llvm-project/polly/lib/CodeGen/BlockGenerators.cpp

884 lines
30 KiB
C++

//===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the BlockGenerator and VectorBlockGenerator classes,
// which generate sequential code and vectorized code for a polyhedral
// statement, respectively.
//
//===----------------------------------------------------------------------===//
#include "polly/ScopInfo.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/CodeGen/BlockGenerators.h"
#include "polly/Support/GICHelper.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Support/CommandLine.h"
#include "isl/aff.h"
#include "isl/set.h"
using namespace llvm;
using namespace polly;
static cl::opt<bool>
Aligned("enable-polly-aligned",
cl::desc("Assumed aligned memory accesses."), cl::Hidden,
cl::value_desc("OpenMP code generation enabled if true"),
cl::init(false), cl::ZeroOrMore);
static cl::opt<bool>
SCEVCodegen("polly-codegen-scev",
cl::desc("Use SCEV based code generation."), cl::Hidden,
cl::init(false), cl::ZeroOrMore);
/// The SCEVRewriter takes a scalar evolution expression and updates the
/// following components:
///
/// - SCEVUnknown
///
/// Values referenced in SCEVUnknown subexpressions are looked up in
/// two Value to Value maps (GlobalMap and BBMap). If they are found they are
/// replaced by a reference to the value they map to.
///
/// - SCEVAddRecExpr
///
/// Based on a Loop -> Value map {Loop_1: %Value}, an expression
/// {%Base, +, %Step}<Loop_1> is rewritten to %Base + %Value * %Step.
/// AddRecExpr's with more than two operands can not be translated.
///
/// FIXME: The comment above is not yet reality. At the moment we derive
/// %Value by looking up the canonical IV of the loop and by defining
/// %Value = GlobalMap[%IV]. This needs to be changed to remove the need for
/// canonical induction variables.
///
///
/// How can this be used?
/// ====================
///
/// SCEVRewrite based code generation works on virtually independent blocks.
/// This means we do not run the independent blocks pass to rewrite scalar
/// instructions, but just ignore instructions that we can analyze with scalar
/// evolution. Virtually independent blocks are blocks that only reference the
/// following values:
///
/// o Values calculated within a basic block
/// o Values representable by SCEV
///
/// During code generation we can ignore all instructions:
///
/// - Ignore all instructions except:
/// - Load instructions
/// - Instructions that reference operands already calculated within the
/// basic block.
/// - Store instructions
struct SCEVRewriter : public SCEVVisitor<SCEVRewriter, const SCEV*> {
public:
static const SCEV *rewrite(const SCEV *scev, Scop &S, ScalarEvolution &SE,
ValueMapT &GlobalMap, ValueMapT &BBMap) {
SCEVRewriter Rewriter(S, SE, GlobalMap, BBMap);
return Rewriter.visit(scev);
}
SCEVRewriter(Scop &S, ScalarEvolution &SE, ValueMapT &GlobalMap,
ValueMapT &BBMap) : S(S), SE(SE), GlobalMap(GlobalMap),
BBMap(BBMap) {}
const SCEV *visit(const SCEV *Expr) {
// FIXME: The parameter handling is incorrect.
//
// Polly does only detect parameters in Access function and loop iteration
// counters, but it does not get parameters that are just used by
// instructions within the basic block.
//
// There are two options to solve this:
// o Iterate over all instructions of the SCoP and find the actual
// parameters.
// o Just check within the SCEVRewriter if Values lay outside of the SCoP
// and detect parameters on the fly.
