forked from OSchip/llvm-project
1558 lines
56 KiB
C++
1558 lines
56 KiB
C++
//===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines an instruction selector for the Hexagon target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Hexagon.h"
|
|
#include "HexagonISelLowering.h"
|
|
#include "HexagonMachineFunctionInfo.h"
|
|
#include "HexagonTargetMachine.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "hexagon-isel"
|
|
|
|
static
|
|
cl::opt<unsigned>
|
|
MaxNumOfUsesForConstExtenders("ga-max-num-uses-for-constant-extenders",
|
|
cl::Hidden, cl::init(2),
|
|
cl::desc("Maximum number of uses of a global address such that we still us a"
|
|
"constant extended instruction"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction Selector Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace llvm {
|
|
void initializeHexagonDAGToDAGISelPass(PassRegistry&);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// HexagonDAGToDAGISel - Hexagon specific code to select Hexagon machine
|
|
/// instructions for SelectionDAG operations.
|
|
///
|
|
namespace {
|
|
class HexagonDAGToDAGISel : public SelectionDAGISel {
|
|
const HexagonTargetMachine &HTM;
|
|
const HexagonSubtarget *HST;
|
|
const HexagonInstrInfo *HII;
|
|
const HexagonRegisterInfo *HRI;
|
|
public:
|
|
explicit HexagonDAGToDAGISel(HexagonTargetMachine &tm,
|
|
CodeGenOpt::Level OptLevel)
|
|
: SelectionDAGISel(tm, OptLevel), HTM(tm), HST(nullptr), HII(nullptr),
|
|
HRI(nullptr) {
|
|
initializeHexagonDAGToDAGISelPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
// Reset the subtarget each time through.
|
|
HST = &MF.getSubtarget<HexagonSubtarget>();
|
|
HII = HST->getInstrInfo();
|
|
HRI = HST->getRegisterInfo();
|
|
SelectionDAGISel::runOnMachineFunction(MF);
|
|
return true;
|
|
}
|
|
|
|
virtual void PreprocessISelDAG() override;
|
|
virtual void EmitFunctionEntryCode() override;
|
|
|
|
SDNode *Select(SDNode *N) override;
|
|
|
|
// Complex Pattern Selectors.
|
|
inline bool SelectAddrGA(SDValue &N, SDValue &R);
|
|
inline bool SelectAddrGP(SDValue &N, SDValue &R);
|
|
bool SelectGlobalAddress(SDValue &N, SDValue &R, bool UseGP);
|
|
bool SelectAddrFI(SDValue &N, SDValue &R);
|
|
|
|
const char *getPassName() const override {
|
|
return "Hexagon DAG->DAG Pattern Instruction Selection";
|
|
}
|
|
|
|
// Generate a machine instruction node corresponding to the circ/brev
|
|
// load intrinsic.
|
|
MachineSDNode *LoadInstrForLoadIntrinsic(SDNode *IntN);
|
|
// Given the circ/brev load intrinsic and the already generated machine
|
|
// instruction, generate the appropriate store (that is a part of the
|
|
// intrinsic's functionality).
|
|
SDNode *StoreInstrForLoadIntrinsic(MachineSDNode *LoadN, SDNode *IntN);
|
|
|
|
SDNode *SelectFrameIndex(SDNode *N);
|
|
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
|
|
/// inline asm expressions.
|
|
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
|
|
unsigned ConstraintID,
|
|
std::vector<SDValue> &OutOps) override;
|
|
SDNode *SelectLoadOfLoadIntrinsic(LoadSDNode *N);
|
|
SDNode *SelectLoad(SDNode *N);
|
|
SDNode *SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl);
|
|
SDNode *SelectIndexedLoad(LoadSDNode *LD, SDLoc dl);
|
|
SDNode *SelectIndexedLoadZeroExtend64(LoadSDNode *LD, unsigned Opcode,
|
|
SDLoc dl);
|
|
SDNode *SelectIndexedLoadSignExtend64(LoadSDNode *LD, unsigned Opcode,
|
|
SDLoc dl);
|
|
SDNode *SelectBaseOffsetStore(StoreSDNode *ST, SDLoc dl);
|
|
SDNode *SelectIndexedStore(StoreSDNode *ST, SDLoc dl);
|
|
SDNode *SelectStore(SDNode *N);
|
|
SDNode *SelectSHL(SDNode *N);
|
|
SDNode *SelectMul(SDNode *N);
|
|
SDNode *SelectZeroExtend(SDNode *N);
|
|
SDNode *SelectIntrinsicWChain(SDNode *N);
|
|
SDNode *SelectIntrinsicWOChain(SDNode *N);
|
|
SDNode *SelectConstant(SDNode *N);
|
|
SDNode *SelectConstantFP(SDNode *N);
|
|
SDNode *SelectAdd(SDNode *N);
|
|
SDNode *SelectBitOp(SDNode *N);
|
|
|
|
// XformMskToBitPosU5Imm - Returns the bit position which
|
|
// the single bit 32 bit mask represents.
|
|
// Used in Clr and Set bit immediate memops.
|
|
SDValue XformMskToBitPosU5Imm(uint32_t Imm, SDLoc DL) {
|
|
int32_t bitPos;
|
|
bitPos = Log2_32(Imm);
|
|
assert(bitPos >= 0 && bitPos < 32 &&
|
|
"Constant out of range for 32 BitPos Memops");
|
|
return CurDAG->getTargetConstant(bitPos, DL, MVT::i32);
|
|
}
|
|
|
|
// XformMskToBitPosU4Imm - Returns the bit position which the single-bit
|
|
// 16 bit mask represents. Used in Clr and Set bit immediate memops.
|
|
SDValue XformMskToBitPosU4Imm(uint16_t Imm, SDLoc DL) {
|
|
return XformMskToBitPosU5Imm(Imm, DL);
|
|
}
|
|
|
|
// XformMskToBitPosU3Imm - Returns the bit position which the single-bit
|
|
// 8 bit mask represents. Used in Clr and Set bit immediate memops.
|
|
SDValue XformMskToBitPosU3Imm(uint8_t Imm, SDLoc DL) {
|
|
return XformMskToBitPosU5Imm(Imm, DL);
|
|
}
|
|
|
|
// Return true if there is exactly one bit set in V, i.e., if V is one of the
|
|
// following integers: 2^0, 2^1, ..., 2^31.
|
|
bool ImmIsSingleBit(uint32_t v) const {
|
|
return isPowerOf2_32(v);
|
|
}
|
|
|
|
// XformM5ToU5Imm - Return a target constant with the specified value, of
|
|
// type i32 where the negative literal is transformed into a positive literal
|
|
// for use in -= memops.
|
|
inline SDValue XformM5ToU5Imm(signed Imm, SDLoc DL) {
|
|
assert((Imm >= -31 && Imm <= -1) && "Constant out of range for Memops");
|
|
return CurDAG->getTargetConstant(-Imm, DL, MVT::i32);
|
|
}
|
|
|
|
// XformU7ToU7M1Imm - Return a target constant decremented by 1, in range
|
|
// [1..128], used in cmpb.gtu instructions.
|
|
inline SDValue XformU7ToU7M1Imm(signed Imm, SDLoc DL) {
|
|
assert((Imm >= 1 && Imm <= 128) && "Constant out of range for cmpb op");
|
|
return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i8);
|
|
}
|
|
|
|
// XformS8ToS8M1Imm - Return a target constant decremented by 1.
|
|
inline SDValue XformSToSM1Imm(signed Imm, SDLoc DL) {
|
|
return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
|
|
}
|
|
|
|
// XformU8ToU8M1Imm - Return a target constant decremented by 1.
