ValExpr = MakeFullExpr(ValExpr).get();
llvm::MapVector<const Expr *, DeclRefExpr *> Captures;
ValExpr = tryBuildCapture(*this, ValExpr, Captures).get();
HelperValStmt = buildPreInits(Context, Captures);
}
}
}
return new (Context)
OMPDistScheduleClause(StartLoc, LParenLoc, KindLoc, CommaLoc, EndLoc,
Kind, ValExpr, HelperValStmt);
}
OMPClause *Sema::ActOnOpenMPDefaultmapClause(
OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind,
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc,
SourceLocation KindLoc, SourceLocation EndLoc) {
if (getLangOpts().OpenMP < 50) {
if (M != OMPC_DEFAULTMAP_MODIFIER_tofrom ||
Kind != OMPC_DEFAULTMAP_scalar) {
std::string Value;
SourceLocation Loc;
Value += "'";
if (M != OMPC_DEFAULTMAP_MODIFIER_tofrom) {
Value += getOpenMPSimpleClauseTypeName(OMPC_defaultmap,
OMPC_DEFAULTMAP_MODIFIER_tofrom);
Loc = MLoc;
} else {
Value += getOpenMPSimpleClauseTypeName(OMPC_defaultmap,
OMPC_DEFAULTMAP_scalar);
Loc = KindLoc;
}
Value += "'";
Diag(Loc, diag::err_omp_unexpected_clause_value)
<< Value << getOpenMPClauseName(OMPC_defaultmap);
return nullptr;
}
} else {
bool isDefaultmapModifier = (M != OMPC_DEFAULTMAP_MODIFIER_unknown);
bool isDefaultmapKind = (Kind != OMPC_DEFAULTMAP_unknown) ||
(LangOpts.OpenMP >= 50 && KindLoc.isInvalid());
if (!isDefaultmapKind || !isDefaultmapModifier) {
StringRef KindValue = "'scalar', 'aggregate', 'pointer'";
if (LangOpts.OpenMP == 50) {
StringRef ModifierValue = "'alloc', 'from', 'to', 'tofrom', "
"'firstprivate', 'none', 'default'";
if (!isDefaultmapKind && isDefaultmapModifier) {
Diag(KindLoc, diag::err_omp_unexpected_clause_value)
<< KindValue << getOpenMPClauseName(OMPC_defaultmap);
} else if (isDefaultmapKind && !isDefaultmapModifier) {
Diag(MLoc, diag::err_omp_unexpected_clause_value)
<< ModifierValue << getOpenMPClauseName(OMPC_defaultmap);
} else {
Diag(MLoc, diag::err_omp_unexpected_clause_value)
<< ModifierValue << getOpenMPClauseName(OMPC_defaultmap);
Diag(KindLoc, diag::err_omp_unexpected_clause_value)
<< KindValue << getOpenMPClauseName(OMPC_defaultmap);
}
} else {
StringRef ModifierValue =
"'alloc', 'from', 'to', 'tofrom', "
"'firstprivate', 'none', 'default', 'present'";
if (!isDefaultmapKind && isDefaultmapModifier) {
Diag(KindLoc, diag::err_omp_unexpected_clause_value)
<< KindValue << getOpenMPClauseName(OMPC_defaultmap);
} else if (isDefaultmapKind && !isDefaultmapModifier) {
Diag(MLoc, diag::err_omp_unexpected_clause_value)
<< ModifierValue << getOpenMPClauseName(OMPC_defaultmap);
} else {
Diag(MLoc, diag::err_omp_unexpected_clause_value)
<< ModifierValue << getOpenMPClauseName(OMPC_defaultmap);
Diag(KindLoc, diag::err_omp_unexpected_clause_value)
<< KindValue << getOpenMPClauseName(OMPC_defaultmap);
}
}
return nullptr;
}
// OpenMP [5.0, 2.12.5, Restrictions, p. 174]
// At most one defaultmap clause for each category can appear on the
// directive.
if (DSAStack->checkDefaultmapCategory(Kind)) {
Diag(StartLoc, diag::err_omp_one_defaultmap_each_category);
return nullptr;
}
}
if (Kind == OMPC_DEFAULTMAP_unknown) {
// Variable category is not specified - mark all categories.