//
// This is especially important for OpenMP and GPGPU code generation, as
// they require us to detect and possibly rewrite the corresponding
// parameters.
if (isl_id *Id = S.getIdForParam(Expr)) {
isl_id_free(Id);
return Expr;
}
return SCEVVisitor<SCEVRewriter, const SCEV*>::visit(Expr);
}
const SCEV *visitConstant(const SCEVConstant *Constant) {
return Constant;
}
const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getTruncateExpr(Operand, Expr->getType());
}
const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getZeroExtendExpr(Operand, Expr->getType());
}
const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
const SCEV *Operand = visit(Expr->getOperand());
return SE.getSignExtendExpr(Operand, Expr->getType());
}
const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
const SCEV *Operand = visit(Expr->getOperand(i));
Operands.push_back(Operand);
}
return SE.getAddExpr(Operands);
}
const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
const SCEV *Operand = visit(Expr->getOperand(i));
Operands.push_back(Operand);
}
return SE.getMulExpr(Operands);
}
const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS()));
}
// Return a new induction variable if the loop is within the original SCoP
// or NULL otherwise.
Value *getNewIV(const Loop *L) {
Value *IV = L->getCanonicalInductionVariable();
if (!IV)
return NULL;
ValueMapT::iterator NewIV = GlobalMap.find(IV);
if (NewIV == GlobalMap.end())
return NULL;
return NewIV->second;
}
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
Value *IV;
IV = getNewIV(Expr->getLoop());
// The IV is not within the GlobalMaps. So do not rewrite it and also do
// not rewrite any descendants.
if (!IV)
return Expr;
assert(Expr->getNumOperands() == 2 &&
"An AddRecExpr with more than two operands can not be rewritten.");
const SCEV *Base, *Step, *IVExpr, *Product;
Base = visit(Expr->getStart());
Step = visit(Expr->getOperand(1));
IVExpr = SE.getUnknown(IV);
IVExpr = SE.getTruncateOrSignExtend(IVExpr, Step->getType());
Product = SE.getMulExpr(Step, IVExpr);
return SE.getAddExpr(Base, Product);
}
const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
const SCEV *Operand = visit(Expr->getOperand(i));
Operands.push_back(Operand);
}
return SE.getSMaxExpr(Operands);
}
const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
SmallVector<const SCEV *, 2> Operands;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
const SCEV *Operand = visit(Expr->getOperand(i));
Operands.push_back(Operand);
}
return SE.getUMaxExpr(Operands);
}
const SCEV *visitUnknown(const SCEVUnknown *Expr) {
Value *V = Expr->getValue();
if (GlobalMap.count(V))
return SE.getUnknown(GlobalMap[V]);
if (BBMap.count(V))
return SE.getUnknown(BBMap[V]);
return Expr;
}
private:
Scop &S;
ScalarEvolution &SE;
ValueMapT &GlobalMap;
ValueMapT &BBMap;
};
// Helper class to generate memory location.
namespace {
class IslGenerator {
public:
IslGenerator(IRBuilder<> &Builder, std::vector<Value *> &IVS) :
Builder(Builder), IVS(IVS) {}
Value *generateIslInt(__isl_take isl_int Int);
Value *generateIslAff(__isl_take isl_aff *Aff);
Value *generateIslPwAff(__isl_take isl_pw_aff *PwAff);
private:
typedef struct {
Value *Result;
class IslGenerator *Generator;
} IslGenInfo;
IRBuilder<> &Builder;
std::vector<Value *> &IVS;
static int mergeIslAffValues(__isl_take isl_set *Set, __isl_take isl_aff *Aff,
void *User);
};
}
Value *IslGenerator::generateIslInt(isl_int Int) {
mpz_t IntMPZ;
mpz_init(IntMPZ);
isl_int_get_gmp(Int, IntMPZ);
Value *IntValue = Builder.getInt(APInt_from_MPZ(IntMPZ));
mpz_clear(IntMPZ);
return IntValue;
}
Value *IslGenerator::generateIslAff(__isl_take isl_aff *Aff) {
Value *Result;
Value *ConstValue;
isl_int ConstIsl;
isl_int_init(ConstIsl);
isl_aff_get_constant(Aff, &ConstIsl);
ConstValue = generateIslInt(ConstIsl);
Type *Ty = Builder.getInt64Ty();
// FIXME: We should give the constant and coefficients the right type. Here
// we force it into i64.