|
|
inline SDValue XformUToUM1Imm(unsigned Imm, SDLoc DL) {
|
|
assert((Imm >= 1) && "Cannot decrement unsigned int less than 1");
|
|
return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
|
|
}
|
|
|
|
// XformSToSM2Imm - Return a target constant decremented by 2.
|
|
inline SDValue XformSToSM2Imm(unsigned Imm, SDLoc DL) {
|
|
return CurDAG->getTargetConstant(Imm - 2, DL, MVT::i32);
|
|
}
|
|
|
|
// XformSToSM3Imm - Return a target constant decremented by 3.
|
|
inline SDValue XformSToSM3Imm(unsigned Imm, SDLoc DL) {
|
|
return CurDAG->getTargetConstant(Imm - 3, DL, MVT::i32);
|
|
}
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "HexagonGenDAGISel.inc"
|
|
|
|
private:
|
|
bool isValueExtension(const SDValue &Val, unsigned FromBits, SDValue &Src);
|
|
bool isAlignedMemNode(const MemSDNode *N) const;
|
|
}; // end HexagonDAGToDAGISel
|
|
} // end anonymous namespace
|
|
|
|
|
|
/// createHexagonISelDag - This pass converts a legalized DAG into a
|
|
/// Hexagon-specific DAG, ready for instruction scheduling.
|
|
///
|
|
namespace llvm {
|
|
FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
|
|
CodeGenOpt::Level OptLevel) {
|
|
return new HexagonDAGToDAGISel(TM, OptLevel);
|
|
}
|
|
}
|
|
|
|
static void initializePassOnce(PassRegistry &Registry) {
|
|
const char *Name = "Hexagon DAG->DAG Pattern Instruction Selection";
|
|
PassInfo *PI = new PassInfo(Name, "hexagon-isel",
|
|
&SelectionDAGISel::ID, nullptr, false, false);
|
|
Registry.registerPass(*PI, true);
|
|
}
|
|
|
|
void llvm::initializeHexagonDAGToDAGISelPass(PassRegistry &Registry) {
|
|
CALL_ONCE_INITIALIZATION(initializePassOnce)
|
|
}
|
|
|
|
|
|
// Intrinsics that return a a predicate.
|
|
static bool doesIntrinsicReturnPredicate(unsigned ID) {
|
|
switch (ID) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::hexagon_C2_cmpeq:
|
|
case Intrinsic::hexagon_C2_cmpgt:
|
|
case Intrinsic::hexagon_C2_cmpgtu:
|
|
case Intrinsic::hexagon_C2_cmpgtup:
|
|
case Intrinsic::hexagon_C2_cmpgtp:
|
|
case Intrinsic::hexagon_C2_cmpeqp:
|
|
case Intrinsic::hexagon_C2_bitsset:
|
|
case Intrinsic::hexagon_C2_bitsclr:
|
|
case Intrinsic::hexagon_C2_cmpeqi:
|
|
case Intrinsic::hexagon_C2_cmpgti:
|
|
case Intrinsic::hexagon_C2_cmpgtui:
|
|
case Intrinsic::hexagon_C2_cmpgei:
|
|
case Intrinsic::hexagon_C2_cmpgeui:
|
|
case Intrinsic::hexagon_C2_cmplt:
|
|
case Intrinsic::hexagon_C2_cmpltu:
|
|
case Intrinsic::hexagon_C2_bitsclri:
|
|
case Intrinsic::hexagon_C2_and:
|
|
case Intrinsic::hexagon_C2_or:
|
|
case Intrinsic::hexagon_C2_xor:
|
|
case Intrinsic::hexagon_C2_andn:
|
|
case Intrinsic::hexagon_C2_not:
|
|
case Intrinsic::hexagon_C2_orn:
|
|
case Intrinsic::hexagon_C2_pxfer_map:
|
|
case Intrinsic::hexagon_C2_any8:
|
|
case Intrinsic::hexagon_C2_all8:
|
|
case Intrinsic::hexagon_A2_vcmpbeq:
|
|
case Intrinsic::hexagon_A2_vcmpbgtu:
|
|
case Intrinsic::hexagon_A2_vcmpheq:
|
|
case Intrinsic::hexagon_A2_vcmphgt:
|
|
case Intrinsic::hexagon_A2_vcmphgtu:
|
|
case Intrinsic::hexagon_A2_vcmpweq:
|
|
case Intrinsic::hexagon_A2_vcmpwgt:
|
|
case Intrinsic::hexagon_A2_vcmpwgtu:
|
|
case Intrinsic::hexagon_C2_tfrrp:
|
|
case Intrinsic::hexagon_S2_tstbit_i:
|
|
case Intrinsic::hexagon_S2_tstbit_r:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectIndexedLoadSignExtend64(LoadSDNode *LD,
|
|
unsigned Opcode,
|
|
SDLoc dl) {
|
|
SDValue Chain = LD->getChain();
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Offset = LD->getOffset();
|
|
SDNode *OffsetNode = Offset.getNode();
|
|
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
|
|
|
|
if (HII->isValidAutoIncImm(LoadedVT, Val)) {
|
|
SDValue TargetConst = CurDAG->getTargetConstant(Val, dl, MVT::i32);
|
|
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::i32,
|
|
MVT::Other, Base, TargetConst,
|
|
Chain);
|
|
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
|
|
SDValue(Result_1, 0));
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
|
|
const SDValue Froms[] = { SDValue(LD, 0),
|
|
SDValue(LD, 1),
|
|
SDValue(LD, 2) };
|
|
const SDValue Tos[] = { SDValue(Result_2, 0),
|
|
SDValue(Result_1, 1),
|
|
SDValue(Result_1, 2) };
|
|
ReplaceUses(Froms, Tos, 3);
|
|
return Result_2;
|
|
}
|
|
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
|
|
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
|
|
Base, TargetConst0, Chain);
|
|
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
|
|
SDValue(Result_1, 0));
|
|
SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
|
|
Base, TargetConstVal,
|
|
SDValue(Result_1, 1));
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
|
|
const SDValue Froms[] = { SDValue(LD, 0),
|
|
SDValue(LD, 1),
|
|
SDValue(LD, 2) };
|
|
const SDValue Tos[] = { SDValue(Result_2, 0),
|
|
SDValue(Result_3, 0),
|
|
SDValue(Result_1, 1) };
|
|
ReplaceUses(Froms, Tos, 3);
|
|
return Result_2;
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectIndexedLoadZeroExtend64(LoadSDNode *LD,
|
|
unsigned Opcode,
|
|
SDLoc dl) {
|
|
SDValue Chain = LD->getChain();
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Offset = LD->getOffset();
|
|
SDNode *OffsetNode = Offset.getNode();
|
|
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
|
|
|
|
if (HII->isValidAutoIncImm(LoadedVT, Val)) {
|
|
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
|
|
MVT::i32, MVT::Other, Base,
|
|
TargetConstVal, Chain);
|
|
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A4_combineir, dl,
|
|
MVT::i64, MVT::Other,
|
|
TargetConst0,
|
|
SDValue(Result_1,0));
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
|
|
const SDValue Froms[] = { SDValue(LD, 0),
|
|
SDValue(LD, 1),
|
|
SDValue(LD, 2) };
|
|
const SDValue Tos[] = { SDValue(Result_2, 0),
|
|
SDValue(Result_1, 1),
|
|
SDValue(Result_1, 2) };
|
|
ReplaceUses(Froms, Tos, 3);
|
|
return Result_2;
|
|
}
|
|
|
|
// Generate an indirect load.
