llvm-project/bolt/lib/Passes/Instrumentation.cpp

712 lines
29 KiB
C++

//===- bolt/Passes/Instrumentation.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Instrumentation class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/Instrumentation.h"
#include "bolt/Core/ParallelUtilities.h"
#include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
#include "bolt/Utils/Utils.h"
#include "llvm/Support/CommandLine.h"
#include <stack>
#define DEBUG_TYPE "bolt-instrumentation"
using namespace llvm;
namespace opts {
extern cl::OptionCategory BoltInstrCategory;
cl::opt<std::string> InstrumentationFilename(
"instrumentation-file",
cl::desc("file name where instrumented profile will be saved (default: "
"/tmp/prof.fdata)"),
cl::init("/tmp/prof.fdata"), cl::Optional, cl::cat(BoltInstrCategory));
cl::opt<std::string> InstrumentationBinpath(
"instrumentation-binpath",
cl::desc("path to instumented binary in case if /proc/self/map_files "
"is not accessible due to access restriction issues"),
cl::Optional, cl::cat(BoltInstrCategory));
cl::opt<bool> InstrumentationFileAppendPID(
"instrumentation-file-append-pid",
cl::desc("append PID to saved profile file name (default: false)"),
cl::init(false), cl::Optional, cl::cat(BoltInstrCategory));
cl::opt<bool> ConservativeInstrumentation(
"conservative-instrumentation",
cl::desc("disable instrumentation optimizations that sacrifice profile "
"accuracy (for debugging, default: false)"),
cl::init(false), cl::Optional, cl::cat(BoltInstrCategory));
cl::opt<uint32_t> InstrumentationSleepTime(
"instrumentation-sleep-time",
cl::desc("interval between profile writes (default: 0 = write only at "
"program end). This is useful for service workloads when you "
"want to dump profile every X minutes or if you are killing the "
"program and the profile is not being dumped at the end."),
cl::init(0), cl::Optional, cl::cat(BoltInstrCategory));
cl::opt<bool> InstrumentationNoCountersClear(
"instrumentation-no-counters-clear",
cl::desc("Don't clear counters across dumps "
"(use with instrumentation-sleep-time option)"),
cl::init(false), cl::Optional, cl::cat(BoltInstrCategory));
cl::opt<bool> InstrumentationWaitForks(
"instrumentation-wait-forks",
cl::desc("Wait until all forks of instrumented process will finish "
"(use with instrumentation-sleep-time option)"),
cl::init(false), cl::Optional, cl::cat(BoltInstrCategory));
cl::opt<bool>
InstrumentHotOnly("instrument-hot-only",
cl::desc("only insert instrumentation on hot functions "
"(needs profile, default: false)"),
cl::init(false), cl::Optional,
cl::cat(BoltInstrCategory));
cl::opt<bool> InstrumentCalls("instrument-calls",
cl::desc("record profile for inter-function "
"control flow activity (default: true)"),
cl::init(true), cl::Optional,
cl::cat(BoltInstrCategory));
} // namespace opts
namespace llvm {
namespace bolt {
uint32_t Instrumentation::getFunctionNameIndex(const BinaryFunction &Function) {
auto Iter = FuncToStringIdx.find(&Function);
if (Iter != FuncToStringIdx.end())
return Iter->second;
size_t Idx = Summary->StringTable.size();
FuncToStringIdx.emplace(std::make_pair(&Function, Idx));
Summary->StringTable.append(getEscapedName(Function.getOneName()));
Summary->StringTable.append(1, '\0');
return Idx;
}
bool Instrumentation::createCallDescription(FunctionDescription &FuncDesc,
const BinaryFunction &FromFunction,
uint32_t From, uint32_t FromNodeID,
const BinaryFunction &ToFunction,
uint32_t To, bool IsInvoke) {
CallDescription CD;
// Ordinarily, we don't augment direct calls with an explicit counter, except
// when forced to do so or when we know this callee could be throwing
// exceptions, in which case there is no other way to accurately record its
// frequency.