Result = Builder.CreateSExtOrBitCast(ConstValue, Ty);
unsigned int NbInputDims = isl_aff_dim(Aff, isl_dim_in);
assert((IVS.size() == NbInputDims) && "The Dimension of Induction Variables"
"must match the dimension of the affine space.");
isl_int CoefficientIsl;
isl_int_init(CoefficientIsl);
for (unsigned int i = 0; i < NbInputDims; ++i) {
Value *CoefficientValue;
isl_aff_get_coefficient(Aff, isl_dim_in, i, &CoefficientIsl);
if (isl_int_is_zero(CoefficientIsl))
continue;
CoefficientValue = generateIslInt(CoefficientIsl);
CoefficientValue = Builder.CreateIntCast(CoefficientValue, Ty, true);
Value *IV = Builder.CreateIntCast(IVS[i], Ty, true);
Value *PAdd = Builder.CreateMul(CoefficientValue, IV, "p_mul_coeff");
Result = Builder.CreateAdd(Result, PAdd, "p_sum_coeff");
}
isl_int_clear(CoefficientIsl);
isl_int_clear(ConstIsl);
isl_aff_free(Aff);
return Result;
}
int IslGenerator::mergeIslAffValues(__isl_take isl_set *Set,
__isl_take isl_aff *Aff, void *User) {
IslGenInfo *GenInfo = (IslGenInfo *)User;
assert((GenInfo->Result == NULL) && "Result is already set."
"Currently only single isl_aff is supported");
assert(isl_set_plain_is_universe(Set)
&& "Code generation failed because the set is not universe");
GenInfo->Result = GenInfo->Generator->generateIslAff(Aff);
isl_set_free(Set);
return 0;
}
Value *IslGenerator::generateIslPwAff(__isl_take isl_pw_aff *PwAff) {
IslGenInfo User;
User.Result = NULL;
User.Generator = this;
isl_pw_aff_foreach_piece(PwAff, mergeIslAffValues, &User);
assert(User.Result && "Code generation for isl_pw_aff failed");
isl_pw_aff_free(PwAff);
return User.Result;
}
BlockGenerator::BlockGenerator(IRBuilder<> &B, ScopStmt &Stmt, Pass *P):
Builder(B), Statement(Stmt), P(P), SE(P->getAnalysis<ScalarEvolution>()) {}
bool BlockGenerator::isSCEVIgnore(const Instruction *Inst) {
if (SCEVCodegen && SE.isSCEVable(Inst->getType()))
if (const SCEV *Scev = SE.getSCEV(const_cast<Instruction*>(Inst)))
if (!isa<SCEVCouldNotCompute>(Scev)) {
if (const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Scev)) {
if (Unknown->getValue() != Inst)
return true;
} else {
return true;
}
}
return false;
}
Value *BlockGenerator::getNewValue(const Value *Old, ValueMapT &BBMap,
ValueMapT &GlobalMap) {
// We assume constants never change.
// This avoids map lookups for many calls to this function.
if (isa<Constant>(Old))
return const_cast<Value*>(Old);
if (GlobalMap.count(Old)) {
Value *New = GlobalMap[Old];
if (Old->getType()->getScalarSizeInBits()
< New->getType()->getScalarSizeInBits())
New = Builder.CreateTruncOrBitCast(New, Old->getType());
return New;
}
if (BBMap.count(Old)) {
return BBMap[Old];
}
if (SCEVCodegen && SE.isSCEVable(Old->getType()))
if (const SCEV *Scev = SE.getSCEV(const_cast<Value*>(Old)))
if (!isa<SCEVCouldNotCompute>(Scev)) {
const SCEV *NewScev = SCEVRewriter::rewrite(Scev,
*Statement.getParent(), SE,
GlobalMap, BBMap);
SCEVExpander Expander(SE, "polly");
Value *Expanded = Expander.expandCodeFor(NewScev, Old->getType(),
Builder.GetInsertPoint());
BBMap[Old] = Expanded;
return Expanded;
}
// 'Old' is within the original SCoP, but was not rewritten.