DSAStack->setDefaultDMAAttr(M, OMPC_DEFAULTMAP_aggregate, StartLoc);
DSAStack->setDefaultDMAAttr(M, OMPC_DEFAULTMAP_scalar, StartLoc);
DSAStack->setDefaultDMAAttr(M, OMPC_DEFAULTMAP_pointer, StartLoc);
} else {
DSAStack->setDefaultDMAAttr(M, Kind, StartLoc);
}
return new (Context)
OMPDefaultmapClause(StartLoc, LParenLoc, MLoc, KindLoc, EndLoc, Kind, M);
}
bool Sema::ActOnStartOpenMPDeclareTargetContext(
DeclareTargetContextInfo &DTCI) {
DeclContext *CurLexicalContext = getCurLexicalContext();
if (!CurLexicalContext->isFileContext() &&
!CurLexicalContext->isExternCContext() &&
!CurLexicalContext->isExternCXXContext() &&
!isa<CXXRecordDecl>(CurLexicalContext) &&
!isa<ClassTemplateDecl>(CurLexicalContext) &&
!isa<ClassTemplatePartialSpecializationDecl>(CurLexicalContext) &&
!isa<ClassTemplateSpecializationDecl>(CurLexicalContext)) {
Diag(DTCI.Loc, diag::err_omp_region_not_file_context);
return false;
}
DeclareTargetNesting.push_back(DTCI);
return true;
}
const Sema::DeclareTargetContextInfo
Sema::ActOnOpenMPEndDeclareTargetDirective() {
assert(!DeclareTargetNesting.empty() &&
"check isInOpenMPDeclareTargetContext() first!");
return DeclareTargetNesting.pop_back_val();
}
void Sema::ActOnFinishedOpenMPDeclareTargetContext(
DeclareTargetContextInfo &DTCI) {
for (auto &It : DTCI.ExplicitlyMapped)
ActOnOpenMPDeclareTargetName(It.first, It.second.Loc, It.second.MT, DTCI);
}
NamedDecl *Sema::lookupOpenMPDeclareTargetName(Scope *CurScope,
CXXScopeSpec &ScopeSpec,
const DeclarationNameInfo &Id) {
LookupResult Lookup(*this, Id, LookupOrdinaryName);
LookupParsedName(Lookup, CurScope, &ScopeSpec, true);
if (Lookup.isAmbiguous())
return nullptr;
Lookup.suppressDiagnostics();
if (!Lookup.isSingleResult()) {
VarOrFuncDeclFilterCCC CCC(*this);
if (TypoCorrection Corrected =
CorrectTypo(Id, LookupOrdinaryName, CurScope, nullptr, CCC,
CTK_ErrorRecovery)) {
diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
<< Id.getName());
checkDeclIsAllowedInOpenMPTarget(nullptr, Corrected.getCorrectionDecl());
return nullptr;
}
Diag(Id.getLoc(), diag::err_undeclared_var_use) << Id.getName();
return nullptr;
}
NamedDecl *ND = Lookup.getAsSingle<NamedDecl>();
if (!isa<VarDecl>(ND) && !isa<FunctionDecl>(ND) &&
!isa<FunctionTemplateDecl>(ND)) {
Diag(Id.getLoc(), diag::err_omp_invalid_target_decl) << Id.getName();
return nullptr;
}
return ND;
}
void Sema::ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc,
OMPDeclareTargetDeclAttr::MapTypeTy MT,
DeclareTargetContextInfo &DTCI) {
assert((isa<VarDecl>(ND) || isa<FunctionDecl>(ND) ||
isa<FunctionTemplateDecl>(ND)) &&
"Expected variable, function or function template.");
// Diagnose marking after use as it may lead to incorrect diagnosis and
// codegen.
if (LangOpts.OpenMP >= 50 &&
(ND->isUsed(/*CheckUsedAttr=*/false) || ND->isReferenced()))
Diag(Loc, diag::warn_omp_declare_target_after_first_use);
// Explicit declare target lists have precedence.
const unsigned Level = -1;
auto *VD = cast<ValueDecl>(ND);
llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
OMPDeclareTargetDeclAttr::getActiveAttr(VD);
if (ActiveAttr.hasValue() && ActiveAttr.getValue()->getDevType() != DTCI.DT &&
ActiveAttr.getValue()->getLevel() == Level) {
Diag(Loc, diag::err_omp_device_type_mismatch)
<< OMPDeclareTargetDeclAttr::ConvertDevTypeTyToStr(DTCI.DT)
<< OMPDeclareTargetDeclAttr::ConvertDevTypeTyToStr(
ActiveAttr.getValue()->getDevType());
return;
}
if (ActiveAttr.hasValue() && ActiveAttr.getValue()->getMapType() != MT &&
ActiveAttr.getValue()->getLevel() == Level) {
Diag(Loc, diag::err_omp_declare_target_to_and_link) << ND;
return;
}
if (ActiveAttr.hasValue() && ActiveAttr.getValue()->getLevel() == Level)
return;
Expr *IndirectE = nullptr;
bool IsIndirect = false;
if (DTCI.Indirect.hasValue()) {
IndirectE = DTCI.Indirect.getValue();
if (!IndirectE)
IsIndirect = true;
}
auto *A = OMPDeclareTargetDeclAttr::CreateImplicit(
Context, MT, DTCI.DT, IndirectE, IsIndirect, Level,
SourceRange(Loc, Loc));
ND->addAttr(A);
if (ASTMutationListener *ML = Context.getASTMutationListener())
ML->DeclarationMarkedOpenMPDeclareTarget(ND, A);
checkDeclIsAllowedInOpenMPTarget(nullptr, ND, Loc);
}
static void checkDeclInTargetContext(SourceLocation SL, SourceRange SR,
Sema &SemaRef, Decl *D) {
if (!D || !isa<VarDecl>(D))
return;
auto *VD = cast<VarDecl>(D);
Optional<OMPDeclareTargetDeclAttr::MapTypeTy> MapTy =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
if (SemaRef.LangOpts.OpenMP >= 50 &&
(SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true) ||
SemaRef.getCurBlock() || SemaRef.getCurCapturedRegion()) &&
VD->hasGlobalStorage()) {
if (!MapTy || *MapTy != OMPDeclareTargetDeclAttr::MT_To) {
// OpenMP 5.0, 2.12.7 declare target Directive, Restrictions
// If a lambda declaration and definition appears between a
// declare target directive and the matching end declare target
// directive, all variables that are captured by the lambda
// expression must also appear in a to clause.
