llvm-project/llvm/lib/Target/X86/X86TargetMachine.cpp

251 lines
8.8 KiB
C++

//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#include "X86MCAsmInfo.h"
#include "X86TargetMachine.h"
#include "X86.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegistry.h"
using namespace llvm;
static MCAsmInfo *createMCAsmInfo(const Target &T, StringRef TT) {
Triple TheTriple(TT);
switch (TheTriple.getOS()) {
case Triple::Darwin:
return new X86MCAsmInfoDarwin(TheTriple);
case Triple::MinGW32:
case Triple::MinGW64:
case Triple::Cygwin:
case Triple::Win32:
return new X86MCAsmInfoCOFF(TheTriple);
default:
return new X86ELFMCAsmInfo(TheTriple);
}
}
static MCStreamer *createMCStreamer(const Target &T, const std::string &TT,
MCContext &Ctx, TargetAsmBackend &TAB,
raw_ostream &_OS,
MCCodeEmitter *_Emitter,
bool RelaxAll) {
Triple TheTriple(TT);
switch (TheTriple.getOS()) {
case Triple::Darwin:
return createMachOStreamer(Ctx, TAB, _OS, _Emitter, RelaxAll);
case Triple::MinGW32:
case Triple::MinGW64:
case Triple::Cygwin:
case Triple::Win32:
return createWinCOFFStreamer(Ctx, TAB, *_Emitter, _OS, RelaxAll);
default:
return createELFStreamer(Ctx, TAB, _OS, _Emitter, RelaxAll);
}
}
extern "C" void LLVMInitializeX86Target() {
// Register the target.
RegisterTargetMachine<X86_32TargetMachine> X(TheX86_32Target);
RegisterTargetMachine<X86_64TargetMachine> Y(TheX86_64Target);
// Register the target asm info.
RegisterAsmInfoFn A(TheX86_32Target, createMCAsmInfo);
RegisterAsmInfoFn B(TheX86_64Target, createMCAsmInfo);
// Register the code emitter.
TargetRegistry::RegisterCodeEmitter(TheX86_32Target,
createX86_32MCCodeEmitter);
TargetRegistry::RegisterCodeEmitter(TheX86_64Target,
createX86_64MCCodeEmitter);
// Register the asm backend.
TargetRegistry::RegisterAsmBackend(TheX86_32Target,
createX86_32AsmBackend);
TargetRegistry::RegisterAsmBackend(TheX86_64Target,
createX86_64AsmBackend);
// Register the object streamer.
TargetRegistry::RegisterObjectStreamer(TheX86_32Target,
createMCStreamer);
TargetRegistry::RegisterObjectStreamer(TheX86_64Target,
createMCStreamer);
}
X86_32TargetMachine::X86_32TargetMachine(const Target &T, const std::string &TT,
const std::string &FS)
: X86TargetMachine(T, TT, FS, false) {
}
X86_64TargetMachine::X86_64TargetMachine(const Target &T, const std::string &TT,
const std::string &FS)
: X86TargetMachine(T, TT, FS, true) {
}
/// X86TargetMachine ctor - Create an X86 target.
///
X86TargetMachine::X86TargetMachine(const Target &T, const std::string &TT,
const std::string &FS, bool is64Bit)
: LLVMTargetMachine(T, TT),
Subtarget(TT, FS, is64Bit),
DataLayout(Subtarget.getDataLayout()),
FrameInfo(TargetFrameInfo::StackGrowsDown,
Subtarget.getStackAlignment(),
(Subtarget.isTargetWin64() ? -40 :
(Subtarget.is64Bit() ? -8 : -4))),
InstrInfo(*this), JITInfo(*this), TLInfo(*this), TSInfo(*this),
ELFWriterInfo(*this) {
DefRelocModel = getRelocationModel();
// If no relocation model was picked, default as appropriate for the target.
if (getRelocationModel() == Reloc::Default) {
// Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
// Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
// use static relocation model by default.