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
|
|
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
|
|
MVT::Other, Base, TargetConst0,
|
|
Chain);
|
|
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A4_combineir, dl,
|
|
MVT::i64, MVT::Other,
|
|
TargetConst0,
|
|
SDValue(Result_1,0));
|
|
// Add offset to base.
|
|
SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
|
|
Base, TargetConstVal,
|
|
SDValue(Result_1, 1));
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
|
|
const SDValue Froms[] = { SDValue(LD, 0),
|
|
SDValue(LD, 1),
|
|
SDValue(LD, 2) };
|
|
const SDValue Tos[] = { SDValue(Result_2, 0), // Load value.
|
|
SDValue(Result_3, 0), // New address.
|
|
SDValue(Result_1, 1) };
|
|
ReplaceUses(Froms, Tos, 3);
|
|
return Result_2;
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, SDLoc dl) {
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Offset = LD->getOffset();
|
|
SDNode *OffsetNode = Offset.getNode();
|
|
// Get the constant value.
|
|
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
unsigned Opcode = 0;
|
|
|
|
// Check for zero extended loads. Treat any-extend loads as zero extended
|
|
// loads.
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
|
|
bool HasVecOffset = false;
|
|
|
|
// Figure out the opcode.
|
|
if (LoadedVT == MVT::i64) {
|
|
if (HII->isValidAutoIncImm(LoadedVT, Val))
|
|
Opcode = Hexagon::L2_loadrd_pi;
|
|
else
|
|
Opcode = Hexagon::L2_loadrd_io;
|
|
} else if (LoadedVT == MVT::i32) {
|
|
if (HII->isValidAutoIncImm(LoadedVT, Val))
|
|
Opcode = Hexagon::L2_loadri_pi;
|
|
else
|
|
Opcode = Hexagon::L2_loadri_io;
|
|
} else if (LoadedVT == MVT::i16) {
|
|
if (HII->isValidAutoIncImm(LoadedVT, Val))
|
|
Opcode = IsZeroExt ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadrh_pi;
|
|
else
|
|
Opcode = IsZeroExt ? Hexagon::L2_loadruh_io : Hexagon::L2_loadrh_io;
|
|
} else if (LoadedVT == MVT::i8) {
|
|
if (HII->isValidAutoIncImm(LoadedVT, Val))
|
|
Opcode = IsZeroExt ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrb_pi;
|
|
else
|
|
Opcode = IsZeroExt ? Hexagon::L2_loadrub_io : Hexagon::L2_loadrb_io;
|
|
} else if (LoadedVT == MVT::v16i32 || LoadedVT == MVT::v8i64 ||
|
|
LoadedVT == MVT::v32i16 || LoadedVT == MVT::v64i8) {
|
|
HasVecOffset = true;
|
|
bool Aligned = isAlignedMemNode(LD);
|
|
if (HII->isValidAutoIncImm(LoadedVT, Val))
|
|
Opcode = Aligned ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32Ub_pi;
|
|
else
|
|
Opcode = Aligned ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32Ub_ai;
|
|
// 128B
|
|
} else if (LoadedVT == MVT::v32i32 || LoadedVT == MVT::v16i64 ||
|
|
LoadedVT == MVT::v64i16 || LoadedVT == MVT::v128i8) {
|
|
if (HST->useHVXOps()) {
|
|
bool Aligned = isAlignedMemNode(LD);
|
|
HasVecOffset = true;
|
|
if (HII->isValidAutoIncImm(LoadedVT, Val))
|
|
Opcode = Aligned ? Hexagon::V6_vL32b_pi_128B
|
|
: Hexagon::V6_vL32Ub_pi_128B;
|
|
else
|
|
Opcode = Aligned ? Hexagon::V6_vL32b_ai_128B
|
|
: Hexagon::V6_vL32Ub_ai_128B;
|
|
}
|
|
} else
|
|
llvm_unreachable("unknown memory type");
|
|
|
|
// For zero extended i64 loads, we need to add combine instructions.
|
|
if (LD->getValueType(0) == MVT::i64 && IsZeroExt)
|
|
return SelectIndexedLoadZeroExtend64(LD, Opcode, dl);
|
|
// Handle sign extended i64 loads.
|
|
if (LD->getValueType(0) == MVT::i64 && ExtType == ISD::SEXTLOAD)
|
|
return SelectIndexedLoadSignExtend64(LD, Opcode, dl);
|
|
|
|
if (HII->isValidAutoIncImm(LoadedVT, Val)) {
|
|
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
|
|
SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
|
|
LD->getValueType(0),
|
|
MVT::i32, MVT::Other, Base,
|
|
TargetConstVal, Chain);
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
|
|
if (HasVecOffset) {
|
|
const SDValue Froms[] = { SDValue(LD, 0),
|
|
SDValue(LD, 2)
|
|
};
|
|
const SDValue Tos[] = { SDValue(Result, 0),
|
|
SDValue(Result, 2)
|
|
};
|
|
ReplaceUses(Froms, Tos, 2);
|
|
} else {
|
|
const SDValue Froms[] = { SDValue(LD, 0),
|
|
SDValue(LD, 1),
|
|
SDValue(LD, 2)
|
|
};
|
|
const SDValue Tos[] = { SDValue(Result, 0),
|
|
SDValue(Result, 1),
|
|
SDValue(Result, 2)
|
|
};
|
|
ReplaceUses(Froms, Tos, 3);
|
|
}
|
|
return Result;
|
|
} else {
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
|
|
SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl,
|
|
LD->getValueType(0),
|
|
MVT::Other, Base, TargetConst0,
|
|
Chain);
|
|
SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
|
|
Base, TargetConstVal,
|
|
SDValue(Result_1, 1));
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = LD->getMemOperand();
|
|
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
|
|
const SDValue Froms[] = { SDValue(LD, 0),
|
|
SDValue(LD, 1),
|
|
SDValue(LD, 2)
|
|
};
|
|
const SDValue Tos[] = { SDValue(Result_1, 0),
|
|
SDValue(Result_2, 0),
|
|
SDValue(Result_1, 1)
|
|
};
|
|
ReplaceUses(Froms, Tos, 3);
|
|
return Result_1;
|
|
}
|
|
}
|
|
|
|
|
|
MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
|
|
if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
|
|
return nullptr;
|
|
|
|
SDLoc dl(IntN);
|
|
unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
|
|
|
|
static std::map<unsigned,unsigned> LoadPciMap = {
|
|
{ Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci },
|
|
{ Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
|
|
{ Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci },
|
|
{ Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
|
|
{ Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci },
|
|
{ Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci },
|
|
};
|
|
auto FLC = LoadPciMap.find(IntNo);
|
|
if (FLC != LoadPciMap.end()) {
|
|
SDNode *Mod = CurDAG->getMachineNode(Hexagon::A2_tfrrcr, dl, MVT::i32,
|
|
IntN->getOperand(4));
|
|
EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
|
|
EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
|
|
// Operands: { Base, Increment, Modifier, Chain }
|
|
auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
|
|
SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
|
|
MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
|
|
{ IntN->getOperand(2), I, SDValue(Mod,0), IntN->getOperand(0) });
|
|
return Res;
|
|
}
|
|
|
|
static std::map<unsigned,unsigned> LoadPbrMap = {
|
|
{ Intrinsic::hexagon_brev_ldb, Hexagon::L2_loadrb_pbr },
|
|
{ Intrinsic::hexagon_brev_ldub, Hexagon::L2_loadrub_pbr },
|
|
{ Intrinsic::hexagon_brev_ldh, Hexagon::L2_loadrh_pbr },
|
|
{ Intrinsic::hexagon_brev_lduh, Hexagon::L2_loadruh_pbr },
|
|
{ Intrinsic::hexagon_brev_ldw, Hexagon::L2_loadri_pbr },
|
|
{ Intrinsic::hexagon_brev_ldd, Hexagon::L2_loadrd_pbr },
|
|
};
|
|
auto FLB = LoadPbrMap.find(IntNo);
|
|
if (FLB != LoadPbrMap.end()) {
|
|
SDNode *Mod = CurDAG->getMachineNode(Hexagon::A2_tfrrcr, dl, MVT::i32,
|
|
IntN->getOperand(4));
|
|
EVT ValTy = (IntNo == Intrinsic::hexagon_brev_ldd) ? MVT::i64 : MVT::i32;
|
|
EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
|
|
// Operands: { Base, Modifier, Chain }
|
|
MachineSDNode *Res = CurDAG->getMachineNode(FLB->second, dl, RTys,
|
|
{ IntN->getOperand(2), SDValue(Mod,0), IntN->getOperand(0) });
|
|
return Res;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
|
|
SDNode *IntN) {
|
|
// The "LoadN" is just a machine load instruction. The intrinsic also
|
|
// involves storing it. Generate an appropriate store to the location
|
|
// given in the intrinsic's operand(3).
