llvm-project/llvm/lib/Target/X86/X86ScheduleBtVer2.td

606 lines
27 KiB
TableGen

//=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for AMD btver2 (Jaguar) to support
// instruction scheduling and other instruction cost heuristics. Based off AMD Software
// Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix.
//
//===----------------------------------------------------------------------===//
def BtVer2Model : SchedMachineModel {
// All x86 instructions are modeled as a single micro-op, and btver2 can
// decode 2 instructions per cycle.
let IssueWidth = 2;
let MicroOpBufferSize = 64; // Retire Control Unit
let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency)
let HighLatency = 25;
let MispredictPenalty = 14; // Minimum branch misdirection penalty
let PostRAScheduler = 1;
// FIXME: SSE4/AVX is unimplemented. This flag is set to allow
// the scheduler to assign a default model to unrecognized opcodes.
let CompleteModel = 0;
}
let SchedModel = BtVer2Model in {
// Jaguar can issue up to 6 micro-ops in one cycle
def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam)
def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV
def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU
def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA)
def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA
def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM
// The Integer PRF for Jaguar is 64 entries, and it holds the architectural and
// speculative version of the 64-bit integer registers.
// Reference: www.realworldtech.com/jaguar/4/
def IntegerPRF : RegisterFile<64, [GR8, GR16, GR32, GR64, CCR]>;
// The Jaguar FP Retire Queue renames SIMD and FP uOps onto a pool of 72 SSE
// registers. Operations on 256-bit data types are cracked into two COPs.
// Reference: www.realworldtech.com/jaguar/4/
def FpuPRF: RegisterFile<72, [VR64, VR128, VR256], [1, 1, 2]>;
// The retire control unit (RCU) can track up to 64 macro-ops in-flight. It can
// retire up to two macro-ops per cycle.
// Reference: "Software Optimization Guide for AMD Family 16h Processors"
def RCU : RetireControlUnit<64, 2>;
// Integer Pipe Scheduler
def JALU01 : ProcResGroup<[JALU0, JALU1]> {
let BufferSize=20;
}
// AGU Pipe Scheduler
def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> {
let BufferSize=12;
}
// Fpu Pipe Scheduler
def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> {
let BufferSize=18;
}
// Functional units
def JDiv : ProcResource<1>; // integer division
def JMul : ProcResource<1>; // integer multiplication
def JVALU0 : ProcResource<1>; // vector integer
def JVALU1 : ProcResource<1>; // vector integer
def JVIMUL : ProcResource<1>; // vector integer multiplication
def JSTC : ProcResource<1>; // vector store/convert
def JFPM : ProcResource<1>; // FP multiplication
def JFPA : ProcResource<1>; // FP addition
// Functional unit groups
def JFPX : ProcResGroup<[JFPA, JFPM]>;
def JVALU : ProcResGroup<[JVALU0, JVALU1]>;
// Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
// cycles after the memory operand.
def : ReadAdvance<ReadAfterLd, 3>;
// Many SchedWrites are defined in pairs with and without a folded load.
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops when dispatched by the schedulers.
// This multiclass defines the resource usage for variants with and without
// folded loads.
multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [], int UOps = 1> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on JLAGU and adds 3 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 3);
let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
let NumMicroOps = UOps;
}
}
multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [], int UOps = 1> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on JLAGU and adds 5 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 5);
let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
let NumMicroOps = UOps;
}
}
multiclass JWriteResYMMPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [2], int UOps = 2> {
// Register variant is using a single cycle on ExePort.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses 2 cycles on JLAGU and adds 5 cycles to the
// latency.
def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
let Latency = !add(Lat, 5);
let ResourceCycles = !listconcat([2], Res);
let NumMicroOps = UOps;
}
}
// A folded store needs a cycle on the SAGU for the store data.
