forked from OSchip/llvm-project
1798 lines
71 KiB
C++
1798 lines
71 KiB
C++
//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//===----------------------------------------------------------------------===/
|
||
//
|
||
// This file implements C++ template argument deduction.
|
||
//
|
||
//===----------------------------------------------------------------------===/
|
||
|
||
#include "Sema.h"
|
||
#include "clang/AST/ASTContext.h"
|
||
#include "clang/AST/DeclTemplate.h"
|
||
#include "clang/AST/StmtVisitor.h"
|
||
#include "clang/AST/Expr.h"
|
||
#include "clang/AST/ExprCXX.h"
|
||
#include "clang/Parse/DeclSpec.h"
|
||
#include "llvm/Support/Compiler.h"
|
||
|
||
namespace clang {
|
||
/// \brief Various flags that control template argument deduction.
|
||
///
|
||
/// These flags can be bitwise-OR'd together.
|
||
enum TemplateDeductionFlags {
|
||
/// \brief No template argument deduction flags, which indicates the
|
||
/// strictest results for template argument deduction (as used for, e.g.,
|
||
/// matching class template partial specializations).
|
||
TDF_None = 0,
|
||
/// \brief Within template argument deduction from a function call, we are
|
||
/// matching with a parameter type for which the original parameter was
|
||
/// a reference.
|
||
TDF_ParamWithReferenceType = 0x1,
|
||
/// \brief Within template argument deduction from a function call, we
|
||
/// are matching in a case where we ignore cv-qualifiers.
|
||
TDF_IgnoreQualifiers = 0x02,
|
||
/// \brief Within template argument deduction from a function call,
|
||
/// we are matching in a case where we can perform template argument
|
||
/// deduction from a template-id of a derived class of the argument type.
|
||
TDF_DerivedClass = 0x04
|
||
};
|
||
}
|
||
|
||
using namespace clang;
|
||
|
||
static Sema::TemplateDeductionResult
|
||
DeduceTemplateArguments(ASTContext &Context,
|
||
TemplateParameterList *TemplateParams,
|
||
const TemplateArgument &Param,
|
||
const TemplateArgument &Arg,
|
||
Sema::TemplateDeductionInfo &Info,
|
||
llvm::SmallVectorImpl<TemplateArgument> &Deduced);
|
||
|
||
/// \brief If the given expression is of a form that permits the deduction
|
||
/// of a non-type template parameter, return the declaration of that
|
||
/// non-type template parameter.
|
||
static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
|
||
if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
|
||
E = IC->getSubExpr();
|
||
|
||
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
|
||
return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
|
||
|
||
return 0;
|
||
}
|
||
|
||
/// \brief Deduce the value of the given non-type template parameter
|
||
/// from the given constant.
|
||
static Sema::TemplateDeductionResult
|
||
DeduceNonTypeTemplateArgument(ASTContext &Context,
|
||
NonTypeTemplateParmDecl *NTTP,
|
||
llvm::APSInt Value,
|
||
Sema::TemplateDeductionInfo &Info,
|
||
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
|
||
assert(NTTP->getDepth() == 0 &&
|
||
"Cannot deduce non-type template argument with depth > 0");
|
||
|
||
if (Deduced[NTTP->getIndex()].isNull()) {
|
||
QualType T = NTTP->getType();
|
||
|
||
// FIXME: Make sure we didn't overflow our data type!
|
||
unsigned AllowedBits = Context.getTypeSize(T);
|
||
if (Value.getBitWidth() != AllowedBits)
|
||
Value.extOrTrunc(AllowedBits);
|
||
Value.setIsSigned(T->isSignedIntegerType());
|
||
|
||
Deduced[NTTP->getIndex()] = TemplateArgument(SourceLocation(), Value, T);
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
assert(Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral);
|
||
|
||
// If the template argument was previously deduced to a negative value,
|
||
// then our deduction fails.
|
||
const llvm::APSInt *PrevValuePtr = Deduced[NTTP->getIndex()].getAsIntegral();
|
||
if (PrevValuePtr->isNegative()) {
|
||
Info.Param = NTTP;
|
||
Info.FirstArg = Deduced[NTTP->getIndex()];
|
||
Info.SecondArg = TemplateArgument(SourceLocation(), Value, NTTP->getType());
|
||
return Sema::TDK_Inconsistent;
|
||
}
|
||
|
||
llvm::APSInt PrevValue = *PrevValuePtr;
|
||
if (Value.getBitWidth() > PrevValue.getBitWidth())
|
||
PrevValue.zext(Value.getBitWidth());
|
||
else if (Value.getBitWidth() < PrevValue.getBitWidth())
|
||
Value.zext(PrevValue.getBitWidth());
|
||
|
||
if (Value != PrevValue) {
|
||
Info.Param = NTTP;
|
||
Info.FirstArg = Deduced[NTTP->getIndex()];
|
||
Info.SecondArg = TemplateArgument(SourceLocation(), Value, NTTP->getType());
|
||
return Sema::TDK_Inconsistent;
|
||
}
|
||
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
/// \brief Deduce the value of the given non-type template parameter
|
||
/// from the given type- or value-dependent expression.
|
||
///
|
||
/// \returns true if deduction succeeded, false otherwise.
|
||
|
||
static Sema::TemplateDeductionResult
|
||
DeduceNonTypeTemplateArgument(ASTContext &Context,
|
||
NonTypeTemplateParmDecl *NTTP,
|
||
Expr *Value,
|
||
Sema::TemplateDeductionInfo &Info,
|
||
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
|
||
assert(NTTP->getDepth() == 0 &&
|
||
"Cannot deduce non-type template argument with depth > 0");
|
||
assert((Value->isTypeDependent() || Value->isValueDependent()) &&
|
||
"Expression template argument must be type- or value-dependent.");
|
||
|
||
if (Deduced[NTTP->getIndex()].isNull()) {
|
||
// FIXME: Clone the Value?
|
||
Deduced[NTTP->getIndex()] = TemplateArgument(Value);
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
|
||
// Okay, we deduced a constant in one case and a dependent expression
|
||
// in another case. FIXME: Later, we will check that instantiating the
|
||
// dependent expression gives us the constant value.
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
// FIXME: Compare the expressions for equality!
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
static Sema::TemplateDeductionResult
|
||
DeduceTemplateArguments(ASTContext &Context,
|
||
TemplateName Param,
|
||
TemplateName Arg,
|
||
Sema::TemplateDeductionInfo &Info,
|
||
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
|
||
// FIXME: Implement template argument deduction for template
|
||
// template parameters.
|
||
|
||
// FIXME: this routine does not have enough information to produce
|
||
// good diagnostics.
|
||
|
||
TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
|
||
TemplateDecl *ArgDecl = Arg.getAsTemplateDecl();
|
||
|
||
if (!ParamDecl || !ArgDecl) {
|
||
// FIXME: fill in Info.Param/Info.FirstArg
|
||
return Sema::TDK_Inconsistent;
|
||
}
|
||
|
||
ParamDecl = cast<TemplateDecl>(ParamDecl->getCanonicalDecl());
|
||
ArgDecl = cast<TemplateDecl>(ArgDecl->getCanonicalDecl());
|
||
if (ParamDecl != ArgDecl) {
|
||
// FIXME: fill in Info.Param/Info.FirstArg
|
||
return Sema::TDK_Inconsistent;
|
||
}
|
||
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
/// \brief Deduce the template arguments by comparing the template parameter
|
||
/// type (which is a template-id) with the template argument type.
|
||
///
|
||
/// \param Context the AST context in which this deduction occurs.
|
||
///
|
||
/// \param TemplateParams the template parameters that we are deducing
|
||
///
|
||
/// \param Param the parameter type
|
||
///
|
||
/// \param Arg the argument type
|
||
///
|
||
/// \param Info information about the template argument deduction itself
|
||
///
|
||
/// \param Deduced the deduced template arguments
|
||
///
|
||
/// \returns the result of template argument deduction so far. Note that a
|
||
/// "success" result means that template argument deduction has not yet failed,
|
||
/// but it may still fail, later, for other reasons.
|
||
static Sema::TemplateDeductionResult
|
||
DeduceTemplateArguments(ASTContext &Context,
|
||
TemplateParameterList *TemplateParams,
|
||
const TemplateSpecializationType *Param,
|
||
QualType Arg,
|
||
Sema::TemplateDeductionInfo &Info,
|
||
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
|
||
assert(Arg->isCanonical() && "Argument type must be canonical");
|
||
|
||
// Check whether the template argument is a dependent template-id.
|
||
// FIXME: This is untested code; it can be tested when we implement
|
||
// partial ordering of class template partial specializations.
|
||
if (const TemplateSpecializationType *SpecArg
|
||
= dyn_cast<TemplateSpecializationType>(Arg)) {
|
||
// Perform template argument deduction for the template name.
|
||
if (Sema::TemplateDeductionResult Result
|
||
= DeduceTemplateArguments(Context,
|
||
Param->getTemplateName(),
|
||
SpecArg->getTemplateName(),
|
||
Info, Deduced))
|
||
return Result;
|
||
|
||
unsigned NumArgs = Param->getNumArgs();
|
||
|
||
// FIXME: When one of the template-names refers to a
|
||
// declaration with default template arguments, do we need to
|
||
// fill in those default template arguments here? Most likely,
|
||
// the answer is "yes", but I don't see any references. This
|
||
// issue may be resolved elsewhere, because we may want to
|
||
// instantiate default template arguments when we actually write
|
||
// the template-id.