|
|
uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
|
|
unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
|
|
HexagonII::MemAccesSizeMask;
|
|
unsigned Size = 1U << (SizeBits-1);
|
|
|
|
SDLoc dl(IntN);
|
|
MachinePointerInfo PI;
|
|
SDValue TS;
|
|
SDValue Loc = IntN->getOperand(3);
|
|
|
|
if (Size >= 4)
|
|
TS = CurDAG->getStore(SDValue(LoadN,2), dl, SDValue(LoadN, 0), Loc, PI,
|
|
false, false, Size);
|
|
else
|
|
TS = CurDAG->getTruncStore(SDValue(LoadN,2), dl, SDValue(LoadN,0), Loc, PI,
|
|
MVT::getIntegerVT(Size*8), false, false, Size);
|
|
SDNode *StoreN = SelectStore(TS.getNode());
|
|
|
|
// Load's results are { Loaded value, Updated pointer, Chain }
|
|
ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
|
|
ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
|
|
return StoreN;
|
|
}
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectLoadOfLoadIntrinsic(LoadSDNode *N) {
|
|
// The intrinsics for load circ/brev perform two operations:
|
|
// 1. Load a value V from the specified location, using the addressing
|
|
// mode corresponding to the intrinsic.
|
|
// 2. Store V into a specified location. This location is typically a
|
|
// local, temporary object.
|
|
// In many cases, the program using these intrinsics will immediately
|
|
// load V again from the local object. In those cases, when certain
|
|
// conditions are met, the last load can be removed.
|
|
// This function identifies and optimizes this pattern. If the pattern
|
|
// cannot be optimized, it returns nullptr, which will cause the load
|
|
// to be selected separately from the intrinsic (which will be handled
|
|
// in SelectIntrinsicWChain).
|
|
|
|
SDValue Ch = N->getOperand(0);
|
|
SDValue Loc = N->getOperand(1);
|
|
|
|
// Assume that the load and the intrinsic are connected directly with a
|
|
// chain:
|
|
// t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C
|
|
// t2: i32,ch = load t1:1, Loc, ...
|
|
SDNode *C = Ch.getNode();
|
|
|
|
if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
|
|
return nullptr;
|
|
|
|
// The second load can only be eliminated if its extension type matches
|
|
// that of the load instruction corresponding to the intrinsic. The user
|
|
// can provide an address of an unsigned variable to store the result of
|
|
// a sign-extending intrinsic into (or the other way around).
|
|
ISD::LoadExtType IntExt;
|
|
switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) {
|
|
case Intrinsic::hexagon_brev_ldub:
|
|
case Intrinsic::hexagon_brev_lduh:
|
|
case Intrinsic::hexagon_circ_ldub:
|
|
case Intrinsic::hexagon_circ_lduh:
|
|
IntExt = ISD::ZEXTLOAD;
|
|
break;
|
|
case Intrinsic::hexagon_brev_ldw:
|
|
case Intrinsic::hexagon_brev_ldd:
|
|
case Intrinsic::hexagon_circ_ldw:
|
|
case Intrinsic::hexagon_circ_ldd:
|
|
IntExt = ISD::NON_EXTLOAD;
|
|
break;
|
|
default:
|
|
IntExt = ISD::SEXTLOAD;
|
|
break;
|
|
}
|
|
if (N->getExtensionType() != IntExt)
|
|
return nullptr;
|
|
|
|
// Make sure the target location for the loaded value in the load intrinsic
|
|
// is the location from which LD (or N) is loading.
|
|
if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
|
|
return nullptr;
|
|
|
|
if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
|
|
SDNode *S = StoreInstrForLoadIntrinsic(L, C);
|
|
SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
|
|
SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
|
|
ReplaceUses(F, T, array_lengthof(T));
|
|
// This transformation will leave the intrinsic dead. If it remains in
|
|
// the DAG, the selection code will see it again, but without the load,
|
|
// and it will generate a store that is normally required for it.
|
|
CurDAG->RemoveDeadNodes();
|
|
return L;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
|
|
SDLoc dl(N);
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
ISD::MemIndexedMode AM = LD->getAddressingMode();
|
|
|
|
// Handle indexed loads.
|
|
if (AM != ISD::UNINDEXED)
|
|
return SelectIndexedLoad(LD, dl);
|
|
|
|
// Handle patterns using circ/brev load intrinsics.
|
|
if (SDNode *LI = SelectLoadOfLoadIntrinsic(LD))
|
|
return LI;
|
|
|
|
return SelectCode(LD);
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, SDLoc dl) {
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Base = ST->getBasePtr();
|
|
SDValue Offset = ST->getOffset();
|
|
SDValue Value = ST->getValue();
|
|
SDNode *OffsetNode = Offset.getNode();
|
|
// Get the constant value.
|
|
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
|
|
EVT StoredVT = ST->getMemoryVT();
|
|
EVT ValueVT = Value.getValueType();
|
|
|
|
// Offset value must be within representable range
|
|
// and must have correct alignment properties.
|
|
if (HII->isValidAutoIncImm(StoredVT, Val)) {
|
|
unsigned Opcode = 0;
|
|
|
|
// Figure out the post inc version of opcode.
|
|
if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_pi;
|
|
else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_pi;
|
|
else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_pi;
|
|
else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_pi;
|
|
else if (StoredVT == MVT::v16i32 || StoredVT == MVT::v8i64 ||
|
|
StoredVT == MVT::v32i16 || StoredVT == MVT::v64i8) {
|
|
if (isAlignedMemNode(ST))
|
|
Opcode = Hexagon::V6_vS32b_pi;
|
|
else
|
|
Opcode = Hexagon::V6_vS32Ub_pi;
|
|
}
|
|
// 128B
|
|
else if (StoredVT == MVT::v32i32 || StoredVT == MVT::v16i64 ||
|
|
StoredVT == MVT::v64i16 || StoredVT == MVT::v128i8) {
|
|
if (HST->useHVXOps())
|
|
Opcode = isAlignedMemNode(ST) ? Hexagon::V6_vS32b_pi_128B
|
|
: Hexagon::V6_vS32Ub_pi_128B;
|
|
} else
|
|
llvm_unreachable("unknown memory type");
|
|
|
|
if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
|
|
assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
|
|
Value = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg,
|
|
dl, MVT::i32, Value);
|
|
}
|
|
SDValue Ops[] = {Base, CurDAG->getTargetConstant(Val, dl, MVT::i32), Value,
|
|
Chain};
|
|
// Build post increment store.
|
|
SDNode* Result = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
|
|
MVT::Other, Ops);
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = ST->getMemOperand();
|
|
cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
ReplaceUses(ST, Result);
|
|
ReplaceUses(SDValue(ST,1), SDValue(Result,1));
|
|
return Result;
|
|
}
|
|
|
|
// Note: Order of operands matches the def of instruction:
|
|
// def S2_storerd_io
|
|
// : STInst<(outs), (ins IntRegs:$base, imm:$offset, DoubleRegs:$src1), ...
