llvm-project/flang/runtime/reduction-templates.h

324 lines
12 KiB
C++

//===-- runtime/reduction-templates.h -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Generic function templates used by various reduction transformation
// intrinsic functions (SUM, PRODUCT, &c.)
//
// * Partial reductions (i.e., those with DIM= arguments that are not
// required to be 1 by the rank of the argument) return arrays that
// are dynamically allocated in a caller-supplied descriptor.
// * Total reductions (i.e., no DIM= argument) with FINDLOC, MAXLOC, & MINLOC
// return integer vectors of some kind, not scalars; a caller-supplied
// descriptor is used
// * Character-valued reductions (MAXVAL & MINVAL) return arbitrary
// length results, dynamically allocated in a caller-supplied descriptor
#ifndef FORTRAN_RUNTIME_REDUCTION_TEMPLATES_H_
#define FORTRAN_RUNTIME_REDUCTION_TEMPLATES_H_
#include "cpp-type.h"
#include "descriptor.h"
#include "terminator.h"
#include "tools.h"
namespace Fortran::runtime {
// Reductions are implemented with *accumulators*, which are instances of
// classes that incrementally build up the result (or an element thereof) during
// a traversal of the unmasked elements of an array. Each accumulator class
// supports a constructor (which captures a reference to the array), an
// AccumulateAt() member function that applies supplied subscripts to the
// array and does something with a scalar element, and a GetResult()
// member function that copies a final result into its destination.
// Total reduction of the array argument to a scalar (or to a vector in the
// cases of FINDLOC, MAXLOC, & MINLOC). These are the cases without DIM= or
// cases where the argument has rank 1 and DIM=, if present, must be 1.
template <typename TYPE, typename ACCUMULATOR>
inline void DoTotalReduction(const Descriptor &x, int dim,
const Descriptor *mask, ACCUMULATOR &accumulator, const char *intrinsic,
Terminator &terminator) {
if (dim < 0 || dim > 1) {
terminator.Crash(
"%s: bad DIM=%d for argument with rank %d", intrinsic, dim, x.rank());
}
SubscriptValue xAt[maxRank];
x.GetLowerBounds(xAt);
if (mask) {
CheckConformability(x, *mask, terminator, intrinsic, "ARRAY", "MASK");
SubscriptValue maskAt[maxRank];
mask->GetLowerBounds(maskAt);
if (mask->rank() > 0) {
for (auto elements{x.Elements()}; elements--;
x.IncrementSubscripts(xAt), mask->IncrementSubscripts(maskAt)) {
if (IsLogicalElementTrue(*mask, maskAt)) {
accumulator.template AccumulateAt<TYPE>(xAt);
}
}
return;
} else if (!IsLogicalElementTrue(*mask, maskAt)) {
// scalar MASK=.FALSE.: return identity value
return;
}
}
// No MASK=, or scalar MASK=.TRUE.
for (auto elements{x.Elements()}; elements--; x.IncrementSubscripts(xAt)) {
if (!accumulator.template AccumulateAt<TYPE>(xAt)) {
break; // cut short, result is known
}
}
}
template <TypeCategory CAT, int KIND, typename ACCUMULATOR>
inline CppTypeFor<CAT, KIND> GetTotalReduction(const Descriptor &x,
const char *source, int line, int dim, const Descriptor *mask,
ACCUMULATOR &&accumulator, const char *intrinsic) {
Terminator terminator{source, line};
RUNTIME_CHECK(terminator, TypeCode(CAT, KIND) == x.type());
using CppType = CppTypeFor<CAT, KIND>;
DoTotalReduction<CppType>(x, dim, mask, accumulator, intrinsic, terminator);
CppType result;
#ifdef _MSC_VER // work around MSVC spurious error
accumulator.GetResult(&result);
#else
accumulator.template GetResult(&result);
#endif
return result;
}
// For reductions on a dimension, e.g. SUM(array,DIM=2) where the shape
// of the array is [2,3,5], the shape of the result is [2,5] and
// result(j,k) = SUM(array(j,:,k)), possibly modified if the array has
// lower bounds other than one. This utility subroutine creates an
// array of subscripts [j,_,k] for result subscripts [j,k] so that the
// elemets of array(j,:,k) can be reduced.