SemaRef.Diag(VD->getLocation(),
diag::err_omp_lambda_capture_in_declare_target_not_to);
SemaRef.Diag(SL, diag::note_var_explicitly_captured_here)
<< VD << 0 << SR;
return;
}
}
if (MapTy.hasValue())
return;
SemaRef.Diag(VD->getLocation(), diag::warn_omp_not_in_target_context);
SemaRef.Diag(SL, diag::note_used_here) << SR;
}
static bool checkValueDeclInTarget(SourceLocation SL, SourceRange SR,
Sema &SemaRef, DSAStackTy *Stack,
ValueDecl *VD) {
return OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) ||
checkTypeMappable(SL, SR, SemaRef, Stack, VD->getType(),
/*FullCheck=*/false);
}
void Sema::checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D,
SourceLocation IdLoc) {
if (!D || D->isInvalidDecl())
return;
SourceRange SR = E ? E->getSourceRange() : D->getSourceRange();
SourceLocation SL = E ? E->getBeginLoc() : D->getLocation();
if (auto *VD = dyn_cast<VarDecl>(D)) {
// Only global variables can be marked as declare target.
if (!VD->isFileVarDecl() && !VD->isStaticLocal() &&
!VD->isStaticDataMember())
return;
// 2.10.6: threadprivate variable cannot appear in a declare target
// directive.
if (DSAStack->isThreadPrivate(VD)) {
Diag(SL, diag::err_omp_threadprivate_in_target);
reportOriginalDsa(*this, DSAStack, VD, DSAStack->getTopDSA(VD, false));
return;
}
}
if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(D))
D = FTD->getTemplatedDecl();
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD);
if (IdLoc.isValid() && Res && *Res == OMPDeclareTargetDeclAttr::MT_Link) {
Diag(IdLoc, diag::err_omp_function_in_link_clause);
Diag(FD->getLocation(), diag::note_defined_here) << FD;
return;
}
}
if (auto *VD = dyn_cast<ValueDecl>(D)) {
// Problem if any with var declared with incomplete type will be reported
// as normal, so no need to check it here.
if ((E || !VD->getType()->isIncompleteType()) &&
!checkValueDeclInTarget(SL, SR, *this, DSAStack, VD))
return;
if (!E && isInOpenMPDeclareTargetContext()) {
// Checking declaration inside declare target region.
if (isa<VarDecl>(D) || isa<FunctionDecl>(D) ||
isa<FunctionTemplateDecl>(D)) {
llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
OMPDeclareTargetDeclAttr::getActiveAttr(VD);
unsigned Level = DeclareTargetNesting.size();
if (ActiveAttr.hasValue() && ActiveAttr.getValue()->getLevel() >= Level)
return;
DeclareTargetContextInfo &DTCI = DeclareTargetNesting.back();
Expr *IndirectE = nullptr;
bool IsIndirect = false;
if (DTCI.Indirect.hasValue()) {
IndirectE = DTCI.Indirect.getValue();
if (!IndirectE)
IsIndirect = true;
}
auto *A = OMPDeclareTargetDeclAttr::CreateImplicit(
Context, OMPDeclareTargetDeclAttr::MT_To, DTCI.DT, IndirectE,
IsIndirect, Level, SourceRange(DTCI.Loc, DTCI.Loc));
D->addAttr(A);
if (ASTMutationListener *ML = Context.getASTMutationListener())
ML->DeclarationMarkedOpenMPDeclareTarget(D, A);
}
return;
}
}
if (!E)
return;
checkDeclInTargetContext(E->getExprLoc(), E->getSourceRange(), *this, D);
}
OMPClause *Sema::ActOnOpenMPToClause(
ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
ArrayRef<SourceLocation> MotionModifiersLoc,
CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId,
SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs, ArrayRef<Expr *> UnresolvedMappers) {
OpenMPMotionModifierKind Modifiers[] = {OMPC_MOTION_MODIFIER_unknown,
OMPC_MOTION_MODIFIER_unknown};
SourceLocation ModifiersLoc[NumberOfOMPMotionModifiers];
// Process motion-modifiers, flag errors for duplicate modifiers.
unsigned Count = 0;
for (unsigned I = 0, E = MotionModifiers.size(); I < E; ++I) {
if (MotionModifiers[I] != OMPC_MOTION_MODIFIER_unknown &&
llvm::is_contained(Modifiers, MotionModifiers[I])) {
Diag(MotionModifiersLoc[I], diag::err_omp_duplicate_motion_modifier);
continue;
}
assert(Count < NumberOfOMPMotionModifiers &&
"Modifiers exceed the allowed number of motion modifiers");
Modifiers[Count] = MotionModifiers[I];
ModifiersLoc[Count] = MotionModifiersLoc[I];
++Count;
}
MappableVarListInfo MVLI(VarList);
checkMappableExpressionList(*this, DSAStack, OMPC_to, MVLI, Locs.StartLoc,
MapperIdScopeSpec, MapperId, UnresolvedMappers);
if (MVLI.ProcessedVarList.empty())
return nullptr;
return OMPToClause::Create(
Context, Locs, MVLI.ProcessedVarList, MVLI.VarBaseDeclarations,
MVLI.VarComponents, MVLI.UDMapperList, Modifiers, ModifiersLoc,
MapperIdScopeSpec.getWithLocInContext(Context), MapperId);
}
OMPClause *Sema::ActOnOpenMPFromClause(
ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
ArrayRef<SourceLocation> MotionModifiersLoc,
CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId,
SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs, ArrayRef<Expr *> UnresolvedMappers) {
OpenMPMotionModifierKind Modifiers[] = {OMPC_MOTION_MODIFIER_unknown,
OMPC_MOTION_MODIFIER_unknown};
SourceLocation ModifiersLoc[NumberOfOMPMotionModifiers];
// Process motion-modifiers, flag errors for duplicate modifiers.
