llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp

5904 lines
230 KiB
C++

//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SystemZTargetLowering class.
//
//===----------------------------------------------------------------------===//
#include "SystemZISelLowering.h"
#include "SystemZCallingConv.h"
#include "SystemZConstantPoolValue.h"
#include "SystemZMachineFunctionInfo.h"
#include "SystemZTargetMachine.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/Intrinsics.h"
#include <cctype>
using namespace llvm;
#define DEBUG_TYPE "systemz-lower"
namespace {
// Represents a sequence for extracting a 0/1 value from an IPM result:
// (((X ^ XORValue) + AddValue) >> Bit)
struct IPMConversion {
IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
: XORValue(xorValue), AddValue(addValue), Bit(bit) {}
int64_t XORValue;
int64_t AddValue;
unsigned Bit;
};
// Represents information about a comparison.
struct Comparison {
Comparison(SDValue Op0In, SDValue Op1In)
: Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
// The operands to the comparison.
SDValue Op0, Op1;
// The opcode that should be used to compare Op0 and Op1.
unsigned Opcode;
// A SystemZICMP value. Only used for integer comparisons.
unsigned ICmpType;
// The mask of CC values that Opcode can produce.
unsigned CCValid;
// The mask of CC values for which the original condition is true.
unsigned CCMask;
};
} // end anonymous namespace
// Classify VT as either 32 or 64 bit.
static bool is32Bit(EVT VT) {
switch (VT.getSimpleVT().SimpleTy) {
case MVT::i32:
return true;
case MVT::i64:
return false;
default:
llvm_unreachable("Unsupported type");
}
}
// Return a version of MachineOperand that can be safely used before the
// final use.
static MachineOperand earlyUseOperand(MachineOperand Op) {
if (Op.isReg())
Op.setIsKill(false);
return Op;
}
SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
const SystemZSubtarget &STI)
: TargetLowering(TM), Subtarget(STI) {
MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
// Set up the register classes.
if (Subtarget.hasHighWord())
addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
else
addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
if (Subtarget.hasVector()) {
addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
} else {
addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
}
addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
if (Subtarget.hasVector()) {
addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
}
// Compute derived properties from the register classes
computeRegisterProperties(Subtarget.getRegisterInfo());
// Set up special registers.
setExceptionPointerRegister(SystemZ::R6D);
setExceptionSelectorRegister(SystemZ::R7D);
setStackPointerRegisterToSaveRestore(SystemZ::R15D);
// TODO: It may be better to default to latency-oriented scheduling, however
// LLVM's current latency-oriented scheduler can't handle physreg definitions
// such as SystemZ has with CC, so set this to the register-pressure
// scheduler, because it can.
setSchedulingPreference(Sched::RegPressure);
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// Instructions are strings of 2-byte aligned 2-byte values.
setMinFunctionAlignment(2);
// Handle operations that are handled in a similar way for all types.
for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
I <= MVT::LAST_FP_VALUETYPE;
++I) {
MVT VT = MVT::SimpleValueType(I);
if (isTypeLegal(VT)) {
// Lower SET_CC into an IPM-based sequence.
setOperationAction(ISD::SETCC, VT, Custom);
// Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
setOperationAction(ISD::SELECT, VT, Expand);
// Lower SELECT_CC and BR_CC into separate comparisons and branches.
setOperationAction(ISD::SELECT_CC, VT, Custom);
setOperationAction(ISD::BR_CC, VT, Custom);
}
}
// Expand jump table branches as address arithmetic followed by an
// indirect jump.
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
// Expand BRCOND into a BR_CC (see above).
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
// Handle integer types.
for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
I <= MVT::LAST_INTEGER_VALUETYPE;
++I) {
MVT VT = MVT::SimpleValueType(I);
if (isTypeLegal(VT)) {
// Expand individual DIV and REMs into DIVREMs.
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Custom);
setOperationAction(ISD::UDIVREM, VT, Custom);
// Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
// stores, putting a serialization instruction after the stores.
setOperationAction(ISD::ATOMIC_LOAD, VT, Custom);
setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
// Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
// available, or if the operand is constant.
setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
// Use POPCNT on z196 and above.
if (Subtarget.hasPopulationCount())
setOperationAction(ISD::CTPOP, VT, Custom);
else
setOperationAction(ISD::CTPOP, VT, Expand);
// No special instructions for these.
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
// Use *MUL_LOHI where possible instead of MULH*.
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Custom);
setOperationAction(ISD::UMUL_LOHI, VT, Custom);
// Only z196 and above have native support for conversions to unsigned.
if (!Subtarget.hasFPExtension())
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
}
}
// Type legalization will convert 8- and 16-bit atomic operations into
// forms that operate on i32s (but still keeping the original memory VT).
// Lower them into full i32 operations.
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
// z10 has instructions for signed but not unsigned FP conversion.
// Handle unsigned 32-bit types as signed 64-bit types.
if (!Subtarget.hasFPExtension()) {
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
}
// We have native support for a 64-bit CTLZ, via FLOGR.
setOperationAction(ISD::CTLZ, MVT::i32, Promote);
setOperationAction(ISD::CTLZ, MVT::i64, Legal);
// Give LowerOperation the chance to replace 64-bit ORs with subregs.
setOperationAction(ISD::OR, MVT::i64, Custom);
// FIXME: Can we support these natively?
setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
// We have native instructions for i8, i16 and i32 extensions, but not i1.
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
}
// Handle the various types of symbolic address.
setOperationAction(ISD::ConstantPool, PtrVT, Custom);
setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
setOperationAction(ISD::BlockAddress, PtrVT, Custom);
setOperationAction(ISD::JumpTable, PtrVT, Custom);
// We need to handle dynamic allocations specially because of the
// 160-byte area at the bottom of the stack.
setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
// Use custom expanders so that we can force the function to use
// a frame pointer.
setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
// Handle prefetches with PFD or PFDRL.
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
for (MVT VT : MVT::vector_valuetypes()) {
// Assume by default that all vector operations need to be expanded.
for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
if (getOperationAction(Opcode, VT) == Legal)
setOperationAction(Opcode, VT, Expand);
// Likewise all truncating stores and extending loads.
for (MVT InnerVT : MVT::vector_valuetypes()) {
setTruncStoreAction(VT, InnerVT, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
}
if (isTypeLegal(VT)) {
// These operations are legal for anything that can be stored in a
// vector register, even if there is no native support for the format
// as such. In particular, we can do these for v4f32 even though there
// are no specific instructions for that format.
setOperationAction(ISD::LOAD, VT, Legal);
setOperationAction(ISD::STORE, VT, Legal);
setOperationAction(ISD::VSELECT, VT, Legal);
setOperationAction(ISD::BITCAST, VT, Legal);
setOperationAction(ISD::UNDEF, VT, Legal);
// Likewise, except that we need to replace the nodes with something
// more specific.
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
}
}
// Handle integer vector types.
for (MVT VT : MVT::integer_vector_valuetypes()) {
if (isTypeLegal(VT)) {
// These operations have direct equivalents.
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
setOperationAction(ISD::ADD, VT, Legal);
setOperationAction(ISD::SUB, VT, Legal);
if (VT != MVT::v2i64)
setOperationAction(ISD::MUL, VT, Legal);
setOperationAction(ISD::AND, VT, Legal);
setOperationAction(ISD::OR, VT, Legal);
setOperationAction(ISD::XOR, VT, Legal);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Legal);
setOperationAction(ISD::CTLZ, VT, Legal);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom);
// Convert a GPR scalar to a vector by inserting it into element 0.
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
// Use a series of unpacks for extensions.
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
// Detect shifts by a scalar amount and convert them into
// V*_BY_SCALAR.
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::SRL, VT, Custom);
// At present ROTL isn't matched by DAGCombiner. ROTR should be
// converted into ROTL.
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
// Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
// and inverting the result as necessary.
setOperationAction(ISD::SETCC, VT, Custom);
}
}
if (Subtarget.hasVector()) {
// There should be no need to check for float types other than v2f64
// since <2 x f32> isn't a legal type.
setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
}
// Handle floating-point types.
for (unsigned I = MVT::FIRST_FP_VALUETYPE;
I <= MVT::LAST_FP_VALUETYPE;
++I) {
MVT VT = MVT::SimpleValueType(I);
if (isTypeLegal(VT)) {
// We can use FI for FRINT.
setOperationAction(ISD::FRINT, VT, Legal);
// We can use the extended form of FI for other rounding operations.
if (Subtarget.hasFPExtension()) {
setOperationAction(ISD::FNEARBYINT, VT, Legal);
setOperationAction(ISD::FFLOOR, VT, Legal);
setOperationAction(ISD::FCEIL, VT, Legal);
setOperationAction(ISD::FTRUNC, VT, Legal);
setOperationAction(ISD::FROUND, VT, Legal);
}
// No special instructions for these.
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FSINCOS, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
}
}
// Handle floating-point vector types.
if (Subtarget.hasVector()) {
// Scalar-to-vector conversion is just a subreg.
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
// Some insertions and extractions can be done directly but others
// need to go via integers.
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
// These operations have direct equivalents.
setOperationAction(ISD::FADD, MVT::v2f64, Legal);
setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
setOperationAction(ISD::FMA, MVT::v2f64, Legal);
setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
setOperationAction(ISD::FABS, MVT::v2f64, Legal);
setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
}
// We have fused multiply-addition for f32 and f64 but not f128.
setOperationAction(ISD::FMA, MVT::f32, Legal);
setOperationAction(ISD::FMA, MVT::f64, Legal);
setOperationAction(ISD::FMA, MVT::f128, Expand);
// Needed so that we don't try to implement f128 constant loads using
// a load-and-extend of a f80 constant (in cases where the constant
// would fit in an f80).
for (MVT VT : MVT::fp_valuetypes())
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
// Floating-point truncation and stores need to be done separately.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
// We have 64-bit FPR<->GPR moves, but need special handling for
// 32-bit forms.
if (!Subtarget.hasVector()) {
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
setOperationAction(ISD::BITCAST, MVT::f32, Custom);
}
// VASTART and VACOPY need to deal with the SystemZ-specific varargs
// structure, but VAEND is a no-op.
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
// Codes for which we want to perform some z-specific combinations.
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
setTargetDAGCombine(ISD::FP_ROUND);
// Handle intrinsics.
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
// We want to use MVC in preference to even a single load/store pair.
MaxStoresPerMemcpy = 0;
MaxStoresPerMemcpyOptSize = 0;
// The main memset sequence is a byte store followed by an MVC.
// Two STC or MV..I stores win over that, but the kind of fused stores
// generated by target-independent code don't when the byte value is
// variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better
// than "STC;MVC". Handle the choice in target-specific code instead.
MaxStoresPerMemset = 0;
MaxStoresPerMemsetOptSize = 0;
}
EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
LLVMContext &, EVT VT) const {
if (!VT.isVector())
return MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
case MVT::f64:
return true;
case MVT::f128:
return false;
default:
break;
}
return false;
}
bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
// We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
return Imm.isZero() || Imm.isNegZero();
}
bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
// We can use CGFI or CLGFI.
return isInt<32>(Imm) || isUInt<32>(Imm);
}
bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
// We can use ALGFI or SLGFI.
return isUInt<32>(Imm) || isUInt<32>(-Imm);
}
bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned,
unsigned,
bool *Fast) const {
// Unaligned accesses should never be slower than the expanded version.
