forked from OSchip/llvm-project
b3224adfb6
This is the fourth patch to apply the BLIS matmul optimization pattern on matmul kernels (http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf). BLIS implements gemm as three nested loops around a macro-kernel, plus two packing routines. The macro-kernel is implemented in terms of two additional loops around a micro-kernel. The micro-kernel is a loop around a rank-1 (i.e., outer product) update. In this change we perform copying to created arrays, which is the last step to implement the packing transformation. Reviewed-by: Tobias Grosser <tobias@grosser.es> Differential Revision: https://reviews.llvm.org/D23260 llvm-svn: 281441 |
||
---|---|---|
.. | ||
cmake | ||
docs | ||
include/polly | ||
lib | ||
test | ||
tools | ||
unittests | ||
utils | ||
www | ||
.arcconfig | ||
.arclint | ||
.gitattributes | ||
.gitignore | ||
CMakeLists.txt | ||
CREDITS.txt | ||
LICENSE.txt | ||
README |
README
Polly - Polyhedral optimizations for LLVM ----------------------------------------- http://polly.llvm.org/ Polly uses a mathematical representation, the polyhedral model, to represent and transform loops and other control flow structures. Using an abstract representation it is possible to reason about transformations in a more general way and to use highly optimized linear programming libraries to figure out the optimal loop structure. These transformations can be used to do constant propagation through arrays, remove dead loop iterations, optimize loops for cache locality, optimize arrays, apply advanced automatic parallelization, drive vectorization, or they can be used to do software pipelining.