unsigned Count = 0;
for (unsigned I = 0, E = MotionModifiers.size(); I < E; ++I) {
if (MotionModifiers[I] != OMPC_MOTION_MODIFIER_unknown &&
llvm::is_contained(Modifiers, MotionModifiers[I])) {
Diag(MotionModifiersLoc[I], diag::err_omp_duplicate_motion_modifier);
continue;
}
assert(Count < NumberOfOMPMotionModifiers &&
"Modifiers exceed the allowed number of motion modifiers");
Modifiers[Count] = MotionModifiers[I];
ModifiersLoc[Count] = MotionModifiersLoc[I];
++Count;
}
MappableVarListInfo MVLI(VarList);
checkMappableExpressionList(*this, DSAStack, OMPC_from, MVLI, Locs.StartLoc,
MapperIdScopeSpec, MapperId, UnresolvedMappers);
if (MVLI.ProcessedVarList.empty())
return nullptr;
return OMPFromClause::Create(
Context, Locs, MVLI.ProcessedVarList, MVLI.VarBaseDeclarations,
MVLI.VarComponents, MVLI.UDMapperList, Modifiers, ModifiersLoc,
MapperIdScopeSpec.getWithLocInContext(Context), MapperId);
}
OMPClause *Sema::ActOnOpenMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs) {
MappableVarListInfo MVLI(VarList);
SmallVector<Expr *, 8> PrivateCopies;
SmallVector<Expr *, 8> Inits;
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP use_device_ptr clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
if (Res.second) {
// It will be analyzed later.
MVLI.ProcessedVarList.push_back(RefExpr);
PrivateCopies.push_back(nullptr);
Inits.push_back(nullptr);
}
ValueDecl *D = Res.first;
if (!D)
continue;
QualType Type = D->getType();
Type = Type.getNonReferenceType().getUnqualifiedType();
auto *VD = dyn_cast<VarDecl>(D);
// Item should be a pointer or reference to pointer.
if (!Type->isPointerType()) {
Diag(ELoc, diag::err_omp_usedeviceptr_not_a_pointer)
<< 0 << RefExpr->getSourceRange();
continue;
}
// Build the private variable and the expression that refers to it.
auto VDPrivate =
buildVarDecl(*this, ELoc, Type, D->getName(),
D->hasAttrs() ? &D->getAttrs() : nullptr,
VD ? cast<DeclRefExpr>(SimpleRefExpr) : nullptr);
if (VDPrivate->isInvalidDecl())
continue;
CurContext->addDecl(VDPrivate);
DeclRefExpr *VDPrivateRefExpr = buildDeclRefExpr(
*this, VDPrivate, RefExpr->getType().getUnqualifiedType(), ELoc);
// Add temporary variable to initialize the private copy of the pointer.
VarDecl *VDInit =
buildVarDecl(*this, RefExpr->getExprLoc(), Type, ".devptr.temp");
DeclRefExpr *VDInitRefExpr = buildDeclRefExpr(
*this, VDInit, RefExpr->getType(), RefExpr->getExprLoc());
AddInitializerToDecl(VDPrivate,
DefaultLvalueConversion(VDInitRefExpr).get(),
/*DirectInit=*/false);
// If required, build a capture to implement the privatization initialized
// with the current list item value.
DeclRefExpr *Ref = nullptr;
if (!VD)
Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/true);
MVLI.ProcessedVarList.push_back(VD ? RefExpr->IgnoreParens() : Ref);
PrivateCopies.push_back(VDPrivateRefExpr);
Inits.push_back(VDInitRefExpr);
// We need to add a data sharing attribute for this variable to make sure it
// is correctly captured. A variable that shows up in a use_device_ptr has
// similar properties of a first private variable.
DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_firstprivate, Ref);
// Create a mappable component for the list item. List items in this clause
// only need a component.
MVLI.VarBaseDeclarations.push_back(D);
MVLI.VarComponents.resize(MVLI.VarComponents.size() + 1);
MVLI.VarComponents.back().emplace_back(SimpleRefExpr, D,
/*IsNonContiguous=*/false);
}
if (MVLI.ProcessedVarList.empty())
return nullptr;
return OMPUseDevicePtrClause::Create(
Context, Locs, MVLI.ProcessedVarList, PrivateCopies, Inits,
MVLI.VarBaseDeclarations, MVLI.VarComponents);
}
OMPClause *Sema::ActOnOpenMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs) {
MappableVarListInfo MVLI(VarList);
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP use_device_addr clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange,
/*AllowArraySection=*/true);
if (Res.second) {
// It will be analyzed later.
MVLI.ProcessedVarList.push_back(RefExpr);
}
ValueDecl *D = Res.first;
if (!D)
continue;
auto *VD = dyn_cast<VarDecl>(D);
// If required, build a capture to implement the privatization initialized
// with the current list item value.
DeclRefExpr *Ref = nullptr;
if (!VD)
Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/true);
MVLI.ProcessedVarList.push_back(VD ? RefExpr->IgnoreParens() : Ref);
// We need to add a data sharing attribute for this variable to make sure it
// is correctly captured. A variable that shows up in a use_device_addr has
// similar properties of a first private variable.
DSAStack->addDSA(D, RefExpr->IgnoreParens(), OMPC_firstprivate, Ref);
// Create a mappable component for the list item. List items in this clause
// only need a component.