// We check specifically for aligned accesses in the few cases where
// they are required.
if (Fast)
*Fast = true;
return true;
}
bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
// Punt on globals for now, although they can be used in limited
// RELATIVE LONG cases.
if (AM.BaseGV)
return false;
// Require a 20-bit signed offset.
if (!isInt<20>(AM.BaseOffs))
return false;
// Indexing is OK but no scale factor can be applied.
return AM.Scale == 0 || AM.Scale == 1;
}
bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
return false;
unsigned FromBits = FromType->getPrimitiveSizeInBits();
unsigned ToBits = ToType->getPrimitiveSizeInBits();
return FromBits > ToBits;
}
bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
if (!FromVT.isInteger() || !ToVT.isInteger())
return false;
unsigned FromBits = FromVT.getSizeInBits();
unsigned ToBits = ToVT.getSizeInBits();
return FromBits > ToBits;
}
//===----------------------------------------------------------------------===//
// Inline asm support
//===----------------------------------------------------------------------===//
TargetLowering::ConstraintType
SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'a': // Address register
case 'd': // Data register (equivalent to 'r')
case 'f': // Floating-point register
case 'h': // High-part register
case 'r': // General-purpose register
return C_RegisterClass;
case 'Q': // Memory with base and unsigned 12-bit displacement
case 'R': // Likewise, plus an index
case 'S': // Memory with base and signed 20-bit displacement
case 'T': // Likewise, plus an index
case 'm': // Equivalent to 'T'.
return C_Memory;
case 'I': // Unsigned 8-bit constant
case 'J': // Unsigned 12-bit constant
case 'K': // Signed 16-bit constant
case 'L': // Signed 20-bit displacement (on all targets we support)
case 'M': // 0x7fffffff
return C_Other;
default:
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
TargetLowering::ConstraintWeight SystemZTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo &info,
const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'a': // Address register
case 'd': // Data register (equivalent to 'r')
case 'h': // High-part register
case 'r': // General-purpose register
if (CallOperandVal->getType()->isIntegerTy())
weight = CW_Register;
break;
case 'f': // Floating-point register
if (type->isFloatingPointTy())
weight = CW_Register;
break;
case 'I': // Unsigned 8-bit constant
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
if (isUInt<8>(C->getZExtValue()))
weight = CW_Constant;
break;
case 'J': // Unsigned 12-bit constant
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
if (isUInt<12>(C->getZExtValue()))
weight = CW_Constant;
break;
case 'K': // Signed 16-bit constant
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
if (isInt<16>(C->getSExtValue()))
weight = CW_Constant;
break;
case 'L': // Signed 20-bit displacement (on all targets we support)
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
if (isInt<20>(C->getSExtValue()))
weight = CW_Constant;
break;
case 'M': // 0x7fffffff
if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
if (C->getZExtValue() == 0x7fffffff)
weight = CW_Constant;
break;
}
return weight;
}
// Parse a "{tNNN}" register constraint for which the register type "t"
// has already been verified. MC is the class associated with "t" and
// Map maps 0-based register numbers to LLVM register numbers.
static std::pair<unsigned, const TargetRegisterClass *>
parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
const unsigned *Map) {
assert(*(Constraint.end()-1) == '}' && "Missing '}'");
if (isdigit(Constraint[2])) {
unsigned Index;
bool Failed =
Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
if (!Failed && Index < 16 && Map[Index])
return std::make_pair(Map[Index], RC);
}
return std::make_pair(0U, nullptr);
}
std::pair<unsigned, const TargetRegisterClass *>
SystemZTargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default: break;
case 'd': // Data register (equivalent to 'r')
case 'r': // General-purpose register
if (VT == MVT::i64)
return std::make_pair(0U, &SystemZ::GR64BitRegClass);
else if (VT == MVT::i128)
return std::make_pair(0U, &SystemZ::GR128BitRegClass);
return std::make_pair(0U, &SystemZ::GR32BitRegClass);
case 'a': // Address register
if (VT == MVT::i64)
return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
else if (VT == MVT::i128)
return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
case 'h': // High-part register (an LLVM extension)
return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
case 'f': // Floating-point register
if (VT == MVT::f64)
return std::make_pair(0U, &SystemZ::FP64BitRegClass);
else if (VT == MVT::f128)
return std::make_pair(0U, &SystemZ::FP128BitRegClass);
return std::make_pair(0U, &SystemZ::FP32BitRegClass);
}
}
if (Constraint.size() > 0 && Constraint[0] == '{') {
// We need to override the default register parsing for GPRs and FPRs
// because the interpretation depends on VT. The internal names of
// the registers are also different from the external names
// (F0D and F0S instead of F0, etc.).
if (Constraint[1] == 'r') {
if (VT == MVT::i32)
return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
SystemZMC::GR32Regs);
if (VT == MVT::i128)
return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
SystemZMC::GR128Regs);
return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
SystemZMC::GR64Regs);
}
if (Constraint[1] == 'f') {
if (VT == MVT::f32)
return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
SystemZMC::FP32Regs);
if (VT == MVT::f128)
return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
SystemZMC::FP128Regs);
return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
SystemZMC::FP64Regs);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
void SystemZTargetLowering::
LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
// Only support length 1 constraints for now.
if (Constraint.length() == 1) {
switch (Constraint[0]) {
case 'I': // Unsigned 8-bit constant
if (auto *C = dyn_cast<ConstantSDNode>(Op))
if (isUInt<8>(C->getZExtValue()))
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType()));
return;
case 'J': // Unsigned 12-bit constant
if (auto *C = dyn_cast<ConstantSDNode>(Op))
if (isUInt<12>(C->getZExtValue()))
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType()));
return;
case 'K': // Signed 16-bit constant
if (auto *C = dyn_cast<ConstantSDNode>(Op))
if (isInt<16>(C->getSExtValue()))
Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
Op.getValueType()));
return;
case 'L': // Signed 20-bit displacement (on all targets we support)
if (auto *C = dyn_cast<ConstantSDNode>(Op))
if (isInt<20>(C->getSExtValue()))
Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
Op.getValueType()));
return;
case 'M': // 0x7fffffff
if (auto *C = dyn_cast<ConstantSDNode>(Op))
if (C->getZExtValue() == 0x7fffffff)
Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType()));
return;
}
}
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
//===----------------------------------------------------------------------===//
// Calling conventions
//===----------------------------------------------------------------------===//
#include "SystemZGenCallingConv.inc"
bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
Type *ToType) const {
return isTruncateFree(FromType, ToType);
}
bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
if (!CI->isTailCall())
return false;
return true;
}
// We do not yet support 128-bit single-element vector types. If the user
// attempts to use such types as function argument or return type, prefer
// to error out instead of emitting code violating the ABI.
static void VerifyVectorType(MVT VT, EVT ArgVT) {
if (ArgVT.isVector() && !VT.isVector())
report_fatal_error("Unsupported vector argument or return type");
}
static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
for (unsigned i = 0; i < Ins.size(); ++i)
VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
}
static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
for (unsigned i = 0; i < Outs.size(); ++i)
VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
}
// Value is a value that has been passed to us in the location described by VA
// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining
// any loads onto Chain.
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
CCValAssign &VA, SDValue Chain,
SDValue Value) {
// If the argument has been promoted from a smaller type, insert an
// assertion to capture this.
if (VA.getLocInfo() == CCValAssign::SExt)
Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
DAG.getValueType(VA.getValVT()));
if (VA.isExtInLoc())
Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
else if (VA.getLocInfo() == CCValAssign::Indirect)
Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
MachinePointerInfo(), false, false, false, 0);
else if (VA.getLocInfo() == CCValAssign::BCvt) {
// If this is a short vector argument loaded from the stack,
// extend from i64 to full vector size and then bitcast.
assert(VA.getLocVT() == MVT::i64);
assert(VA.getValVT().isVector());
Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64,
Value, DAG.getUNDEF(MVT::i64));
Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
} else
assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
return Value;
}
// Value is a value of type VA.getValVT() that we need to copy into
// the location described by VA. Return a copy of Value converted to
// VA.getValVT(). The caller is responsible for handling indirect values.
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
CCValAssign &VA, SDValue Value) {
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
case CCValAssign::ZExt:
return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
case CCValAssign::AExt:
return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
case CCValAssign::BCvt:
// If this is a short vector argument to be stored to the stack,
// bitcast to v2i64 and then extract first element.
assert(VA.getLocVT() == MVT::i64);
assert(VA.getValVT().isVector());
Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
DAG.getConstant(0, DL, MVT::i32));
case CCValAssign::Full:
return Value;
default:
llvm_unreachable("Unhandled getLocInfo()");
}
}
SDValue SystemZTargetLowering::
LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
SystemZMachineFunctionInfo *FuncInfo =
MF.getInfo<SystemZMachineFunctionInfo>();
auto *TFL =
static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
// Detect unsupported vector argument types.
if (Subtarget.hasVector())
VerifyVectorTypes(Ins);
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
unsigned NumFixedGPRs = 0;
unsigned NumFixedFPRs = 0;
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
SDValue ArgValue;
CCValAssign &VA = ArgLocs[I];
EVT LocVT = VA.getLocVT();
if (VA.isRegLoc()) {
// Arguments passed in registers
const TargetRegisterClass *RC;
switch (LocVT.getSimpleVT().SimpleTy) {
default:
// Integers smaller than i64 should be promoted to i64.
llvm_unreachable("Unexpected argument type");
case MVT::i32:
NumFixedGPRs += 1;
RC = &SystemZ::GR32BitRegClass;
break;
case MVT::i64:
NumFixedGPRs += 1;
RC = &SystemZ::GR64BitRegClass;
break;
case MVT::f32:
NumFixedFPRs += 1;
RC = &SystemZ::FP32BitRegClass;
break;
case MVT::f64:
NumFixedFPRs += 1;
RC = &SystemZ::FP64BitRegClass;
break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
RC = &SystemZ::VR128BitRegClass;
break;
}
unsigned VReg = MRI.createVirtualRegister(RC);
MRI.addLiveIn(VA.getLocReg(), VReg);
ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
} else {
assert(VA.isMemLoc() && "Argument not register or memory");
// Create the frame index object for this incoming parameter.
int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
VA.getLocMemOffset(), true);
// Create the SelectionDAG nodes corresponding to a load
// from this parameter. Unpromoted ints and floats are
// passed as right-justified 8-byte values.
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
DAG.getIntPtrConstant(4, DL));
ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
MachinePointerInfo::getFixedStack(MF, FI), false,
false, false, 0);
}
// Convert the value of the argument register into the value that's
// being passed.
InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
}
if (IsVarArg) {
// Save the number of non-varargs registers for later use by va_start, etc.
FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
// Likewise the address (in the form of a frame index) of where the
// first stack vararg would be. The 1-byte size here is arbitrary.
int64_t StackSize = CCInfo.getNextStackOffset();
FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
// ...and a similar frame index for the caller-allocated save area
// that will be used to store the incoming registers.
int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
// Store the FPR varargs in the reserved frame slots. (We store the
// GPRs as part of the prologue.)
if (NumFixedFPRs < SystemZ::NumArgFPRs) {
SDValue MemOps[SystemZ::NumArgFPRs];
for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
&SystemZ::FP64BitRegClass);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
MachinePointerInfo::getFixedStack(MF, FI),
false, false, 0);
}
// Join the stores, which are independent of one another.
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
makeArrayRef(&MemOps[NumFixedFPRs],
SystemZ::NumArgFPRs-NumFixedFPRs));
}
}
return Chain;
}
static bool canUseSiblingCall(const CCState &ArgCCInfo,
SmallVectorImpl<CCValAssign> &ArgLocs) {
// Punt if there are any indirect or stack arguments, or if the call
// needs the call-saved argument register R6.
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
CCValAssign &VA = ArgLocs[I];
if (VA.getLocInfo() == CCValAssign::Indirect)
return false;
if (!VA.isRegLoc())
return false;
unsigned Reg = VA.getLocReg();
if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
return false;
}
return true;
}
SDValue
SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &DL = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
EVT PtrVT = getPointerTy(MF.getDataLayout());
// Detect unsupported vector argument and return types.
if (Subtarget.hasVector()) {
VerifyVectorTypes(Outs);
VerifyVectorTypes(Ins);
}
// Analyze the operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
// We don't support GuaranteedTailCallOpt, only automatically-detected
// sibling calls.
if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
IsTailCall = false;
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = ArgCCInfo.getNextStackOffset();
// Mark the start of the call.
if (!IsTailCall)
Chain = DAG.getCALLSEQ_START(Chain,
DAG.getConstant(NumBytes, DL, PtrVT, true),
DL);
// Copy argument values to their designated locations.
SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
SDValue StackPtr;
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
CCValAssign &VA = ArgLocs[I];
SDValue ArgValue = OutVals[I];
if (VA.getLocInfo() == CCValAssign::Indirect) {
// Store the argument in a stack slot and pass its address.
SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
MemOpChains.push_back(DAG.getStore(
Chain, DL, ArgValue, SpillSlot,
MachinePointerInfo::getFixedStack(MF, FI), false, false, 0));
ArgValue = SpillSlot;
} else
ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
if (VA.isRegLoc())
// Queue up the argument copies and emit them at the end.