if (Subtarget.isTargetDarwin()) {
if (Subtarget.is64Bit())
setRelocationModel(Reloc::PIC_);
else
setRelocationModel(Reloc::DynamicNoPIC);
} else if (Subtarget.isTargetWin64())
setRelocationModel(Reloc::PIC_);
else
setRelocationModel(Reloc::Static);
}
assert(getRelocationModel() != Reloc::Default &&
"Relocation mode not picked");
// ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
// is defined as a model for code which may be used in static or dynamic
// executables but not necessarily a shared library. On X86-32 we just
// compile in -static mode, in x86-64 we use PIC.
if (getRelocationModel() == Reloc::DynamicNoPIC) {
if (is64Bit)
setRelocationModel(Reloc::PIC_);
else if (!Subtarget.isTargetDarwin())
setRelocationModel(Reloc::Static);
}
// If we are on Darwin, disallow static relocation model in X86-64 mode, since
// the Mach-O file format doesn't support it.
if (getRelocationModel() == Reloc::Static &&
Subtarget.isTargetDarwin() &&
is64Bit)
setRelocationModel(Reloc::PIC_);
// Determine the PICStyle based on the target selected.
if (getRelocationModel() == Reloc::Static) {
// Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None.
Subtarget.setPICStyle(PICStyles::None);
} else if (Subtarget.is64Bit()) {
// PIC in 64 bit mode is always rip-rel.
Subtarget.setPICStyle(PICStyles::RIPRel);
} else if (Subtarget.isTargetCygMing()) {
Subtarget.setPICStyle(PICStyles::None);
} else if (Subtarget.isTargetDarwin()) {
if (getRelocationModel() == Reloc::PIC_)
Subtarget.setPICStyle(PICStyles::StubPIC);
else {
assert(getRelocationModel() == Reloc::DynamicNoPIC);
Subtarget.setPICStyle(PICStyles::StubDynamicNoPIC);
}
} else if (Subtarget.isTargetELF()) {
Subtarget.setPICStyle(PICStyles::GOT);
}
// Finally, if we have "none" as our PIC style, force to static mode.
if (Subtarget.getPICStyle() == PICStyles::None)
setRelocationModel(Reloc::Static);
}
//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//
bool X86TargetMachine::addInstSelector(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
// Install an instruction selector.
PM.add(createX86ISelDag(*this, OptLevel));
// For 32-bit, prepend instructions to set the "global base reg" for PIC.
if (!Subtarget.is64Bit())
PM.add(createGlobalBaseRegPass());
return false;
}
bool X86TargetMachine::addPreRegAlloc(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
PM.add(createX86MaxStackAlignmentHeuristicPass());
return false; // -print-machineinstr shouldn't print after this.
}
bool X86TargetMachine::addPostRegAlloc(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
PM.add(createX86FloatingPointStackifierPass());
return true; // -print-machineinstr should print after this.
}
bool X86TargetMachine::addPreEmitPass(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
if (OptLevel != CodeGenOpt::None && Subtarget.hasSSE2()) {
PM.add(createSSEDomainFixPass());
return true;
}
return false;
}
bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
JITCodeEmitter &JCE) {
// FIXME: Move this to TargetJITInfo!
// On Darwin, do not override 64-bit setting made in X86TargetMachine().
if (DefRelocModel == Reloc::Default &&
(!Subtarget.isTargetDarwin() || !Subtarget.is64Bit())) {
setRelocationModel(Reloc::Static);
Subtarget.setPICStyle(PICStyles::None);
}
PM.add(createX86JITCodeEmitterPass(*this, JCE));
return false;
}
void X86TargetMachine::setCodeModelForStatic() {
if (getCodeModel() != CodeModel::Default) return;
// For static codegen, if we're not already set, use Small codegen.
setCodeModel(CodeModel::Small);
}
void X86TargetMachine::setCodeModelForJIT() {
if (getCodeModel() != CodeModel::Default) return;
// 64-bit JIT places everything in the same buffer except external functions.
if (Subtarget.is64Bit())
setCodeModel(CodeModel::Large);
else
setCodeModel(CodeModel::Small);
}