|
||
if (SpecArg->getNumArgs() != NumArgs)
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
// Perform template argument deduction on each template
|
||
// argument.
|
||
for (unsigned I = 0; I != NumArgs; ++I)
|
||
if (Sema::TemplateDeductionResult Result
|
||
= DeduceTemplateArguments(Context, TemplateParams,
|
||
Param->getArg(I),
|
||
SpecArg->getArg(I),
|
||
Info, Deduced))
|
||
return Result;
|
||
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
// If the argument type is a class template specialization, we
|
||
// perform template argument deduction using its template
|
||
// arguments.
|
||
const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
|
||
if (!RecordArg)
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
ClassTemplateSpecializationDecl *SpecArg
|
||
= dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
|
||
if (!SpecArg)
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
// Perform template argument deduction for the template name.
|
||
if (Sema::TemplateDeductionResult Result
|
||
= DeduceTemplateArguments(Context,
|
||
Param->getTemplateName(),
|
||
TemplateName(SpecArg->getSpecializedTemplate()),
|
||
Info, Deduced))
|
||
return Result;
|
||
|
||
// FIXME: Can the # of arguments in the parameter and the argument
|
||
// differ due to default arguments?
|
||
unsigned NumArgs = Param->getNumArgs();
|
||
const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
|
||
if (NumArgs != ArgArgs.size())
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
for (unsigned I = 0; I != NumArgs; ++I)
|
||
if (Sema::TemplateDeductionResult Result
|
||
= DeduceTemplateArguments(Context, TemplateParams,
|
||
Param->getArg(I),
|
||
ArgArgs.get(I),
|
||
Info, Deduced))
|
||
return Result;
|
||
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
/// \brief Returns a completely-unqualified array type, capturing the
|
||
/// qualifiers in CVRQuals.
|
||
///
|
||
/// \param Context the AST context in which the array type was built.
|
||
///
|
||
/// \param T a canonical type that may be an array type.
|
||
///
|
||
/// \param CVRQuals will receive the set of const/volatile/restrict qualifiers
|
||
/// that were applied to the element type of the array.
|
||
///
|
||
/// \returns if \p T is an array type, the completely unqualified array type
|
||
/// that corresponds to T. Otherwise, returns T.
|
||
static QualType getUnqualifiedArrayType(ASTContext &Context, QualType T,
|
||
unsigned &CVRQuals) {
|
||
assert(T->isCanonical() && "Only operates on canonical types");
|
||
if (!isa<ArrayType>(T)) {
|
||
CVRQuals = T.getCVRQualifiers();
|
||
return T.getUnqualifiedType();
|
||
}
|
||
|
||
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
|
||
QualType Elt = getUnqualifiedArrayType(Context, CAT->getElementType(),
|
||
CVRQuals);
|
||
if (Elt == CAT->getElementType())
|
||
return T;
|
||
|
||
return Context.getConstantArrayType(Elt, CAT->getSize(),
|
||
CAT->getSizeModifier(), 0);
|
||
}
|
||
|
||
if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
|
||
QualType Elt = getUnqualifiedArrayType(Context, IAT->getElementType(),
|
||
CVRQuals);
|
||
if (Elt == IAT->getElementType())
|
||
return T;
|
||
|
||
return Context.getIncompleteArrayType(Elt, IAT->getSizeModifier(), 0);
|
||
}
|
||
|
||
const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
|
||
QualType Elt = getUnqualifiedArrayType(Context, DSAT->getElementType(),
|
||
CVRQuals);
|
||
if (Elt == DSAT->getElementType())
|
||
return T;
|
||
|
||
return Context.getDependentSizedArrayType(Elt, DSAT->getSizeExpr()->Retain(),
|
||
DSAT->getSizeModifier(), 0,
|
||
SourceRange());
|
||
}
|
||
|
||
/// \brief Deduce the template arguments by comparing the parameter type and
|
||
/// the argument type (C++ [temp.deduct.type]).
|
||
///
|
||
/// \param Context the AST context in which this deduction occurs.
|
||
///
|
||
/// \param TemplateParams the template parameters that we are deducing
|
||
///
|
||
/// \param ParamIn the parameter type
|
||
///
|
||
/// \param ArgIn the argument type
|
||
///
|
||
/// \param Info information about the template argument deduction itself
|
||
///
|
||
/// \param Deduced the deduced template arguments
|
||
///
|
||
/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
|
||
/// how template argument deduction is performed.
|
||
///
|
||
/// \returns the result of template argument deduction so far. Note that a
|
||
/// "success" result means that template argument deduction has not yet failed,
|
||
/// but it may still fail, later, for other reasons.
|
||
static Sema::TemplateDeductionResult
|
||
DeduceTemplateArguments(ASTContext &Context,
|
||
TemplateParameterList *TemplateParams,
|
||
QualType ParamIn, QualType ArgIn,
|
||
Sema::TemplateDeductionInfo &Info,
|
||
llvm::SmallVectorImpl<TemplateArgument> &Deduced,
|
||
unsigned TDF) {
|
||
// We only want to look at the canonical types, since typedefs and
|
||
// sugar are not part of template argument deduction.
|
||
QualType Param = Context.getCanonicalType(ParamIn);
|
||
QualType Arg = Context.getCanonicalType(ArgIn);
|
||
|
||
// C++0x [temp.deduct.call]p4 bullet 1:
|
||
// - If the original P is a reference type, the deduced A (i.e., the type
|
||
// referred to by the reference) can be more cv-qualified than the
|
||
// transformed A.
|
||
if (TDF & TDF_ParamWithReferenceType) {
|
||
unsigned ExtraQualsOnParam
|
||
= Param.getCVRQualifiers() & ~Arg.getCVRQualifiers();
|
||
Param.setCVRQualifiers(Param.getCVRQualifiers() & ~ExtraQualsOnParam);
|
||
}
|
||
|
||
// If the parameter type is not dependent, there is nothing to deduce.
|
||
if (!Param->isDependentType())
|
||
return Sema::TDK_Success;
|
||
|
||
// C++ [temp.deduct.type]p9:
|
||
// A template type argument T, a template template argument TT or a
|
||
// template non-type argument i can be deduced if P and A have one of
|
||
// the following forms:
|
||
//
|
||
// T
|
||
// cv-list T
|
||
if (const TemplateTypeParmType *TemplateTypeParm
|
||
= Param->getAsTemplateTypeParmType()) {
|
||
unsigned Index = TemplateTypeParm->getIndex();
|
||
bool RecanonicalizeArg = false;
|
||
|
||
// If the argument type is an array type, move the qualifiers up to the
|
||
// top level, so they can be matched with the qualifiers on the parameter.
|
||
// FIXME: address spaces, ObjC GC qualifiers
|
||
if (isa<ArrayType>(Arg)) {
|
||
unsigned CVRQuals = 0;
|
||
Arg = getUnqualifiedArrayType(Context, Arg, CVRQuals);
|
||
if (CVRQuals) {
|
||
Arg = Arg.getWithAdditionalQualifiers(CVRQuals);
|
||
RecanonicalizeArg = true;
|
||
}
|
||
}
|
||
|
||
// The argument type can not be less qualified than the parameter
|
||
// type.
|
||
if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
|
||
Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
|
||
Info.FirstArg = Deduced[Index];
|
||
Info.SecondArg = TemplateArgument(SourceLocation(), Arg);
|
||
return Sema::TDK_InconsistentQuals;
|
||
}
|
||
|
||
assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
|
||
|
||
unsigned Quals = Arg.getCVRQualifiers() & ~Param.getCVRQualifiers();
|
||
QualType DeducedType = Arg.getQualifiedType(Quals);
|
||
if (RecanonicalizeArg)
|
||
DeducedType = Context.getCanonicalType(DeducedType);
|
||
|
||
if (Deduced[Index].isNull())
|
||
Deduced[Index] = TemplateArgument(SourceLocation(), DeducedType);
|
||
else {
|
||
// C++ [temp.deduct.type]p2:
|
||
// [...] If type deduction cannot be done for any P/A pair, or if for
|
||
// any pair the deduction leads to more than one possible set of
|
||
// deduced values, or if different pairs yield different deduced
|
||
// values, or if any template argument remains neither deduced nor
|
||
// explicitly specified, template argument deduction fails.
|
||
if (Deduced[Index].getAsType() != DeducedType) {
|
||
Info.Param
|
||
= cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
|
||
Info.FirstArg = Deduced[Index];
|
||
Info.SecondArg = TemplateArgument(SourceLocation(), Arg);
|
||
return Sema::TDK_Inconsistent;
|
||
}
|
||
}
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
// Set up the template argument deduction information for a failure.
|
||
Info.FirstArg = TemplateArgument(SourceLocation(), ParamIn);
|
||
Info.SecondArg = TemplateArgument(SourceLocation(), ArgIn);
|
||
|
||
// Check the cv-qualifiers on the parameter and argument types.