//
// Such values appear, if they only calculate information already available in
// the polyhedral description (e.g. an induction variable increment). They
// can be safely ignored.
if (const Instruction *Inst = dyn_cast<Instruction>(Old))
if (Statement.getParent()->getRegion().contains(Inst->getParent()))
return NULL;
// Everything else is probably a scop-constant value defined as global,
// function parameter or an instruction not within the scop.
return const_cast<Value*>(Old);
}
void BlockGenerator::copyInstScalar(const Instruction *Inst, ValueMapT &BBMap,
ValueMapT &GlobalMap) {
Instruction *NewInst = Inst->clone();
// Replace old operands with the new ones.
for (Instruction::const_op_iterator OI = Inst->op_begin(),
OE = Inst->op_end(); OI != OE; ++OI) {
Value *OldOperand = *OI;
Value *NewOperand = getNewValue(OldOperand, BBMap, GlobalMap);
if (!NewOperand) {
assert(!isa<StoreInst>(NewInst)
&& "Store instructions are always needed!");
delete NewInst;
return;
}
NewInst->replaceUsesOfWith(OldOperand, NewOperand);
}
Builder.Insert(NewInst);
BBMap[Inst] = NewInst;
if (!NewInst->getType()->isVoidTy())
NewInst->setName("p_" + Inst->getName());
}
std::vector<Value*> BlockGenerator::getMemoryAccessIndex(
__isl_keep isl_map *AccessRelation, Value *BaseAddress,
ValueMapT &BBMap, ValueMapT &GlobalMap) {
assert((isl_map_dim(AccessRelation, isl_dim_out) == 1) &&
"Only single dimensional access functions supported");
std::vector<Value *> IVS;
for (unsigned i = 0; i < Statement.getNumIterators(); ++i) {
const Value *OriginalIV = Statement.getInductionVariableForDimension(i);
Value *NewIV = getNewValue(OriginalIV, BBMap, GlobalMap);
IVS.push_back(NewIV);
}
isl_pw_aff *PwAff = isl_map_dim_max(isl_map_copy(AccessRelation), 0);
IslGenerator IslGen(Builder, IVS);
Value *OffsetValue = IslGen.generateIslPwAff(PwAff);
Type *Ty = Builder.getInt64Ty();
OffsetValue = Builder.CreateIntCast(OffsetValue, Ty, true);
std::vector<Value*> IndexArray;
Value *NullValue = Constant::getNullValue(Ty);
IndexArray.push_back(NullValue);
IndexArray.push_back(OffsetValue);
return IndexArray;
}
Value *BlockGenerator::getNewAccessOperand(
__isl_keep isl_map *NewAccessRelation, Value *BaseAddress,
ValueMapT &BBMap, ValueMapT &GlobalMap) {
std::vector<Value*> IndexArray = getMemoryAccessIndex(NewAccessRelation,
BaseAddress,
BBMap, GlobalMap);
Value *NewOperand = Builder.CreateGEP(BaseAddress, IndexArray,
"p_newarrayidx_");
return NewOperand;
}
Value *BlockGenerator::generateLocationAccessed(const Instruction *Inst,
const Value *Pointer,
ValueMapT &BBMap,
ValueMapT &GlobalMap) {
MemoryAccess &Access = Statement.getAccessFor(Inst);
isl_map *CurrentAccessRelation = Access.getAccessRelation();
isl_map *NewAccessRelation = Access.getNewAccessRelation();
assert(isl_map_has_equal_space(CurrentAccessRelation, NewAccessRelation) &&
"Current and new access function use different spaces");
Value *NewPointer;
if (!NewAccessRelation) {
NewPointer = getNewValue(Pointer, BBMap, GlobalMap);
} else {
Value *BaseAddress = const_cast<Value*>(Access.getBaseAddr());
NewPointer = getNewAccessOperand(NewAccessRelation, BaseAddress,
BBMap, GlobalMap);
}
isl_map_free(CurrentAccessRelation);
isl_map_free(NewAccessRelation);
return NewPointer;
}
Value *BlockGenerator::generateScalarLoad(const LoadInst *Load,
ValueMapT &BBMap,
ValueMapT &GlobalMap) {
const Value *Pointer = Load->getPointerOperand();
const Instruction *Inst = dyn_cast<Instruction>(Load);
Value *NewPointer = generateLocationAccessed(Inst, Pointer, BBMap, GlobalMap);
Value *ScalarLoad = Builder.CreateLoad(NewPointer,
Load->getName() + "_p_scalar_");
return ScalarLoad;
}
Value *BlockGenerator::generateScalarStore(const StoreInst *Store,
ValueMapT &BBMap,
ValueMapT &GlobalMap) {
const Value *Pointer = Store->getPointerOperand();
Value *NewPointer = generateLocationAccessed(Store, Pointer, BBMap,
GlobalMap);
Value *ValueOperand = getNewValue(Store->getValueOperand(), BBMap, GlobalMap);
return Builder.CreateStore(ValueOperand, NewPointer);
}
void BlockGenerator::copyInstruction(const Instruction *Inst, ValueMapT &BBMap,
ValueMapT &GlobalMap) {
// Terminator instructions control the control flow. They are explicitly
// expressed in the clast and do not need to be copied.
