forked from OSchip/llvm-project
241 lines
7.9 KiB
C++
241 lines
7.9 KiB
C++
//===-- asan_mem_test.cc --------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of AddressSanitizer, an address sanity checker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "asan_test_utils.h"
|
|
|
|
template<typename T>
|
|
void MemSetOOBTestTemplate(size_t length) {
|
|
if (length == 0) return;
|
|
size_t size = Ident(sizeof(T) * length);
|
|
T *array = Ident((T*)malloc(size));
|
|
int element = Ident(42);
|
|
int zero = Ident(0);
|
|
void *(*MEMSET)(void *s, int c, size_t n) = Ident(memset);
|
|
// memset interval inside array
|
|
MEMSET(array, element, size);
|
|
MEMSET(array, element, size - 1);
|
|
MEMSET(array + length - 1, element, sizeof(T));
|
|
MEMSET(array, element, 1);
|
|
|
|
// memset 0 bytes
|
|
MEMSET(array - 10, element, zero);
|
|
MEMSET(array - 1, element, zero);
|
|
MEMSET(array, element, zero);
|
|
MEMSET(array + length, 0, zero);
|
|
MEMSET(array + length + 1, 0, zero);
|
|
|
|
// try to memset bytes to the right of array
|
|
EXPECT_DEATH(MEMSET(array, 0, size + 1),
|
|
RightOOBWriteMessage(0));
|
|
EXPECT_DEATH(MEMSET((char*)(array + length) - 1, element, 6),
|
|
RightOOBWriteMessage(0));
|
|
EXPECT_DEATH(MEMSET(array + 1, element, size + sizeof(T)),
|
|
RightOOBWriteMessage(0));
|
|
// whole interval is to the right
|
|
EXPECT_DEATH(MEMSET(array + length + 1, 0, 10),
|
|
RightOOBWriteMessage(sizeof(T)));
|
|
|
|
// try to memset bytes to the left of array
|
|
EXPECT_DEATH(MEMSET((char*)array - 1, element, size),
|
|
LeftOOBWriteMessage(1));
|
|
EXPECT_DEATH(MEMSET((char*)array - 5, 0, 6),
|
|
LeftOOBWriteMessage(5));
|
|
if (length >= 100) {
|
|
// Large OOB, we find it only if the redzone is large enough.
|
|
EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
|
|
LeftOOBWriteMessage(5 * sizeof(T)));
|
|
}
|
|
// whole interval is to the left
|
|
EXPECT_DEATH(MEMSET(array - 2, 0, sizeof(T)),
|
|
LeftOOBWriteMessage(2 * sizeof(T)));
|
|
|
|
// try to memset bytes both to the left & to the right
|
|
EXPECT_DEATH(MEMSET((char*)array - 2, element, size + 4),
|
|
LeftOOBWriteMessage(2));
|
|
|
|
free(array);
|
|
}
|
|
|
|
TEST(AddressSanitizer, MemSetOOBTest) {
|
|
MemSetOOBTestTemplate<char>(100);
|
|
MemSetOOBTestTemplate<int>(5);
|
|
MemSetOOBTestTemplate<double>(256);
|
|
// We can test arrays of structres/classes here, but what for?
|
|
}
|
|
|
|
// Try to allocate two arrays of 'size' bytes that are near each other.
|
|
// Strictly speaking we are not guaranteed to find such two pointers,
|
|
// but given the structure of asan's allocator we will.
|
|
static bool AllocateTwoAdjacentArrays(char **x1, char **x2, size_t size) {
|
|
vector<char *> v;
|
|
bool res = false;
|
|
for (size_t i = 0; i < 1000U && !res; i++) {
|
|
v.push_back(new char[size]);
|
|
if (i == 0) continue;
|
|
sort(v.begin(), v.end());
|
|
for (size_t j = 1; j < v.size(); j++) {
|
|
assert(v[j] > v[j-1]);
|
|
if ((size_t)(v[j] - v[j-1]) < size * 2) {
|
|
*x2 = v[j];
|
|
*x1 = v[j-1];
|
|
res = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < v.size(); i++) {
|
|
if (res && v[i] == *x1) continue;
|
|
if (res && v[i] == *x2) continue;
|
|
delete [] v[i];
|
|
}
|
|
return res;
|
|
}
|
|
|
|
TEST(AddressSanitizer, LargeOOBInMemset) {
|
|
for (size_t size = 200; size < 100000; size += size / 2) {
|
|
char *x1, *x2;
|
|
if (!Ident(AllocateTwoAdjacentArrays)(&x1, &x2, size))
|
|
continue;
|
|
// fprintf(stderr, " large oob memset: %p %p %zd\n", x1, x2, size);
|
|
// Do a memset on x1 with huge out-of-bound access that will end up in x2.