|
||
if (!(TDF & TDF_IgnoreQualifiers)) {
|
||
if (TDF & TDF_ParamWithReferenceType) {
|
||
if (Param.isMoreQualifiedThan(Arg))
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
} else {
|
||
if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
}
|
||
}
|
||
|
||
switch (Param->getTypeClass()) {
|
||
// No deduction possible for these types
|
||
case Type::Builtin:
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
// T *
|
||
case Type::Pointer: {
|
||
const PointerType *PointerArg = Arg->getAs<PointerType>();
|
||
if (!PointerArg)
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
|
||
return DeduceTemplateArguments(Context, TemplateParams,
|
||
cast<PointerType>(Param)->getPointeeType(),
|
||
PointerArg->getPointeeType(),
|
||
Info, Deduced, SubTDF);
|
||
}
|
||
|
||
// T &
|
||
case Type::LValueReference: {
|
||
const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
|
||
if (!ReferenceArg)
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
return DeduceTemplateArguments(Context, TemplateParams,
|
||
cast<LValueReferenceType>(Param)->getPointeeType(),
|
||
ReferenceArg->getPointeeType(),
|
||
Info, Deduced, 0);
|
||
}
|
||
|
||
// T && [C++0x]
|
||
case Type::RValueReference: {
|
||
const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
|
||
if (!ReferenceArg)
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
return DeduceTemplateArguments(Context, TemplateParams,
|
||
cast<RValueReferenceType>(Param)->getPointeeType(),
|
||
ReferenceArg->getPointeeType(),
|
||
Info, Deduced, 0);
|
||
}
|
||
|
||
// T [] (implied, but not stated explicitly)
|
||
case Type::IncompleteArray: {
|
||
const IncompleteArrayType *IncompleteArrayArg =
|
||
Context.getAsIncompleteArrayType(Arg);
|
||
if (!IncompleteArrayArg)
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
return DeduceTemplateArguments(Context, TemplateParams,
|
||
Context.getAsIncompleteArrayType(Param)->getElementType(),
|
||
IncompleteArrayArg->getElementType(),
|
||
Info, Deduced, 0);
|
||
}
|
||
|
||
// T [integer-constant]
|
||
case Type::ConstantArray: {
|
||
const ConstantArrayType *ConstantArrayArg =
|
||
Context.getAsConstantArrayType(Arg);
|
||
if (!ConstantArrayArg)
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
const ConstantArrayType *ConstantArrayParm =
|
||
Context.getAsConstantArrayType(Param);
|
||
if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
return DeduceTemplateArguments(Context, TemplateParams,
|
||
ConstantArrayParm->getElementType(),
|
||
ConstantArrayArg->getElementType(),
|
||
Info, Deduced, 0);
|
||
}
|
||
|
||
// type [i]
|
||
case Type::DependentSizedArray: {
|
||
const ArrayType *ArrayArg = dyn_cast<ArrayType>(Arg);
|
||
if (!ArrayArg)
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
// Check the element type of the arrays
|
||
const DependentSizedArrayType *DependentArrayParm
|
||
= cast<DependentSizedArrayType>(Param);
|
||
if (Sema::TemplateDeductionResult Result
|
||
= DeduceTemplateArguments(Context, TemplateParams,
|
||
DependentArrayParm->getElementType(),
|
||
ArrayArg->getElementType(),
|
||
Info, Deduced, 0))
|
||
return Result;
|
||
|
||
// Determine the array bound is something we can deduce.
|
||
NonTypeTemplateParmDecl *NTTP
|
||
= getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
|
||
if (!NTTP)
|
||
return Sema::TDK_Success;
|
||
|
||
// We can perform template argument deduction for the given non-type
|
||
// template parameter.
|
||
assert(NTTP->getDepth() == 0 &&
|
||
"Cannot deduce non-type template argument at depth > 0");
|
||
if (const ConstantArrayType *ConstantArrayArg
|
||
= dyn_cast<ConstantArrayType>(ArrayArg)) {
|
||
llvm::APSInt Size(ConstantArrayArg->getSize());
|
||
return DeduceNonTypeTemplateArgument(Context, NTTP, Size,
|
||
Info, Deduced);
|
||
}
|
||
if (const DependentSizedArrayType *DependentArrayArg
|
||
= dyn_cast<DependentSizedArrayType>(ArrayArg))
|
||
return DeduceNonTypeTemplateArgument(Context, NTTP,
|
||
DependentArrayArg->getSizeExpr(),
|
||
Info, Deduced);
|
||
|
||
// Incomplete type does not match a dependently-sized array type
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
}
|
||
|
||
// type(*)(T)
|
||
// T(*)()
|
||
// T(*)(T)
|
||
case Type::FunctionProto: {
|
||
const FunctionProtoType *FunctionProtoArg =
|
||
dyn_cast<FunctionProtoType>(Arg);
|
||
if (!FunctionProtoArg)
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
const FunctionProtoType *FunctionProtoParam =
|
||
cast<FunctionProtoType>(Param);
|
||
|
||
if (FunctionProtoParam->getTypeQuals() !=
|
||
FunctionProtoArg->getTypeQuals())
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
// Check return types.
|
||
if (Sema::TemplateDeductionResult Result
|
||
= DeduceTemplateArguments(Context, TemplateParams,
|
||
FunctionProtoParam->getResultType(),
|
||
FunctionProtoArg->getResultType(),
|
||
Info, Deduced, 0))
|
||
return Result;
|
||
|
||
for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
|
||
// Check argument types.
|
||
if (Sema::TemplateDeductionResult Result
|
||
= DeduceTemplateArguments(Context, TemplateParams,
|
||
FunctionProtoParam->getArgType(I),
|
||
FunctionProtoArg->getArgType(I),
|
||
Info, Deduced, 0))
|
||
return Result;
|
||
}
|
||
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
// template-name<T> (where template-name refers to a class template)
|
||
// template-name<i>
|
||
// TT<T> (TODO)
|
||
// TT<i> (TODO)
|
||
// TT<> (TODO)
|
||
case Type::TemplateSpecialization: {
|
||
const TemplateSpecializationType *SpecParam
|
||
= cast<TemplateSpecializationType>(Param);
|
||
|
||
// Try to deduce template arguments from the template-id.
|
||
Sema::TemplateDeductionResult Result
|
||
= DeduceTemplateArguments(Context, TemplateParams, SpecParam, Arg,
|
||
Info, Deduced);
|
||
|
||
if (Result && (TDF & TDF_DerivedClass) &&
|
||
Result != Sema::TDK_Inconsistent) {
|
||
// C++ [temp.deduct.call]p3b3:
|
||
// If P is a class, and P has the form template-id, then A can be a
|
||
// derived class of the deduced A. Likewise, if P is a pointer to a
|
||
// class of the form template-id, A can be a pointer to a derived
|
||
// class pointed to by the deduced A.
|
||
//
|
||
// More importantly:
|
||
// These alternatives are considered only if type deduction would
|
||
// otherwise fail.
|
||
if (const RecordType *RecordT = dyn_cast<RecordType>(Arg)) {
|
||
// Use data recursion to crawl through the list of base classes.
|
||
// Visited contains the set of nodes we have already visited, while
|
||
// ToVisit is our stack of records that we still need to visit.
|
||
llvm::SmallPtrSet<const RecordType *, 8> Visited;
|
||
llvm::SmallVector<const RecordType *, 8> ToVisit;
|
||
ToVisit.push_back(RecordT);
|
||
bool Successful = false;
|
||
while (!ToVisit.empty()) {
|
||
// Retrieve the next class in the inheritance hierarchy.
|
||
const RecordType *NextT = ToVisit.back();
|
||
ToVisit.pop_back();
|
||
|
||
// If we have already seen this type, skip it.
|
||
if (!Visited.insert(NextT))
|
||
continue;
|
||
|
||
// If this is a base class, try to perform template argument
|
||
// deduction from it.
|
||
if (NextT != RecordT) {
|
||
Sema::TemplateDeductionResult BaseResult
|
||
= DeduceTemplateArguments(Context, TemplateParams, SpecParam,
|
||
QualType(NextT, 0), Info, Deduced);
|
||
|
||
// If template argument deduction for this base was successful,
|
||
// note that we had some success.
|
||
if (BaseResult == Sema::TDK_Success)
|
||
Successful = true;
|
||
// If deduction against this base resulted in an inconsistent
|
||
// set of deduced template arguments, template argument
|
||
// deduction fails.