def : WriteRes<WriteRMW, [JSAGU]>;
////////////////////////////////////////////////////////////////////////////////
// Arithmetic.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteALU, [JALU01], 1>;
defm : JWriteResIntPair<WriteIMul, [JALU1, JMul], 3, [1, 1], 2>; // i8/i16/i32 multiplication
defm : JWriteResIntPair<WriteIMul64, [JALU1, JMul], 6, [1, 4], 2>; // i64 multiplication
defm : X86WriteRes<WriteIMulH, [JALU1], 6, [4], 1>;
defm : JWriteResIntPair<WriteDiv8, [JALU1, JDiv], 12, [1, 12], 1>;
defm : JWriteResIntPair<WriteDiv16, [JALU1, JDiv], 17, [1, 17], 2>;
defm : JWriteResIntPair<WriteDiv32, [JALU1, JDiv], 25, [1, 25], 2>;
defm : JWriteResIntPair<WriteDiv64, [JALU1, JDiv], 41, [1, 41], 2>;
defm : JWriteResIntPair<WriteIDiv8, [JALU1, JDiv], 12, [1, 12], 1>;
defm : JWriteResIntPair<WriteIDiv16, [JALU1, JDiv], 17, [1, 17], 2>;
defm : JWriteResIntPair<WriteIDiv32, [JALU1, JDiv], 25, [1, 25], 2>;
defm : JWriteResIntPair<WriteIDiv64, [JALU1, JDiv], 41, [1, 41], 2>;
defm : JWriteResIntPair<WriteCRC32, [JALU01], 3, [4], 3>;
defm : JWriteResIntPair<WriteCMOV, [JALU01], 1>; // Conditional move.
def : WriteRes<WriteSETCC, [JALU01]>; // Setcc.
def : WriteRes<WriteSETCCStore, [JALU01,JSAGU]>;
// This is for simple LEAs with one or two input operands.
// FIXME: SAGU 3-operand LEA
def : WriteRes<WriteLEA, [JALU01]>;
// Bit counts.
defm : JWriteResIntPair<WriteBitScan, [JALU01], 5, [4], 8>;
defm : JWriteResIntPair<WritePOPCNT, [JALU01], 1>;
defm : JWriteResIntPair<WriteLZCNT, [JALU01], 1>;
defm : JWriteResIntPair<WriteTZCNT, [JALU01], 2, [2]>;
// BMI1 BEXTR, BMI2 BZHI
defm : JWriteResIntPair<WriteBEXTR, [JALU01], 1>;
defm : JWriteResIntPair<WriteBZHI, [JALU01], 1>; // NOTE: Doesn't exist on Jaguar.
////////////////////////////////////////////////////////////////////////////////
// Integer shifts and rotates.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteShift, [JALU01], 1>;
def JWriteSHLDrri : SchedWriteRes<[JALU01]> {
let Latency = 3;
let ResourceCycles = [6];
let NumMicroOps = 6;
}
def: InstRW<[JWriteSHLDrri], (instrs SHLD16rri8, SHLD32rri8, SHLD64rri8,
SHRD16rri8, SHRD32rri8, SHRD64rri8)>;
def JWriteSHLDrrCL : SchedWriteRes<[JALU01]> {
let Latency = 4;
let ResourceCycles = [8];
let NumMicroOps = 7;
}
def: InstRW<[JWriteSHLDrrCL], (instrs SHLD16rrCL, SHLD32rrCL, SHLD64rrCL,
SHRD16rrCL, SHRD32rrCL, SHRD64rrCL)>;
def JWriteSHLDm : SchedWriteRes<[JLAGU, JALU01]> {
let Latency = 9;
let ResourceCycles = [1, 22];
let NumMicroOps = 8;
}
def: InstRW<[JWriteSHLDm],(instrs SHLD16mri8, SHLD32mri8, SHLD64mri8,
SHLD16mrCL, SHLD32mrCL, SHLD64mrCL,
SHRD16mri8, SHRD32mri8, SHRD64mri8,
SHRD16mrCL, SHRD32mrCL, SHRD64mrCL)>;
////////////////////////////////////////////////////////////////////////////////
// Loads, stores, and moves, not folded with other operations.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteLoad, [JLAGU]> { let Latency = 5; }
def : WriteRes<WriteStore, [JSAGU]>;
def : WriteRes<WriteMove, [JALU01]>;
// Load/store MXCSR.
// FIXME: These are copy and pasted from WriteLoad/Store.
def : WriteRes<WriteLDMXCSR, [JLAGU]> { let Latency = 5; }
def : WriteRes<WriteSTMXCSR, [JSAGU]>;
// Treat misc copies as a move.
def : InstRW<[WriteMove], (instrs COPY)>;
////////////////////////////////////////////////////////////////////////////////
// Idioms that clear a register, like xorps %xmm0, %xmm0.