|
|
EXPECT_DEATH(Ident(memset)(x1, 0, size * 2),
|
|
"is located 0 bytes to the right");
|
|
delete [] x1;
|
|
delete [] x2;
|
|
return;
|
|
}
|
|
assert(0 && "Did not find two adjacent malloc-ed pointers");
|
|
}
|
|
|
|
// Same test for memcpy and memmove functions
|
|
template <typename T, class M>
|
|
void MemTransferOOBTestTemplate(size_t length) {
|
|
if (length == 0) return;
|
|
size_t size = Ident(sizeof(T) * length);
|
|
T *src = Ident((T*)malloc(size));
|
|
T *dest = Ident((T*)malloc(size));
|
|
int zero = Ident(0);
|
|
|
|
// valid transfer of bytes between arrays
|
|
M::transfer(dest, src, size);
|
|
M::transfer(dest + 1, src, size - sizeof(T));
|
|
M::transfer(dest, src + length - 1, sizeof(T));
|
|
M::transfer(dest, src, 1);
|
|
|
|
// transfer zero bytes
|
|
M::transfer(dest - 1, src, 0);
|
|
M::transfer(dest + length, src, zero);
|
|
M::transfer(dest, src - 1, zero);
|
|
M::transfer(dest, src, zero);
|
|
|
|
// try to change mem to the right of dest
|
|
EXPECT_DEATH(M::transfer(dest + 1, src, size),
|
|
RightOOBWriteMessage(0));
|
|
EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
|
|
RightOOBWriteMessage(0));
|
|
|
|
// try to change mem to the left of dest
|
|
EXPECT_DEATH(M::transfer(dest - 2, src, size),
|
|
LeftOOBWriteMessage(2 * sizeof(T)));
|
|
EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
|
|
LeftOOBWriteMessage(3));
|
|
|
|
// try to access mem to the right of src
|
|
EXPECT_DEATH(M::transfer(dest, src + 2, size),
|
|
RightOOBReadMessage(0));
|
|
EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
|
|
RightOOBReadMessage(0));
|
|
|
|
// try to access mem to the left of src
|
|
EXPECT_DEATH(M::transfer(dest, src - 1, size),
|
|
LeftOOBReadMessage(sizeof(T)));
|
|
EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
|
|
LeftOOBReadMessage(6));
|
|
|
|
// Generally we don't need to test cases where both accessing src and writing
|
|
// to dest address to poisoned memory.
|
|
|
|
T *big_src = Ident((T*)malloc(size * 2));
|
|
T *big_dest = Ident((T*)malloc(size * 2));
|
|
// try to change mem to both sides of dest
|
|
EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
|
|
LeftOOBWriteMessage(sizeof(T)));
|
|
// try to access mem to both sides of src
|
|
EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
|
|
LeftOOBReadMessage(2 * sizeof(T)));
|
|
|
|
free(src);
|
|
free(dest);
|
|
free(big_src);
|
|
free(big_dest);
|
|
}
|
|
|
|
class MemCpyWrapper {
|
|
public:
|
|
static void* transfer(void *to, const void *from, size_t size) {
|
|
return Ident(memcpy)(to, from, size);
|
|
}
|
|
};
|
|
|
|
TEST(AddressSanitizer, MemCpyOOBTest) {
|
|
MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
|
|
MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
|
|
}
|
|
|
|
class MemMoveWrapper {
|
|
public:
|
|
static void* transfer(void *to, const void *from, size_t size) {
|
|
return Ident(memmove)(to, from, size);
|
|
}
|
|
};
|
|
|
|
TEST(AddressSanitizer, MemMoveOOBTest) {
|
|
MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
|
|
MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
|
|
}
|
|
|
|
|
|
TEST(AddressSanitizer, MemCmpOOBTest) {
|
|
size_t size = Ident(100);
|
|
char *s1 = MallocAndMemsetString(size);
|
|
char *s2 = MallocAndMemsetString(size);
|
|
// Normal memcmp calls.
|
|
Ident(memcmp(s1, s2, size));
|
|
Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
|
|
Ident(memcmp(s1 - 1, s2 - 1, 0));
|
|
// One of arguments points to not allocated memory.
|
|
EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBReadMessage(1));
|
|
EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBReadMessage(1));
|
|
EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBReadMessage(0));
|
|
EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBReadMessage(0));
|
|
// Hit unallocated memory and die.
|
|
EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBReadMessage(0));
|
|
EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBReadMessage(0));
|
|
// Zero bytes are not terminators and don't prevent from OOB.
|
|
s1[size - 1] = '\0';
|
|
s2[size - 1] = '\0';
|
|
EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBReadMessage(0));
|
|
|
|
// Even if the buffers differ in the first byte, we still assume that
|
|
// memcmp may access the whole buffer and thus reporting the overflow here:
|
|
s1[0] = 1;
|
|
s2[0] = 123;
|
|
EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBReadMessage(0));
|
|
|
|
free(s1);
|
|
free(s2);
|
|
}
|
|
|
|
|
|
|