|
||
else if (BaseResult == Sema::TDK_Inconsistent)
|
||
return BaseResult;
|
||
}
|
||
|
||
// Visit base classes
|
||
CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
|
||
for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
|
||
BaseEnd = Next->bases_end();
|
||
Base != BaseEnd; ++Base) {
|
||
assert(Base->getType()->isRecordType() &&
|
||
"Base class that isn't a record?");
|
||
ToVisit.push_back(Base->getType()->getAs<RecordType>());
|
||
}
|
||
}
|
||
|
||
if (Successful)
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
}
|
||
|
||
return Result;
|
||
}
|
||
|
||
// T type::*
|
||
// T T::*
|
||
// T (type::*)()
|
||
// type (T::*)()
|
||
// type (type::*)(T)
|
||
// type (T::*)(T)
|
||
// T (type::*)(T)
|
||
// T (T::*)()
|
||
// T (T::*)(T)
|
||
case Type::MemberPointer: {
|
||
const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
|
||
const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
|
||
if (!MemPtrArg)
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
if (Sema::TemplateDeductionResult Result
|
||
= DeduceTemplateArguments(Context, TemplateParams,
|
||
MemPtrParam->getPointeeType(),
|
||
MemPtrArg->getPointeeType(),
|
||
Info, Deduced,
|
||
TDF & TDF_IgnoreQualifiers))
|
||
return Result;
|
||
|
||
return DeduceTemplateArguments(Context, TemplateParams,
|
||
QualType(MemPtrParam->getClass(), 0),
|
||
QualType(MemPtrArg->getClass(), 0),
|
||
Info, Deduced, 0);
|
||
}
|
||
|
||
// (clang extension)
|
||
//
|
||
// type(^)(T)
|
||
// T(^)()
|
||
// T(^)(T)
|
||
case Type::BlockPointer: {
|
||
const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
|
||
const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
|
||
|
||
if (!BlockPtrArg)
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
return DeduceTemplateArguments(Context, TemplateParams,
|
||
BlockPtrParam->getPointeeType(),
|
||
BlockPtrArg->getPointeeType(), Info,
|
||
Deduced, 0);
|
||
}
|
||
|
||
case Type::TypeOfExpr:
|
||
case Type::TypeOf:
|
||
case Type::Typename:
|
||
// No template argument deduction for these types
|
||
return Sema::TDK_Success;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
// FIXME: Many more cases to go (to go).
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
static Sema::TemplateDeductionResult
|
||
DeduceTemplateArguments(ASTContext &Context,
|
||
TemplateParameterList *TemplateParams,
|
||
const TemplateArgument &Param,
|
||
const TemplateArgument &Arg,
|
||
Sema::TemplateDeductionInfo &Info,
|
||
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
|
||
switch (Param.getKind()) {
|
||
case TemplateArgument::Null:
|
||
assert(false && "Null template argument in parameter list");
|
||
break;
|
||
|
||
case TemplateArgument::Type:
|
||
assert(Arg.getKind() == TemplateArgument::Type && "Type/value mismatch");
|
||
return DeduceTemplateArguments(Context, TemplateParams, Param.getAsType(),
|
||
Arg.getAsType(), Info, Deduced, 0);
|
||
|
||
case TemplateArgument::Declaration:
|
||
// FIXME: Implement this check
|
||
assert(false && "Unimplemented template argument deduction case");
|
||
Info.FirstArg = Param;
|
||
Info.SecondArg = Arg;
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
case TemplateArgument::Integral:
|
||
if (Arg.getKind() == TemplateArgument::Integral) {
|
||
// FIXME: Zero extension + sign checking here?
|
||
if (*Param.getAsIntegral() == *Arg.getAsIntegral())
|
||
return Sema::TDK_Success;
|
||
|
||
Info.FirstArg = Param;
|
||
Info.SecondArg = Arg;
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
}
|
||
|
||
if (Arg.getKind() == TemplateArgument::Expression) {
|
||
Info.FirstArg = Param;
|
||
Info.SecondArg = Arg;
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
}
|
||
|
||
assert(false && "Type/value mismatch");
|
||
Info.FirstArg = Param;
|
||
Info.SecondArg = Arg;
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
|
||
case TemplateArgument::Expression: {
|
||
if (NonTypeTemplateParmDecl *NTTP
|
||
= getDeducedParameterFromExpr(Param.getAsExpr())) {
|
||
if (Arg.getKind() == TemplateArgument::Integral)
|
||
// FIXME: Sign problems here
|
||
return DeduceNonTypeTemplateArgument(Context, NTTP,
|
||
*Arg.getAsIntegral(),
|
||
Info, Deduced);
|
||
if (Arg.getKind() == TemplateArgument::Expression)
|
||
return DeduceNonTypeTemplateArgument(Context, NTTP, Arg.getAsExpr(),
|
||
Info, Deduced);
|
||
|
||
assert(false && "Type/value mismatch");
|
||
Info.FirstArg = Param;
|
||
Info.SecondArg = Arg;
|
||
return Sema::TDK_NonDeducedMismatch;
|
||
}
|
||
|
||
// Can't deduce anything, but that's okay.
|
||
return Sema::TDK_Success;
|
||
}
|
||
case TemplateArgument::Pack:
|
||
assert(0 && "FIXME: Implement!");
|
||
break;
|
||
}
|
||
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
static Sema::TemplateDeductionResult
|
||
DeduceTemplateArguments(ASTContext &Context,
|
||
TemplateParameterList *TemplateParams,
|
||
const TemplateArgumentList &ParamList,
|
||
const TemplateArgumentList &ArgList,
|
||
Sema::TemplateDeductionInfo &Info,
|
||
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
|
||
assert(ParamList.size() == ArgList.size());
|
||
for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
|
||
if (Sema::TemplateDeductionResult Result
|
||
= DeduceTemplateArguments(Context, TemplateParams,
|
||
ParamList[I], ArgList[I],
|
||
Info, Deduced))
|
||
return Result;
|
||
}
|
||
return Sema::TDK_Success;
|
||
}
|
||
|
||
/// \brief Determine whether two template arguments are the same.
|
||
static bool isSameTemplateArg(ASTContext &Context,
|
||
const TemplateArgument &X,
|
||
const TemplateArgument &Y) {
|
||
if (X.getKind() != Y.getKind())
|
||
return false;
|
||
|
||
switch (X.getKind()) {
|
||
case TemplateArgument::Null:
|
||
assert(false && "Comparing NULL template argument");
|
||
break;
|
||
|
||
case TemplateArgument::Type:
|
||
return Context.getCanonicalType(X.getAsType()) ==
|
||
Context.getCanonicalType(Y.getAsType());
|
||
|
||
case TemplateArgument::Declaration:
|
||
return X.getAsDecl()->getCanonicalDecl() ==
|
||
Y.getAsDecl()->getCanonicalDecl();
|
||
|
||
case TemplateArgument::Integral:
|
||
return *X.getAsIntegral() == *Y.getAsIntegral();
|
||
|
||
case TemplateArgument::Expression:
|
||
// FIXME: We assume that all expressions are distinct, but we should
|
||
// really check their canonical forms.
|
||
return false;
|
||
|
||
case TemplateArgument::Pack:
|
||
if (X.pack_size() != Y.pack_size())
|
||
return false;
|
||
|
||
for (TemplateArgument::pack_iterator XP = X.pack_begin(),
|
||
XPEnd = X.pack_end(),
|
||
YP = Y.pack_begin();
|
||
XP != XPEnd; ++XP, ++YP)
|
||
if (!isSameTemplateArg(Context, *XP, *YP))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// \brief Helper function to build a TemplateParameter when we don't
|
||
/// know its type statically.
|
||
static TemplateParameter makeTemplateParameter(Decl *D) {
|
||
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
|
||
return TemplateParameter(TTP);
|
||
else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
|
||
return TemplateParameter(NTTP);
|
||
|
||
return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
|
||
}
|
||
|
||
/// \brief Perform template argument deduction to determine whether
|
||
/// the given template arguments match the given class template
|
||
/// partial specialization per C++ [temp.class.spec.match].
|
||
Sema::TemplateDeductionResult
|
||
Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
|
||
const TemplateArgumentList &TemplateArgs,
|
||
TemplateDeductionInfo &Info) {
|
||
// C++ [temp.class.spec.match]p2:
|
||
// A partial specialization matches a given actual template
|
||
// argument list if the template arguments of the partial
|
||
// specialization can be deduced from the actual template argument
|
||
// list (14.8.2).
|
||
SFINAETrap Trap(*this);
|
||
llvm::SmallVector<TemplateArgument, 4> Deduced;
|
||
Deduced.resize(Partial->getTemplateParameters()->size());
|
||
if (TemplateDeductionResult Result
|
||
= ::DeduceTemplateArguments(Context,
|
||
Partial->getTemplateParameters(),
|
||
Partial->getTemplateArgs(),
|
||
TemplateArgs, Info, Deduced))
|
||
return Result;
|
||
|
||
InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
|
||
Deduced.data(), Deduced.size());
|
||
if (Inst)
|
||
return TDK_InstantiationDepth;
|
||
|
||
// C++ [temp.deduct.type]p2:
|
||
// [...] or if any template argument remains neither deduced nor
|
||
// explicitly specified, template argument deduction fails.
|
||
TemplateArgumentListBuilder Builder(Partial->getTemplateParameters(),
|
||
Deduced.size());
|
||
for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
|
||
if (Deduced[I].isNull()) {
|
||
Decl *Param
|
||
= const_cast<Decl *>(Partial->getTemplateParameters()->getParam(I));
|
||
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
|
||
Info.Param = TTP;
|
||
else if (NonTypeTemplateParmDecl *NTTP
|
||
= dyn_cast<NonTypeTemplateParmDecl>(Param))
|
||
Info.Param = NTTP;
|
||
else
|
||
Info.Param = cast<TemplateTemplateParmDecl>(Param);
|
||
return TDK_Incomplete;
|
||
}
|
||
|
||
Builder.Append(Deduced[I]);
|
||
}
|
||
|
||
// Form the template argument list from the deduced template arguments.