// These can often bypass execution ports completely.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteZero, []>;
////////////////////////////////////////////////////////////////////////////////
// Branches don't produce values, so they have no latency, but they still
// consume resources. Indirect branches can fold loads.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResIntPair<WriteJump, [JALU01], 1>;
////////////////////////////////////////////////////////////////////////////////
// Special case scheduling classes.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteSystem, [JALU01]> { let Latency = 100; }
def : WriteRes<WriteMicrocoded, [JALU01]> { let Latency = 100; }
def : WriteRes<WriteFence, [JSAGU]>;
// Nops don't have dependencies, so there's no actual latency, but we set this
// to '1' to tell the scheduler that the nop uses an ALU slot for a cycle.
def : WriteRes<WriteNop, [JALU01]> { let Latency = 1; }
////////////////////////////////////////////////////////////////////////////////
// Floating point. This covers both scalar and vector operations.
////////////////////////////////////////////////////////////////////////////////
defm : X86WriteRes<WriteFLoad, [JLAGU, JFPU01, JFPX], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFMaskedLoad, [JLAGU, JFPU01, JFPX], 6, [1, 1, 2], 1>;
defm : X86WriteRes<WriteFMaskedLoadY, [JLAGU, JFPU01, JFPX], 6, [2, 2, 4], 2>;
defm : X86WriteRes<WriteFStore, [JSAGU, JFPU1, JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFMaskedStore, [JSAGU, JFPU01, JFPX], 6, [1, 1, 4], 1>;
defm : X86WriteRes<WriteFMaskedStoreY, [JSAGU, JFPU01, JFPX], 6, [2, 2, 4], 2>;
def : WriteRes<WriteFMove, [JFPU01, JFPX]>;
def : WriteRes<WriteEMMS, [JFPU01, JFPX]> { let Latency = 2; }
defm : JWriteResFpuPair<WriteFAdd, [JFPU0, JFPA], 3>;
defm : JWriteResFpuPair<WriteFAddX, [JFPU0, JFPA], 3>;
defm : JWriteResYMMPair<WriteFAddY, [JFPU0, JFPA], 3, [2,2], 2>;
defm : JWriteResFpuPair<WriteFAdd64, [JFPU0, JFPA], 3>;
defm : JWriteResFpuPair<WriteFAdd64X, [JFPU0, JFPA], 3>;
defm : JWriteResYMMPair<WriteFAdd64Y, [JFPU0, JFPA], 3, [2,2], 2>;
defm : JWriteResFpuPair<WriteFCmp, [JFPU0, JFPA], 2>;
defm : JWriteResFpuPair<WriteFCmpX, [JFPU0, JFPA], 2>;
defm : JWriteResYMMPair<WriteFCmpY, [JFPU0, JFPA], 2, [2,2], 2>;
defm : JWriteResFpuPair<WriteFCmp64, [JFPU0, JFPA], 2>;
defm : JWriteResFpuPair<WriteFCmp64X, [JFPU0, JFPA], 2>;
defm : JWriteResYMMPair<WriteFCmp64Y, [JFPU0, JFPA], 2, [2,2], 2>;
defm : JWriteResFpuPair<WriteFCom, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResFpuPair<WriteFMul, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFMulX, [JFPU1, JFPM], 2>;
defm : JWriteResYMMPair<WriteFMulY, [JFPU1, JFPM], 2, [2,2], 2>;
defm : JWriteResFpuPair<WriteFMul64, [JFPU1, JFPM], 4, [1,2]>;
defm : JWriteResFpuPair<WriteFMul64X, [JFPU1, JFPM], 4, [1,2]>;
defm : JWriteResYMMPair<WriteFMul64Y, [JFPU1, JFPM], 4, [2,4], 2>;
defm : JWriteResFpuPair<WriteFMA, [JFPU1, JFPM], 2>; // NOTE: Doesn't exist on Jaguar.
defm : JWriteResFpuPair<WriteFMAX, [JFPU1, JFPM], 2>; // NOTE: Doesn't exist on Jaguar.
defm : JWriteResFpuPair<WriteFMAY, [JFPU1, JFPM], 2>; // NOTE: Doesn't exist on Jaguar.