inline void GetExpandedSubscripts(SubscriptValue at[],
const Descriptor &descriptor, int zeroBasedDim,
const SubscriptValue from[]) {
descriptor.GetLowerBounds(at);
int rank{descriptor.rank()};
int j{0};
for (; j < zeroBasedDim; ++j) {
at[j] += from[j] - 1 /*lower bound*/;
}
for (++j; j < rank; ++j) {
at[j] += from[j - 1] - 1;
}
}
template <typename TYPE, typename ACCUMULATOR>
inline void ReduceDimToScalar(const Descriptor &x, int zeroBasedDim,
SubscriptValue subscripts[], TYPE *result, ACCUMULATOR &accumulator) {
SubscriptValue xAt[maxRank];
GetExpandedSubscripts(xAt, x, zeroBasedDim, subscripts);
const auto &dim{x.GetDimension(zeroBasedDim)};
SubscriptValue at{dim.LowerBound()};
for (auto n{dim.Extent()}; n-- > 0; ++at) {
xAt[zeroBasedDim] = at;
if (!accumulator.template AccumulateAt<TYPE>(xAt)) {
break;
}
}
#ifdef _MSC_VER // work around MSVC spurious error
accumulator.GetResult(result, zeroBasedDim);
#else
accumulator.template GetResult(result, zeroBasedDim);
#endif
}
template <typename TYPE, typename ACCUMULATOR>
inline void ReduceDimMaskToScalar(const Descriptor &x, int zeroBasedDim,
SubscriptValue subscripts[], const Descriptor &mask, TYPE *result,
ACCUMULATOR &accumulator) {
SubscriptValue xAt[maxRank], maskAt[maxRank];
GetExpandedSubscripts(xAt, x, zeroBasedDim, subscripts);
GetExpandedSubscripts(maskAt, mask, zeroBasedDim, subscripts);
const auto &xDim{x.GetDimension(zeroBasedDim)};
SubscriptValue xPos{xDim.LowerBound()};
const auto &maskDim{mask.GetDimension(zeroBasedDim)};
SubscriptValue maskPos{maskDim.LowerBound()};
for (auto n{x.GetDimension(zeroBasedDim).Extent()}; n-- > 0;
++xPos, ++maskPos) {
maskAt[zeroBasedDim] = maskPos;
if (IsLogicalElementTrue(mask, maskAt)) {
xAt[zeroBasedDim] = xPos;
if (!accumulator.template AccumulateAt<TYPE>(xAt)) {
break;
}
}
}
#ifdef _MSC_VER // work around MSVC spurious error
accumulator.GetResult(result, zeroBasedDim);
#else
accumulator.template GetResult(result, zeroBasedDim);
#endif
}
// Utility: establishes & allocates the result array for a partial
// reduction (i.e., one with DIM=).
static void CreatePartialReductionResult(Descriptor &result,
const Descriptor &x, int dim, Terminator &terminator, const char *intrinsic,
TypeCode typeCode) {
int xRank{x.rank()};
if (dim < 1 || dim > xRank) {
terminator.Crash("%s: bad DIM=%d for rank %d", intrinsic, dim, xRank);
}
int zeroBasedDim{dim - 1};
SubscriptValue resultExtent[maxRank];
for (int j{0}; j < zeroBasedDim; ++j) {
resultExtent[j] = x.GetDimension(j).Extent();
}
for (int j{zeroBasedDim + 1}; j < xRank; ++j) {
resultExtent[j - 1] = x.GetDimension(j).Extent();
}
result.Establish(typeCode, x.ElementBytes(), nullptr, xRank - 1, resultExtent,
CFI_attribute_allocatable);
for (int j{0}; j + 1 < xRank; ++j) {
result.GetDimension(j).SetBounds(1, resultExtent[j]);
}
if (int stat{result.Allocate()}) {
terminator.Crash(
"%s: could not allocate memory for result; STAT=%d", intrinsic, stat);
}
}
// Partial reductions with DIM=
template <typename ACCUMULATOR, TypeCategory CAT, int KIND>
inline void PartialReduction(Descriptor &result, const Descriptor &x, int dim,
const Descriptor *mask, Terminator &terminator, const char *intrinsic,
ACCUMULATOR &accumulator) {
CreatePartialReductionResult(
result, x, dim, terminator, intrinsic, TypeCode{CAT, KIND});
SubscriptValue at[maxRank];
result.GetLowerBounds(at);
INTERNAL_CHECK(at[0] == 1);
using CppType = CppTypeFor<CAT, KIND>;
if (mask) {
CheckConformability(x, *mask, terminator, intrinsic, "ARRAY", "MASK");
SubscriptValue maskAt[maxRank]; // contents unused
if (mask->rank() > 0) {
for (auto n{result.Elements()}; n-- > 0; result.IncrementSubscripts(at)) {
accumulator.Reinitialize();
ReduceDimMaskToScalar<CppType, ACCUMULATOR>(
x, dim - 1, at, *mask, result.Element<CppType>(at), accumulator);
}
return;
} else if (!IsLogicalElementTrue(*mask, maskAt)) {
// scalar MASK=.FALSE.