|
||
TemplateArgumentList *DeducedArgumentList
|
||
= new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
|
||
Info.reset(DeducedArgumentList);
|
||
|
||
// Substitute the deduced template arguments into the template
|
||
// arguments of the class template partial specialization, and
|
||
// verify that the instantiated template arguments are both valid
|
||
// and are equivalent to the template arguments originally provided
|
||
// to the class template.
|
||
ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
|
||
const TemplateArgumentList &PartialTemplateArgs = Partial->getTemplateArgs();
|
||
for (unsigned I = 0, N = PartialTemplateArgs.flat_size(); I != N; ++I) {
|
||
Decl *Param = const_cast<Decl *>(
|
||
ClassTemplate->getTemplateParameters()->getParam(I));
|
||
TemplateArgument InstArg = Instantiate(PartialTemplateArgs[I],
|
||
*DeducedArgumentList);
|
||
if (InstArg.isNull()) {
|
||
Info.Param = makeTemplateParameter(Param);
|
||
Info.FirstArg = PartialTemplateArgs[I];
|
||
return TDK_SubstitutionFailure;
|
||
}
|
||
|
||
if (InstArg.getKind() == TemplateArgument::Expression) {
|
||
// When the argument is an expression, check the expression result
|
||
// against the actual template parameter to get down to the canonical
|
||
// template argument.
|
||
Expr *InstExpr = InstArg.getAsExpr();
|
||
if (NonTypeTemplateParmDecl *NTTP
|
||
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
||
if (CheckTemplateArgument(NTTP, NTTP->getType(), InstExpr, InstArg)) {
|
||
Info.Param = makeTemplateParameter(Param);
|
||
Info.FirstArg = PartialTemplateArgs[I];
|
||
return TDK_SubstitutionFailure;
|
||
}
|
||
} else if (TemplateTemplateParmDecl *TTP
|
||
= dyn_cast<TemplateTemplateParmDecl>(Param)) {
|
||
// FIXME: template template arguments should really resolve to decls
|
||
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InstExpr);
|
||
if (!DRE || CheckTemplateArgument(TTP, DRE)) {
|
||
Info.Param = makeTemplateParameter(Param);
|
||
Info.FirstArg = PartialTemplateArgs[I];
|
||
return TDK_SubstitutionFailure;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!isSameTemplateArg(Context, TemplateArgs[I], InstArg)) {
|
||
Info.Param = makeTemplateParameter(Param);
|
||
Info.FirstArg = TemplateArgs[I];
|
||
Info.SecondArg = InstArg;
|
||
return TDK_NonDeducedMismatch;
|
||
}
|
||
}
|
||
|
||
if (Trap.hasErrorOccurred())
|
||
return TDK_SubstitutionFailure;
|
||
|
||
return TDK_Success;
|
||
}
|
||
|
||
/// \brief Determine whether the given type T is a simple-template-id type.
|
||
static bool isSimpleTemplateIdType(QualType T) {
|
||
if (const TemplateSpecializationType *Spec
|
||
= T->getAsTemplateSpecializationType())
|
||
return Spec->getTemplateName().getAsTemplateDecl() != 0;
|
||
|
||
return false;
|
||
}
|
||
|
||
/// \brief Substitute the explicitly-provided template arguments into the
|
||
/// given function template according to C++ [temp.arg.explicit].
|
||
///
|
||
/// \param FunctionTemplate the function template into which the explicit
|
||
/// template arguments will be substituted.
|
||
///
|
||
/// \param ExplicitTemplateArguments the explicitly-specified template
|
||
/// arguments.
|
||
///
|
||
/// \param NumExplicitTemplateArguments the number of explicitly-specified
|
||
/// template arguments in @p ExplicitTemplateArguments. This value may be zero.
|
||
///
|
||
/// \param Deduced the deduced template arguments, which will be populated
|
||
/// with the converted and checked explicit template arguments.
|
||
///
|
||
/// \param ParamTypes will be populated with the instantiated function
|
||
/// parameters.
|
||
///
|
||
/// \param FunctionType if non-NULL, the result type of the function template
|
||
/// will also be instantiated and the pointed-to value will be updated with
|
||
/// the instantiated function type.
|
||
///
|
||
/// \param Info if substitution fails for any reason, this object will be
|
||
/// populated with more information about the failure.
|
||
///
|
||
/// \returns TDK_Success if substitution was successful, or some failure
|
||
/// condition.
|
||
Sema::TemplateDeductionResult
|
||
Sema::SubstituteExplicitTemplateArguments(
|
||
FunctionTemplateDecl *FunctionTemplate,
|
||
const TemplateArgument *ExplicitTemplateArgs,
|
||
unsigned NumExplicitTemplateArgs,
|
||
llvm::SmallVectorImpl<TemplateArgument> &Deduced,
|
||
llvm::SmallVectorImpl<QualType> &ParamTypes,
|
||
QualType *FunctionType,
|
||
TemplateDeductionInfo &Info) {
|
||
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
||
TemplateParameterList *TemplateParams
|
||
= FunctionTemplate->getTemplateParameters();
|
||
|
||
if (NumExplicitTemplateArgs == 0) {
|
||
// No arguments to substitute; just copy over the parameter types and
|
||
// fill in the function type.
|
||
for (FunctionDecl::param_iterator P = Function->param_begin(),
|
||
PEnd = Function->param_end();
|
||
P != PEnd;
|
||
++P)
|
||
ParamTypes.push_back((*P)->getType());
|
||
|
||
if (FunctionType)
|
||
*FunctionType = Function->getType();
|
||
return TDK_Success;
|
||
}
|
||
|
||
// Substitution of the explicit template arguments into a function template
|
||
/// is a SFINAE context. Trap any errors that might occur.
|
||
SFINAETrap Trap(*this);
|
||
|
||
// C++ [temp.arg.explicit]p3:
|
||
// Template arguments that are present shall be specified in the
|
||
// declaration order of their corresponding template-parameters. The
|
||
// template argument list shall not specify more template-arguments than
|
||
// there are corresponding template-parameters.
|
||
TemplateArgumentListBuilder Builder(TemplateParams,
|
||
NumExplicitTemplateArgs);
|
||
|
||
// Enter a new template instantiation context where we check the
|
||
// explicitly-specified template arguments against this function template,
|
||
// and then substitute them into the function parameter types.
|
||
InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
|
||
FunctionTemplate, Deduced.data(), Deduced.size(),
|
||
ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution);
|
||
if (Inst)
|
||
return TDK_InstantiationDepth;
|
||
|
||
if (CheckTemplateArgumentList(FunctionTemplate,
|
||
SourceLocation(), SourceLocation(),
|
||
ExplicitTemplateArgs,
|
||
NumExplicitTemplateArgs,
|
||
SourceLocation(),
|
||
true,
|
||
Builder) || Trap.hasErrorOccurred())
|
||
return TDK_InvalidExplicitArguments;
|
||
|
||
// Form the template argument list from the explicitly-specified
|
||
// template arguments.
|
||
TemplateArgumentList *ExplicitArgumentList
|
||
= new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
|
||
Info.reset(ExplicitArgumentList);
|
||
|
||
// Instantiate the types of each of the function parameters given the
|
||
// explicitly-specified template arguments.
|
||
for (FunctionDecl::param_iterator P = Function->param_begin(),
|
||
PEnd = Function->param_end();
|
||
P != PEnd;
|
||
++P) {
|
||
QualType ParamType = InstantiateType((*P)->getType(),
|
||
*ExplicitArgumentList,
|
||
(*P)->getLocation(),
|
||
(*P)->getDeclName());
|
||
if (ParamType.isNull() || Trap.hasErrorOccurred())
|
||
return TDK_SubstitutionFailure;
|
||
|
||
ParamTypes.push_back(ParamType);
|
||
}
|
||
|
||
// If the caller wants a full function type back, instantiate the return
|
||
// type and form that function type.
|
||
if (FunctionType) {
|
||
// FIXME: exception-specifications?
|
||
const FunctionProtoType *Proto
|
||
= Function->getType()->getAsFunctionProtoType();
|
||
assert(Proto && "Function template does not have a prototype?");
|
||
|
||
QualType ResultType = InstantiateType(Proto->getResultType(),
|
||
*ExplicitArgumentList,
|
||
Function->getTypeSpecStartLoc(),
|
||
Function->getDeclName());
|
||
if (ResultType.isNull() || Trap.hasErrorOccurred())
|
||
return TDK_SubstitutionFailure;
|
||
|
||
*FunctionType = BuildFunctionType(ResultType,
|
||
ParamTypes.data(), ParamTypes.size(),
|
||
Proto->isVariadic(),
|
||
Proto->getTypeQuals(),
|
||
Function->getLocation(),
|
||
Function->getDeclName());
|
||
if (FunctionType->isNull() || Trap.hasErrorOccurred())
|
||
return TDK_SubstitutionFailure;
|
||
}
|
||
|
||
// C++ [temp.arg.explicit]p2:
|
||
// Trailing template arguments that can be deduced (14.8.2) may be
|
||
// omitted from the list of explicit template-arguments. If all of the
|
||
// template arguments can be deduced, they may all be omitted; in this
|
||
// case, the empty template argument list <> itself may also be omitted.