defm : JWriteResFpuPair<WriteDPPD, [JFPU1, JFPM, JFPA], 9, [1, 3, 3], 3>;
defm : JWriteResFpuPair<WriteDPPS, [JFPU1, JFPM, JFPA], 11, [1, 3, 3], 5>;
defm : JWriteResYMMPair<WriteDPPSY, [JFPU1, JFPM, JFPA], 12, [2, 6, 6], 10>;
defm : JWriteResFpuPair<WriteFRcp, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFRcpX, [JFPU1, JFPM], 2>;
defm : JWriteResYMMPair<WriteFRcpY, [JFPU1, JFPM], 2, [2,2], 2>;
defm : JWriteResFpuPair<WriteFRsqrt, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFRsqrtX, [JFPU1, JFPM], 2>;
defm : JWriteResYMMPair<WriteFRsqrtY, [JFPU1, JFPM], 2, [2,2], 2>;
defm : JWriteResFpuPair<WriteFDiv, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResFpuPair<WriteFDivX, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResYMMPair<WriteFDivY, [JFPU1, JFPM], 38, [2, 38], 2>;
defm : JWriteResYMMPair<WriteFDivZ, [JFPU1, JFPM], 38, [2, 38], 2>;
defm : JWriteResFpuPair<WriteFDiv64, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResFpuPair<WriteFDiv64X, [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResYMMPair<WriteFDiv64Y, [JFPU1, JFPM], 38, [2, 38], 2>;
defm : JWriteResYMMPair<WriteFDiv64Z, [JFPU1, JFPM], 38, [2, 38], 2>;
defm : JWriteResFpuPair<WriteFSqrt, [JFPU1, JFPM], 21, [1, 21]>;
defm : JWriteResFpuPair<WriteFSqrtX, [JFPU1, JFPM], 21, [1, 21]>;
defm : JWriteResYMMPair<WriteFSqrtY, [JFPU1, JFPM], 42, [2, 42], 2>;
defm : JWriteResYMMPair<WriteFSqrtZ, [JFPU1, JFPM], 42, [2, 42], 2>;
defm : JWriteResFpuPair<WriteFSqrt64, [JFPU1, JFPM], 27, [1, 27]>;
defm : JWriteResFpuPair<WriteFSqrt64X, [JFPU1, JFPM], 27, [1, 27]>;
defm : JWriteResYMMPair<WriteFSqrt64Y, [JFPU1, JFPM], 54, [2, 54], 2>;
defm : JWriteResYMMPair<WriteFSqrt64Z, [JFPU1, JFPM], 54, [2, 54], 2>;
defm : JWriteResFpuPair<WriteFSqrt80, [JFPU1, JFPM], 35, [1, 35]>;
defm : JWriteResFpuPair<WriteFSign, [JFPU1, JFPM], 2>;
defm : JWriteResFpuPair<WriteFRnd, [JFPU1, JSTC], 3>;
defm : JWriteResYMMPair<WriteFRndY, [JFPU1, JSTC], 3, [2,2], 2>;
defm : JWriteResFpuPair<WriteFLogic, [JFPU01, JFPX], 1>;
defm : JWriteResYMMPair<WriteFLogicY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : JWriteResFpuPair<WriteFTest, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResYMMPair<WriteFTestY , [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>;
defm : JWriteResFpuPair<WriteFShuffle, [JFPU01, JFPX], 1>;
defm : JWriteResYMMPair<WriteFShuffleY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : JWriteResFpuPair<WriteFVarShuffle, [JFPU01, JFPX], 2, [1, 4], 3>;
defm : JWriteResYMMPair<WriteFVarShuffleY,[JFPU01, JFPX], 3, [2, 6], 6>;
defm : JWriteResFpuPair<WriteFBlend, [JFPU01, JFPX], 1>;
defm : JWriteResYMMPair<WriteFBlendY, [JFPU01, JFPX], 1, [2, 2], 2>;
defm : JWriteResFpuPair<WriteFVarBlend, [JFPU01, JFPX], 2, [1, 4], 3>;
defm : JWriteResYMMPair<WriteFVarBlendY, [JFPU01, JFPX], 3, [2, 6], 6>;
defm : JWriteResFpuPair<WriteFShuffle256, [JFPU01, JFPX], 1>;
defm : JWriteResFpuPair<WriteFVarShuffle256, [JFPU01, JFPX], 1>; // NOTE: Doesn't exist on Jaguar.