|
|
// and it differs for POST_ST* for instance.
|
|
SDValue Ops[] = { Base, CurDAG->getTargetConstant(0, dl, MVT::i32), Value,
|
|
Chain};
|
|
unsigned Opcode = 0;
|
|
|
|
// Figure out the opcode.
|
|
if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_io;
|
|
else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_io;
|
|
else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_io;
|
|
else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_io;
|
|
else if (StoredVT == MVT::v16i32 || StoredVT == MVT::v8i64 ||
|
|
StoredVT == MVT::v32i16 || StoredVT == MVT::v64i8) {
|
|
if (isAlignedMemNode(ST))
|
|
Opcode = Hexagon::V6_vS32b_ai;
|
|
else
|
|
Opcode = Hexagon::V6_vS32Ub_ai;
|
|
}
|
|
// 128B
|
|
else if (StoredVT == MVT::v32i32 || StoredVT == MVT::v16i64 ||
|
|
StoredVT == MVT::v64i16 || StoredVT == MVT::v128i8) {
|
|
if (isAlignedMemNode(ST))
|
|
Opcode = Hexagon::V6_vS32b_ai_128B;
|
|
else
|
|
Opcode = Hexagon::V6_vS32Ub_ai_128B;
|
|
}
|
|
else llvm_unreachable("unknown memory type");
|
|
|
|
// Build regular store.
|
|
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
|
|
SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
|
|
// Build splitted incriment instruction.
|
|
SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
|
|
Base,
|
|
TargetConstVal,
|
|
SDValue(Result_1, 0));
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = ST->getMemOperand();
|
|
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
ReplaceUses(SDValue(ST,0), SDValue(Result_2,0));
|
|
ReplaceUses(SDValue(ST,1), SDValue(Result_1,0));
|
|
return Result_2;
|
|
}
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectStore(SDNode *N) {
|
|
SDLoc dl(N);
|
|
StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
ISD::MemIndexedMode AM = ST->getAddressingMode();
|
|
|
|
// Handle indexed stores.
|
|
if (AM != ISD::UNINDEXED) {
|
|
return SelectIndexedStore(ST, dl);
|
|
}
|
|
|
|
return SelectCode(ST);
|
|
}
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectMul(SDNode *N) {
|
|
SDLoc dl(N);
|
|
|
|
//
|
|
// %conv.i = sext i32 %tmp1 to i64
|
|
// %conv2.i = sext i32 %add to i64
|
|
// %mul.i = mul nsw i64 %conv2.i, %conv.i
|
|
//
|
|
// --- match with the following ---
|
|
//
|
|
// %mul.i = mpy (%tmp1, %add)
|
|
//
|
|
|
|
if (N->getValueType(0) == MVT::i64) {
|
|
// Shifting a i64 signed multiply.
|
|
SDValue MulOp0 = N->getOperand(0);
|
|
SDValue MulOp1 = N->getOperand(1);
|
|
|
|
SDValue OP0;
|
|
SDValue OP1;
|
|
|
|
// Handle sign_extend and sextload.
|
|
if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
|
|
SDValue Sext0 = MulOp0.getOperand(0);
|
|
if (Sext0.getNode()->getValueType(0) != MVT::i32) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
OP0 = Sext0;
|
|
} else if (MulOp0.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
|
|
if (LD->getMemoryVT() != MVT::i32 ||
|
|
LD->getExtensionType() != ISD::SEXTLOAD ||
|
|
LD->getAddressingMode() != ISD::UNINDEXED) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
SDValue Chain = LD->getChain();
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
OP0 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
|
|
MVT::Other,
|
|
LD->getBasePtr(), TargetConst0,
|
|
Chain), 0);
|
|
} else {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
// Same goes for the second operand.
|
|
if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
|
|
SDValue Sext1 = MulOp1.getOperand(0);
|
|
if (Sext1.getNode()->getValueType(0) != MVT::i32) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
OP1 = Sext1;
|
|
} else if (MulOp1.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
|
|
if (LD->getMemoryVT() != MVT::i32 ||
|
|
LD->getExtensionType() != ISD::SEXTLOAD ||
|
|
LD->getAddressingMode() != ISD::UNINDEXED) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
SDValue Chain = LD->getChain();
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
OP1 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
|
|
MVT::Other,
|
|
LD->getBasePtr(), TargetConst0,
|
|
Chain), 0);
|
|
} else {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
// Generate a mpy instruction.
|
|
SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_dpmpyss_s0, dl, MVT::i64,
|
|
OP0, OP1);
|
|
ReplaceUses(N, Result);
|
|
return Result;
|
|
}
|
|
|
|
return SelectCode(N);
|
|
}
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
|
|
SDLoc dl(N);
|
|
if (N->getValueType(0) == MVT::i32) {
|
|
SDValue Shl_0 = N->getOperand(0);
|
|
SDValue Shl_1 = N->getOperand(1);
|
|
// RHS is const.
|
|
if (Shl_1.getOpcode() == ISD::Constant) {
|
|
if (Shl_0.getOpcode() == ISD::MUL) {
|
|
SDValue Mul_0 = Shl_0.getOperand(0); // Val
|
|
SDValue Mul_1 = Shl_0.getOperand(1); // Const
|
|
// RHS of mul is const.
|
|
if (Mul_1.getOpcode() == ISD::Constant) {
|
|
int32_t ShlConst =
|
|
cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
|
|
int32_t MulConst =
|
|
cast<ConstantSDNode>(Mul_1.getNode())->getSExtValue();
|
|
int32_t ValConst = MulConst << ShlConst;
|
|
SDValue Val = CurDAG->getTargetConstant(ValConst, dl,
|
|
MVT::i32);
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode()))
|
|
if (isInt<9>(CN->getSExtValue())) {
|
|
SDNode* Result =
|
|
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
|
|
MVT::i32, Mul_0, Val);
|
|
ReplaceUses(N, Result);
|
|
return Result;
|
|
}
|
|
|
|
}
|
|
} else if (Shl_0.getOpcode() == ISD::SUB) {
|
|
SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
|
|
SDValue Sub_1 = Shl_0.getOperand(1); // Val
|
|
if (Sub_0.getOpcode() == ISD::Constant) {
|
|
int32_t SubConst =
|
|
cast<ConstantSDNode>(Sub_0.getNode())->getSExtValue();
|
|
if (SubConst == 0) {
|
|
if (Sub_1.getOpcode() == ISD::SHL) {
|
|
SDValue Shl2_0 = Sub_1.getOperand(0); // Val
|
|
SDValue Shl2_1 = Sub_1.getOperand(1); // Const
|
|
if (Shl2_1.getOpcode() == ISD::Constant) {
|
|
int32_t ShlConst =
|
|
cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
|
|
int32_t Shl2Const =
|
|
cast<ConstantSDNode>(Shl2_1.getNode())->getSExtValue();
|
|
int32_t ValConst = 1 << (ShlConst+Shl2Const);
|
|
SDValue Val = CurDAG->getTargetConstant(-ValConst, dl,
|
|
MVT::i32);
|
|
if (ConstantSDNode *CN =
|
|
dyn_cast<ConstantSDNode>(Val.getNode()))
|
|
if (isInt<9>(CN->getSExtValue())) {
|
|
SDNode* Result =
|
|
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, MVT::i32,
|
|
Shl2_0, Val);
|
|
ReplaceUses(N, Result);
|
|
return Result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return SelectCode(N);
|
|
}
|
|
|
|
|
|
//
|
|
// If there is an zero_extend followed an intrinsic in DAG (this means - the
|
|
// result of the intrinsic is predicate); convert the zero_extend to
|
|
// transfer instruction.