|
||
//
|
||
// Take all of the explicitly-specified arguments and put them into the
|
||
// set of deduced template arguments.
|
||
Deduced.reserve(TemplateParams->size());
|
||
for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I)
|
||
Deduced.push_back(ExplicitArgumentList->get(I));
|
||
|
||
return TDK_Success;
|
||
}
|
||
|
||
/// \brief Finish template argument deduction for a function template,
|
||
/// checking the deduced template arguments for completeness and forming
|
||
/// the function template specialization.
|
||
Sema::TemplateDeductionResult
|
||
Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
|
||
llvm::SmallVectorImpl<TemplateArgument> &Deduced,
|
||
FunctionDecl *&Specialization,
|
||
TemplateDeductionInfo &Info) {
|
||
TemplateParameterList *TemplateParams
|
||
= FunctionTemplate->getTemplateParameters();
|
||
|
||
// C++ [temp.deduct.type]p2:
|
||
// [...] or if any template argument remains neither deduced nor
|
||
// explicitly specified, template argument deduction fails.
|
||
TemplateArgumentListBuilder Builder(TemplateParams, Deduced.size());
|
||
for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
|
||
if (Deduced[I].isNull()) {
|
||
Info.Param = makeTemplateParameter(
|
||
const_cast<Decl *>(TemplateParams->getParam(I)));
|
||
return TDK_Incomplete;
|
||
}
|
||
|
||
Builder.Append(Deduced[I]);
|
||
}
|
||
|
||
// Form the template argument list from the deduced template arguments.
|
||
TemplateArgumentList *DeducedArgumentList
|
||
= new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
|
||
Info.reset(DeducedArgumentList);
|
||
|
||
// Template argument deduction for function templates in a SFINAE context.
|
||
// Trap any errors that might occur.
|
||
SFINAETrap Trap(*this);
|
||
|
||
// Enter a new template instantiation context while we instantiate the
|
||
// actual function declaration.
|
||
InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
|
||
FunctionTemplate, Deduced.data(), Deduced.size(),
|
||
ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution);
|
||
if (Inst)
|
||
return TDK_InstantiationDepth;
|
||
|
||
// Substitute the deduced template arguments into the function template
|
||
// declaration to produce the function template specialization.
|
||
Specialization = cast_or_null<FunctionDecl>(
|
||
InstantiateDecl(FunctionTemplate->getTemplatedDecl(),
|
||
FunctionTemplate->getDeclContext(),
|
||
*DeducedArgumentList));
|
||
if (!Specialization)
|
||
return TDK_SubstitutionFailure;
|
||
|
||
// If the template argument list is owned by the function template
|
||
// specialization, release it.
|
||
if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList)
|
||
Info.take();
|
||
|
||
// There may have been an error that did not prevent us from constructing a
|
||
// declaration. Mark the declaration invalid and return with a substitution
|
||
// failure.
|
||
if (Trap.hasErrorOccurred()) {
|
||
Specialization->setInvalidDecl(true);
|
||
return TDK_SubstitutionFailure;
|
||
}
|
||
|
||
return TDK_Success;
|
||
}
|
||
|
||
/// \brief Perform template argument deduction from a function call
|
||
/// (C++ [temp.deduct.call]).
|
||
///
|
||
/// \param FunctionTemplate the function template for which we are performing
|
||
/// template argument deduction.
|
||
///
|
||
/// \param HasExplicitTemplateArgs whether any template arguments were
|
||
/// explicitly specified.
|
||
///
|
||
/// \param ExplicitTemplateArguments when @p HasExplicitTemplateArgs is true,
|
||
/// the explicitly-specified template arguments.
|
||
///
|
||
/// \param NumExplicitTemplateArguments when @p HasExplicitTemplateArgs is true,
|
||
/// the number of explicitly-specified template arguments in
|
||
/// @p ExplicitTemplateArguments. This value may be zero.
|
||
///
|
||
/// \param Args the function call arguments
|
||
///
|
||
/// \param NumArgs the number of arguments in Args
|
||
///
|
||
/// \param Specialization if template argument deduction was successful,
|
||
/// this will be set to the function template specialization produced by
|
||
/// template argument deduction.
|
||
///
|
||
/// \param Info the argument will be updated to provide additional information
|
||
/// about template argument deduction.
|
||
///
|
||
/// \returns the result of template argument deduction.
|
||
Sema::TemplateDeductionResult
|
||
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
|
||
bool HasExplicitTemplateArgs,
|
||
const TemplateArgument *ExplicitTemplateArgs,
|
||
unsigned NumExplicitTemplateArgs,
|
||
Expr **Args, unsigned NumArgs,
|
||
FunctionDecl *&Specialization,
|
||
TemplateDeductionInfo &Info) {
|
||
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
||
|
||
// C++ [temp.deduct.call]p1:
|
||
// Template argument deduction is done by comparing each function template
|
||
// parameter type (call it P) with the type of the corresponding argument
|
||
// of the call (call it A) as described below.
|
||
unsigned CheckArgs = NumArgs;
|
||
if (NumArgs < Function->getMinRequiredArguments())
|
||
return TDK_TooFewArguments;
|
||
else if (NumArgs > Function->getNumParams()) {
|
||
const FunctionProtoType *Proto
|
||
= Function->getType()->getAsFunctionProtoType();
|
||
if (!Proto->isVariadic())
|
||
return TDK_TooManyArguments;
|
||
|
||
CheckArgs = Function->getNumParams();
|
||
}
|
||
|
||
// The types of the parameters from which we will perform template argument
|
||
// deduction.
|
||
TemplateParameterList *TemplateParams
|
||
= FunctionTemplate->getTemplateParameters();
|
||
llvm::SmallVector<TemplateArgument, 4> Deduced;
|
||
llvm::SmallVector<QualType, 4> ParamTypes;
|
||
if (NumExplicitTemplateArgs) {
|
||
TemplateDeductionResult Result =
|
||
SubstituteExplicitTemplateArguments(FunctionTemplate,
|
||
ExplicitTemplateArgs,
|
||
NumExplicitTemplateArgs,
|
||
Deduced,
|
||
ParamTypes,
|
||
0,
|
||
Info);
|
||
if (Result)
|
||
return Result;
|
||
} else {
|
||
// Just fill in the parameter types from the function declaration.
|
||
for (unsigned I = 0; I != CheckArgs; ++I)
|
||
ParamTypes.push_back(Function->getParamDecl(I)->getType());
|
||
}
|
||
|
||
// Deduce template arguments from the function parameters.
|
||
Deduced.resize(TemplateParams->size());
|
||
for (unsigned I = 0; I != CheckArgs; ++I) {
|
||
QualType ParamType = ParamTypes[I];
|
||
QualType ArgType = Args[I]->getType();
|
||
|
||
// C++ [temp.deduct.call]p2:
|
||
// If P is not a reference type:
|
||
QualType CanonParamType = Context.getCanonicalType(ParamType);
|
||
bool ParamWasReference = isa<ReferenceType>(CanonParamType);
|
||
if (!ParamWasReference) {
|
||
// - If A is an array type, the pointer type produced by the
|
||
// array-to-pointer standard conversion (4.2) is used in place of
|
||
// A for type deduction; otherwise,
|
||
if (ArgType->isArrayType())
|
||
ArgType = Context.getArrayDecayedType(ArgType);
|
||
// - If A is a function type, the pointer type produced by the
|
||
// function-to-pointer standard conversion (4.3) is used in place
|
||
// of A for type deduction; otherwise,
|
||
else if (ArgType->isFunctionType())
|
||
ArgType = Context.getPointerType(ArgType);
|
||
else {
|
||
// - If A is a cv-qualified type, the top level cv-qualifiers of A’s
|
||
// type are ignored for type deduction.
|
||
QualType CanonArgType = Context.getCanonicalType(ArgType);
|
||
if (CanonArgType.getCVRQualifiers())
|
||
ArgType = CanonArgType.getUnqualifiedType();
|
||
}
|
||
}
|
||
|
||
// C++0x [temp.deduct.call]p3:
|
||
// If P is a cv-qualified type, the top level cv-qualifiers of P’s type
|
||
// are ignored for type deduction.
|
||
if (CanonParamType.getCVRQualifiers())
|
||
ParamType = CanonParamType.getUnqualifiedType();
|
||
if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
|
||
// [...] If P is a reference type, the type referred to by P is used
|
||
// for type deduction.
|
||
ParamType = ParamRefType->getPointeeType();
|
||
|
||
// [...] If P is of the form T&&, where T is a template parameter, and
|
||
// the argument is an lvalue, the type A& is used in place of A for
|
||
// type deduction.
|
||
if (isa<RValueReferenceType>(ParamRefType) &&
|
||
ParamRefType->getAsTemplateTypeParmType() &&
|
||
Args[I]->isLvalue(Context) == Expr::LV_Valid)
|
||
ArgType = Context.getLValueReferenceType(ArgType);
|
||
}
|
||
|
||
// C++0x [temp.deduct.call]p4:
|
||
// In general, the deduction process attempts to find template argument
|
||
// values that will make the deduced A identical to A (after the type A
|
||
// is transformed as described above). [...]