////////////////////////////////////////////////////////////////////////////////
// Conversions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteCvtF2I, [JFPU1, JSTC], 3>; // Float -> Integer.
defm : JWriteResFpuPair<WriteCvtI2F, [JFPU1, JSTC], 3>; // Integer -> Float.
defm : JWriteResFpuPair<WriteCvtF2F, [JFPU1, JSTC], 3>; // Float -> Float size conversion.
def : WriteRes<WriteCvtF2FSt, [JFPU1, JSTC, JSAGU]> { let Latency = 4; }
def JWriteCVTF2F : SchedWriteRes<[JFPU1, JSTC]> {
let Latency = 7;
let ResourceCycles = [1, 2];
let NumMicroOps = 2;
}
def : InstRW<[JWriteCVTF2F], (instregex "(V)?CVTS(D|S)2S(D|S)rr")>;
def JWriteCVTF2FLd : SchedWriteRes<[JLAGU, JFPU1, JSTC]> {
let Latency = 12;
let ResourceCycles = [1, 1, 2];
let NumMicroOps = 2;
}
def : InstRW<[JWriteCVTF2FLd], (instregex "(V)?CVTS(D|S)2S(D|S)rm")>;
def JWriteCVTF2SI : SchedWriteRes<[JFPU1, JSTC, JFPA, JALU0]> {
let Latency = 7;
let NumMicroOps = 2;
}
def : InstRW<[JWriteCVTF2SI], (instregex "(V)?CVT(T?)S(D|S)2SI(64)?rr")>;
def JWriteCVTF2SILd : SchedWriteRes<[JLAGU, JFPU1, JSTC, JFPA, JALU0]> {
let Latency = 12;
let NumMicroOps = 2;
}
def : InstRW<[JWriteCVTF2SILd], (instregex "(V)?CVT(T?)S(D|S)2SI(64)?rm")>;
// FIXME: f+3 ST, LD+STC latency
def JWriteCVTSI2F : SchedWriteRes<[JFPU1, JSTC]> {
let Latency = 9;
let NumMicroOps = 2;
}
def : InstRW<[JWriteCVTSI2F], (instregex "(V)?CVTSI(64)?2S(D|S)rr")>;
def JWriteCVTSI2FLd : SchedWriteRes<[JLAGU, JFPU1, JSTC]> {
let Latency = 14;
let NumMicroOps = 2;
}
def : InstRW<[JWriteCVTSI2FLd], (instregex "(V)?CVTSI(64)?2S(D|S)rm")>;
////////////////////////////////////////////////////////////////////////////////
// Vector integer operations.
////////////////////////////////////////////////////////////////////////////////
defm : X86WriteRes<WriteVecLoad, [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecMaskedLoad, [JLAGU, JFPU01, JVALU], 6, [1, 1, 2], 1>;
defm : X86WriteRes<WriteVecMaskedLoadY, [JLAGU, JFPU01, JVALU], 6, [2, 2, 4], 2>;
defm : X86WriteRes<WriteVecStore, [JSAGU, JFPU1, JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecMaskedStore, [JSAGU, JFPU01, JVALU], 6, [1, 1, 4], 1>;
defm : X86WriteRes<WriteVecMaskedStoreY, [JSAGU, JFPU01, JVALU], 6, [2, 2, 4], 2>;
def : WriteRes<WriteVecMove, [JFPU01, JVALU]>;
defm : JWriteResFpuPair<WriteVecALU, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecALUY, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShift, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftX, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftY, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftImm, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftImmX,[JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftImmY,[JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecIMul, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteVecIMulX, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteVecIMulY, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WritePMULLD, [JFPU0, JFPU01, JVIMUL, JVALU], 4, [2, 1, 2, 1], 3>;
defm : JWriteResFpuPair<WritePMULLDY, [JFPU0, JFPU01, JVIMUL, JVALU], 4, [2, 1, 2, 1], 3>;
defm : JWriteResFpuPair<WriteMPSAD, [JFPU0, JVIMUL], 3, [1, 2]>;
defm : JWriteResFpuPair<WriteMPSADY, [JFPU0, JVIMUL], 3, [1, 2]>;
defm : JWriteResFpuPair<WritePSADBW, [JFPU01, JVALU], 2>;
defm : JWriteResFpuPair<WritePSADBWY, [JFPU01, JVALU], 2>;
defm : JWriteResFpuPair<WritePHMINPOS, [JFPU0, JVALU], 2>;
defm : JWriteResFpuPair<WriteShuffle, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteShuffleY, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVarShuffle, [JFPU01, JVALU], 2, [1, 4], 3>;
defm : JWriteResFpuPair<WriteVarShuffleY, [JFPU01, JVALU], 2, [1, 4], 3>;
defm : JWriteResFpuPair<WriteBlend, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteBlendY, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVarBlend, [JFPU01, JVALU], 2, [1, 4], 3>;
defm : JWriteResFpuPair<WriteVarBlendY, [JFPU01, JVALU], 2, [1, 4], 3>;
defm : JWriteResFpuPair<WriteVecLogic, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecLogicY, [JFPU01, JVALU], 1>; // NOTE: Doesn't exist on Jaguar.