MVLI.VarBaseDeclarations.push_back(D);
MVLI.VarComponents.emplace_back();
Expr *Component = SimpleRefExpr;
if (VD && (isa<OMPArraySectionExpr>(RefExpr->IgnoreParenImpCasts()) ||
isa<ArraySubscriptExpr>(RefExpr->IgnoreParenImpCasts())))
Component = DefaultFunctionArrayLvalueConversion(SimpleRefExpr).get();
MVLI.VarComponents.back().emplace_back(Component, D,
/*IsNonContiguous=*/false);
}
if (MVLI.ProcessedVarList.empty())
return nullptr;
return OMPUseDeviceAddrClause::Create(Context, Locs, MVLI.ProcessedVarList,
MVLI.VarBaseDeclarations,
MVLI.VarComponents);
}
OMPClause *Sema::ActOnOpenMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs) {
MappableVarListInfo MVLI(VarList);
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP is_device_ptr clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
if (Res.second) {
// It will be analyzed later.
MVLI.ProcessedVarList.push_back(RefExpr);
}
ValueDecl *D = Res.first;
if (!D)
continue;
QualType Type = D->getType();
// item should be a pointer or array or reference to pointer or array
if (!Type.getNonReferenceType()->isPointerType() &&
!Type.getNonReferenceType()->isArrayType()) {
Diag(ELoc, diag::err_omp_argument_type_isdeviceptr)
<< 0 << RefExpr->getSourceRange();
continue;
}
// Check if the declaration in the clause does not show up in any data
// sharing attribute.
DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(D, /*FromParent=*/false);
if (isOpenMPPrivate(DVar.CKind)) {
Diag(ELoc, diag::err_omp_variable_in_given_clause_and_dsa)
<< getOpenMPClauseName(DVar.CKind)
<< getOpenMPClauseName(OMPC_is_device_ptr)
<< getOpenMPDirectiveName(DSAStack->getCurrentDirective());
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
const Expr *ConflictExpr;
if (DSAStack->checkMappableExprComponentListsForDecl(
D, /*CurrentRegionOnly=*/true,
[&ConflictExpr](
OMPClauseMappableExprCommon::MappableExprComponentListRef R,
OpenMPClauseKind) -> bool {
ConflictExpr = R.front().getAssociatedExpression();
return true;
})) {
Diag(ELoc, diag::err_omp_map_shared_storage) << RefExpr->getSourceRange();
Diag(ConflictExpr->getExprLoc(), diag::note_used_here)
<< ConflictExpr->getSourceRange();
continue;
}
// Store the components in the stack so that they can be used to check
// against other clauses later on.
OMPClauseMappableExprCommon::MappableComponent MC(
SimpleRefExpr, D, /*IsNonContiguous=*/false);
DSAStack->addMappableExpressionComponents(
D, MC, /*WhereFoundClauseKind=*/OMPC_is_device_ptr);
// Record the expression we've just processed.
MVLI.ProcessedVarList.push_back(SimpleRefExpr);
// Create a mappable component for the list item. List items in this clause
// only need a component. We use a null declaration to signal fields in
// 'this'.
assert((isa<DeclRefExpr>(SimpleRefExpr) ||
isa<CXXThisExpr>(cast<MemberExpr>(SimpleRefExpr)->getBase())) &&
"Unexpected device pointer expression!");
MVLI.VarBaseDeclarations.push_back(
isa<DeclRefExpr>(SimpleRefExpr) ? D : nullptr);
MVLI.VarComponents.resize(MVLI.VarComponents.size() + 1);
MVLI.VarComponents.back().push_back(MC);
}
if (MVLI.ProcessedVarList.empty())
return nullptr;
return OMPIsDevicePtrClause::Create(Context, Locs, MVLI.ProcessedVarList,
MVLI.VarBaseDeclarations,
MVLI.VarComponents);
}
OMPClause *Sema::ActOnOpenMPHasDeviceAddrClause(ArrayRef<Expr *> VarList,
const OMPVarListLocTy &Locs) {
MappableVarListInfo MVLI(VarList);
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP has_device_addr clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange,
/*AllowArraySection=*/true);
if (Res.second) {
// It will be analyzed later.
MVLI.ProcessedVarList.push_back(RefExpr);
}
ValueDecl *D = Res.first;
if (!D)
continue;
// Check if the declaration in the clause does not show up in any data
// sharing attribute.
DSAStackTy::DSAVarData DVar = DSAStack->getTopDSA(D, /*FromParent=*/false);
if (isOpenMPPrivate(DVar.CKind)) {
Diag(ELoc, diag::err_omp_variable_in_given_clause_and_dsa)
<< getOpenMPClauseName(DVar.CKind)
<< getOpenMPClauseName(OMPC_has_device_addr)
<< getOpenMPDirectiveName(DSAStack->getCurrentDirective());
reportOriginalDsa(*this, DSAStack, D, DVar);
continue;
}
const Expr *ConflictExpr;
if (DSAStack->checkMappableExprComponentListsForDecl(
D, /*CurrentRegionOnly=*/true,
[&ConflictExpr](
OMPClauseMappableExprCommon::MappableExprComponentListRef R,
OpenMPClauseKind) -> bool {
ConflictExpr = R.front().getAssociatedExpression();
return true;
})) {
Diag(ELoc, diag::err_omp_map_shared_storage) << RefExpr->getSourceRange();
Diag(ConflictExpr->getExprLoc(), diag::note_used_here)
<< ConflictExpr->getSourceRange();
continue;
}
// Store the components in the stack so that they can be used to check
// against other clauses later on.