bool ForceInstrumentation = opts::ConservativeInstrumentation || IsInvoke;
CD.FromLoc.FuncString = getFunctionNameIndex(FromFunction);
CD.FromLoc.Offset = From;
CD.FromNode = FromNodeID;
CD.Target = &ToFunction;
CD.ToLoc.FuncString = getFunctionNameIndex(ToFunction);
CD.ToLoc.Offset = To;
CD.Counter = ForceInstrumentation ? Summary->Counters.size() : 0xffffffff;
if (ForceInstrumentation)
++DirectCallCounters;
FuncDesc.Calls.emplace_back(CD);
return ForceInstrumentation;
}
void Instrumentation::createIndCallDescription(
const BinaryFunction &FromFunction, uint32_t From) {
IndCallDescription ICD;
ICD.FromLoc.FuncString = getFunctionNameIndex(FromFunction);
ICD.FromLoc.Offset = From;
Summary->IndCallDescriptions.emplace_back(ICD);
}
void Instrumentation::createIndCallTargetDescription(
const BinaryFunction &ToFunction, uint32_t To) {
IndCallTargetDescription ICD;
ICD.ToLoc.FuncString = getFunctionNameIndex(ToFunction);
ICD.ToLoc.Offset = To;
ICD.Target = &ToFunction;
Summary->IndCallTargetDescriptions.emplace_back(ICD);
}
bool Instrumentation::createEdgeDescription(FunctionDescription &FuncDesc,
const BinaryFunction &FromFunction,
uint32_t From, uint32_t FromNodeID,
const BinaryFunction &ToFunction,
uint32_t To, uint32_t ToNodeID,
bool Instrumented) {
EdgeDescription ED;
auto Result = FuncDesc.EdgesSet.insert(std::make_pair(FromNodeID, ToNodeID));
// Avoid creating duplicated edge descriptions. This happens in CFGs where a
// block jumps to its fall-through.
if (Result.second == false)
return false;
ED.FromLoc.FuncString = getFunctionNameIndex(FromFunction);
ED.FromLoc.Offset = From;
ED.FromNode = FromNodeID;
ED.ToLoc.FuncString = getFunctionNameIndex(ToFunction);
ED.ToLoc.Offset = To;
ED.ToNode = ToNodeID;
ED.Counter = Instrumented ? Summary->Counters.size() : 0xffffffff;
if (Instrumented)
++BranchCounters;
FuncDesc.Edges.emplace_back(ED);
return Instrumented;
}
void Instrumentation::createLeafNodeDescription(FunctionDescription &FuncDesc,
uint32_t Node) {
InstrumentedNode IN;
IN.Node = Node;
IN.Counter = Summary->Counters.size();
++LeafNodeCounters;
FuncDesc.LeafNodes.emplace_back(IN);
}
InstructionListType
Instrumentation::createInstrumentationSnippet(BinaryContext &BC, bool IsLeaf) {
auto L = BC.scopeLock();
MCSymbol *Label;
Label = BC.Ctx->createNamedTempSymbol("InstrEntry");
Summary->Counters.emplace_back(Label);
InstructionListType CounterInstrs;
BC.MIB->createInstrIncMemory(CounterInstrs, Label, &*BC.Ctx, IsLeaf);
return CounterInstrs;
}
namespace {
// Helper instruction sequence insertion function
BinaryBasicBlock::iterator insertInstructions(InstructionListType &Instrs,
BinaryBasicBlock &BB,
BinaryBasicBlock::iterator Iter) {
for (MCInst &NewInst : Instrs) {
Iter = BB.insertInstruction(Iter, NewInst);
++Iter;
}
return Iter;
}
} // namespace
void Instrumentation::instrumentLeafNode(BinaryBasicBlock &BB,
BinaryBasicBlock::iterator Iter,
bool IsLeaf,
FunctionDescription &FuncDesc,
uint32_t Node) {
createLeafNodeDescription(FuncDesc, Node);
InstructionListType CounterInstrs = createInstrumentationSnippet(
BB.getFunction()->getBinaryContext(), IsLeaf);
insertInstructions(CounterInstrs, BB, Iter);
}
void Instrumentation::instrumentIndirectTarget(BinaryBasicBlock &BB,
BinaryBasicBlock::iterator &Iter,
BinaryFunction &FromFunction,
uint32_t From) {
auto L = FromFunction.getBinaryContext().scopeLock();
const size_t IndCallSiteID = Summary->IndCallDescriptions.size();
createIndCallDescription(FromFunction, From);
BinaryContext &BC = FromFunction.getBinaryContext();