defm : JWriteResFpuPair<WriteVecTest, [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResYMMPair<WriteVecTestY , [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>;
defm : JWriteResFpuPair<WriteShuffle256, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVarShuffle256, [JFPU01, JVALU], 1>; // NOTE: Doesn't exist on Jaguar.
defm : JWriteResFpuPair<WriteVarVecShift, [JFPU01, JVALU], 1>; // NOTE: Doesn't exist on Jaguar.
defm : JWriteResFpuPair<WriteVarVecShiftY,[JFPU01, JVALU], 1>; // NOTE: Doesn't exist on Jaguar.
////////////////////////////////////////////////////////////////////////////////
// Vector insert/extract operations.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteVecInsert, [JFPU01, JVALU], 1>;
def : WriteRes<WriteVecExtract, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
def : WriteRes<WriteVecExtractSt, [JFPU1, JSTC, JSAGU]> { let Latency = 3; }
////////////////////////////////////////////////////////////////////////////////
// SSE42 String instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WritePCmpIStrI, [JFPU1, JVALU1, JFPA, JALU0], 7, [1, 2, 1, 1], 3>;
defm : JWriteResFpuPair<WritePCmpIStrM, [JFPU1, JVALU1, JFPA, JALU0], 8, [1, 2, 1, 1], 3>;
defm : JWriteResFpuPair<WritePCmpEStrI, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;
defm : JWriteResFpuPair<WritePCmpEStrM, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;
////////////////////////////////////////////////////////////////////////////////
// MOVMSK Instructions.
////////////////////////////////////////////////////////////////////////////////
def : WriteRes<WriteFMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
def : WriteRes<WriteVecMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
def : WriteRes<WriteVecMOVMSKY, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
def : WriteRes<WriteMMXMOVMSK, [JFPU0, JFPA, JALU0]> { let Latency = 3; }
////////////////////////////////////////////////////////////////////////////////
// AES Instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteAESIMC, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESKeyGen, [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESDecEnc, [JFPU0, JVIMUL], 3, [1, 1], 2>;
////////////////////////////////////////////////////////////////////////////////
// Horizontal add/sub instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteFHAdd, [JFPU0, JFPA], 3>;
defm : JWriteResYMMPair<WriteFHAddY, [JFPU0, JFPA], 3, [2,2], 2>;
defm : JWriteResFpuPair<WritePHAdd, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WritePHAddY, [JFPU01, JVALU], 1>;
////////////////////////////////////////////////////////////////////////////////
// Carry-less multiplication instructions.
////////////////////////////////////////////////////////////////////////////////
defm : JWriteResFpuPair<WriteCLMul, [JFPU0, JVIMUL], 2>;
////////////////////////////////////////////////////////////////////////////////
// SSE4A instructions.
////////////////////////////////////////////////////////////////////////////////
def JWriteINSERTQ: SchedWriteRes<[JFPU01, JVALU]> {
let Latency = 2;
let ResourceCycles = [1, 4];
}
def : InstRW<[JWriteINSERTQ], (instrs INSERTQ, INSERTQI)>;
////////////////////////////////////////////////////////////////////////////////
// F16C instructions.