|
|
//
|
|
// Zero extend -> transfer is lowered here. Otherwise, zero_extend will be
|
|
// converted into a MUX as predicate registers defined as 1 bit in the
|
|
// compiler. Architecture defines them as 8-bit registers.
|
|
// We want to preserve all the lower 8-bits and, not just 1 LSB bit.
|
|
//
|
|
SDNode *HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) {
|
|
SDLoc dl(N);
|
|
|
|
SDValue Op0 = N->getOperand(0);
|
|
EVT OpVT = Op0.getValueType();
|
|
unsigned OpBW = OpVT.getSizeInBits();
|
|
|
|
// Special handling for zero-extending a vector of booleans.
|
|
if (OpVT.isVector() && OpVT.getVectorElementType() == MVT::i1 && OpBW <= 64) {
|
|
SDNode *Mask = CurDAG->getMachineNode(Hexagon::C2_mask, dl, MVT::i64, Op0);
|
|
unsigned NE = OpVT.getVectorNumElements();
|
|
EVT ExVT = N->getValueType(0);
|
|
unsigned ES = ExVT.getVectorElementType().getSizeInBits();
|
|
uint64_t MV = 0, Bit = 1;
|
|
for (unsigned i = 0; i < NE; ++i) {
|
|
MV |= Bit;
|
|
Bit <<= ES;
|
|
}
|
|
SDValue Ones = CurDAG->getTargetConstant(MV, dl, MVT::i64);
|
|
SDNode *OnesReg = CurDAG->getMachineNode(Hexagon::CONST64_Int_Real, dl,
|
|
MVT::i64, Ones);
|
|
if (ExVT.getSizeInBits() == 32) {
|
|
SDNode *And = CurDAG->getMachineNode(Hexagon::A2_andp, dl, MVT::i64,
|
|
SDValue(Mask,0), SDValue(OnesReg,0));
|
|
SDValue SubR = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
|
|
MVT::i32);
|
|
return CurDAG->getMachineNode(Hexagon::EXTRACT_SUBREG, dl, ExVT,
|
|
SDValue(And,0), SubR);
|
|
}
|
|
return CurDAG->getMachineNode(Hexagon::A2_andp, dl, ExVT,
|
|
SDValue(Mask,0), SDValue(OnesReg,0));
|
|
}
|
|
|
|
SDNode *IsIntrinsic = N->getOperand(0).getNode();
|
|
if ((IsIntrinsic->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) {
|
|
unsigned ID =
|
|
cast<ConstantSDNode>(IsIntrinsic->getOperand(0))->getZExtValue();
|
|
if (doesIntrinsicReturnPredicate(ID)) {
|
|
// Now we need to differentiate target data types.
|
|
if (N->getValueType(0) == MVT::i64) {
|
|
// Convert the zero_extend to Rs = Pd followed by A2_combinew(0,Rs).
|
|
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
|
|
SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
|
|
MVT::i32,
|
|
SDValue(IsIntrinsic, 0));
|
|
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl,
|
|
MVT::i32,
|
|
TargetConst0);
|
|
SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
|
|
MVT::i64, MVT::Other,
|
|
SDValue(Result_2, 0),
|
|
SDValue(Result_1, 0));
|
|
ReplaceUses(N, Result_3);
|
|
return Result_3;
|
|
}
|
|
if (N->getValueType(0) == MVT::i32) {
|
|
// Convert the zero_extend to Rs = Pd
|
|
SDNode* RsPd = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
|
|
MVT::i32,
|
|
SDValue(IsIntrinsic, 0));
|
|
ReplaceUses(N, RsPd);
|
|
return RsPd;
|
|
}
|
|
llvm_unreachable("Unexpected value type");
|
|
}
|
|
}
|
|
return SelectCode(N);
|
|
}
|
|
|
|
|
|
//
|
|
// Handling intrinsics for circular load and bitreverse load.
|
|
//
|
|
SDNode *HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
|
|
if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N))
|
|
return StoreInstrForLoadIntrinsic(L, N);
|
|
return SelectCode(N);
|
|
}
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
|
|
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
unsigned Bits;
|
|
switch (IID) {
|
|
case Intrinsic::hexagon_S2_vsplatrb:
|
|
Bits = 8;
|
|
break;
|
|
case Intrinsic::hexagon_S2_vsplatrh:
|
|
Bits = 16;
|
|
break;
|
|
default:
|
|
return SelectCode(N);
|
|
}
|
|
|
|
SDValue const &V = N->getOperand(1);
|
|
SDValue U;
|
|
if (isValueExtension(V, Bits, U)) {
|
|
SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
|
|
N->getOperand(0), U);
|
|
return SelectCode(R.getNode());
|
|
}
|
|
return SelectCode(N);
|
|
}
|
|
|
|
//
|
|
// Map floating point constant values.
|
|
//
|
|
SDNode *HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
|
|
SDLoc dl(N);
|
|
ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
|
|
APFloat APF = CN->getValueAPF();
|
|
if (N->getValueType(0) == MVT::f32) {
|
|
return CurDAG->getMachineNode(Hexagon::TFRI_f, dl, MVT::f32,
|
|
CurDAG->getTargetConstantFP(APF.convertToFloat(), dl, MVT::f32));
|
|
}
|
|
else if (N->getValueType(0) == MVT::f64) {
|
|
return CurDAG->getMachineNode(Hexagon::CONST64_Float_Real, dl, MVT::f64,
|
|
CurDAG->getTargetConstantFP(APF.convertToDouble(), dl, MVT::f64));
|
|
}
|
|
|
|
return SelectCode(N);
|
|
}
|
|
|
|
//
|
|
// Map predicate true (encoded as -1 in LLVM) to a XOR.
|
|
//
|
|
SDNode *HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
|
|
SDLoc dl(N);
|
|
if (N->getValueType(0) == MVT::i1) {
|
|
SDNode* Result = 0;
|
|
int32_t Val = cast<ConstantSDNode>(N)->getSExtValue();
|
|
if (Val == -1) {
|
|
Result = CurDAG->getMachineNode(Hexagon::TFR_PdTrue, dl, MVT::i1);
|
|
} else if (Val == 0) {
|
|
Result = CurDAG->getMachineNode(Hexagon::TFR_PdFalse, dl, MVT::i1);
|
|
}
|
|
if (Result) {
|
|
ReplaceUses(N, Result);
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
return SelectCode(N);
|
|
}
|
|
|
|
|
|
//
|
|
// Map add followed by a asr -> asr +=.
|
|
//
|
|
SDNode *HexagonDAGToDAGISel::SelectAdd(SDNode *N) {
|
|
SDLoc dl(N);
|
|
if (N->getValueType(0) != MVT::i32) {
|
|
return SelectCode(N);
|
|
}
|
|
// Identify nodes of the form: add(asr(...)).
|
|
SDNode* Src1 = N->getOperand(0).getNode();
|
|
if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse()
|
|
|| Src1->getValueType(0) != MVT::i32) {
|
|
return SelectCode(N);
|
|
}
|
|
|
|
// Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that
|
|
// Rd and Rd' are assigned to the same register
|
|
SDNode* Result = CurDAG->getMachineNode(Hexagon::S2_asr_r_r_acc, dl, MVT::i32,
|
|
N->getOperand(1),
|
|
Src1->getOperand(0),
|
|
Src1->getOperand(1));
|
|
ReplaceUses(N, Result);
|
|
|
|
return Result;
|
|
}
|
|
|
|
//
|
|
// Map the following, where possible.
|
|
// AND/FABS -> clrbit
|
|
// OR -> setbit
|
|
// XOR/FNEG ->toggle_bit.