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
else {
assert(VA.isMemLoc() && "Argument not register or memory");
// Work out the address of the stack slot. Unpromoted ints and
// floats are passed as right-justified 8-byte values.
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
Offset += 4;
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
DAG.getIntPtrConstant(Offset, DL));
// Emit the store.
MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
MachinePointerInfo(),
false, false, 0));
}
}
// Join the stores, which are independent of one another.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
// Accept direct calls by converting symbolic call addresses to the
// associated Target* opcodes. Force %r1 to be used for indirect
// tail calls.
SDValue Glue;
if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
} else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
} else if (IsTailCall) {
Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
Glue = Chain.getValue(1);
Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
}
// Build a sequence of copy-to-reg nodes, chained and glued together.
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
RegsToPass[I].second, Glue);
Glue = Chain.getValue(1);
}
// The first call operand is the chain and the second is the target address.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
Ops.push_back(DAG.getRegister(RegsToPass[I].first,
RegsToPass[I].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// Glue the call to the argument copies, if any.
if (Glue.getNode())
Ops.push_back(Glue);
// Emit the call.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
if (IsTailCall)
return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
Glue = Chain.getValue(1);
// Mark the end of the call, which is glued to the call itself.
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getConstant(NumBytes, DL, PtrVT, true),
DAG.getConstant(0, DL, PtrVT, true),
Glue, DL);
Glue = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RetLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
// Copy all of the result registers out of their specified physreg.
for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
CCValAssign &VA = RetLocs[I];
// Copy the value out, gluing the copy to the end of the call sequence.
SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
VA.getLocVT(), Glue);
Chain = RetValue.getValue(1);
Glue = RetValue.getValue(2);
// Convert the value of the return register into the value that's
// being returned.
InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
}
return Chain;
}
bool SystemZTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
// Detect unsupported vector return types.
if (Subtarget.hasVector())
VerifyVectorTypes(Outs);
SmallVector<CCValAssign, 16> RetLocs;
CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
}
SDValue
SystemZTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
// Detect unsupported vector return types.
if (Subtarget.hasVector())
VerifyVectorTypes(Outs);
// Assign locations to each returned value.
SmallVector<CCValAssign, 16> RetLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
// Quick exit for void returns
if (RetLocs.empty())
return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
// Copy the result values into the output registers.
SDValue Glue;
SmallVector<SDValue, 4> RetOps;
RetOps.push_back(Chain);
for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
CCValAssign &VA = RetLocs[I];
SDValue RetValue = OutVals[I];
// Make the return register live on exit.
assert(VA.isRegLoc() && "Can only return in registers!");
// Promote the value as required.
RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
// Chain and glue the copies together.
unsigned Reg = VA.getLocReg();
Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
}
// Update chain and glue.
RetOps[0] = Chain;
if (Glue.getNode())
RetOps.push_back(Glue);
return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
}
SDValue SystemZTargetLowering::
prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const {
return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
}
// Return true if Op is an intrinsic node with chain that returns the CC value
// as its only (other) argument. Provide the associated SystemZISD opcode and
// the mask of valid CC values if so.
static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
unsigned &CCValid) {
unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (Id) {
case Intrinsic::s390_tbegin:
Opcode = SystemZISD::TBEGIN;
CCValid = SystemZ::CCMASK_TBEGIN;
return true;
case Intrinsic::s390_tbegin_nofloat:
Opcode = SystemZISD::TBEGIN_NOFLOAT;
CCValid = SystemZ::CCMASK_TBEGIN;
return true;
case Intrinsic::s390_tend:
Opcode = SystemZISD::TEND;
CCValid = SystemZ::CCMASK_TEND;
return true;
default:
return false;
}
}
// Return true if Op is an intrinsic node without chain that returns the
// CC value as its final argument. Provide the associated SystemZISD
// opcode and the mask of valid CC values if so.
static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (Id) {
case Intrinsic::s390_vpkshs:
case Intrinsic::s390_vpksfs:
case Intrinsic::s390_vpksgs:
Opcode = SystemZISD::PACKS_CC;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vpklshs:
case Intrinsic::s390_vpklsfs:
case Intrinsic::s390_vpklsgs:
Opcode = SystemZISD::PACKLS_CC;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vceqbs:
case Intrinsic::s390_vceqhs:
case Intrinsic::s390_vceqfs:
case Intrinsic::s390_vceqgs:
Opcode = SystemZISD::VICMPES;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vchbs:
case Intrinsic::s390_vchhs:
case Intrinsic::s390_vchfs:
case Intrinsic::s390_vchgs:
Opcode = SystemZISD::VICMPHS;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vchlbs:
case Intrinsic::s390_vchlhs:
case Intrinsic::s390_vchlfs:
case Intrinsic::s390_vchlgs:
Opcode = SystemZISD::VICMPHLS;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vtm:
Opcode = SystemZISD::VTM;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vfaebs:
case Intrinsic::s390_vfaehs:
case Intrinsic::s390_vfaefs:
Opcode = SystemZISD::VFAE_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vfaezbs:
case Intrinsic::s390_vfaezhs:
case Intrinsic::s390_vfaezfs:
Opcode = SystemZISD::VFAEZ_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vfeebs:
case Intrinsic::s390_vfeehs:
case Intrinsic::s390_vfeefs:
Opcode = SystemZISD::VFEE_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vfeezbs:
case Intrinsic::s390_vfeezhs:
case Intrinsic::s390_vfeezfs:
Opcode = SystemZISD::VFEEZ_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vfenebs:
case Intrinsic::s390_vfenehs:
case Intrinsic::s390_vfenefs:
Opcode = SystemZISD::VFENE_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vfenezbs:
case Intrinsic::s390_vfenezhs:
case Intrinsic::s390_vfenezfs:
Opcode = SystemZISD::VFENEZ_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vistrbs:
case Intrinsic::s390_vistrhs:
case Intrinsic::s390_vistrfs:
Opcode = SystemZISD::VISTR_CC;
CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
return true;
case Intrinsic::s390_vstrcbs:
case Intrinsic::s390_vstrchs:
case Intrinsic::s390_vstrcfs:
Opcode = SystemZISD::VSTRC_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vstrczbs:
case Intrinsic::s390_vstrczhs:
case Intrinsic::s390_vstrczfs:
Opcode = SystemZISD::VSTRCZ_CC;
CCValid = SystemZ::CCMASK_ANY;
return true;
case Intrinsic::s390_vfcedbs:
Opcode = SystemZISD::VFCMPES;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vfchdbs:
Opcode = SystemZISD::VFCMPHS;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vfchedbs:
Opcode = SystemZISD::VFCMPHES;
CCValid = SystemZ::CCMASK_VCMP;
return true;
case Intrinsic::s390_vftcidb:
Opcode = SystemZISD::VFTCI;
CCValid = SystemZ::CCMASK_VCMP;
return true;
default:
return false;
}
}
// Emit an intrinsic with chain with a glued value instead of its CC result.
static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
unsigned Opcode) {
// Copy all operands except the intrinsic ID.
unsigned NumOps = Op.getNumOperands();
SmallVector<SDValue, 6> Ops;
Ops.reserve(NumOps - 1);
Ops.push_back(Op.getOperand(0));
for (unsigned I = 2; I < NumOps; ++I)
Ops.push_back(Op.getOperand(I));
assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
SDValue OldChain = SDValue(Op.getNode(), 1);
SDValue NewChain = SDValue(Intr.getNode(), 0);
DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
return Intr;
}
// Emit an intrinsic with a glued value instead of its CC result.
static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
unsigned Opcode) {
// Copy all operands except the intrinsic ID.
unsigned NumOps = Op.getNumOperands();
SmallVector<SDValue, 6> Ops;
Ops.reserve(NumOps - 1);
for (unsigned I = 1; I < NumOps; ++I)
Ops.push_back(Op.getOperand(I));
if (Op->getNumValues() == 1)
return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
}
// CC is a comparison that will be implemented using an integer or
// floating-point comparison. Return the condition code mask for
// a branch on true. In the integer case, CCMASK_CMP_UO is set for
// unsigned comparisons and clear for signed ones. In the floating-point
// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
static unsigned CCMaskForCondCode(ISD::CondCode CC) {
#define CONV(X) \
case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
switch (CC) {
default:
llvm_unreachable("Invalid integer condition!");
CONV(EQ);
CONV(NE);
CONV(GT);
CONV(GE);
CONV(LT);
CONV(LE);
case ISD::SETO: return SystemZ::CCMASK_CMP_O;
case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
}
#undef CONV
}
// Return a sequence for getting a 1 from an IPM result when CC has a
// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
// The handling of CC values outside CCValid doesn't matter.
static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
// Deal with cases where the result can be taken directly from a bit
// of the IPM result.
if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
return IPMConversion(0, 0, SystemZ::IPM_CC);
if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
// Deal with cases where we can add a value to force the sign bit
// to contain the right value. Putting the bit in 31 means we can
// use SRL rather than RISBG(L), and also makes it easier to get a
// 0/-1 value, so it has priority over the other tests below.
//
// These sequences rely on the fact that the upper two bits of the
// IPM result are zero.
uint64_t TopBit = uint64_t(1) << 31;
if (CCMask == (CCValid & SystemZ::CCMASK_0))
return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & (SystemZ::CCMASK_0
| SystemZ::CCMASK_1
| SystemZ::CCMASK_2)))
return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & SystemZ::CCMASK_3))
return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & (SystemZ::CCMASK_1
| SystemZ::CCMASK_2
| SystemZ::CCMASK_3)))
return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
// Next try inverting the value and testing a bit. 0/1 could be
// handled this way too, but we dealt with that case above.
if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
return IPMConversion(-1, 0, SystemZ::IPM_CC);
// Handle cases where adding a value forces a non-sign bit to contain
// the right value.
if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
// The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
// can be done by inverting the low CC bit and applying one of the
// sign-based extractions above.
if (CCMask == (CCValid & SystemZ::CCMASK_1))
return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & SystemZ::CCMASK_2))
return IPMConversion(1 << SystemZ::IPM_CC,
TopBit - (3 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & (SystemZ::CCMASK_0
| SystemZ::CCMASK_1
| SystemZ::CCMASK_3)))
return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
if (CCMask == (CCValid & (SystemZ::CCMASK_0
| SystemZ::CCMASK_2
| SystemZ::CCMASK_3)))
return IPMConversion(1 << SystemZ::IPM_CC,
TopBit - (1 << SystemZ::IPM_CC), 31);
llvm_unreachable("Unexpected CC combination");
}
// If C can be converted to a comparison against zero, adjust the operands
// as necessary.
static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
if (C.ICmpType == SystemZICMP::UnsignedOnly)
return;
auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
if (!ConstOp1)
return;
int64_t Value = ConstOp1->getSExtValue();
if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
(Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
(Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
(Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
}
}
// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
// adjust the operands as necessary.
static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
// For us to make any changes, it must a comparison between a single-use
// load and a constant.
if (!C.Op0.hasOneUse() ||
C.Op0.getOpcode() != ISD::LOAD ||
C.Op1.getOpcode() != ISD::Constant)
return;
// We must have an 8- or 16-bit load.
auto *Load = cast<LoadSDNode>(C.Op0);
unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
if (NumBits != 8 && NumBits != 16)
return;
// The load must be an extending one and the constant must be within the
// range of the unextended value.
auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
uint64_t Value = ConstOp1->getZExtValue();
uint64_t Mask = (1 << NumBits) - 1;
if (Load->getExtensionType() == ISD::SEXTLOAD) {
// Make sure that ConstOp1 is in range of C.Op0.
int64_t SignedValue = ConstOp1->getSExtValue();
if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
return;
if (C.ICmpType != SystemZICMP::SignedOnly) {
// Unsigned comparison between two sign-extended values is equivalent
// to unsigned comparison between two zero-extended values.
Value &= Mask;
} else if (NumBits == 8) {
// Try to treat the comparison as unsigned, so that we can use CLI.
// Adjust CCMask and Value as necessary.
if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
// Test whether the high bit of the byte is set.
Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
// Test whether the high bit of the byte is clear.
Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
else
// No instruction exists for this combination.
return;
C.ICmpType = SystemZICMP::UnsignedOnly;
}
} else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
if (Value > Mask)
return;
assert(C.ICmpType == SystemZICMP::Any &&
"Signedness shouldn't matter here.");
} else
return;
// Make sure that the first operand is an i32 of the right extension type.
ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
ISD::SEXTLOAD :
ISD::ZEXTLOAD);
if (C.Op0.getValueType() != MVT::i32 ||
Load->getExtensionType() != ExtType)
C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
Load->getChain(), Load->getBasePtr(),
Load->getPointerInfo(), Load->getMemoryVT(),
Load->isVolatile(), Load->isNonTemporal(),
Load->isInvariant(), Load->getAlignment());
// Make sure that the second operand is an i32 with the right value.
if (C.Op1.getValueType() != MVT::i32 ||
Value != ConstOp1->getZExtValue())
C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
}
// Return true if Op is either an unextended load, or a load suitable
// for integer register-memory comparisons of type ICmpType.
static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
if (Load) {
// There are no instructions to compare a register with a memory byte.
if (Load->getMemoryVT() == MVT::i8)
return false;
// Otherwise decide on extension type.
switch (Load->getExtensionType()) {
case ISD::NON_EXTLOAD:
return true;
case ISD::SEXTLOAD:
return ICmpType != SystemZICMP::UnsignedOnly;
case ISD::ZEXTLOAD:
return ICmpType != SystemZICMP::SignedOnly;
default:
break;
}
}
return false;
}
// Return true if it is better to swap the operands of C.
static bool shouldSwapCmpOperands(const Comparison &C) {
// Leave f128 comparisons alone, since they have no memory forms.
if (C.Op0.getValueType() == MVT::f128)
return false;
// Always keep a floating-point constant second, since comparisons with
// zero can use LOAD TEST and comparisons with other constants make a
// natural memory operand.
if (isa<ConstantFPSDNode>(C.Op1))
return false;
// Never swap comparisons with zero since there are many ways to optimize
// those later.
auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
if (ConstOp1 && ConstOp1->getZExtValue() == 0)
return false;
// Also keep natural memory operands second if the loaded value is
// only used here. Several comparisons have memory forms.
if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
return false;
// Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
// In that case we generally prefer the memory to be second.
if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
// The only exceptions are when the second operand is a constant and
// we can use things like CHHSI.
if (!ConstOp1)
return true;
// The unsigned memory-immediate instructions can handle 16-bit
// unsigned integers.
if (C.ICmpType != SystemZICMP::SignedOnly &&
isUInt<16>(ConstOp1->getZExtValue()))
return false;
// The signed memory-immediate instructions can handle 16-bit
// signed integers.
if (C.ICmpType != SystemZICMP::UnsignedOnly &&
isInt<16>(ConstOp1->getSExtValue()))
return false;
return true;
}
// Try to promote the use of CGFR and CLGFR.
unsigned Opcode0 = C.Op0.getOpcode();
if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
return true;
if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
return true;
if (C.ICmpType != SystemZICMP::SignedOnly &&
Opcode0 == ISD::AND &&
C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
return true;
return false;
}
// Return a version of comparison CC mask CCMask in which the LT and GT
// actions are swapped.
static unsigned reverseCCMask(unsigned CCMask) {
return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
(CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
(CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
(CCMask & SystemZ::CCMASK_CMP_UO));
}
// Check whether C tests for equality between X and Y and whether X - Y
// or Y - X is also computed. In that case it's better to compare the
// result of the subtraction against zero.
static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
C.CCMask == SystemZ::CCMASK_CMP_NE) {
for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
SDNode *N = *I;
if (N->getOpcode() == ISD::SUB &&
((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
(N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
C.Op0 = SDValue(N, 0);
C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
return;
}
}
}
}
// Check whether C compares a floating-point value with zero and if that
// floating-point value is also negated. In this case we can use the
// negation to set CC, so avoiding separate LOAD AND TEST and
// LOAD (NEGATIVE/COMPLEMENT) instructions.
static void adjustForFNeg(Comparison &C) {
auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
if (C1 && C1->isZero()) {
for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
SDNode *N = *I;
if (N->getOpcode() == ISD::FNEG) {
C.Op0 = SDValue(N, 0);
C.CCMask = reverseCCMask(C.CCMask);
return;
}
}
}
}
// Check whether C compares (shl X, 32) with 0 and whether X is
// also sign-extended. In that case it is better to test the result
// of the sign extension using LTGFR.
//
// This case is important because InstCombine transforms a comparison
// with (sext (trunc X)) into a comparison with (shl X, 32).
static void adjustForLTGFR(Comparison &C) {
// Check for a comparison between (shl X, 32) and 0.
if (C.Op0.getOpcode() == ISD::SHL &&
C.Op0.getValueType() == MVT::i64 &&
C.Op1.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
if (C1 && C1->getZExtValue() == 32) {
SDValue ShlOp0 = C.Op0.getOperand(0);
// See whether X has any SIGN_EXTEND_INREG uses.
for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
SDNode *N = *I;
if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
C.Op0 = SDValue(N, 0);
return;
}
}
}
}
}
// If C compares the truncation of an extending load, try to compare
// the untruncated value instead. This exposes more opportunities to
// reuse CC.
static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
if (C.Op0.getOpcode() == ISD::TRUNCATE &&
C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
C.Op1.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
if (L->getMemoryVT().getStoreSizeInBits()
<= C.Op0.getValueType().getSizeInBits()) {
unsigned Type = L->getExtensionType();
if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
(Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
C.Op0 = C.Op0.getOperand(0);
C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
}
}
}
}
// Return true if shift operation N has an in-range constant shift value.
// Store it in ShiftVal if so.
static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!Shift)
return false;
uint64_t Amount = Shift->getZExtValue();
if (Amount >= N.getValueType().getSizeInBits())
return false;
ShiftVal = Amount;
return true;
}
// Check whether an AND with Mask is suitable for a TEST UNDER MASK
// instruction and whether the CC value is descriptive enough to handle
// a comparison of type Opcode between the AND result and CmpVal.
// CCMask says which comparison result is being tested and BitSize is
// the number of bits in the operands. If TEST UNDER MASK can be used,
// return the corresponding CC mask, otherwise return 0.
static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
uint64_t Mask, uint64_t CmpVal,
unsigned ICmpType) {
assert(Mask != 0 && "ANDs with zero should have been removed by now");
// Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
!SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
return 0;
// Work out the masks for the lowest and highest bits.
unsigned HighShift = 63 - countLeadingZeros(Mask);
uint64_t High = uint64_t(1) << HighShift;
uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
// Signed ordered comparisons are effectively unsigned if the sign
// bit is dropped.
bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
// Check for equality comparisons with 0, or the equivalent.
if (CmpVal == 0) {
if (CCMask == SystemZ::CCMASK_CMP_EQ)
return SystemZ::CCMASK_TM_ALL_0;
if (CCMask == SystemZ::CCMASK_CMP_NE)
return SystemZ::CCMASK_TM_SOME_1;
}
if (EffectivelyUnsigned && CmpVal <= Low) {
if (CCMask == SystemZ::CCMASK_CMP_LT)
return SystemZ::CCMASK_TM_ALL_0;
if (CCMask == SystemZ::CCMASK_CMP_GE)
return SystemZ::CCMASK_TM_SOME_1;
}
if (EffectivelyUnsigned && CmpVal < Low) {
if (CCMask == SystemZ::CCMASK_CMP_LE)
return SystemZ::CCMASK_TM_ALL_0;
if (CCMask == SystemZ::CCMASK_CMP_GT)
return SystemZ::CCMASK_TM_SOME_1;
}
// Check for equality comparisons with the mask, or the equivalent.
if (CmpVal == Mask) {
if (CCMask == SystemZ::CCMASK_CMP_EQ)
return SystemZ::CCMASK_TM_ALL_1;
if (CCMask == SystemZ::CCMASK_CMP_NE)
return SystemZ::CCMASK_TM_SOME_0;
}
if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
if (CCMask == SystemZ::CCMASK_CMP_GT)
return SystemZ::CCMASK_TM_ALL_1;
if (CCMask == SystemZ::CCMASK_CMP_LE)
return SystemZ::CCMASK_TM_SOME_0;
}
if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
if (CCMask == SystemZ::CCMASK_CMP_GE)
return SystemZ::CCMASK_TM_ALL_1;
if (CCMask == SystemZ::CCMASK_CMP_LT)
return SystemZ::CCMASK_TM_SOME_0;
}
// Check for ordered comparisons with the top bit.
if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
if (CCMask == SystemZ::CCMASK_CMP_LE)
return SystemZ::CCMASK_TM_MSB_0;
if (CCMask == SystemZ::CCMASK_CMP_GT)
return SystemZ::CCMASK_TM_MSB_1;
}
if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
if (CCMask == SystemZ::CCMASK_CMP_LT)
return SystemZ::CCMASK_TM_MSB_0;
if (CCMask == SystemZ::CCMASK_CMP_GE)
return SystemZ::CCMASK_TM_MSB_1;
}
// If there are just two bits, we can do equality checks for Low and High
// as well.
if (Mask == Low + High) {
if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
return SystemZ::CCMASK_TM_MIXED_MSB_0;
if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
return SystemZ::CCMASK_TM_MIXED_MSB_1;
if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
}
// Looks like we've exhausted our options.
return 0;
}
// See whether C can be implemented as a TEST UNDER MASK instruction.
// Update the arguments with the TM version if so.
static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
// Check that we have a comparison with a constant.
auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
if (!ConstOp1)
return;
uint64_t CmpVal = ConstOp1->getZExtValue();
// Check whether the nonconstant input is an AND with a constant mask.
Comparison NewC(C);
uint64_t MaskVal;
ConstantSDNode *Mask = nullptr;
if (C.Op0.getOpcode() == ISD::AND) {
NewC.Op0 = C.Op0.getOperand(0);
NewC.Op1 = C.Op0.getOperand(1);
Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
if (!Mask)
return;
MaskVal = Mask->getZExtValue();
} else {
// There is no instruction to compare with a 64-bit immediate
// so use TMHH instead if possible. We need an unsigned ordered
// comparison with an i64 immediate.
if (NewC.Op0.getValueType() != MVT::i64 ||
NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
NewC.ICmpType == SystemZICMP::SignedOnly)
return;
// Convert LE and GT comparisons into LT and GE.
if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
if (CmpVal == uint64_t(-1))
return;
CmpVal += 1;
NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
}
// If the low N bits of Op1 are zero than the low N bits of Op0 can
// be masked off without changing the result.
MaskVal = -(CmpVal & -CmpVal);
NewC.ICmpType = SystemZICMP::UnsignedOnly;
}
if (!MaskVal)
return;
// Check whether the combination of mask, comparison value and comparison
// type are suitable.
unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
unsigned NewCCMask, ShiftVal;
if (NewC.ICmpType != SystemZICMP::SignedOnly &&
NewC.Op0.getOpcode() == ISD::SHL &&
isSimpleShift(NewC.Op0, ShiftVal) &&
(NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
MaskVal >> ShiftVal,
CmpVal >> ShiftVal,
SystemZICMP::Any))) {
NewC.Op0 = NewC.Op0.getOperand(0);
MaskVal >>= ShiftVal;
} else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
NewC.Op0.getOpcode() == ISD::SRL &&
isSimpleShift(NewC.Op0, ShiftVal) &&
(NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
MaskVal << ShiftVal,
CmpVal << ShiftVal,
SystemZICMP::UnsignedOnly))) {
NewC.Op0 = NewC.Op0.getOperand(0);
MaskVal <<= ShiftVal;
} else {
NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
NewC.ICmpType);
if (!NewCCMask)
return;
}
// Go ahead and make the change.
C.Opcode = SystemZISD::TM;
C.Op0 = NewC.Op0;
if (Mask && Mask->getZExtValue() == MaskVal)
C.Op1 = SDValue(Mask, 0);
else
C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
C.CCValid = SystemZ::CCMASK_TM;
C.CCMask = NewCCMask;
}
// Return a Comparison that tests the condition-code result of intrinsic
// node Call against constant integer CC using comparison code Cond.