bool IsTailCall = BC.MIB->isTailCall(*Iter);
InstructionListType CounterInstrs = BC.MIB->createInstrumentedIndirectCall(
*Iter, IsTailCall,
IsTailCall ? IndTailCallHandlerExitBBFunction->getSymbol()
: IndCallHandlerExitBBFunction->getSymbol(),
IndCallSiteID, &*BC.Ctx);
Iter = BB.eraseInstruction(Iter);
Iter = insertInstructions(CounterInstrs, BB, Iter);
--Iter;
}
bool Instrumentation::instrumentOneTarget(
SplitWorklistTy &SplitWorklist, SplitInstrsTy &SplitInstrs,
BinaryBasicBlock::iterator &Iter, BinaryFunction &FromFunction,
BinaryBasicBlock &FromBB, uint32_t From, BinaryFunction &ToFunc,
BinaryBasicBlock *TargetBB, uint32_t ToOffset, bool IsLeaf, bool IsInvoke,
FunctionDescription *FuncDesc, uint32_t FromNodeID, uint32_t ToNodeID) {
{
auto L = FromFunction.getBinaryContext().scopeLock();
bool Created = true;
if (!TargetBB)
Created = createCallDescription(*FuncDesc, FromFunction, From, FromNodeID,
ToFunc, ToOffset, IsInvoke);
else
Created = createEdgeDescription(*FuncDesc, FromFunction, From, FromNodeID,
ToFunc, ToOffset, ToNodeID,
/*Instrumented=*/true);
if (!Created)
return false;
}
InstructionListType CounterInstrs =
createInstrumentationSnippet(FromFunction.getBinaryContext(), IsLeaf);
BinaryContext &BC = FromFunction.getBinaryContext();
const MCInst &Inst = *Iter;
if (BC.MIB->isCall(Inst)) {
// This code handles both
// - (regular) inter-function calls (cross-function control transfer),
// - (rare) intra-function calls (function-local control transfer)
Iter = insertInstructions(CounterInstrs, FromBB, Iter);
return true;
}
if (!TargetBB || !FuncDesc)
return false;
// Indirect branch, conditional branches or fall-throughs
// Regular cond branch, put counter at start of target block
//
// N.B.: (FromBB != TargetBBs) checks below handle conditional jumps where
// we can't put the instrumentation counter in this block because not all
// paths that reach it at this point will be taken and going to the target.
if (TargetBB->pred_size() == 1 && &FromBB != TargetBB &&
!TargetBB->isEntryPoint()) {
insertInstructions(CounterInstrs, *TargetBB, TargetBB->begin());
return true;
}
if (FromBB.succ_size() == 1 && &FromBB != TargetBB) {
Iter = insertInstructions(CounterInstrs, FromBB, Iter);
return true;
}
// Critical edge, create BB and put counter there
SplitWorklist.emplace_back(&FromBB, TargetBB);
SplitInstrs.emplace_back(std::move(CounterInstrs));
return true;
}
void Instrumentation::instrumentFunction(BinaryFunction &Function,
MCPlusBuilder::AllocatorIdTy AllocId) {
if (Function.hasUnknownControlFlow())
return;
BinaryContext &BC = Function.getBinaryContext();
if (BC.isMachO() && Function.hasName("___GLOBAL_init_65535/1"))
return;
SplitWorklistTy SplitWorklist;
SplitInstrsTy SplitInstrs;
FunctionDescription *FuncDesc = nullptr;
{
std::unique_lock<std::shared_timed_mutex> L(FDMutex);
Summary->FunctionDescriptions.emplace_back();
FuncDesc = &Summary->FunctionDescriptions.back();
}
FuncDesc->Function = &Function;
Function.disambiguateJumpTables(AllocId);
Function.deleteConservativeEdges();
std::unordered_map<const BinaryBasicBlock *, uint32_t> BBToID;
uint32_t Id = 0;
for (auto BBI = Function.begin(); BBI != Function.end(); ++BBI) {
BBToID[&*BBI] = Id++;
}
std::unordered_set<const BinaryBasicBlock *> VisitedSet;
// DFS to establish edges we will use for a spanning tree. Edges in the
// spanning tree can be instrumentation-free since their count can be
// inferred by solving flow equations on a bottom-up traversal of the tree.