|
|
//
|
|
SDNode *HexagonDAGToDAGISel::SelectBitOp(SDNode *N) {
|
|
SDLoc dl(N);
|
|
EVT ValueVT = N->getValueType(0);
|
|
|
|
// We handle only 32 and 64-bit bit ops.
|
|
if (!(ValueVT == MVT::i32 || ValueVT == MVT::i64 ||
|
|
ValueVT == MVT::f32 || ValueVT == MVT::f64))
|
|
return SelectCode(N);
|
|
|
|
// We handly only fabs and fneg for V5.
|
|
unsigned Opc = N->getOpcode();
|
|
if ((Opc == ISD::FABS || Opc == ISD::FNEG) && !HST->hasV5TOps())
|
|
return SelectCode(N);
|
|
|
|
int64_t Val = 0;
|
|
if (Opc != ISD::FABS && Opc != ISD::FNEG) {
|
|
if (N->getOperand(1).getOpcode() == ISD::Constant)
|
|
Val = cast<ConstantSDNode>((N)->getOperand(1))->getSExtValue();
|
|
else
|
|
return SelectCode(N);
|
|
}
|
|
|
|
if (Opc == ISD::AND) {
|
|
// Check if this is a bit-clearing AND, if not select code the usual way.
|
|
if ((ValueVT == MVT::i32 && isPowerOf2_32(~Val)) ||
|
|
(ValueVT == MVT::i64 && isPowerOf2_64(~Val)))
|
|
Val = ~Val;
|
|
else
|
|
return SelectCode(N);
|
|
}
|
|
|
|
// If OR or AND is being fed by shl, srl and, sra don't do this change,
|
|
// because Hexagon provide |= &= on shl, srl, and sra.
|
|
// Traverse the DAG to see if there is shl, srl and sra.
|
|
if (Opc == ISD::OR || Opc == ISD::AND) {
|
|
switch (N->getOperand(0)->getOpcode()) {
|
|
default:
|
|
break;
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::SHL:
|
|
return SelectCode(N);
|
|
}
|
|
}
|
|
|
|
// Make sure it's power of 2.
|
|
unsigned BitPos = 0;
|
|
if (Opc != ISD::FABS && Opc != ISD::FNEG) {
|
|
if ((ValueVT == MVT::i32 && !isPowerOf2_32(Val)) ||
|
|
(ValueVT == MVT::i64 && !isPowerOf2_64(Val)))
|
|
return SelectCode(N);
|
|
|
|
// Get the bit position.
|
|
BitPos = countTrailingZeros(uint64_t(Val));
|
|
} else {
|
|
// For fabs and fneg, it's always the 31st bit.
|
|
BitPos = 31;
|
|
}
|
|
|
|
unsigned BitOpc = 0;
|
|
// Set the right opcode for bitwise operations.
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Only bit-wise/abs/neg operations are allowed.");
|
|
case ISD::AND:
|
|
case ISD::FABS:
|
|
BitOpc = Hexagon::S2_clrbit_i;
|
|
break;
|
|
case ISD::OR:
|
|
BitOpc = Hexagon::S2_setbit_i;
|
|
break;
|
|
case ISD::XOR:
|
|
case ISD::FNEG:
|
|
BitOpc = Hexagon::S2_togglebit_i;
|
|
break;
|
|
}
|
|
|
|
SDNode *Result;
|
|
// Get the right SDVal for the opcode.
|
|
SDValue SDVal = CurDAG->getTargetConstant(BitPos, dl, MVT::i32);
|
|
|
|
if (ValueVT == MVT::i32 || ValueVT == MVT::f32) {
|
|
Result = CurDAG->getMachineNode(BitOpc, dl, ValueVT,
|
|
N->getOperand(0), SDVal);
|
|
} else {
|
|
// 64-bit gymnastic to use REG_SEQUENCE. But it's worth it.
|
|
EVT SubValueVT;
|
|
if (ValueVT == MVT::i64)
|
|
SubValueVT = MVT::i32;
|
|
else
|
|
SubValueVT = MVT::f32;
|
|
|
|
SDNode *Reg = N->getOperand(0).getNode();
|
|
SDValue RegClass = CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID,
|
|
dl, MVT::i64);
|
|
|
|
SDValue SubregHiIdx = CurDAG->getTargetConstant(Hexagon::subreg_hireg, dl,
|
|
MVT::i32);
|
|
SDValue SubregLoIdx = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
|
|
MVT::i32);
|
|
|
|
SDValue SubregHI = CurDAG->getTargetExtractSubreg(Hexagon::subreg_hireg, dl,
|
|
MVT::i32, SDValue(Reg, 0));
|
|
|
|
SDValue SubregLO = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg, dl,
|
|
MVT::i32, SDValue(Reg, 0));
|
|
|
|
// Clear/set/toggle hi or lo registers depending on the bit position.
|
|
if (SubValueVT != MVT::f32 && BitPos < 32) {
|
|
SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
|
|
SubregLO, SDVal);
|
|
const SDValue Ops[] = { RegClass, SubregHI, SubregHiIdx,
|
|
SDValue(Result0, 0), SubregLoIdx };
|
|
Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
|
|
dl, ValueVT, Ops);
|
|
} else {
|
|
if (Opc != ISD::FABS && Opc != ISD::FNEG)
|
|
SDVal = CurDAG->getTargetConstant(BitPos-32, dl, MVT::i32);
|
|
SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
|
|
SubregHI, SDVal);
|
|
const SDValue Ops[] = { RegClass, SDValue(Result0, 0), SubregHiIdx,
|
|
SubregLO, SubregLoIdx };
|
|
Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
|
|
dl, ValueVT, Ops);
|
|
}
|
|
}
|
|
|
|
ReplaceUses(N, Result);
|
|
return Result;
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
|
|
MachineFrameInfo *MFI = MF->getFrameInfo();
|
|
const HexagonFrameLowering *HFI = HST->getFrameLowering();
|
|
int FX = cast<FrameIndexSDNode>(N)->getIndex();
|
|
unsigned StkA = HFI->getStackAlignment();
|
|
unsigned MaxA = MFI->getMaxAlignment();
|
|
SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
|
|
SDLoc DL(N);
|
|
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
|
|
SDNode *R = 0;
|
|
|
|
// Use TFR_FI when:
|
|
// - the object is fixed, or
|
|
// - there are no objects with higher-than-default alignment, or
|
|
// - there are no dynamically allocated objects.
|
|
// Otherwise, use TFR_FIA.
|
|
if (FX < 0 || MaxA <= StkA || !MFI->hasVarSizedObjects()) {
|
|
R = CurDAG->getMachineNode(Hexagon::TFR_FI, DL, MVT::i32, FI, Zero);
|
|
} else {
|
|
auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
|
|
unsigned AR = HMFI.getStackAlignBaseVReg();
|
|
SDValue CH = CurDAG->getEntryNode();
|
|
SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
|
|
R = CurDAG->getMachineNode(Hexagon::TFR_FIA, DL, MVT::i32, Ops);
|
|
}
|
|
|
|
if (N->getHasDebugValue())
|
|
CurDAG->TransferDbgValues(SDValue(N, 0), SDValue(R, 0));
|
|
return R;
|
|
}
|
|
|
|
|
|
SDNode *HexagonDAGToDAGISel::Select(SDNode *N) {
|
|
if (N->isMachineOpcode()) {
|
|
N->setNodeId(-1);
|
|
return nullptr; // Already selected.