accumulator.Reinitialize();
for (auto n{result.Elements()}; n-- > 0; result.IncrementSubscripts(at)) {
accumulator.GetResult(result.Element<CppType>(at));
}
return;
}
}
// No MASK= or scalar MASK=.TRUE.
for (auto n{result.Elements()}; n-- > 0; result.IncrementSubscripts(at)) {
accumulator.Reinitialize();
ReduceDimToScalar<CppType, ACCUMULATOR>(
x, dim - 1, at, result.Element<CppType>(at), accumulator);
}
}
template <template <typename> class ACCUM>
struct PartialIntegerReductionHelper {
template <int KIND> struct Functor {
static constexpr int Intermediate{
std::max(KIND, 4)}; // use at least "int" for intermediate results
void operator()(Descriptor &result, const Descriptor &x, int dim,
const Descriptor *mask, Terminator &terminator,
const char *intrinsic) const {
using Accumulator =
ACCUM<CppTypeFor<TypeCategory::Integer, Intermediate>>;
Accumulator accumulator{x};
PartialReduction<Accumulator, TypeCategory::Integer, KIND>(
result, x, dim, mask, terminator, intrinsic, accumulator);
}
};
};
template <template <typename> class INTEGER_ACCUM>
inline void PartialIntegerReduction(Descriptor &result, const Descriptor &x,
int dim, int kind, const Descriptor *mask, const char *intrinsic,
Terminator &terminator) {
ApplyIntegerKind<
PartialIntegerReductionHelper<INTEGER_ACCUM>::template Functor, void>(
kind, terminator, result, x, dim, mask, terminator, intrinsic);
}
template <TypeCategory CAT, template <typename> class ACCUM>
struct PartialFloatingReductionHelper {
template <int KIND> struct Functor {
static constexpr int Intermediate{
std::max(KIND, 8)}; // use at least "double" for intermediate results
void operator()(Descriptor &result, const Descriptor &x, int dim,
const Descriptor *mask, Terminator &terminator,
const char *intrinsic) const {
using Accumulator = ACCUM<CppTypeFor<TypeCategory::Real, Intermediate>>;
Accumulator accumulator{x};
PartialReduction<Accumulator, CAT, KIND>(
result, x, dim, mask, terminator, intrinsic, accumulator);
}
};
};
template <template <typename> class INTEGER_ACCUM,
template <typename> class REAL_ACCUM,
template <typename> class COMPLEX_ACCUM>
inline void TypedPartialNumericReduction(Descriptor &result,
const Descriptor &x, int dim, const char *source, int line,
const Descriptor *mask, const char *intrinsic) {
Terminator terminator{source, line};
auto catKind{x.type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator, catKind.has_value());
switch (catKind->first) {
case TypeCategory::Integer:
PartialIntegerReduction<INTEGER_ACCUM>(
result, x, dim, catKind->second, mask, intrinsic, terminator);
break;
case TypeCategory::Real:
ApplyFloatingPointKind<PartialFloatingReductionHelper<TypeCategory::Real,
REAL_ACCUM>::template Functor,
void>(catKind->second, terminator, result, x, dim, mask, terminator,
intrinsic);
break;
case TypeCategory::Complex:
ApplyFloatingPointKind<PartialFloatingReductionHelper<TypeCategory::Complex,
COMPLEX_ACCUM>::template Functor,
void>(catKind->second, terminator, result, x, dim, mask, terminator,
intrinsic);
break;
default:
terminator.Crash("%s: invalid type code %d", intrinsic, x.type().raw());
}
}
template <typename ACCUMULATOR> struct LocationResultHelper {
template <int KIND> struct Functor {
void operator()(ACCUMULATOR &accumulator, const Descriptor &result) const {
accumulator.GetResult(
result.OffsetElement<CppTypeFor<TypeCategory::Integer, KIND>>());
}
};
};
template <typename ACCUMULATOR> struct PartialLocationHelper {
template <int KIND> struct Functor {
void operator()(Descriptor &result, const Descriptor &x, int dim,
const Descriptor *mask, Terminator &terminator, const char *intrinsic,
ACCUMULATOR &accumulator) const {
PartialReduction<ACCUMULATOR, TypeCategory::Integer, KIND>(
result, x, dim, mask, terminator, intrinsic, accumulator);
}
};
};
} // namespace Fortran::runtime
#endif // FORTRAN_RUNTIME_REDUCTION_TEMPLATES_H_