OMPClauseMappableExprCommon::MappableComponent MC(
SimpleRefExpr, D, /*IsNonContiguous=*/false);
DSAStack->addMappableExpressionComponents(
D, MC, /*WhereFoundClauseKind=*/OMPC_has_device_addr);
// Record the expression we've just processed.
auto *VD = dyn_cast<VarDecl>(D);
if (!VD && !CurContext->isDependentContext()) {
DeclRefExpr *Ref =
buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/true);
assert(Ref && "has_device_addr capture failed");
MVLI.ProcessedVarList.push_back(Ref);
} else
MVLI.ProcessedVarList.push_back(RefExpr->IgnoreParens());
// Create a mappable component for the list item. List items in this clause
// only need a component. We use a null declaration to signal fields in
// 'this'.
assert((isa<DeclRefExpr>(SimpleRefExpr) ||
isa<CXXThisExpr>(cast<MemberExpr>(SimpleRefExpr)->getBase())) &&
"Unexpected device pointer expression!");
MVLI.VarBaseDeclarations.push_back(
isa<DeclRefExpr>(SimpleRefExpr) ? D : nullptr);
MVLI.VarComponents.resize(MVLI.VarComponents.size() + 1);
MVLI.VarComponents.back().push_back(MC);
}
if (MVLI.ProcessedVarList.empty())
return nullptr;
return OMPHasDeviceAddrClause::Create(Context, Locs, MVLI.ProcessedVarList,
MVLI.VarBaseDeclarations,
MVLI.VarComponents);
}
OMPClause *Sema::ActOnOpenMPAllocateClause(
Expr *Allocator, ArrayRef<Expr *> VarList, SourceLocation StartLoc,
SourceLocation ColonLoc, SourceLocation LParenLoc, SourceLocation EndLoc) {
if (Allocator) {
// OpenMP [2.11.4 allocate Clause, Description]
// allocator is an expression of omp_allocator_handle_t type.
if (!findOMPAllocatorHandleT(*this, Allocator->getExprLoc(), DSAStack))
return nullptr;
ExprResult AllocatorRes = DefaultLvalueConversion(Allocator);
if (AllocatorRes.isInvalid())
return nullptr;
AllocatorRes = PerformImplicitConversion(AllocatorRes.get(),
DSAStack->getOMPAllocatorHandleT(),
Sema::AA_Initializing,
/*AllowExplicit=*/true);
if (AllocatorRes.isInvalid())
return nullptr;
Allocator = AllocatorRes.get();
} else {
// OpenMP 5.0, 2.11.4 allocate Clause, Restrictions.
// allocate clauses that appear on a target construct or on constructs in a
// target region must specify an allocator expression unless a requires
// directive with the dynamic_allocators clause is present in the same
// compilation unit.
if (LangOpts.OpenMPIsDevice &&
!DSAStack->hasRequiresDeclWithClause<OMPDynamicAllocatorsClause>())
targetDiag(StartLoc, diag::err_expected_allocator_expression);
}
// Analyze and build list of variables.
SmallVector<Expr *, 8> Vars;
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP private clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
if (Res.second) {
// It will be analyzed later.
Vars.push_back(RefExpr);
}
ValueDecl *D = Res.first;
if (!D)
continue;
auto *VD = dyn_cast<VarDecl>(D);
DeclRefExpr *Ref = nullptr;
if (!VD && !CurContext->isDependentContext())
Ref = buildCapture(*this, D, SimpleRefExpr, /*WithInit=*/false);
Vars.push_back((VD || CurContext->isDependentContext())
? RefExpr->IgnoreParens()
: Ref);
}
if (Vars.empty())
return nullptr;
if (Allocator)
DSAStack->addInnerAllocatorExpr(Allocator);
return OMPAllocateClause::Create(Context, StartLoc, LParenLoc, Allocator,
ColonLoc, EndLoc, Vars);
}
OMPClause *Sema::ActOnOpenMPNontemporalClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
SmallVector<Expr *, 8> Vars;
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP nontemporal clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange);
if (Res.second)
// It will be analyzed later.
Vars.push_back(RefExpr);
ValueDecl *D = Res.first;
if (!D)
continue;
// OpenMP 5.0, 2.9.3.1 simd Construct, Restrictions.
// A list-item cannot appear in more than one nontemporal clause.
if (const Expr *PrevRef =
DSAStack->addUniqueNontemporal(D, SimpleRefExpr)) {
Diag(ELoc, diag::err_omp_used_in_clause_twice)
<< 0 << getOpenMPClauseName(OMPC_nontemporal) << ERange;
Diag(PrevRef->getExprLoc(), diag::note_omp_explicit_dsa)
<< getOpenMPClauseName(OMPC_nontemporal);
continue;
}
Vars.push_back(RefExpr);
}
if (Vars.empty())
return nullptr;
return OMPNontemporalClause::Create(Context, StartLoc, LParenLoc, EndLoc,
Vars);
}
OMPClause *Sema::ActOnOpenMPInclusiveClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
SmallVector<Expr *, 8> Vars;
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP nontemporal clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange,
/*AllowArraySection=*/true);
if (Res.second)
// It will be analyzed later.
Vars.push_back(RefExpr);
ValueDecl *D = Res.first;
if (!D)
continue;
const DSAStackTy::DSAVarData DVar =
DSAStack->getTopDSA(D, /*FromParent=*/true);
// OpenMP 5.0, 2.9.6, scan Directive, Restrictions.