|
|
}
|
|
|
|
switch (N->getOpcode()) {
|
|
case ISD::Constant:
|
|
return SelectConstant(N);
|
|
|
|
case ISD::ConstantFP:
|
|
return SelectConstantFP(N);
|
|
|
|
case ISD::FrameIndex:
|
|
return SelectFrameIndex(N);
|
|
|
|
case ISD::ADD:
|
|
return SelectAdd(N);
|
|
|
|
case ISD::SHL:
|
|
return SelectSHL(N);
|
|
|
|
case ISD::LOAD:
|
|
return SelectLoad(N);
|
|
|
|
case ISD::STORE:
|
|
return SelectStore(N);
|
|
|
|
case ISD::MUL:
|
|
return SelectMul(N);
|
|
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::FABS:
|
|
case ISD::FNEG:
|
|
return SelectBitOp(N);
|
|
|
|
case ISD::ZERO_EXTEND:
|
|
return SelectZeroExtend(N);
|
|
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
return SelectIntrinsicWChain(N);
|
|
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
return SelectIntrinsicWOChain(N);
|
|
}
|
|
|
|
return SelectCode(N);
|
|
}
|
|
|
|
bool HexagonDAGToDAGISel::
|
|
SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
|
|
std::vector<SDValue> &OutOps) {
|
|
SDValue Inp = Op, Res;
|
|
|
|
switch (ConstraintID) {
|
|
default:
|
|
return true;
|
|
case InlineAsm::Constraint_i:
|
|
case InlineAsm::Constraint_o: // Offsetable.
|
|
case InlineAsm::Constraint_v: // Not offsetable.
|
|
case InlineAsm::Constraint_m: // Memory.
|
|
if (SelectAddrFI(Inp, Res))
|
|
OutOps.push_back(Res);
|
|
else
|
|
OutOps.push_back(Inp);
|
|
break;
|
|
}
|
|
|
|
OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
|
|
return false;
|
|
}
|
|
|
|
|
|
void HexagonDAGToDAGISel::PreprocessISelDAG() {
|
|
SelectionDAG &DAG = *CurDAG;
|
|
std::vector<SDNode*> Nodes;
|
|
for (SDNode &Node : DAG.allnodes())
|
|
Nodes.push_back(&Node);
|
|
|
|
// Simplify: (or (select c x 0) z) -> (select c (or x z) z)
|
|
// (or (select c 0 y) z) -> (select c z (or y z))
|
|
// This may not be the right thing for all targets, so do it here.
|
|
for (auto I: Nodes) {
|
|
if (I->getOpcode() != ISD::OR)
|
|
continue;
|
|
|
|
auto IsZero = [] (const SDValue &V) -> bool {
|
|
if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
|
|
return SC->isNullValue();
|
|
return false;
|
|
};
|
|
auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
|
|
if (Op.getOpcode() != ISD::SELECT)
|
|
return false;
|
|
return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
|
|
};
|
|
|
|
SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
|
|
EVT VT = I->getValueType(0);
|
|
bool SelN0 = IsSelect0(N0);
|
|
SDValue SOp = SelN0 ? N0 : N1;
|
|
SDValue VOp = SelN0 ? N1 : N0;
|
|
|
|
if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
|
|
SDValue SC = SOp.getOperand(0);
|
|
SDValue SX = SOp.getOperand(1);
|
|
SDValue SY = SOp.getOperand(2);
|
|
SDLoc DLS = SOp;
|
|
if (IsZero(SY)) {
|
|
SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
|
|
SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
|
|
DAG.ReplaceAllUsesWith(I, NewSel.getNode());
|
|
} else if (IsZero(SX)) {
|
|
SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
|
|
SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
|
|
DAG.ReplaceAllUsesWith(I, NewSel.getNode());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
|
|
auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget());
|
|
auto &HFI = *HST.getFrameLowering();
|
|
if (!HFI.needsAligna(*MF))
|
|
return;
|
|
|
|
MachineFrameInfo *MFI = MF->getFrameInfo();
|
|
MachineBasicBlock *EntryBB = &MF->front();
|
|
unsigned AR = FuncInfo->CreateReg(MVT::i32);
|
|
unsigned MaxA = MFI->getMaxAlignment();
|
|
BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::ALIGNA), AR)
|
|
.addImm(MaxA);
|
|
MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
|
|
}
|
|
|
|
// Match a frame index that can be used in an addressing mode.
|
|
bool HexagonDAGToDAGISel::SelectAddrFI(SDValue& N, SDValue &R) {
|
|
if (N.getOpcode() != ISD::FrameIndex)
|
|
return false;
|
|
auto &HFI = *HST->getFrameLowering();
|
|
MachineFrameInfo *MFI = MF->getFrameInfo();
|
|
int FX = cast<FrameIndexSDNode>(N)->getIndex();
|
|
if (!MFI->isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
|
|
return false;
|
|
R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
|
|
return SelectGlobalAddress(N, R, false);
|
|
}
|
|
|
|
inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
|
|
return SelectGlobalAddress(N, R, true);
|
|
}
|
|
|
|
bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
|
|
bool UseGP) {
|
|
switch (N.getOpcode()) {
|
|
case ISD::ADD: {
|
|
SDValue N0 = N.getOperand(0);
|
|
SDValue N1 = N.getOperand(1);
|
|
unsigned GAOpc = N0.getOpcode();
|
|
if (UseGP && GAOpc != HexagonISD::CONST32_GP)
|
|
return false;
|
|
if (!UseGP && GAOpc != HexagonISD::CONST32)
|
|
return false;
|
|
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
|
|
SDValue Addr = N0.getOperand(0);
|
|
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
|
|
if (GA->getOpcode() == ISD::TargetGlobalAddress) {
|
|
uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
|
|
R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
|
|
N.getValueType(), NewOff);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case HexagonISD::CONST32:
|
|
// The operand(0) of CONST32 is TargetGlobalAddress, which is what we
|
|
// want in the instruction.
|
|
if (!UseGP)
|
|
R = N.getOperand(0);
|
|
return !UseGP;
|
|
case HexagonISD::CONST32_GP:
|
|
if (UseGP)
|
|
R = N.getOperand(0);
|
|
return UseGP;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool HexagonDAGToDAGISel::isValueExtension(const SDValue &Val,
|
|
unsigned FromBits, SDValue &Src) {
|
|
unsigned Opc = Val.getOpcode();
|
|
switch (Opc) {
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND: {
|
|
SDValue const &Op0 = Val.getOperand(0);
|
|
EVT T = Op0.getValueType();
|
|
if (T.isInteger() && T.getSizeInBits() == FromBits) {
|
|
Src = Op0;
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
case ISD::AssertSext:
|
|
case ISD::AssertZext:
|
|
if (Val.getOperand(0).getValueType().isInteger()) {
|
|
VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
|
|
if (T->getVT().getSizeInBits() == FromBits) {
|
|
Src = Val.getOperand(0);
|
|
return true;
|
|
}
|
|
}
|
|
break;
|
|
case ISD::AND: {
|
|
// Check if this is an AND with "FromBits" of lower bits set to 1.
|
|
uint64_t FromMask = (1 << FromBits) - 1;
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
|
|
if (C->getZExtValue() == FromMask) {
|
|
Src = Val.getOperand(1);
|
|
return true;
|
|
}
|
|
}
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
|
|
if (C->getZExtValue() == FromMask) {
|
|
Src = Val.getOperand(0);
|
|
return true;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::OR:
|
|
case ISD::XOR: {
|
|
// OR/XOR with the lower "FromBits" bits set to 0.
|
|
uint64_t FromMask = (1 << FromBits) - 1;
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
|
|
if ((C->getZExtValue() & FromMask) == 0) {
|
|
Src = Val.getOperand(1);
|
|
return true;
|
|
}
|
|
}
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
|
|
if ((C->getZExtValue() & FromMask) == 0) {
|
|
Src = Val.getOperand(0);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
|
|
return N->getAlignment() >= N->getMemoryVT().getStoreSize();
|
|
}
|