// Exit basic blocks are always instrumented so we start the traversal with
// a minimum number of defined variables to make the equation solvable.
std::stack<std::pair<const BinaryBasicBlock *, BinaryBasicBlock *>> Stack;
std::unordered_map<const BinaryBasicBlock *,
std::set<const BinaryBasicBlock *>>
STOutSet;
for (auto BBI = Function.layout_rbegin(); BBI != Function.layout_rend();
++BBI) {
if ((*BBI)->isEntryPoint() || (*BBI)->isLandingPad()) {
Stack.push(std::make_pair(nullptr, *BBI));
if (opts::InstrumentCalls && (*BBI)->isEntryPoint()) {
EntryNode E;
E.Node = BBToID[&**BBI];
E.Address = (*BBI)->getInputOffset();
FuncDesc->EntryNodes.emplace_back(E);
createIndCallTargetDescription(Function, (*BBI)->getInputOffset());
}
}
}
// Modified version of BinaryFunction::dfs() to build a spanning tree
if (!opts::ConservativeInstrumentation) {
while (!Stack.empty()) {
BinaryBasicBlock *BB;
const BinaryBasicBlock *Pred;
std::tie(Pred, BB) = Stack.top();
Stack.pop();
if (VisitedSet.find(BB) != VisitedSet.end())
continue;
VisitedSet.insert(BB);
if (Pred)
STOutSet[Pred].insert(BB);
for (BinaryBasicBlock *SuccBB : BB->successors())
Stack.push(std::make_pair(BB, SuccBB));
}
}
// Determine whether this is a leaf function, which needs special
// instructions to protect the red zone
bool IsLeafFunction = true;
DenseSet<const BinaryBasicBlock *> InvokeBlocks;
for (auto BBI = Function.begin(), BBE = Function.end(); BBI != BBE; ++BBI) {
for (auto I = BBI->begin(), E = BBI->end(); I != E; ++I) {
if (BC.MIB->isCall(*I)) {
if (BC.MIB->isInvoke(*I))
InvokeBlocks.insert(&*BBI);
IsLeafFunction = false;
}
}
}
for (auto BBI = Function.begin(), BBE = Function.end(); BBI != BBE; ++BBI) {
BinaryBasicBlock &BB = *BBI;
bool HasUnconditionalBranch = false;
bool HasJumpTable = false;
bool IsInvokeBlock = InvokeBlocks.count(&BB) > 0;
for (auto I = BB.begin(); I != BB.end(); ++I) {
const MCInst &Inst = *I;
if (!BC.MIB->getOffset(Inst))
continue;
const bool IsJumpTable = Function.getJumpTable(Inst);
if (IsJumpTable)
HasJumpTable = true;
else if (BC.MIB->isUnconditionalBranch(Inst))
HasUnconditionalBranch = true;
else if ((!BC.MIB->isCall(Inst) && !BC.MIB->isConditionalBranch(Inst)) ||
BC.MIB->isUnsupportedBranch(Inst.getOpcode()))
continue;
const uint32_t FromOffset = *BC.MIB->getOffset(Inst);
const MCSymbol *Target = BC.MIB->getTargetSymbol(Inst);
BinaryBasicBlock *TargetBB = Function.getBasicBlockForLabel(Target);
uint32_t ToOffset = TargetBB ? TargetBB->getInputOffset() : 0;
BinaryFunction *TargetFunc =
TargetBB ? &Function : BC.getFunctionForSymbol(Target);
if (TargetFunc && BC.MIB->isCall(Inst)) {
if (opts::InstrumentCalls) {
const BinaryBasicBlock *ForeignBB =
TargetFunc->getBasicBlockForLabel(Target);
if (ForeignBB)
ToOffset = ForeignBB->getInputOffset();
instrumentOneTarget(SplitWorklist, SplitInstrs, I, Function, BB,
FromOffset, *TargetFunc, TargetBB, ToOffset,
IsLeafFunction, IsInvokeBlock, FuncDesc,
BBToID[&BB]);
}
continue;
}
if (TargetFunc) {
// Do not instrument edges in the spanning tree
if (STOutSet[&BB].find(TargetBB) != STOutSet[&BB].end()) {
auto L = BC.scopeLock();
createEdgeDescription(*FuncDesc, Function, FromOffset, BBToID[&BB],
Function, ToOffset, BBToID[TargetBB],
/*Instrumented=*/false);
continue;
}
instrumentOneTarget(SplitWorklist, SplitInstrs, I, Function, BB,
FromOffset, *TargetFunc, TargetBB, ToOffset,
IsLeafFunction, IsInvokeBlock, FuncDesc,
BBToID[&BB], BBToID[TargetBB]);
continue;
}
if (IsJumpTable) {
for (BinaryBasicBlock *&Succ : BB.successors()) {
// Do not instrument edges in the spanning tree
if (STOutSet[&BB].find(&*Succ) != STOutSet[&BB].end()) {
auto L = BC.scopeLock();
createEdgeDescription(*FuncDesc, Function, FromOffset, BBToID[&BB],
Function, Succ->getInputOffset(),
BBToID[&*Succ], /*Instrumented=*/false);
continue;
}
instrumentOneTarget(
SplitWorklist, SplitInstrs, I, Function, BB, FromOffset, Function,
&*Succ, Succ->getInputOffset(), IsLeafFunction, IsInvokeBlock,
FuncDesc, BBToID[&BB], BBToID[&*Succ]);
}
continue;
}
// Handle indirect calls -- could be direct calls with unknown targets
// or secondary entry points of known functions, so check it is indirect
// to be sure.