// A list item that appears in the inclusive or exclusive clause must appear
// in a reduction clause with the inscan modifier on the enclosing
// worksharing-loop, worksharing-loop SIMD, or simd construct.
if (DVar.CKind != OMPC_reduction || DVar.Modifier != OMPC_REDUCTION_inscan)
Diag(ELoc, diag::err_omp_inclusive_exclusive_not_reduction)
<< RefExpr->getSourceRange();
if (DSAStack->getParentDirective() != OMPD_unknown)
DSAStack->markDeclAsUsedInScanDirective(D);
Vars.push_back(RefExpr);
}
if (Vars.empty())
return nullptr;
return OMPInclusiveClause::Create(Context, StartLoc, LParenLoc, EndLoc, Vars);
}
OMPClause *Sema::ActOnOpenMPExclusiveClause(ArrayRef<Expr *> VarList,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
SmallVector<Expr *, 8> Vars;
for (Expr *RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP nontemporal clause.");
SourceLocation ELoc;
SourceRange ERange;
Expr *SimpleRefExpr = RefExpr;
auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange,
/*AllowArraySection=*/true);
if (Res.second)
// It will be analyzed later.
Vars.push_back(RefExpr);
ValueDecl *D = Res.first;
if (!D)
continue;
OpenMPDirectiveKind ParentDirective = DSAStack->getParentDirective();
DSAStackTy::DSAVarData DVar;
if (ParentDirective != OMPD_unknown)
DVar = DSAStack->getTopDSA(D, /*FromParent=*/true);
// OpenMP 5.0, 2.9.6, scan Directive, Restrictions.
// A list item that appears in the inclusive or exclusive clause must appear
// in a reduction clause with the inscan modifier on the enclosing
// worksharing-loop, worksharing-loop SIMD, or simd construct.
if (ParentDirective == OMPD_unknown || DVar.CKind != OMPC_reduction ||
DVar.Modifier != OMPC_REDUCTION_inscan) {
Diag(ELoc, diag::err_omp_inclusive_exclusive_not_reduction)
<< RefExpr->getSourceRange();
} else {
DSAStack->markDeclAsUsedInScanDirective(D);
}
Vars.push_back(RefExpr);
}
if (Vars.empty())
return nullptr;
return OMPExclusiveClause::Create(Context, StartLoc, LParenLoc, EndLoc, Vars);
}
/// Tries to find omp_alloctrait_t type.
static bool findOMPAlloctraitT(Sema &S, SourceLocation Loc, DSAStackTy *Stack) {
QualType OMPAlloctraitT = Stack->getOMPAlloctraitT();
if (!OMPAlloctraitT.isNull())
return true;
IdentifierInfo &II = S.PP.getIdentifierTable().get("omp_alloctrait_t");
ParsedType PT = S.getTypeName(II, Loc, S.getCurScope());
if (!PT.getAsOpaquePtr() || PT.get().isNull()) {
S.Diag(Loc, diag::err_omp_implied_type_not_found) << "omp_alloctrait_t";
return false;
}
Stack->setOMPAlloctraitT(PT.get());
return true;
}
OMPClause *Sema::ActOnOpenMPUsesAllocatorClause(
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc,
ArrayRef<UsesAllocatorsData> Data) {
// OpenMP [2.12.5, target Construct]
// allocator is an identifier of omp_allocator_handle_t type.
if (!findOMPAllocatorHandleT(*this, StartLoc, DSAStack))
return nullptr;
// OpenMP [2.12.5, target Construct]
// allocator-traits-array is an identifier of const omp_alloctrait_t * type.
if (llvm::any_of(
Data,
[](const UsesAllocatorsData &D) { return D.AllocatorTraits; }) &&
!findOMPAlloctraitT(*this, StartLoc, DSAStack))
return nullptr;
llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 4> PredefinedAllocators;
for (int I = 0; I < OMPAllocateDeclAttr::OMPUserDefinedMemAlloc; ++I) {
auto AllocatorKind = static_cast<OMPAllocateDeclAttr::AllocatorTypeTy>(I);
StringRef Allocator =
OMPAllocateDeclAttr::ConvertAllocatorTypeTyToStr(AllocatorKind);
DeclarationName AllocatorName = &Context.Idents.get(Allocator);
PredefinedAllocators.insert(LookupSingleName(
TUScope, AllocatorName, StartLoc, Sema::LookupAnyName));
}
SmallVector<OMPUsesAllocatorsClause::Data, 4> NewData;
for (const UsesAllocatorsData &D : Data) {
Expr *AllocatorExpr = nullptr;
// Check allocator expression.
if (D.Allocator->isTypeDependent()) {
AllocatorExpr = D.Allocator;
} else {
// Traits were specified - need to assign new allocator to the specified
// allocator, so it must be an lvalue.
AllocatorExpr = D.Allocator->IgnoreParenImpCasts();
auto *DRE = dyn_cast<DeclRefExpr>(AllocatorExpr);
bool IsPredefinedAllocator = false;
if (DRE)
IsPredefinedAllocator = PredefinedAllocators.count(DRE->getDecl());
if (!DRE ||
!(Context.hasSameUnqualifiedType(
AllocatorExpr->getType(), DSAStack->getOMPAllocatorHandleT()) ||
Context.typesAreCompatible(AllocatorExpr->getType(),
DSAStack->getOMPAllocatorHandleT(),
/*CompareUnqualified=*/true)) ||
(!IsPredefinedAllocator &&
(AllocatorExpr->getType().isConstant(Context) ||
!AllocatorExpr->isLValue()))) {
Diag(D.Allocator->getExprLoc(), diag::err_omp_var_expected)
<< "omp_allocator_handle_t" << (DRE ? 1 : 0)
<< AllocatorExpr->getType() << D.Allocator->getSourceRange();
continue;
}
// OpenMP [2.12.5, target Construct]
// Predefined allocators appearing in a uses_allocators clause cannot have
// traits specified.