// Opcode is the opcode of the SystemZISD operation for the intrinsic
// and CCValid is the set of possible condition-code results.
static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
SDValue Call, unsigned CCValid, uint64_t CC,
ISD::CondCode Cond) {
Comparison C(Call, SDValue());
C.Opcode = Opcode;
C.CCValid = CCValid;
if (Cond == ISD::SETEQ)
// bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
else if (Cond == ISD::SETNE)
// ...and the inverse of that.
C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
// bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
// always true for CC>3.
C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
// ...and the inverse of that.
C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
// bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
// always true for CC>3.
C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
// ...and the inverse of that.
C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
else
llvm_unreachable("Unexpected integer comparison type");
C.CCMask &= CCValid;
return C;
}
// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
ISD::CondCode Cond, SDLoc DL) {
if (CmpOp1.getOpcode() == ISD::Constant) {
uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
unsigned Opcode, CCValid;
if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
}
Comparison C(CmpOp0, CmpOp1);
C.CCMask = CCMaskForCondCode(Cond);
if (C.Op0.getValueType().isFloatingPoint()) {
C.CCValid = SystemZ::CCMASK_FCMP;
C.Opcode = SystemZISD::FCMP;
adjustForFNeg(C);
} else {
C.CCValid = SystemZ::CCMASK_ICMP;
C.Opcode = SystemZISD::ICMP;
// Choose the type of comparison. Equality and inequality tests can
// use either signed or unsigned comparisons. The choice also doesn't
// matter if both sign bits are known to be clear. In those cases we
// want to give the main isel code the freedom to choose whichever
// form fits best.
if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
C.CCMask == SystemZ::CCMASK_CMP_NE ||
(DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
C.ICmpType = SystemZICMP::Any;
else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
C.ICmpType = SystemZICMP::UnsignedOnly;
else
C.ICmpType = SystemZICMP::SignedOnly;
C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
adjustZeroCmp(DAG, DL, C);
adjustSubwordCmp(DAG, DL, C);
adjustForSubtraction(DAG, DL, C);
adjustForLTGFR(C);
adjustICmpTruncate(DAG, DL, C);
}
if (shouldSwapCmpOperands(C)) {
std::swap(C.Op0, C.Op1);
C.CCMask = reverseCCMask(C.CCMask);
}
adjustForTestUnderMask(DAG, DL, C);
return C;
}
// Emit the comparison instruction described by C.
static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) {
if (!C.Op1.getNode()) {
SDValue Op;
switch (C.Op0.getOpcode()) {
case ISD::INTRINSIC_W_CHAIN:
Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
break;
case ISD::INTRINSIC_WO_CHAIN:
Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
break;
default:
llvm_unreachable("Invalid comparison operands");
}
return SDValue(Op.getNode(), Op->getNumValues() - 1);
}
if (C.Opcode == SystemZISD::ICMP)
return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
DAG.getConstant(C.ICmpType, DL, MVT::i32));
if (C.Opcode == SystemZISD::TM) {
bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
DAG.getConstant(RegisterOnly, DL, MVT::i32));
}
return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
}
// Implement a 32-bit *MUL_LOHI operation by extending both operands to
// 64 bits. Extend is the extension type to use. Store the high part
// in Hi and the low part in Lo.
static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
unsigned Extend, SDValue Op0, SDValue Op1,
SDValue &Hi, SDValue &Lo) {
Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
DAG.getConstant(32, DL, MVT::i64));
Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
}
// Lower a binary operation that produces two VT results, one in each
// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation,
// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
// on the extended Op0 and (unextended) Op1. Store the even register result
// in Even and the odd register result in Odd.
static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
unsigned Extend, unsigned Opcode,
SDValue Op0, SDValue Op1,
SDValue &Even, SDValue &Odd) {
SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
SDValue(In128, 0), Op1);
bool Is32Bit = is32Bit(VT);
Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
}
// Return an i32 value that is 1 if the CC value produced by Glue is
// in the mask CCMask and 0 otherwise. CC is known to have a value
// in CCValid, so other values can be ignored.
static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue,
unsigned CCValid, unsigned CCMask) {
IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
if (Conversion.XORValue)
Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
DAG.getConstant(Conversion.XORValue, DL, MVT::i32));
if (Conversion.AddValue)
Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
DAG.getConstant(Conversion.AddValue, DL, MVT::i32));
// The SHR/AND sequence should get optimized to an RISBG.
Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
DAG.getConstant(Conversion.Bit, DL, MVT::i32));
if (Conversion.Bit != 31)
Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
DAG.getConstant(1, DL, MVT::i32));
return Result;
}
// Return the SystemISD vector comparison operation for CC, or 0 if it cannot
// be done directly. IsFP is true if CC is for a floating-point rather than
// integer comparison.
static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
switch (CC) {
case ISD::SETOEQ:
case ISD::SETEQ:
return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
case ISD::SETOGE:
case ISD::SETGE:
return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
case ISD::SETOGT:
case ISD::SETGT:
return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
case ISD::SETUGT:
return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
default:
return 0;
}
}
// Return the SystemZISD vector comparison operation for CC or its inverse,
// or 0 if neither can be done directly. Indicate in Invert whether the
// result is for the inverse of CC. IsFP is true if CC is for a
// floating-point rather than integer comparison.
static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
bool &Invert) {
if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
Invert = false;
return Opcode;
}
CC = ISD::getSetCCInverse(CC, !IsFP);
if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
Invert = true;
return Opcode;
}
return 0;
}
// Return a v2f64 that contains the extended form of elements Start and Start+1
// of v4f32 value Op.
static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL,
SDValue Op) {
int Mask[] = { Start, -1, Start + 1, -1 };
Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
}
// Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
// producing a result of type VT.
static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL,
EVT VT, SDValue CmpOp0, SDValue CmpOp1) {
// There is no hardware support for v4f32, so extend the vector into
// two v2f64s and compare those.
if (CmpOp0.getValueType() == MVT::v4f32) {
SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
}
return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
}
// Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
// an integer mask of type VT.
static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT,
ISD::CondCode CC, SDValue CmpOp0,
SDValue CmpOp1) {
bool IsFP = CmpOp0.getValueType().isFloatingPoint();
bool Invert = false;
SDValue Cmp;
switch (CC) {
// Handle tests for order using (or (ogt y x) (oge x y)).
case ISD::SETUO:
Invert = true;
case ISD::SETO: {
assert(IsFP && "Unexpected integer comparison");
SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
break;
}
// Handle <> tests using (or (ogt y x) (ogt x y)).
case ISD::SETUEQ:
Invert = true;
case ISD::SETONE: {
assert(IsFP && "Unexpected integer comparison");
SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
break;
}
// Otherwise a single comparison is enough. It doesn't really
// matter whether we try the inversion or the swap first, since
// there are no cases where both work.
default:
if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
else {
CC = ISD::getSetCCSwappedOperands(CC);
if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
else
llvm_unreachable("Unhandled comparison");
}
break;
}
if (Invert) {
SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
DAG.getConstant(65535, DL, MVT::i32));
Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
}
return Cmp;
}
SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
SelectionDAG &DAG) const {
SDValue CmpOp0 = Op.getOperand(0);
SDValue CmpOp1 = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
SDLoc DL(Op);
EVT VT = Op.getValueType();
if (VT.isVector())
return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
SDValue Glue = emitCmp(DAG, DL, C);
return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
}
SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue CmpOp0 = Op.getOperand(2);
SDValue CmpOp1 = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc DL(Op);
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
SDValue Glue = emitCmp(DAG, DL, C);
return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
}
// Return true if Pos is CmpOp and Neg is the negative of CmpOp,
// allowing Pos and Neg to be wider than CmpOp.
static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
return (Neg.getOpcode() == ISD::SUB &&
Neg.getOperand(0).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
Neg.getOperand(1) == Pos &&
(Pos == CmpOp ||
(Pos.getOpcode() == ISD::SIGN_EXTEND &&
Pos.getOperand(0) == CmpOp)));
}
// Return the absolute or negative absolute of Op; IsNegative decides which.
static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op,
bool IsNegative) {
Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
if (IsNegative)
Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
DAG.getConstant(0, DL, Op.getValueType()), Op);
return Op;
}
SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
SelectionDAG &DAG) const {
SDValue CmpOp0 = Op.getOperand(0);
SDValue CmpOp1 = Op.getOperand(1);
SDValue TrueOp = Op.getOperand(2);
SDValue FalseOp = Op.getOperand(3);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDLoc DL(Op);
Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
// Check for absolute and negative-absolute selections, including those
// where the comparison value is sign-extended (for LPGFR and LNGFR).
// This check supplements the one in DAGCombiner.
if (C.Opcode == SystemZISD::ICMP &&
C.CCMask != SystemZ::CCMASK_CMP_EQ &&
C.CCMask != SystemZ::CCMASK_CMP_NE &&
C.Op1.getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
if (isAbsolute(C.Op0, TrueOp, FalseOp))
return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
if (isAbsolute(C.Op0, FalseOp, TrueOp))
return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
}
SDValue Glue = emitCmp(DAG, DL, C);
// Special case for handling -1/0 results. The shifts we use here
// should get optimized with the IPM conversion sequence.
auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
if (TrueC && FalseC) {
int64_t TrueVal = TrueC->getSExtValue();
int64_t FalseVal = FalseC->getSExtValue();
if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
// Invert the condition if we want -1 on false.
if (TrueVal == 0)
C.CCMask ^= C.CCValid;
SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
EVT VT = Op.getValueType();
// Extend the result to VT. Upper bits are ignored.
if (!is32Bit(VT))
Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
// Sign-extend from the low bit.
SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32);
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
}
}
SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
}
SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
SelectionDAG &DAG) const {
SDLoc DL(Node);
const GlobalValue *GV = Node->getGlobal();
int64_t Offset = Node->getOffset();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
Reloc::Model RM = DAG.getTarget().getRelocationModel();
CodeModel::Model CM = DAG.getTarget().getCodeModel();
SDValue Result;
if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
// Assign anchors at 1<<12 byte boundaries.
uint64_t Anchor = Offset & ~uint64_t(0xfff);
Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
// The offset can be folded into the address if it is aligned to a halfword.
Offset -= Anchor;
if (Offset != 0 && (Offset & 1) == 0) {
SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
Offset = 0;
}
} else {
Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
false, false, false, 0);
}
// If there was a non-zero offset that we didn't fold, create an explicit
// addition for it.
if (Offset != 0)
Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
DAG.getConstant(Offset, DL, PtrVT));
return Result;
}
SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
SelectionDAG &DAG,
unsigned Opcode,
SDValue GOTOffset) const {
SDLoc DL(Node);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Chain = DAG.getEntryNode();
SDValue Glue;
// __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
Glue = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
Glue = Chain.getValue(1);
// The first call operand is the chain and the second is the TLS symbol.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
Node->getValueType(0),
0, 0));
// Add argument registers to the end of the list so that they are
// known live into the call.
Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask =
TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// Glue the call to the argument copies.
Ops.push_back(Glue);
// Emit the call.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
Glue = Chain.getValue(1);
// Copy the return value from %r2.
return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
}
SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
SelectionDAG &DAG) const {
if (DAG.getTarget().Options.EmulatedTLS)
return LowerToTLSEmulatedModel(Node, DAG);
SDLoc DL(Node);
const GlobalValue *GV = Node->getGlobal();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
// The high part of the thread pointer is in access register 0.
SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
DAG.getConstant(0, DL, MVT::i32));
TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
// The low part of the thread pointer is in access register 1.
SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
DAG.getConstant(1, DL, MVT::i32));
TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
// Merge them into a single 64-bit address.
SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
DAG.getConstant(32, DL, PtrVT));
SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
// Get the offset of GA from the thread pointer, based on the TLS model.
SDValue Offset;
switch (model) {
case TLSModel::GeneralDynamic: {
// Load the GOT offset of the tls_index (module ID / per-symbol offset).
SystemZConstantPoolValue *CPV =
SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
Offset = DAG.getConstantPool(CPV, PtrVT, 8);
Offset = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
false, false, 0);
// Call __tls_get_offset to retrieve the offset.
Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
break;
}
case TLSModel::LocalDynamic: {
// Load the GOT offset of the module ID.
SystemZConstantPoolValue *CPV =
SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
Offset = DAG.getConstantPool(CPV, PtrVT, 8);
Offset = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
false, false, 0);
// Call __tls_get_offset to retrieve the module base offset.
Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
// Note: The SystemZLDCleanupPass will remove redundant computations
// of the module base offset. Count total number of local-dynamic
// accesses to trigger execution of that pass.
SystemZMachineFunctionInfo* MFI =
DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
MFI->incNumLocalDynamicTLSAccesses();
// Add the per-symbol offset.
CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
DTPOffset = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), DTPOffset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
false, false, 0);
Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
break;
}
case TLSModel::InitialExec: {
// Load the offset from the GOT.
Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
SystemZII::MO_INDNTPOFF);
Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
false, false, false, 0);
break;
}
case TLSModel::LocalExec: {
// Force the offset into the constant pool and load it from there.
SystemZConstantPoolValue *CPV =
SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
Offset = DAG.getConstantPool(CPV, PtrVT, 8);
Offset = DAG.getLoad(
PtrVT, DL, DAG.getEntryNode(), Offset,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
false, false, 0);
break;
}
}
// Add the base and offset together.
return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
}
SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
SelectionDAG &DAG) const {
SDLoc DL(Node);
const BlockAddress *BA = Node->getBlockAddress();
int64_t Offset = Node->getOffset();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
return Result;
}
SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
SelectionDAG &DAG) const {
SDLoc DL(JT);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
// Use LARL to load the address of the table.
return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
}
SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
SelectionDAG &DAG) const {
SDLoc DL(CP);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result;
if (CP->isMachineConstantPoolEntry())
Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
CP->getAlignment());
else
Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
CP->getAlignment(), CP->getOffset());
// Use LARL to load the address of the constant pool entry.
return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
}
SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue In = Op.getOperand(0);
EVT InVT = In.getValueType();
EVT ResVT = Op.getValueType();
// Convert loads directly. This is normally done by DAGCombiner,
// but we need this case for bitcasts that are created during lowering
// and which are then lowered themselves.
if (auto *LoadN = dyn_cast<LoadSDNode>(In))
return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(),
LoadN->getMemOperand());
if (InVT == MVT::i32 && ResVT == MVT::f32) {
SDValue In64;
if (Subtarget.hasHighWord()) {
SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
MVT::i64);
In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
MVT::i64, SDValue(U64, 0), In);
} else {
In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
DAG.getConstant(32, DL, MVT::i64));
}
SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
DL, MVT::f32, Out64);
}
if (InVT == MVT::f32 && ResVT == MVT::i32) {
SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
MVT::f64, SDValue(U64, 0), In);
SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
if (Subtarget.hasHighWord())
return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
MVT::i32, Out64);
SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
DAG.getConstant(32, DL, MVT::i64));
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
}
llvm_unreachable("Unexpected bitcast combination");
}
SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SystemZMachineFunctionInfo *FuncInfo =
MF.getInfo<SystemZMachineFunctionInfo>();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Chain = Op.getOperand(0);
SDValue Addr = Op.getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
SDLoc DL(Op);
// The initial values of each field.
const unsigned NumFields = 4;
SDValue Fields[NumFields] = {
DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
};
// Store each field into its respective slot.
SDValue MemOps[NumFields];
unsigned Offset = 0;
for (unsigned I = 0; I < NumFields; ++I) {
SDValue FieldAddr = Addr;
if (Offset != 0)
FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
DAG.getIntPtrConstant(Offset, DL));
MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
MachinePointerInfo(SV, Offset),
false, false, 0);
Offset += 8;
}
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
}
SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue DstPtr = Op.getOperand(1);
SDValue SrcPtr = Op.getOperand(2);
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
SDLoc DL(Op);
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
/*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
/*isTailCall*/false,
MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
}
SDValue SystemZTargetLowering::
lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
SDLoc DL(Op);
unsigned SPReg = getStackPointerRegisterToSaveRestore();
// Get a reference to the stack pointer.
SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
// Get the new stack pointer value.
SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
// Copy the new stack pointer back.
Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
// The allocated data lives above the 160 bytes allocated for the standard
// frame, plus any outgoing stack arguments. We don't know how much that
// amounts to yet, so emit a special ADJDYNALLOC placeholder.
SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
SDValue Ops[2] = { Result, Chain };
return DAG.getMergeValues(Ops, DL);
}
SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue Ops[2];
if (is32Bit(VT))
// Just do a normal 64-bit multiplication and extract the results.
// We define this so that it can be used for constant division.
lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
Op.getOperand(1), Ops[1], Ops[0]);
else {
// Do a full 128-bit multiplication based on UMUL_LOHI64:
//
// (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
//
// but using the fact that the upper halves are either all zeros
// or all ones:
//
// (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
//
// and grouping the right terms together since they are quicker than the
// multiplication:
//
// (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
SDValue LL = Op.getOperand(0);
SDValue RL = Op.getOperand(1);
SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
// UMUL_LOHI64 returns the low result in the odd register and the high
// result in the even register. SMUL_LOHI is defined to return the
// low half first, so the results are in reverse order.
lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
LL, RL, Ops[1], Ops[0]);
SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
}
return DAG.getMergeValues(Ops, DL);
}
SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue Ops[2];
if (is32Bit(VT))
// Just do a normal 64-bit multiplication and extract the results.
// We define this so that it can be used for constant division.
lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
Op.getOperand(1), Ops[1], Ops[0]);
else
// UMUL_LOHI64 returns the low result in the odd register and the high
// result in the even register. UMUL_LOHI is defined to return the
// low half first, so the results are in reverse order.
lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
return DAG.getMergeValues(Ops, DL);
}
SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
SelectionDAG &DAG) const {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned Opcode;
// We use DSGF for 32-bit division.
if (is32Bit(VT)) {
Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
Opcode = SystemZISD::SDIVREM32;
} else if (DAG.ComputeNumSignBits(Op1) > 32) {
Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
Opcode = SystemZISD::SDIVREM32;
} else
Opcode = SystemZISD::SDIVREM64;
// DSG(F) takes a 64-bit dividend, so the even register in the GR128
// input is "don't care". The instruction returns the remainder in
// the even register and the quotient in the odd register.
SDValue Ops[2];
lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
Op0, Op1, Ops[1], Ops[0]);
return DAG.getMergeValues(Ops, DL);
}
SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
// DL(G) uses a double-width dividend, so we need to clear the even
// register in the GR128 input. The instruction returns the remainder
// in the even register and the quotient in the odd register.
SDValue Ops[2];
if (is32Bit(VT))
lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
else
lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
return DAG.getMergeValues(Ops, DL);
}
SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
// Get the known-zero masks for each operand.
SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
APInt KnownZero[2], KnownOne[2];
DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
// See if the upper 32 bits of one operand and the lower 32 bits of the
// other are known zero. They are the low and high operands respectively.
uint64_t Masks[] = { KnownZero[0].getZExtValue(),
KnownZero[1].getZExtValue() };
unsigned High, Low;
if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
High = 1, Low = 0;
else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
High = 0, Low = 1;
else
return Op;
SDValue LowOp = Ops[Low];
SDValue HighOp = Ops[High];
// If the high part is a constant, we're better off using IILH.
if (HighOp.getOpcode() == ISD::Constant)
return Op;
// If the low part is a constant that is outside the range of LHI,
// then we're better off using IILF.
if (LowOp.getOpcode() == ISD::Constant) {
int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
if (!isInt<16>(Value))
return Op;
}
// Check whether the high part is an AND that doesn't change the
// high 32 bits and just masks out low bits. We can skip it if so.
if (HighOp.getOpcode() == ISD::AND &&
HighOp.getOperand(1).getOpcode() == ISD::Constant) {
SDValue HighOp0 = HighOp.getOperand(0);
uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
HighOp = HighOp0;
}
// Take advantage of the fact that all GR32 operations only change the
// low 32 bits by truncating Low to an i32 and inserting it directly
// using a subreg. The interesting cases are those where the truncation
// can be folded.
SDLoc DL(Op);
SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
MVT::i64, HighOp, Low32);
}
SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDLoc DL(Op);
Op = Op.getOperand(0);
// Handle vector types via VPOPCT.
if (VT.isVector()) {
Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
switch (VT.getVectorElementType().getSizeInBits()) {
case 8:
break;
case 16: {
Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
break;
}
case 32: {
SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
DAG.getConstant(0, DL, MVT::i32));
Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
break;
}
case 64: {
SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
DAG.getConstant(0, DL, MVT::i32));
Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
break;
}
default:
llvm_unreachable("Unexpected type");
}
return Op;
}
// Get the known-zero mask for the operand.
APInt KnownZero, KnownOne;
DAG.computeKnownBits(Op, KnownZero, KnownOne);
unsigned NumSignificantBits = (~KnownZero).getActiveBits();
if (NumSignificantBits == 0)
return DAG.getConstant(0, DL, VT);
// Skip known-zero high parts of the operand.
int64_t OrigBitSize = VT.getSizeInBits();
int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
BitSize = std::min(BitSize, OrigBitSize);
// The POPCNT instruction counts the number of bits in each byte.
Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
// Add up per-byte counts in a binary tree. All bits of Op at
// position larger than BitSize remain zero throughout.
for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
if (BitSize != OrigBitSize)
Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
}
// Extract overall result from high byte.
if (BitSize > 8)
Op = DAG.getNode(ISD::SRL, DL, VT, Op,
DAG.getConstant(BitSize - 8, DL, VT));
return Op;
}
// Op is an atomic load. Lower it into a normal volatile load.
SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
SelectionDAG &DAG) const {
auto *Node = cast<AtomicSDNode>(Op.getNode());
return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
Node->getChain(), Node->getBasePtr(),
Node->getMemoryVT(), Node->getMemOperand());
}
// Op is an atomic store. Lower it into a normal volatile store followed
// by a serialization.
SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
SelectionDAG &DAG) const {
auto *Node = cast<AtomicSDNode>(Op.getNode());
SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
Node->getBasePtr(), Node->getMemoryVT(),
Node->getMemOperand());
return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
Chain), 0);
}
// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first
// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
SelectionDAG &DAG,
unsigned Opcode) const {
auto *Node = cast<AtomicSDNode>(Op.getNode());
// 32-bit operations need no code outside the main loop.
EVT NarrowVT = Node->getMemoryVT();
EVT WideVT = MVT::i32;
if (NarrowVT == WideVT)
return Op;
int64_t BitSize = NarrowVT.getSizeInBits();
SDValue ChainIn = Node->getChain();
SDValue Addr = Node->getBasePtr();
SDValue Src2 = Node->getVal();
MachineMemOperand *MMO = Node->getMemOperand();
SDLoc DL(Node);
EVT PtrVT = Addr.getValueType();
// Convert atomic subtracts of constants into additions.
if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
Opcode = SystemZISD::ATOMIC_LOADW_ADD;
Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
}
// Get the address of the containing word.
SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
DAG.getConstant(-4, DL, PtrVT));
// Get the number of bits that the word must be rotated left in order
// to bring the field to the top bits of a GR32.
SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
DAG.getConstant(3, DL, PtrVT));
BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
// Get the complementing shift amount, for rotating a field in the top
// bits back to its proper position.
SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
DAG.getConstant(0, DL, WideVT), BitShift);
// Extend the source operand to 32 bits and prepare it for the inner loop.
// ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
// operations require the source to be shifted in advance. (This shift
// can be folded if the source is constant.) For AND and NAND, the lower
// bits must be set, while for other opcodes they should be left clear.
if (Opcode != SystemZISD::ATOMIC_SWAPW)
Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
DAG.getConstant(32 - BitSize, DL, WideVT));
if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
Opcode == SystemZISD::ATOMIC_LOADW_NAND)
Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
// Construct the ATOMIC_LOADW_* node.
SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
DAG.getConstant(BitSize, DL, WideVT) };
SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
NarrowVT, MMO);
// Rotate the result of the final CS so that the field is in the lower
// bits of a GR32, then truncate it.
SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
DAG.getConstant(BitSize, DL, WideVT));
SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
return DAG.getMergeValues(RetOps, DL);
}
// Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations
// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
// operations into additions.
SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
SelectionDAG &DAG) const {
auto *Node = cast<AtomicSDNode>(Op.getNode());
EVT MemVT = Node->getMemoryVT();
if (MemVT == MVT::i32 || MemVT == MVT::i64) {
// A full-width operation.
assert(Op.getValueType() == MemVT && "Mismatched VTs");
SDValue Src2 = Node->getVal();
SDValue NegSrc2;
SDLoc DL(Src2);
if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
// Use an addition if the operand is constant and either LAA(G) is
// available or the negative value is in the range of A(G)FHI.
int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
NegSrc2 = DAG.getConstant(Value, DL, MemVT);
} else if (Subtarget.hasInterlockedAccess1())
// Use LAA(G) if available.
NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
Src2);
if (NegSrc2.getNode())
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
Node->getChain(), Node->getBasePtr(), NegSrc2,
Node->getMemOperand(), Node->getOrdering(),
Node->getSynchScope());
// Use the node as-is.
return Op;
}
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
}
// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two
// into a fullword ATOMIC_CMP_SWAPW operation.
SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
SelectionDAG &DAG) const {
auto *Node = cast<AtomicSDNode>(Op.getNode());
// We have native support for 32-bit compare and swap.
EVT NarrowVT = Node->getMemoryVT();
EVT WideVT = MVT::i32;
if (NarrowVT == WideVT)
return Op;
int64_t BitSize = NarrowVT.getSizeInBits();
SDValue ChainIn = Node->getOperand(0);
SDValue Addr = Node->getOperand(1);
SDValue CmpVal = Node->getOperand(2);
SDValue SwapVal = Node->getOperand(3);
MachineMemOperand *MMO = Node->getMemOperand();
SDLoc DL(Node);
EVT PtrVT = Addr.getValueType();
// Get the address of the containing word.
SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
DAG.getConstant(-4, DL, PtrVT));
// Get the number of bits that the word must be rotated left in order
// to bring the field to the top bits of a GR32.
SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
DAG.getConstant(3, DL, PtrVT));
BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
// Get the complementing shift amount, for rotating a field in the top
// bits back to its proper position.
SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
DAG.getConstant(0, DL, WideVT), BitShift);
// Construct the ATOMIC_CMP_SWAPW node.
SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
VTList, Ops, NarrowVT, MMO);
return AtomicOp;
}
SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
SystemZ::R15D, Op.getValueType());
}
SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
SystemZ::R15D, Op.getOperand(1));
}
SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
SelectionDAG &DAG) const {
bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
if (!IsData)
// Just preserve the chain.
return Op.getOperand(0);
SDLoc DL(Op);
bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
SDValue Ops[] = {
Op.getOperand(0),
DAG.getConstant(Code, DL, MVT::i32),
Op.getOperand(1)
};
return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
Node->getVTList(), Ops,
Node->getMemoryVT(), Node->getMemOperand());
}
// Return an i32 that contains the value of CC immediately after After,
// whose final operand must be MVT::Glue.
static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
SDLoc DL(After);
SDValue Glue = SDValue(After, After->getNumValues() - 1);
SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
}
SDValue
SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned Opcode, CCValid;
if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
SDValue CC = getCCResult(DAG, Glued.getNode());
DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
return SDValue();
}
return SDValue();
}
SDValue
SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned Opcode, CCValid;
if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
SDValue CC = getCCResult(DAG, Glued.getNode());
if (Op->getNumValues() == 1)
return CC;
assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
CC);
}
unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (Id) {
case Intrinsic::s390_vpdi:
return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::s390_vperm:
return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::s390_vuphb:
case Intrinsic::s390_vuphh:
case Intrinsic::s390_vuphf:
return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
Op.getOperand(1));
case Intrinsic::s390_vuplhb:
case Intrinsic::s390_vuplhh:
case Intrinsic::s390_vuplhf:
return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
Op.getOperand(1));
case Intrinsic::s390_vuplb:
case Intrinsic::s390_vuplhw:
case Intrinsic::s390_vuplf:
return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
Op.getOperand(1));
case Intrinsic::s390_vupllb:
case Intrinsic::s390_vupllh:
case Intrinsic::s390_vupllf:
return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
Op.getOperand(1));
case Intrinsic::s390_vsumb:
case Intrinsic::s390_vsumh:
case Intrinsic::s390_vsumgh:
case Intrinsic::s390_vsumgf:
case Intrinsic::s390_vsumqf:
case Intrinsic::s390_vsumqg:
return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
Op.getOperand(1), Op.getOperand(2));
}
return SDValue();
}
namespace {
// Says that SystemZISD operation Opcode can be used to perform the equivalent
// of a VPERM with permute vector Bytes. If Opcode takes three operands,
// Operand is the constant third operand, otherwise it is the number of
// bytes in each element of the result.
struct Permute {
unsigned Opcode;
unsigned Operand;
unsigned char Bytes[SystemZ::VectorBytes];
};
}
static const Permute PermuteForms[] = {
// VMRHG
{ SystemZISD::MERGE_HIGH, 8,
{ 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
// VMRHF
{ SystemZISD::MERGE_HIGH, 4,
{ 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
// VMRHH
{ SystemZISD::MERGE_HIGH, 2,
{ 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
// VMRHB
{ SystemZISD::MERGE_HIGH, 1,
{ 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
// VMRLG
{ SystemZISD::MERGE_LOW, 8,
{ 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
// VMRLF
{ SystemZISD::MERGE_LOW, 4,
{ 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
// VMRLH
{ SystemZISD::MERGE_LOW, 2,
{ 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
// VMRLB
{ SystemZISD::MERGE_LOW, 1,
{ 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
// VPKG
{ SystemZISD::PACK, 4,
{ 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
// VPKF
{ SystemZISD::PACK, 2,
{ 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
// VPKH
{ SystemZISD::PACK, 1,
{ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
// VPDI V1, V2, 4 (low half of V1, high half of V2)
{ SystemZISD::PERMUTE_DWORDS, 4,
{ 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
// VPDI V1, V2, 1 (high half of V1, low half of V2)
{ SystemZISD::PERMUTE_DWORDS, 1,
{ 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
};
// Called after matching a vector shuffle against a particular pattern.
// Both the original shuffle and the pattern have two vector operands.
// OpNos[0] is the operand of the original shuffle that should be used for
// operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
// OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and
// set OpNo0 and OpNo1 to the shuffle operands that should actually be used
// for operands 0 and 1 of the pattern.
static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
if (OpNos[0] < 0) {
if (OpNos[1] < 0)
return false;
OpNo0 = OpNo1 = OpNos[1];
} else if (OpNos[1] < 0) {
OpNo0 = OpNo1 = OpNos[0];
} else {
OpNo0 = OpNos[0];
OpNo1 = OpNos[1];
}
return true;
}
// Bytes is a VPERM-like permute vector, except that -1 is used for
// undefined bytes. Return true if the VPERM can be implemented using P.
// When returning true set OpNo0 to the VPERM operand that should be
// used for operand 0 of P and likewise OpNo1 for operand 1 of P.
//
// For example, if swapping the VPERM operands allows P to match, OpNo0
// will be 1 and OpNo1 will be 0. If instead Bytes only refers to one
// operand, but rewriting it to use two duplicated operands allows it to
// match P, then OpNo0 and OpNo1 will be the same.
static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
unsigned &OpNo0, unsigned &OpNo1) {
int OpNos[] = { -1, -1 };
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
int Elt = Bytes[I];
if (Elt >= 0) {
// Make sure that the two permute vectors use the same suboperand
// byte number. Only the operand numbers (the high bits) are
// allowed to differ.
if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
return false;
int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
// Make sure that the operand mappings are consistent with previous
// elements.
if (OpNos[ModelOpNo] == 1 - RealOpNo)
return false;
OpNos[ModelOpNo] = RealOpNo;
}
}
return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
}
// As above, but search for a matching permute.
static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
unsigned &OpNo0, unsigned &OpNo1) {
for (auto &P : PermuteForms)
if (matchPermute(Bytes, P, OpNo0, OpNo1))
return &P;
return nullptr;
}
// Bytes is a VPERM-like permute vector, except that -1 is used for
// undefined bytes. This permute is an operand of an outer permute.
// See whether redistributing the -1 bytes gives a shuffle that can be
// implemented using P. If so, set Transform to a VPERM-like permute vector
// that, when applied to the result of P, gives the original permute in Bytes.
static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
const Permute &P,
SmallVectorImpl<int> &Transform) {
unsigned To = 0;
for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
int Elt = Bytes[From];
if (Elt < 0)
// Byte number From of the result is undefined.
Transform[From] = -1;
else {
while (P.Bytes[To] != Elt) {
To += 1;
if (To == SystemZ::VectorBytes)
return false;
}
Transform[From] = To;
}
}
return true;
}
// As above, but search for a matching permute.
static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
SmallVectorImpl<int> &Transform) {
for (auto &P : PermuteForms)
if (matchDoublePermute(Bytes, P, Transform))
return &P;
return nullptr;
}
// Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
// as if it had type vNi8.
static void getVPermMask(ShuffleVectorSDNode *VSN,
SmallVectorImpl<int> &Bytes) {
EVT VT = VSN->getValueType(0);
unsigned NumElements = VT.getVectorNumElements();
unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
Bytes.resize(NumElements * BytesPerElement, -1);
for (unsigned I = 0; I < NumElements; ++I) {
int Index = VSN->getMaskElt(I);
if (Index >= 0)
for (unsigned J = 0; J < BytesPerElement; ++J)
Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
}
}
// Bytes is a VPERM-like permute vector, except that -1 is used for
// undefined bytes. See whether bytes [Start, Start + BytesPerElement) of
// the result come from a contiguous sequence of bytes from one input.
// Set Base to the selector for the first byte if so.
static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
unsigned BytesPerElement, int &Base) {
Base = -1;
for (unsigned I = 0; I < BytesPerElement; ++I) {
if (Bytes[Start + I] >= 0) {
unsigned Elem = Bytes[Start + I];
if (Base < 0) {
Base = Elem - I;
// Make sure the bytes would come from one input operand.
if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
return false;
} else if (unsigned(Base) != Elem - I)
return false;
}
}
return true;
}
// Bytes is a VPERM-like permute vector, except that -1 is used for
// undefined bytes. Return true if it can be performed using VSLDI.
// When returning true, set StartIndex to the shift amount and OpNo0
// and OpNo1 to the VPERM operands that should be used as the first
// and second shift operand respectively.
static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
unsigned &StartIndex, unsigned &OpNo0,
unsigned &OpNo1) {
int OpNos[] = { -1, -1 };
int Shift = -1;
for (unsigned I = 0; I < 16; ++I) {
int Index = Bytes[I];
if (Index >= 0) {
int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
if (Shift < 0)
Shift = ExpectedShift;
else if (Shift != ExpectedShift)
return false;
// Make sure that the operand mappings are consistent with previous
// elements.
if (OpNos[ModelOpNo] == 1 - RealOpNo)
return false;
OpNos[ModelOpNo] = RealOpNo;
}
}
StartIndex = Shift;
return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
}
// Create a node that performs P on operands Op0 and Op1, casting the
// operands to the appropriate type. The type of the result is determined by P.
static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL,
const Permute &P, SDValue Op0, SDValue Op1) {
// VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input
// elements of a PACK are twice as wide as the outputs.
unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
P.Operand);
// Cast both operands to the appropriate type.
MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
SystemZ::VectorBytes / InBytes);
Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
SDValue Op;
if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
} else if (P.Opcode == SystemZISD::PACK) {
MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
SystemZ::VectorBytes / P.Operand);
Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
} else {
Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
}
return Op;
}
// Bytes is a VPERM-like permute vector, except that -1 is used for
// undefined bytes. Implement it on operands Ops[0] and Ops[1] using
// VSLDI or VPERM.
static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops,
const SmallVectorImpl<int> &Bytes) {
for (unsigned I = 0; I < 2; ++I)
Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
// First see whether VSLDI can be used.
unsigned StartIndex, OpNo0, OpNo1;
if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
// Fall back on VPERM. Construct an SDNode for the permute vector.
SDValue IndexNodes[SystemZ::VectorBytes];
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
if (Bytes[I] >= 0)
IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
else
IndexNodes[I] = DAG.getUNDEF(MVT::i32);
SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes);
return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
}
namespace {
// Describes a general N-operand vector shuffle.
struct GeneralShuffle {
GeneralShuffle(EVT vt) : VT(vt) {}
void addUndef();
void add(SDValue, unsigned);
SDValue getNode(SelectionDAG &, SDLoc);
// The operands of the shuffle.