////////////////////////////////////////////////////////////////////////////////
def JWriteCVTPS2PHY: SchedWriteRes<[JFPU1, JSTC, JFPX]> {
let Latency = 6;
let ResourceCycles = [2, 2, 2];
let NumMicroOps = 3;
}
def : InstRW<[JWriteCVTPS2PHY], (instrs VCVTPS2PHYrr)>;
def JWriteCVTPS2PHYSt: SchedWriteRes<[JFPU1, JSTC, JFPX, JSAGU]> {
let Latency = 7;
let ResourceCycles = [2, 2, 2, 1];
let NumMicroOps = 3;
}
def : InstRW<[JWriteCVTPS2PHYSt], (instrs VCVTPS2PHYmr)>;
def JWriteCVTPH2PSY: SchedWriteRes<[JFPU1, JSTC]> {
let Latency = 3;
let ResourceCycles = [2, 2];
let NumMicroOps = 2;
}
def : InstRW<[JWriteCVTPH2PSY], (instrs VCVTPH2PSYrr)>;
def JWriteCVTPH2PSYLd: SchedWriteRes<[JLAGU, JFPU1, JSTC]> {
let Latency = 8;
let ResourceCycles = [1, 2, 2];
let NumMicroOps = 2;
}
def : InstRW<[JWriteCVTPH2PSYLd], (instrs VCVTPH2PSYrm)>;
////////////////////////////////////////////////////////////////////////////////
// AVX instructions.
////////////////////////////////////////////////////////////////////////////////
def JWriteVCVTY: SchedWriteRes<[JFPU1, JSTC]> {
let Latency = 3;
let ResourceCycles = [2, 2];
let NumMicroOps = 2;
}
def : InstRW<[JWriteVCVTY], (instrs VCVTDQ2PDYrr, VCVTDQ2PSYrr,
VCVTPS2DQYrr, VCVTTPS2DQYrr)>;
def JWriteVCVTYLd: SchedWriteRes<[JLAGU, JFPU1, JSTC]> {
let Latency = 8;
let ResourceCycles = [2, 2, 2];
let NumMicroOps = 2;
}
def : InstRW<[JWriteVCVTYLd, ReadAfterLd], (instrs VCVTDQ2PDYrm, VCVTDQ2PSYrm,
VCVTPS2DQYrm, VCVTTPS2DQYrm)>;
def JWriteVMOVNTDQSt: SchedWriteRes<[JFPU1, JSTC, JSAGU]> {
let Latency = 2;
}
def : InstRW<[JWriteVMOVNTDQSt], (instrs MOVNTDQmr, VMOVNTDQmr)>;
def JWriteMOVNTSt: SchedWriteRes<[JFPU1, JSTC, JSAGU]> {
let Latency = 3;
}
def : InstRW<[JWriteMOVNTSt], (instrs MOVNTPDmr, MOVNTPSmr, MOVNTSD, MOVNTSS, VMOVNTPDmr, VMOVNTPSmr)>;
def JWriteVMOVNTPYSt: SchedWriteRes<[JFPU1, JSTC, JSAGU]> {
let Latency = 3;
let ResourceCycles = [2, 2, 2];
}
def : InstRW<[JWriteVMOVNTPYSt], (instrs VMOVNTDQYmr, VMOVNTPDYmr, VMOVNTPSYmr)>;
def JWriteVCVTPDY: SchedWriteRes<[JFPU1, JSTC, JFPX]> {
let Latency = 6;
let ResourceCycles = [2, 2, 4];
let NumMicroOps = 3;
}
def : InstRW<[JWriteVCVTPDY], (instrs VCVTPD2DQYrr, VCVTTPD2DQYrr, VCVTPD2PSYrr)>;
def JWriteVCVTPDYLd: SchedWriteRes<[JLAGU, JFPU1, JSTC, JFPX]> {
let Latency = 11;
let ResourceCycles = [2, 2, 2, 4];
let NumMicroOps = 3;
}
def : InstRW<[JWriteVCVTPDYLd, ReadAfterLd], (instrs VCVTPD2DQYrm, VCVTTPD2DQYrm, VCVTPD2PSYrm)>;
def JWriteVBROADCASTYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
let Latency = 6;
let ResourceCycles = [1, 2, 4];
let NumMicroOps = 2;
}
def : InstRW<[JWriteVBROADCASTYLd, ReadAfterLd], (instrs VBROADCASTSDYrm,
VBROADCASTSSYrm)>;
def JWriteJVZEROALL: SchedWriteRes<[]> {
let Latency = 90;
let NumMicroOps = 73;
}
def : InstRW<[JWriteJVZEROALL], (instrs VZEROALL)>;
def JWriteJVZEROUPPER: SchedWriteRes<[]> {
let Latency = 46;
let NumMicroOps = 37;
}
def : InstRW<[JWriteJVZEROUPPER], (instrs VZEROUPPER)>;
} // SchedModel