if (opts::InstrumentCalls && BC.MIB->isIndirectCall(*I))
instrumentIndirectTarget(BB, I, Function, FromOffset);
} // End of instructions loop
// Instrument fallthroughs (when the direct jump instruction is missing)
if (!HasUnconditionalBranch && !HasJumpTable && BB.succ_size() > 0 &&
BB.size() > 0) {
BinaryBasicBlock *FTBB = BB.getFallthrough();
assert(FTBB && "expected valid fall-through basic block");
auto I = BB.begin();
auto LastInstr = BB.end();
--LastInstr;
while (LastInstr != I && BC.MIB->isPseudo(*LastInstr))
--LastInstr;
uint32_t FromOffset = 0;
// The last instruction in the BB should have an annotation, except
// if it was branching to the end of the function as a result of
// __builtin_unreachable(), in which case it was deleted by fixBranches.
// Ignore this case. FIXME: force fixBranches() to preserve the offset.
if (!BC.MIB->getOffset(*LastInstr))
continue;
FromOffset = *BC.MIB->getOffset(*LastInstr);
// Do not instrument edges in the spanning tree
if (STOutSet[&BB].find(FTBB) != STOutSet[&BB].end()) {
auto L = BC.scopeLock();
createEdgeDescription(*FuncDesc, Function, FromOffset, BBToID[&BB],
Function, FTBB->getInputOffset(), BBToID[FTBB],
/*Instrumented=*/false);
continue;
}
instrumentOneTarget(SplitWorklist, SplitInstrs, I, Function, BB,
FromOffset, Function, FTBB, FTBB->getInputOffset(),
IsLeafFunction, IsInvokeBlock, FuncDesc, BBToID[&BB],
BBToID[FTBB]);
}
} // End of BBs loop
// Instrument spanning tree leaves
if (!opts::ConservativeInstrumentation) {
for (auto BBI = Function.begin(), BBE = Function.end(); BBI != BBE; ++BBI) {
BinaryBasicBlock &BB = *BBI;
if (STOutSet[&BB].size() == 0)
instrumentLeafNode(BB, BB.begin(), IsLeafFunction, *FuncDesc,
BBToID[&BB]);
}
}
// Consume list of critical edges: split them and add instrumentation to the
// newly created BBs
auto Iter = SplitInstrs.begin();
for (std::pair<BinaryBasicBlock *, BinaryBasicBlock *> &BBPair :
SplitWorklist) {
BinaryBasicBlock *NewBB = Function.splitEdge(BBPair.first, BBPair.second);
NewBB->addInstructions(Iter->begin(), Iter->end());
++Iter;
}
// Unused now
FuncDesc->EdgesSet.clear();
}
void Instrumentation::runOnFunctions(BinaryContext &BC) {
if (!BC.isX86())
return;
const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/false,
/*IsText=*/false,
/*IsAllocatable=*/true);
BC.registerOrUpdateSection(".bolt.instr.counters", ELF::SHT_PROGBITS, Flags,
nullptr, 0, 1);
BC.registerOrUpdateNoteSection(".bolt.instr.tables", nullptr, 0,
/*Alignment=*/1,
/*IsReadOnly=*/true, ELF::SHT_NOTE);
Summary->IndCallCounterFuncPtr =
BC.Ctx->getOrCreateSymbol("__bolt_ind_call_counter_func_pointer");
Summary->IndTailCallCounterFuncPtr =
BC.Ctx->getOrCreateSymbol("__bolt_ind_tailcall_counter_func_pointer");
createAuxiliaryFunctions(BC);
ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) {
return (!BF.isSimple() || BF.isIgnored() ||
(opts::InstrumentHotOnly && !BF.getKnownExecutionCount()));
};
ParallelUtilities::WorkFuncWithAllocTy WorkFun =