if (Inst->isTerminator())
return;
if (isSCEVIgnore(Inst))
return;
if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
BBMap[Load] = generateScalarLoad(Load, BBMap, GlobalMap);
return;
}
if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
BBMap[Store] = generateScalarStore(Store, BBMap, GlobalMap);
return;
}
copyInstScalar(Inst, BBMap, GlobalMap);
}
void BlockGenerator::copyBB(ValueMapT &GlobalMap) {
BasicBlock *BB = Statement.getBasicBlock();
BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
Builder.GetInsertPoint(), P);
CopyBB->setName("polly.stmt." + BB->getName());
Builder.SetInsertPoint(CopyBB->begin());
ValueMapT BBMap;
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE;
++II)
copyInstruction(II, BBMap, GlobalMap);
}
VectorBlockGenerator::VectorBlockGenerator(IRBuilder<> &B,
VectorValueMapT &GlobalMaps,
ScopStmt &Stmt,
__isl_keep isl_map *Schedule,
Pass *P)
: BlockGenerator(B, Stmt, P), GlobalMaps(GlobalMaps), Schedule(Schedule) {
assert(GlobalMaps.size() > 1 && "Only one vector lane found");
assert(Schedule && "No statement domain provided");
}
Value *VectorBlockGenerator::getVectorValue(const Value *Old,
ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps) {
if (VectorMap.count(Old))
return VectorMap[Old];
int Width = getVectorWidth();
Value *Vector = UndefValue::get(VectorType::get(Old->getType(), Width));
for (int Lane = 0; Lane < Width; Lane++)
Vector = Builder.CreateInsertElement(Vector,
getNewValue(Old,
ScalarMaps[Lane],
GlobalMaps[Lane]),
Builder.getInt32(Lane));
VectorMap[Old] = Vector;
return Vector;
}
Type *VectorBlockGenerator::getVectorPtrTy(const Value *Val, int Width) {
PointerType *PointerTy = dyn_cast<PointerType>(Val->getType());
assert(PointerTy && "PointerType expected");
Type *ScalarType = PointerTy->getElementType();
VectorType *VectorType = VectorType::get(ScalarType, Width);
return PointerType::getUnqual(VectorType);
}
Value *VectorBlockGenerator::generateStrideOneLoad(const LoadInst *Load,
ValueMapT &BBMap) {
const Value *Pointer = Load->getPointerOperand();
Type *VectorPtrType = getVectorPtrTy(Pointer, getVectorWidth());
Value *NewPointer = getNewValue(Pointer, BBMap, GlobalMaps[0]);
Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
"vector_ptr");
LoadInst *VecLoad = Builder.CreateLoad(VectorPtr,
Load->getName() + "_p_vec_full");
if (!Aligned)
VecLoad->setAlignment(8);
return VecLoad;
}
Value *VectorBlockGenerator::generateStrideZeroLoad(const LoadInst *Load,
ValueMapT &BBMap) {
const Value *Pointer = Load->getPointerOperand();
Type *VectorPtrType = getVectorPtrTy(Pointer, 1);
Value *NewPointer = getNewValue(Pointer, BBMap, GlobalMaps[0]);
Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
Load->getName() + "_p_vec_p");
LoadInst *ScalarLoad= Builder.CreateLoad(VectorPtr,
Load->getName() + "_p_splat_one");
if (!Aligned)
ScalarLoad->setAlignment(8);
Constant *SplatVector =
Constant::getNullValue(VectorType::get(Builder.getInt32Ty(),
getVectorWidth()));
Value *VectorLoad = Builder.CreateShuffleVector(ScalarLoad, ScalarLoad,
SplatVector,
Load->getName()
+ "_p_splat");
return VectorLoad;
}
Value *VectorBlockGenerator::generateUnknownStrideLoad(const LoadInst *Load,
VectorValueMapT &ScalarMaps) {
int VectorWidth = getVectorWidth();
const Value *Pointer = Load->getPointerOperand();
VectorType *VectorType = VectorType::get(
dyn_cast<PointerType>(Pointer->getType())->getElementType(), VectorWidth);
Value *Vector = UndefValue::get(VectorType);
for (int i = 0; i < VectorWidth; i++) {
Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i]);
Value *ScalarLoad = Builder.CreateLoad(NewPointer,