if (IsPredefinedAllocator && D.AllocatorTraits) {
Diag(D.AllocatorTraits->getExprLoc(),
diag::err_omp_predefined_allocator_with_traits)
<< D.AllocatorTraits->getSourceRange();
Diag(D.Allocator->getExprLoc(), diag::note_omp_predefined_allocator)
<< cast<NamedDecl>(DRE->getDecl())->getName()
<< D.Allocator->getSourceRange();
continue;
}
// OpenMP [2.12.5, target Construct]
// Non-predefined allocators appearing in a uses_allocators clause must
// have traits specified.
if (!IsPredefinedAllocator && !D.AllocatorTraits) {
Diag(D.Allocator->getExprLoc(),
diag::err_omp_nonpredefined_allocator_without_traits);
continue;
}
// No allocator traits - just convert it to rvalue.
if (!D.AllocatorTraits)
AllocatorExpr = DefaultLvalueConversion(AllocatorExpr).get();
DSAStack->addUsesAllocatorsDecl(
DRE->getDecl(),
IsPredefinedAllocator
? DSAStackTy::UsesAllocatorsDeclKind::PredefinedAllocator
: DSAStackTy::UsesAllocatorsDeclKind::UserDefinedAllocator);
}
Expr *AllocatorTraitsExpr = nullptr;
if (D.AllocatorTraits) {
if (D.AllocatorTraits->isTypeDependent()) {
AllocatorTraitsExpr = D.AllocatorTraits;
} else {
// OpenMP [2.12.5, target Construct]
// Arrays that contain allocator traits that appear in a uses_allocators
// clause must be constant arrays, have constant values and be defined
// in the same scope as the construct in which the clause appears.
AllocatorTraitsExpr = D.AllocatorTraits->IgnoreParenImpCasts();
// Check that traits expr is a constant array.
QualType TraitTy;
if (const ArrayType *Ty =
AllocatorTraitsExpr->getType()->getAsArrayTypeUnsafe())
if (const auto *ConstArrayTy = dyn_cast<ConstantArrayType>(Ty))
TraitTy = ConstArrayTy->getElementType();
if (TraitTy.isNull() ||
!(Context.hasSameUnqualifiedType(TraitTy,
DSAStack->getOMPAlloctraitT()) ||
Context.typesAreCompatible(TraitTy, DSAStack->getOMPAlloctraitT(),
/*CompareUnqualified=*/true))) {
Diag(D.AllocatorTraits->getExprLoc(),
diag::err_omp_expected_array_alloctraits)
<< AllocatorTraitsExpr->getType();
continue;
}
// Do not map by default allocator traits if it is a standalone
// variable.
if (auto *DRE = dyn_cast<DeclRefExpr>(AllocatorTraitsExpr))
DSAStack->addUsesAllocatorsDecl(
DRE->getDecl(),
DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait);
}
}
OMPUsesAllocatorsClause::Data &NewD = NewData.emplace_back();
NewD.Allocator = AllocatorExpr;
NewD.AllocatorTraits = AllocatorTraitsExpr;
NewD.LParenLoc = D.LParenLoc;
NewD.RParenLoc = D.RParenLoc;
}
return OMPUsesAllocatorsClause::Create(Context, StartLoc, LParenLoc, EndLoc,
NewData);
}
OMPClause *Sema::ActOnOpenMPAffinityClause(
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc,
SourceLocation EndLoc, Expr *Modifier, ArrayRef<Expr *> Locators) {
SmallVector<Expr *, 8> Vars;
for (Expr *RefExpr : Locators) {
assert(RefExpr && "NULL expr in OpenMP shared clause.");
if (isa<DependentScopeDeclRefExpr>(RefExpr) || RefExpr->isTypeDependent()) {
// It will be analyzed later.
Vars.push_back(RefExpr);
continue;
}
SourceLocation ELoc = RefExpr->getExprLoc();
Expr *SimpleExpr = RefExpr->IgnoreParenImpCasts();
if (!SimpleExpr->isLValue()) {
Diag(ELoc, diag::err_omp_expected_addressable_lvalue_or_array_item)
<< 1 << 0 << RefExpr->getSourceRange();
continue;
}
ExprResult Res;
{
Sema::TentativeAnalysisScope Trap(*this);
Res = CreateBuiltinUnaryOp(ELoc, UO_AddrOf, SimpleExpr);
}
if (!Res.isUsable() && !isa<OMPArraySectionExpr>(SimpleExpr) &&
!isa<OMPArrayShapingExpr>(SimpleExpr)) {
Diag(ELoc, diag::err_omp_expected_addressable_lvalue_or_array_item)
<< 1 << 0 << RefExpr->getSourceRange();
continue;
}
Vars.push_back(SimpleExpr);
}
return OMPAffinityClause::Create(Context, StartLoc, LParenLoc, ColonLoc,
EndLoc, Modifier, Vars);
}
OMPClause *Sema::ActOnOpenMPBindClause(OpenMPBindClauseKind Kind,
SourceLocation KindLoc,
SourceLocation StartLoc,
SourceLocation LParenLoc,
SourceLocation EndLoc) {
if (Kind == OMPC_BIND_unknown) {
Diag(KindLoc, diag::err_omp_unexpected_clause_value)
<< getListOfPossibleValues(OMPC_bind, /*First=*/0,
/*Last=*/unsigned(OMPC_BIND_unknown))
<< getOpenMPClauseName(OMPC_bind);
return nullptr;
}
return OMPBindClause::Create(Context, Kind, KindLoc, StartLoc, LParenLoc,
EndLoc);
}