|
||
unsigned TDF = 0;
|
||
|
||
// - If the original P is a reference type, the deduced A (i.e., the
|
||
// type referred to by the reference) can be more cv-qualified than
|
||
// the transformed A.
|
||
if (ParamWasReference)
|
||
TDF |= TDF_ParamWithReferenceType;
|
||
// - The transformed A can be another pointer or pointer to member
|
||
// type that can be converted to the deduced A via a qualification
|
||
// conversion (4.4).
|
||
if (ArgType->isPointerType() || ArgType->isMemberPointerType())
|
||
TDF |= TDF_IgnoreQualifiers;
|
||
// - If P is a class and P has the form simple-template-id, then the
|
||
// transformed A can be a derived class of the deduced A. Likewise,
|
||
// if P is a pointer to a class of the form simple-template-id, the
|
||
// transformed A can be a pointer to a derived class pointed to by
|
||
// the deduced A.
|
||
if (isSimpleTemplateIdType(ParamType) ||
|
||
(isa<PointerType>(ParamType) &&
|
||
isSimpleTemplateIdType(
|
||
ParamType->getAs<PointerType>()->getPointeeType())))
|
||
TDF |= TDF_DerivedClass;
|
||
|
||
if (TemplateDeductionResult Result
|
||
= ::DeduceTemplateArguments(Context, TemplateParams,
|
||
ParamType, ArgType, Info, Deduced,
|
||
TDF))
|
||
return Result;
|
||
|
||
// FIXME: C++0x [temp.deduct.call] paragraphs 6-9 deal with function
|
||
// pointer parameters.
|
||
|
||
// FIXME: we need to check that the deduced A is the same as A,
|
||
// modulo the various allowed differences.
|
||
}
|
||
|
||
return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
|
||
Specialization, Info);
|
||
}
|
||
|
||
/// \brief Deduce template arguments when taking the address of a function
|
||
/// template (C++ [temp.deduct.funcaddr]).
|
||
///
|
||
/// \param FunctionTemplate the function template for which we are performing
|
||
/// template argument deduction.
|
||
///
|
||
/// \param HasExplicitTemplateArgs whether any template arguments were
|
||
/// explicitly specified.
|
||
///
|
||
/// \param ExplicitTemplateArguments when @p HasExplicitTemplateArgs is true,
|
||
/// the explicitly-specified template arguments.
|
||
///
|
||
/// \param NumExplicitTemplateArguments when @p HasExplicitTemplateArgs is true,
|
||
/// the number of explicitly-specified template arguments in
|
||
/// @p ExplicitTemplateArguments. This value may be zero.
|
||
///
|
||
/// \param ArgFunctionType the function type that will be used as the
|
||
/// "argument" type (A) when performing template argument deduction from the
|
||
/// function template's function type.
|
||
///
|
||
/// \param Specialization if template argument deduction was successful,
|
||
/// this will be set to the function template specialization produced by
|
||
/// template argument deduction.
|
||
///
|
||
/// \param Info the argument will be updated to provide additional information
|
||
/// about template argument deduction.
|
||
///
|
||
/// \returns the result of template argument deduction.
|
||
Sema::TemplateDeductionResult
|
||
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
|
||
bool HasExplicitTemplateArgs,
|
||
const TemplateArgument *ExplicitTemplateArgs,
|
||
unsigned NumExplicitTemplateArgs,
|
||
QualType ArgFunctionType,
|
||
FunctionDecl *&Specialization,
|
||
TemplateDeductionInfo &Info) {
|
||
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
|
||
TemplateParameterList *TemplateParams
|
||
= FunctionTemplate->getTemplateParameters();
|
||
QualType FunctionType = Function->getType();
|
||
|
||
// Substitute any explicit template arguments.
|
||
llvm::SmallVector<TemplateArgument, 4> Deduced;
|
||
llvm::SmallVector<QualType, 4> ParamTypes;
|
||
if (HasExplicitTemplateArgs) {
|
||
if (TemplateDeductionResult Result
|
||
= SubstituteExplicitTemplateArguments(FunctionTemplate,
|
||
ExplicitTemplateArgs,
|
||
NumExplicitTemplateArgs,
|
||
Deduced, ParamTypes,
|
||
&FunctionType, Info))
|
||
return Result;
|
||
}
|
||
|
||
// Template argument deduction for function templates in a SFINAE context.
|
||
// Trap any errors that might occur.
|
||
SFINAETrap Trap(*this);
|
||
|
||
// Deduce template arguments from the function type.
|
||
Deduced.resize(TemplateParams->size());
|
||
if (TemplateDeductionResult Result
|
||
= ::DeduceTemplateArguments(Context, TemplateParams,
|
||
FunctionType, ArgFunctionType, Info,
|
||
Deduced, 0))
|
||
return Result;
|
||
|
||
return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
|
||
Specialization, Info);
|
||
}
|
||
|
||
/// \brief Deduce template arguments for a templated conversion
|
||
/// function (C++ [temp.deduct.conv]) and, if successful, produce a
|
||
/// conversion function template specialization.
|
||
Sema::TemplateDeductionResult
|
||
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
|
||
QualType ToType,
|
||
CXXConversionDecl *&Specialization,
|
||
TemplateDeductionInfo &Info) {
|
||
CXXConversionDecl *Conv
|
||
= cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
|
||
QualType FromType = Conv->getConversionType();
|
||
|
||
// Canonicalize the types for deduction.
|
||
QualType P = Context.getCanonicalType(FromType);
|
||
QualType A = Context.getCanonicalType(ToType);
|
||
|
||
// C++0x [temp.deduct.conv]p3:
|
||
// If P is a reference type, the type referred to by P is used for
|
||
// type deduction.
|
||
if (const ReferenceType *PRef = P->getAs<ReferenceType>())
|
||
P = PRef->getPointeeType();
|
||
|
||
// C++0x [temp.deduct.conv]p3:
|
||
// If A is a reference type, the type referred to by A is used
|
||
// for type deduction.
|
||
if (const ReferenceType *ARef = A->getAs<ReferenceType>())
|
||
A = ARef->getPointeeType();
|
||
// C++ [temp.deduct.conv]p2:
|
||
//
|
||
// If A is not a reference type:
|
||
else {
|
||
assert(!A->isReferenceType() && "Reference types were handled above");
|
||
|
||
// - If P is an array type, the pointer type produced by the
|
||
// array-to-pointer standard conversion (4.2) is used in place
|
||
// of P for type deduction; otherwise,
|
||
if (P->isArrayType())
|
||
P = Context.getArrayDecayedType(P);
|
||
// - If P is a function type, the pointer type produced by the
|
||
// function-to-pointer standard conversion (4.3) is used in
|
||
// place of P for type deduction; otherwise,
|
||
else if (P->isFunctionType())
|
||
P = Context.getPointerType(P);
|
||
// - If P is a cv-qualified type, the top level cv-qualifiers of
|
||
// P’s type are ignored for type deduction.
|
||
else
|
||
P = P.getUnqualifiedType();
|
||
|
||
// C++0x [temp.deduct.conv]p3:
|
||
// If A is a cv-qualified type, the top level cv-qualifiers of A’s
|
||
// type are ignored for type deduction.
|
||
A = A.getUnqualifiedType();
|
||
}
|
||
|
||
// Template argument deduction for function templates in a SFINAE context.
|
||
// Trap any errors that might occur.
|
||
SFINAETrap Trap(*this);
|
||
|
||
// C++ [temp.deduct.conv]p1:
|
||
// Template argument deduction is done by comparing the return
|
||
// type of the template conversion function (call it P) with the
|
||
// type that is required as the result of the conversion (call it
|
||
// A) as described in 14.8.2.4.
|
||
TemplateParameterList *TemplateParams
|
||
= FunctionTemplate->getTemplateParameters();
|
||
llvm::SmallVector<TemplateArgument, 4> Deduced;
|
||
Deduced.resize(TemplateParams->size());
|
||
|
||
// C++0x [temp.deduct.conv]p4:
|
||
// In general, the deduction process attempts to find template
|
||
// argument values that will make the deduced A identical to
|
||
// A. However, there are two cases that allow a difference:
|
||
unsigned TDF = 0;
|
||
// - If the original A is a reference type, A can be more
|
||
// cv-qualified than the deduced A (i.e., the type referred to
|
||
// by the reference)
|
||
if (ToType->isReferenceType())
|
||
TDF |= TDF_ParamWithReferenceType;
|
||
// - The deduced A can be another pointer or pointer to member
|
||
// type that can be converted to A via a qualification
|
||
// conversion.
|
||
//
|
||
// (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
|
||
// both P and A are pointers or member pointers. In this case, we
|
||
// just ignore cv-qualifiers completely).