[&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocatorId) {
instrumentFunction(BF, AllocatorId);
};
ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
BC, ParallelUtilities::SchedulingPolicy::SP_INST_QUADRATIC, WorkFun,
SkipPredicate, "instrumentation", /* ForceSequential=*/true);
if (BC.isMachO()) {
if (BC.StartFunctionAddress) {
BinaryFunction *Main =
BC.getBinaryFunctionAtAddress(*BC.StartFunctionAddress);
assert(Main && "Entry point function not found");
BinaryBasicBlock &BB = Main->front();
ErrorOr<BinarySection &> SetupSection =
BC.getUniqueSectionByName("I__setup");
if (!SetupSection) {
llvm::errs() << "Cannot find I__setup section\n";
exit(1);
}
MCSymbol *Target = BC.registerNameAtAddress(
"__bolt_instr_setup", SetupSection->getAddress(), 0, 0);
MCInst NewInst;
BC.MIB->createCall(NewInst, Target, BC.Ctx.get());
BB.insertInstruction(BB.begin(), std::move(NewInst));
} else {
llvm::errs() << "BOLT-WARNING: Entry point not found\n";
}
if (BinaryData *BD = BC.getBinaryDataByName("___GLOBAL_init_65535/1")) {
BinaryFunction *Ctor = BC.getBinaryFunctionAtAddress(BD->getAddress());
assert(Ctor && "___GLOBAL_init_65535 function not found");
BinaryBasicBlock &BB = Ctor->front();
ErrorOr<BinarySection &> FiniSection =
BC.getUniqueSectionByName("I__fini");
if (!FiniSection) {
llvm::errs() << "Cannot find I__fini section\n";
exit(1);
}
MCSymbol *Target = BC.registerNameAtAddress(
"__bolt_instr_fini", FiniSection->getAddress(), 0, 0);
auto IsLEA = [&BC](const MCInst &Inst) { return BC.MIB->isLEA64r(Inst); };
const auto LEA =
std::find_if(std::next(std::find_if(BB.rbegin(), BB.rend(), IsLEA)),
BB.rend(), IsLEA);
LEA->getOperand(4).setExpr(
MCSymbolRefExpr::create(Target, MCSymbolRefExpr::VK_None, *BC.Ctx));
} else {
llvm::errs() << "BOLT-WARNING: ___GLOBAL_init_65535 not found\n";
}
}
setupRuntimeLibrary(BC);
}
void Instrumentation::createAuxiliaryFunctions(BinaryContext &BC) {
auto createSimpleFunction =
[&](StringRef Title, InstructionListType Instrs) -> BinaryFunction * {
BinaryFunction *Func = BC.createInjectedBinaryFunction(std::string(Title));
std::vector<std::unique_ptr<BinaryBasicBlock>> BBs;
BBs.emplace_back(
Func->createBasicBlock(BinaryBasicBlock::INVALID_OFFSET, nullptr));
BBs.back()->addInstructions(Instrs.begin(), Instrs.end());
BBs.back()->setCFIState(0);
Func->insertBasicBlocks(nullptr, std::move(BBs),
/*UpdateLayout=*/true,
/*UpdateCFIState=*/false);
Func->updateState(BinaryFunction::State::CFG_Finalized);
return Func;
};
// Here we are creating a set of functions to handle BB entry/exit.
// IndCallHandlerExitBB contains instructions to finish handling traffic to an
// indirect call. We pass it to createInstrumentedIndCallHandlerEntryBB(),
// which will check if a pointer to runtime library traffic accounting
// function was initialized (it is done during initialization of runtime
// library). If it is so - calls it. Then this routine returns to normal
// execution by jumping to exit BB.