Load->getName() + "_p_scalar_");
Vector = Builder.CreateInsertElement(Vector, ScalarLoad,
Builder.getInt32(i),
Load->getName() + "_p_vec_");
}
return Vector;
}
void VectorBlockGenerator::generateLoad(const LoadInst *Load,
ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps) {
if (PollyVectorizerChoice >= VECTORIZER_FIRST_NEED_GROUPED_UNROLL ||
!VectorType::isValidElementType(Load->getType())) {
for (int i = 0; i < getVectorWidth(); i++)
ScalarMaps[i][Load] = generateScalarLoad(Load, ScalarMaps[i],
GlobalMaps[i]);
return;
}
MemoryAccess &Access = Statement.getAccessFor(Load);
Value *NewLoad;
if (Access.isStrideZero(isl_map_copy(Schedule)))
NewLoad = generateStrideZeroLoad(Load, ScalarMaps[0]);
else if (Access.isStrideOne(isl_map_copy(Schedule)))
NewLoad = generateStrideOneLoad(Load, ScalarMaps[0]);
else
NewLoad = generateUnknownStrideLoad(Load, ScalarMaps);
VectorMap[Load] = NewLoad;
}
void VectorBlockGenerator::copyUnaryInst(const UnaryInstruction *Inst,
ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps) {
int VectorWidth = getVectorWidth();
Value *NewOperand = getVectorValue(Inst->getOperand(0), VectorMap,
ScalarMaps);
assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
const CastInst *Cast = dyn_cast<CastInst>(Inst);
VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth);
VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
}
void VectorBlockGenerator::copyBinaryInst(const BinaryOperator *Inst,
ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps) {
Value *OpZero = Inst->getOperand(0);
Value *OpOne = Inst->getOperand(1);
Value *NewOpZero, *NewOpOne;
NewOpZero = getVectorValue(OpZero, VectorMap, ScalarMaps);
NewOpOne = getVectorValue(OpOne, VectorMap, ScalarMaps);
Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
Inst->getName() + "p_vec");
VectorMap[Inst] = NewInst;
}
void VectorBlockGenerator::copyStore(const StoreInst *Store,
ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps) {
int VectorWidth = getVectorWidth();
MemoryAccess &Access = Statement.getAccessFor(Store);
const Value *Pointer = Store->getPointerOperand();
Value *Vector = getVectorValue(Store->getValueOperand(), VectorMap,
ScalarMaps);
if (Access.isStrideOne(isl_map_copy(Schedule))) {
Type *VectorPtrType = getVectorPtrTy(Pointer, VectorWidth);
Value *NewPointer = getNewValue(Pointer, ScalarMaps[0], GlobalMaps[0]);
Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
"vector_ptr");
StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
if (!Aligned)
Store->setAlignment(8);
} else {
for (unsigned i = 0; i < ScalarMaps.size(); i++) {
Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
Value *NewPointer = getNewValue(Pointer, ScalarMaps[i], GlobalMaps[i]);
Builder.CreateStore(Scalar, NewPointer);
}
}
}
bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
ValueMapT &VectorMap) {
for (Instruction::const_op_iterator OI = Inst->op_begin(),
OE = Inst->op_end(); OI != OE; ++OI)
if (VectorMap.count(*OI))
return true;
return false;
}
bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps) {
bool HasVectorOperand = false;
int VectorWidth = getVectorWidth();
for (Instruction::const_op_iterator OI = Inst->op_begin(),
OE = Inst->op_end(); OI != OE; ++OI) {
ValueMapT::iterator VecOp = VectorMap.find(*OI);
if (VecOp == VectorMap.end())
continue;
HasVectorOperand = true;
Value *NewVector = VecOp->second;
for (int i = 0; i < VectorWidth; ++i) {
ValueMapT &SM = ScalarMaps[i];
// If there is one scalar extracted, all scalar elements should have
// already been extracted by the code here. So no need to check for the
// existance of all of them.