|
||
if ((P->isPointerType() && A->isPointerType()) ||
|
||
(P->isMemberPointerType() && P->isMemberPointerType()))
|
||
TDF |= TDF_IgnoreQualifiers;
|
||
if (TemplateDeductionResult Result
|
||
= ::DeduceTemplateArguments(Context, TemplateParams,
|
||
P, A, Info, Deduced, TDF))
|
||
return Result;
|
||
|
||
// FIXME: we need to check that the deduced A is the same as A,
|
||
// modulo the various allowed differences.
|
||
|
||
// Finish template argument deduction.
|
||
FunctionDecl *Spec = 0;
|
||
TemplateDeductionResult Result
|
||
= FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, Spec, Info);
|
||
Specialization = cast_or_null<CXXConversionDecl>(Spec);
|
||
return Result;
|
||
}
|
||
|
||
/// \brief Returns the more specialization function template according
|
||
/// to the rules of function template partial ordering (C++ [temp.func.order]).
|
||
///
|
||
/// \param FT1 the first function template
|
||
///
|
||
/// \param FT2 the second function template
|
||
///
|
||
/// \param isCallContext whether partial ordering is being performed
|
||
/// for a function call (which ignores the return types of the
|
||
/// functions).
|
||
///
|
||
/// \returns the more specialization function template. If neither
|
||
/// template is more specialized, returns NULL.
|
||
FunctionTemplateDecl *
|
||
Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
|
||
FunctionTemplateDecl *FT2,
|
||
bool isCallContext) {
|
||
#if 0
|
||
// FIXME: Implement this
|
||
bool Better1 = isAtLeastAsSpecializedAs(*this, FT1, FT2, isCallContext);
|
||
bool Better2 = isAtLeastAsSpecializedAs(*this, FT2, FT1, isCallContext);
|
||
if (Better1 == Better2)
|
||
return 0;
|
||
if (Better1)
|
||
return FT1;
|
||
return FT2;
|
||
#else
|
||
Diag(SourceLocation(), diag::unsup_function_template_partial_ordering);
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
MarkDeducedTemplateParameters(Sema &SemaRef,
|
||
const TemplateArgument &TemplateArg,
|
||
llvm::SmallVectorImpl<bool> &Deduced);
|
||
|
||
/// \brief Mark the template arguments that are deduced by the given
|
||
/// expression.
|
||
static void
|
||
MarkDeducedTemplateParameters(const Expr *E,
|
||
llvm::SmallVectorImpl<bool> &Deduced) {
|
||
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
|
||
if (!E)
|
||
return;
|
||
|
||
const NonTypeTemplateParmDecl *NTTP
|
||
= dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
|
||
if (!NTTP)
|
||
return;
|
||
|
||
Deduced[NTTP->getIndex()] = true;
|
||
}
|
||
|
||
/// \brief Mark the template parameters that are deduced by the given
|
||
/// type.
|
||
static void
|
||
MarkDeducedTemplateParameters(Sema &SemaRef, QualType T,
|
||
llvm::SmallVectorImpl<bool> &Deduced) {
|
||
// Non-dependent types have nothing deducible
|
||
if (!T->isDependentType())
|
||
return;
|
||
|
||
T = SemaRef.Context.getCanonicalType(T);
|
||
switch (T->getTypeClass()) {
|
||
case Type::ExtQual:
|
||
MarkDeducedTemplateParameters(SemaRef,
|
||
QualType(cast<ExtQualType>(T)->getBaseType(), 0),
|
||
Deduced);
|
||
break;
|
||
|
||
case Type::Pointer:
|
||
MarkDeducedTemplateParameters(SemaRef,
|
||
cast<PointerType>(T)->getPointeeType(),
|
||
Deduced);
|
||
break;
|
||
|
||
case Type::BlockPointer:
|
||
MarkDeducedTemplateParameters(SemaRef,
|
||
cast<BlockPointerType>(T)->getPointeeType(),
|
||
Deduced);
|
||
break;
|
||
|
||
case Type::LValueReference:
|
||
case Type::RValueReference:
|
||
MarkDeducedTemplateParameters(SemaRef,
|
||
cast<ReferenceType>(T)->getPointeeType(),
|
||
Deduced);
|
||
break;
|
||
|
||
case Type::MemberPointer: {
|
||
const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
|
||
MarkDeducedTemplateParameters(SemaRef, MemPtr->getPointeeType(), Deduced);
|
||
MarkDeducedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
|
||
Deduced);
|
||
break;
|
||
}
|
||
|
||
case Type::DependentSizedArray:
|
||
MarkDeducedTemplateParameters(cast<DependentSizedArrayType>(T)->getSizeExpr(),
|
||
Deduced);
|
||
// Fall through to check the element type
|
||
|
||
case Type::ConstantArray:
|
||
case Type::IncompleteArray:
|
||
MarkDeducedTemplateParameters(SemaRef,
|
||
cast<ArrayType>(T)->getElementType(),
|
||
Deduced);
|
||
break;
|
||
|
||
case Type::Vector:
|
||
case Type::ExtVector:
|
||
MarkDeducedTemplateParameters(SemaRef,
|
||
cast<VectorType>(T)->getElementType(),
|
||
Deduced);
|
||
break;
|
||
|
||
case Type::DependentSizedExtVector: {
|
||
const DependentSizedExtVectorType *VecType
|
||
= cast<DependentSizedExtVectorType>(T);
|
||
MarkDeducedTemplateParameters(SemaRef, VecType->getElementType(), Deduced);
|
||
MarkDeducedTemplateParameters(VecType->getSizeExpr(), Deduced);
|
||
break;
|
||
}
|
||
|
||
case Type::FunctionProto: {
|
||
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
|
||
MarkDeducedTemplateParameters(SemaRef, Proto->getResultType(), Deduced);
|
||
for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
|
||
MarkDeducedTemplateParameters(SemaRef, Proto->getArgType(I), Deduced);
|
||
break;
|
||
}
|
||
|
||
case Type::TemplateTypeParm:
|
||
Deduced[cast<TemplateTypeParmType>(T)->getIndex()] = true;
|
||
break;
|
||
|
||
case Type::TemplateSpecialization: {
|
||
const TemplateSpecializationType *Spec
|
||
= cast<TemplateSpecializationType>(T);
|
||
if (TemplateDecl *Template = Spec->getTemplateName().getAsTemplateDecl())
|
||
if (TemplateTemplateParmDecl *TTP
|
||
= dyn_cast<TemplateTemplateParmDecl>(Template))
|
||
Deduced[TTP->getIndex()] = true;
|
||
|
||
for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
|
||
MarkDeducedTemplateParameters(SemaRef, Spec->getArg(I), Deduced);
|
||
|
||
break;
|
||
}
|
||
|
||
// None of these types have any deducible parts.
|
||
case Type::Builtin:
|
||
case Type::FixedWidthInt:
|
||
case Type::Complex:
|
||
case Type::VariableArray:
|
||
case Type::FunctionNoProto:
|
||
case Type::Record:
|
||
case Type::Enum:
|
||
case Type::Typename:
|
||
case Type::ObjCInterface:
|
||
case Type::ObjCObjectPointer:
|
||
#define TYPE(Class, Base)
|
||
#define ABSTRACT_TYPE(Class, Base)
|
||
#define DEPENDENT_TYPE(Class, Base)
|
||
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
|
||
#include "clang/AST/TypeNodes.def"
|
||
break;
|
||
}
|
||
}
|
||
|
||
/// \brief Mark the template parameters that are deduced by this
|
||
/// template argument.
|
||
static void
|
||
MarkDeducedTemplateParameters(Sema &SemaRef,
|
||
const TemplateArgument &TemplateArg,
|
||
llvm::SmallVectorImpl<bool> &Deduced) {
|
||
switch (TemplateArg.getKind()) {
|
||
case TemplateArgument::Null:
|
||
case TemplateArgument::Integral:
|
||
break;
|
||
|
||
case TemplateArgument::Type:
|
||
MarkDeducedTemplateParameters(SemaRef, TemplateArg.getAsType(), Deduced);
|
||
break;
|
||
|
||
case TemplateArgument::Declaration:
|
||
if (TemplateTemplateParmDecl *TTP
|
||
= dyn_cast<TemplateTemplateParmDecl>(TemplateArg.getAsDecl()))
|
||
Deduced[TTP->getIndex()] = true;
|
||
break;
|
||
|
||
case TemplateArgument::Expression:
|
||
MarkDeducedTemplateParameters(TemplateArg.getAsExpr(), Deduced);
|
||
break;
|
||
case TemplateArgument::Pack:
|
||
assert(0 && "FIXME: Implement!");
|
||
break;
|
||
}
|
||
}
|
||
|
||
/// \brief Mark the template parameters can be deduced by the given
|
||
/// template argument list.
|
||
///
|
||
/// \param TemplateArgs the template argument list from which template
|
||
/// parameters will be deduced.
|
||
///
|
||
/// \param Deduced a bit vector whose elements will be set to \c true
|
||
/// to indicate when the corresponding template parameter will be
|
||
/// deduced.
|
||
void
|
||
Sema::MarkDeducedTemplateParameters(const TemplateArgumentList &TemplateArgs,
|
||
llvm::SmallVectorImpl<bool> &Deduced) {
|
||
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
||
::MarkDeducedTemplateParameters(*this, TemplateArgs[I], Deduced);
|
||
}
|