BinaryFunction *IndCallHandlerExitBB =
createSimpleFunction("__bolt_instr_ind_call_handler",
BC.MIB->createInstrumentedIndCallHandlerExitBB());
IndCallHandlerExitBBFunction =
createSimpleFunction("__bolt_instr_ind_call_handler_func",
BC.MIB->createInstrumentedIndCallHandlerEntryBB(
Summary->IndCallCounterFuncPtr,
IndCallHandlerExitBB->getSymbol(), &*BC.Ctx));
BinaryFunction *IndTailCallHandlerExitBB = createSimpleFunction(
"__bolt_instr_ind_tail_call_handler",
BC.MIB->createInstrumentedIndTailCallHandlerExitBB());
IndTailCallHandlerExitBBFunction = createSimpleFunction(
"__bolt_instr_ind_tailcall_handler_func",
BC.MIB->createInstrumentedIndCallHandlerEntryBB(
Summary->IndTailCallCounterFuncPtr,
IndTailCallHandlerExitBB->getSymbol(), &*BC.Ctx));
createSimpleFunction("__bolt_num_counters_getter",
BC.MIB->createNumCountersGetter(BC.Ctx.get()));
createSimpleFunction("__bolt_instr_locations_getter",
BC.MIB->createInstrLocationsGetter(BC.Ctx.get()));
createSimpleFunction("__bolt_instr_tables_getter",
BC.MIB->createInstrTablesGetter(BC.Ctx.get()));
createSimpleFunction("__bolt_instr_num_funcs_getter",
BC.MIB->createInstrNumFuncsGetter(BC.Ctx.get()));
if (BC.isELF()) {
if (BC.StartFunctionAddress) {
BinaryFunction *Start =
BC.getBinaryFunctionAtAddress(*BC.StartFunctionAddress);
assert(Start && "Entry point function not found");
const MCSymbol *StartSym = Start->getSymbol();
createSimpleFunction(
"__bolt_start_trampoline",
BC.MIB->createSymbolTrampoline(StartSym, BC.Ctx.get()));
}
if (BC.FiniFunctionAddress) {
BinaryFunction *Fini =
BC.getBinaryFunctionAtAddress(*BC.FiniFunctionAddress);
assert(Fini && "Finalization function not found");
const MCSymbol *FiniSym = Fini->getSymbol();
createSimpleFunction(
"__bolt_fini_trampoline",
BC.MIB->createSymbolTrampoline(FiniSym, BC.Ctx.get()));
} else {
// Create dummy return function for trampoline to avoid issues
// with unknown symbol in runtime library. E.g. for static PIE
// executable
createSimpleFunction("__bolt_fini_trampoline",
BC.MIB->createDummyReturnFunction(BC.Ctx.get()));
}
}
}
void Instrumentation::setupRuntimeLibrary(BinaryContext &BC) {
uint32_t FuncDescSize = Summary->getFDSize();
outs() << "BOLT-INSTRUMENTER: Number of indirect call site descriptors: "
<< Summary->IndCallDescriptions.size() << "\n";
outs() << "BOLT-INSTRUMENTER: Number of indirect call target descriptors: "
<< Summary->IndCallTargetDescriptions.size() << "\n";
outs() << "BOLT-INSTRUMENTER: Number of function descriptors: "
<< Summary->FunctionDescriptions.size() << "\n";
outs() << "BOLT-INSTRUMENTER: Number of branch counters: " << BranchCounters
<< "\n";
outs() << "BOLT-INSTRUMENTER: Number of ST leaf node counters: "
<< LeafNodeCounters << "\n";
outs() << "BOLT-INSTRUMENTER: Number of direct call counters: "
<< DirectCallCounters << "\n";
outs() << "BOLT-INSTRUMENTER: Total number of counters: "
<< Summary->Counters.size() << "\n";
outs() << "BOLT-INSTRUMENTER: Total size of counters: "
<< (Summary->Counters.size() * 8) << " bytes (static alloc memory)\n";
outs() << "BOLT-INSTRUMENTER: Total size of string table emitted: "
<< Summary->StringTable.size() << " bytes in file\n";
outs() << "BOLT-INSTRUMENTER: Total size of descriptors: "
<< (FuncDescSize +
Summary->IndCallDescriptions.size() * sizeof(IndCallDescription) +
Summary->IndCallTargetDescriptions.size() *
sizeof(IndCallTargetDescription))
<< " bytes in file\n";
outs() << "BOLT-INSTRUMENTER: Profile will be saved to file "
<< opts::InstrumentationFilename << "\n";
InstrumentationRuntimeLibrary *RtLibrary =
static_cast<InstrumentationRuntimeLibrary *>(BC.getRuntimeLibrary());
assert(RtLibrary && "instrumentation runtime library object must be set");
RtLibrary->setSummary(std::move(Summary));
}
} // namespace bolt
} // namespace llvm