if (SM.count(*OI))
break;
SM[*OI] = Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
}
}
return HasVectorOperand;
}
void VectorBlockGenerator::copyInstScalarized(const Instruction *Inst,
ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps) {
bool HasVectorOperand;
int VectorWidth = getVectorWidth();
HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
copyInstScalar(Inst, ScalarMaps[VectorLane], GlobalMaps[VectorLane]);
if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
return;
// Make the result available as vector value.
VectorType *VectorType = VectorType::get(Inst->getType(), VectorWidth);
Value *Vector = UndefValue::get(VectorType);
for (int i = 0; i < VectorWidth; i++)
Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
Builder.getInt32(i));
VectorMap[Inst] = Vector;
}
int VectorBlockGenerator::getVectorWidth() {
return GlobalMaps.size();
}
void VectorBlockGenerator::copyInstruction(const Instruction *Inst,
ValueMapT &VectorMap,
VectorValueMapT &ScalarMaps) {
// Terminator instructions control the control flow. They are explicitly
// expressed in the clast and do not need to be copied.
if (Inst->isTerminator())
return;
if (isSCEVIgnore(Inst))
return;
if (const LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
generateLoad(Load, VectorMap, ScalarMaps);
return;
}
if (hasVectorOperands(Inst, VectorMap)) {
if (const StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
copyStore(Store, VectorMap, ScalarMaps);
return;
}
if (const UnaryInstruction *Unary = dyn_cast<UnaryInstruction>(Inst)) {
copyUnaryInst(Unary, VectorMap, ScalarMaps);
return;
}
if (const BinaryOperator *Binary = dyn_cast<BinaryOperator>(Inst)) {
copyBinaryInst(Binary, VectorMap, ScalarMaps);
return;
}
// Falltrough: We generate scalar instructions, if we don't know how to
// generate vector code.
}
copyInstScalarized(Inst, VectorMap, ScalarMaps);
}
void VectorBlockGenerator::copyBB() {
BasicBlock *BB = Statement.getBasicBlock();
BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
Builder.GetInsertPoint(), P);
CopyBB->setName("polly.stmt." + BB->getName());
Builder.SetInsertPoint(CopyBB->begin());
// Create two maps that store the mapping from the original instructions of
// the old basic block to their copies in the new basic block. Those maps
// are basic block local.
//
// As vector code generation is supported there is one map for scalar values
// and one for vector values.
//
// In case we just do scalar code generation, the vectorMap is not used and
// the scalarMap has just one dimension, which contains the mapping.
//
// In case vector code generation is done, an instruction may either appear
// in the vector map once (as it is calculating >vectorwidth< values at a
// time. Or (if the values are calculated using scalar operations), it
// appears once in every dimension of the scalarMap.
VectorValueMapT ScalarBlockMap(getVectorWidth());
ValueMapT VectorBlockMap;
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
II != IE; ++II)
copyInstruction(II, VectorBlockMap, ScalarBlockMap);
}