SmallVector<SDValue, SystemZ::VectorBytes> Ops;
// Index I is -1 if byte I of the result is undefined. Otherwise the
// result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
// Bytes[I] / SystemZ::VectorBytes.
SmallVector<int, SystemZ::VectorBytes> Bytes;
// The type of the shuffle result.
EVT VT;
};
}
// Add an extra undefined element to the shuffle.
void GeneralShuffle::addUndef() {
unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
for (unsigned I = 0; I < BytesPerElement; ++I)
Bytes.push_back(-1);
}
// Add an extra element to the shuffle, taking it from element Elem of Op.
// A null Op indicates a vector input whose value will be calculated later;
// there is at most one such input per shuffle and it always has the same
// type as the result.
void GeneralShuffle::add(SDValue Op, unsigned Elem) {
unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
// The source vector can have wider elements than the result,
// either through an explicit TRUNCATE or because of type legalization.
// We want the least significant part.
EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
assert(FromBytesPerElement >= BytesPerElement &&
"Invalid EXTRACT_VECTOR_ELT");
unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
(FromBytesPerElement - BytesPerElement));
// Look through things like shuffles and bitcasts.
while (Op.getNode()) {
if (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
// See whether the bytes we need come from a contiguous part of one
// operand.
SmallVector<int, SystemZ::VectorBytes> OpBytes;
getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
int NewByte;
if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
break;
if (NewByte < 0) {
addUndef();
return;
}
Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
Byte = unsigned(NewByte) % SystemZ::VectorBytes;
} else if (Op.getOpcode() == ISD::UNDEF) {
addUndef();
return;
} else
break;
}
// Make sure that the source of the extraction is in Ops.
unsigned OpNo = 0;
for (; OpNo < Ops.size(); ++OpNo)
if (Ops[OpNo] == Op)
break;
if (OpNo == Ops.size())
Ops.push_back(Op);
// Add the element to Bytes.
unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
for (unsigned I = 0; I < BytesPerElement; ++I)
Bytes.push_back(Base + I);
}
// Return SDNodes for the completed shuffle.
SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) {
assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
if (Ops.size() == 0)
return DAG.getUNDEF(VT);
// Make sure that there are at least two shuffle operands.
if (Ops.size() == 1)
Ops.push_back(DAG.getUNDEF(MVT::v16i8));
// Create a tree of shuffles, deferring root node until after the loop.
// Try to redistribute the undefined elements of non-root nodes so that
// the non-root shuffles match something like a pack or merge, then adjust
// the parent node's permute vector to compensate for the new order.
// Among other things, this copes with vectors like <2 x i16> that were
// padded with undefined elements during type legalization.
//
// In the best case this redistribution will lead to the whole tree
// using packs and merges. It should rarely be a loss in other cases.
unsigned Stride = 1;
for (; Stride * 2 < Ops.size(); Stride *= 2) {
for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
// Create a mask for just these two operands.
SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
if (OpNo == I)
NewBytes[J] = Byte;
else if (OpNo == I + Stride)
NewBytes[J] = SystemZ::VectorBytes + Byte;
else
NewBytes[J] = -1;
}
// See if it would be better to reorganize NewMask to avoid using VPERM.
SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
// Applying NewBytesMap to Ops[I] gets back to NewBytes.
for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
if (NewBytes[J] >= 0) {
assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
"Invalid double permute");
Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
} else
assert(NewBytesMap[J] < 0 && "Invalid double permute");
}
} else {
// Just use NewBytes on the operands.
Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
if (NewBytes[J] >= 0)
Bytes[J] = I * SystemZ::VectorBytes + J;
}
}
}
// Now we just have 2 inputs. Put the second operand in Ops[1].
if (Stride > 1) {
Ops[1] = Ops[Stride];
for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
if (Bytes[I] >= int(SystemZ::VectorBytes))
Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
}
// Look for an instruction that can do the permute without resorting
// to VPERM.
unsigned OpNo0, OpNo1;
SDValue Op;
if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
else
Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
}
// Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
static bool isScalarToVector(SDValue Op) {
for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
if (Op.getOperand(I).getOpcode() != ISD::UNDEF)
return false;
return true;
}
// Return a vector of type VT that contains Value in the first element.
// The other elements don't matter.
static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT,
SDValue Value) {
// If we have a constant, replicate it to all elements and let the
// BUILD_VECTOR lowering take care of it.
if (Value.getOpcode() == ISD::Constant ||
Value.getOpcode() == ISD::ConstantFP) {
SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
}
if (Value.getOpcode() == ISD::UNDEF)
return DAG.getUNDEF(VT);
return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
}
// Return a vector of type VT in which Op0 is in element 0 and Op1 is in
// element 1. Used for cases in which replication is cheap.
static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT,
SDValue Op0, SDValue Op1) {
if (Op0.getOpcode() == ISD::UNDEF) {
if (Op1.getOpcode() == ISD::UNDEF)
return DAG.getUNDEF(VT);
return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
}
if (Op1.getOpcode() == ISD::UNDEF)
return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
buildScalarToVector(DAG, DL, VT, Op0),
buildScalarToVector(DAG, DL, VT, Op1));
}
// Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
// vector for them.
static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0,
SDValue Op1) {
if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF)
return DAG.getUNDEF(MVT::v2i64);
// If one of the two inputs is undefined then replicate the other one,
// in order to avoid using another register unnecessarily.
if (Op0.getOpcode() == ISD::UNDEF)
Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
else if (Op1.getOpcode() == ISD::UNDEF)
Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
else {
Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
}
return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
}
// Try to represent constant BUILD_VECTOR node BVN using a
// SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask
// on success.
static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
EVT ElemVT = BVN->getValueType(0).getVectorElementType();
unsigned BytesPerElement = ElemVT.getStoreSize();
for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
SDValue Op = BVN->getOperand(I);
if (Op.getOpcode() != ISD::UNDEF) {
uint64_t Value;
if (Op.getOpcode() == ISD::Constant)
Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
else if (Op.getOpcode() == ISD::ConstantFP)
Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
.getZExtValue());
else
return false;
for (unsigned J = 0; J < BytesPerElement; ++J) {
uint64_t Byte = (Value >> (J * 8)) & 0xff;
if (Byte == 0xff)
Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
else if (Byte != 0)
return false;
}
}
}
return true;
}
// Try to load a vector constant in which BitsPerElement-bit value Value
// is replicated to fill the vector. VT is the type of the resulting
// constant, which may have elements of a different size from BitsPerElement.
// Return the SDValue of the constant on success, otherwise return
// an empty value.
static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
const SystemZInstrInfo *TII,
SDLoc DL, EVT VT, uint64_t Value,
unsigned BitsPerElement) {
// Signed 16-bit values can be replicated using VREPI.
int64_t SignedValue = SignExtend64(Value, BitsPerElement);
if (isInt<16>(SignedValue)) {
MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
SystemZ::VectorBits / BitsPerElement);
SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
DAG.getConstant(SignedValue, DL, MVT::i32));
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
}
// See whether rotating the constant left some N places gives a value that
// is one less than a power of 2 (i.e. all zeros followed by all ones).
// If so we can use VGM.
unsigned Start, End;
if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
// isRxSBGMask returns the bit numbers for a full 64-bit value,
// with 0 denoting 1 << 63 and 63 denoting 1. Convert them to
// bit numbers for an BitsPerElement value, so that 0 denotes
// 1 << (BitsPerElement-1).
Start -= 64 - BitsPerElement;
End -= 64 - BitsPerElement;
MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
SystemZ::VectorBits / BitsPerElement);
SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
DAG.getConstant(Start, DL, MVT::i32),
DAG.getConstant(End, DL, MVT::i32));
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
}
return SDValue();
}
// If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
// better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
// the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR
// would benefit from this representation and return it if so.
static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
BuildVectorSDNode *BVN) {
EVT VT = BVN->getValueType(0);
unsigned NumElements = VT.getVectorNumElements();
// Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
// on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still
// need a BUILD_VECTOR, add an additional placeholder operand for that
// BUILD_VECTOR and store its operands in ResidueOps.
GeneralShuffle GS(VT);
SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
bool FoundOne = false;
for (unsigned I = 0; I < NumElements; ++I) {
SDValue Op = BVN->getOperand(I);
if (Op.getOpcode() == ISD::TRUNCATE)
Op = Op.getOperand(0);
if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op.getOperand(1).getOpcode() == ISD::Constant) {
unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
GS.add(Op.getOperand(0), Elem);
FoundOne = true;
} else if (Op.getOpcode() == ISD::UNDEF) {
GS.addUndef();
} else {
GS.add(SDValue(), ResidueOps.size());
ResidueOps.push_back(BVN->getOperand(I));
}
}
// Nothing to do if there are no EXTRACT_VECTOR_ELTs.
if (!FoundOne)
return SDValue();
// Create the BUILD_VECTOR for the remaining elements, if any.
if (!ResidueOps.empty()) {
while (ResidueOps.size() < NumElements)
ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
for (auto &Op : GS.Ops) {
if (!Op.getNode()) {
Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps);
break;
}
}
}
return GS.getNode(DAG, SDLoc(BVN));
}
// Combine GPR scalar values Elems into a vector of type VT.
static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT,
SmallVectorImpl<SDValue> &Elems) {
// See whether there is a single replicated value.
SDValue Single;
unsigned int NumElements = Elems.size();
unsigned int Count = 0;
for (auto Elem : Elems) {
if (Elem.getOpcode() != ISD::UNDEF) {
if (!Single.getNode())
Single = Elem;
else if (Elem != Single) {
Single = SDValue();
break;
}
Count += 1;
}
}
// There are three cases here:
//
// - if the only defined element is a loaded one, the best sequence
// is a replicating load.
//
// - otherwise, if the only defined element is an i64 value, we will
// end up with the same VLVGP sequence regardless of whether we short-cut
// for replication or fall through to the later code.
//
// - otherwise, if the only defined element is an i32 or smaller value,
// we would need 2 instructions to replicate it: VLVGP followed by VREPx.
// This is only a win if the single defined element is used more than once.
// In other cases we're better off using a single VLVGx.
if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
// The best way of building a v2i64 from two i64s is to use VLVGP.
if (VT == MVT::v2i64)
return joinDwords(DAG, DL, Elems[0], Elems[1]);
// Use a 64-bit merge high to combine two doubles.
if (VT == MVT::v2f64)
return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
// Build v4f32 values directly from the FPRs:
//
// <Axxx> <Bxxx> <Cxxxx> <Dxxx>
// V V VMRHF
// <ABxx> <CDxx>
// V VMRHG
// <ABCD>
if (VT == MVT::v4f32) {
SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
// Avoid unnecessary undefs by reusing the other operand.
if (Op01.getOpcode() == ISD::UNDEF)
Op01 = Op23;
else if (Op23.getOpcode() == ISD::UNDEF)
Op23 = Op01;
// Merging identical replications is a no-op.
if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
return Op01;
Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
DL, MVT::v2i64, Op01, Op23);
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
}
// Collect the constant terms.
SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
unsigned NumConstants = 0;
for (unsigned I = 0; I < NumElements; ++I) {
SDValue Elem = Elems[I];
if (Elem.getOpcode() == ISD::Constant ||
Elem.getOpcode() == ISD::ConstantFP) {
NumConstants += 1;
Constants[I] = Elem;
Done[I] = true;
}
}
// If there was at least one constant, fill in the other elements of
// Constants with undefs to get a full vector constant and use that
// as the starting point.
SDValue Result;
if (NumConstants > 0) {
for (unsigned I = 0; I < NumElements; ++I)
if (!Constants[I].getNode())
Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants);
} else {
// Otherwise try to use VLVGP to start the sequence in order to
// avoid a false dependency on any previous contents of the vector
// register. This only makes sense if one of the associated elements
// is defined.
unsigned I1 = NumElements / 2 - 1;
unsigned I2 = NumElements - 1;
bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF);
bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF);
if (Def1 || Def2) {
SDValue Elem1 = Elems[Def1 ? I1 : I2];
SDValue Elem2 = Elems[Def2 ? I2 : I1];
Result = DAG.getNode(ISD::BITCAST, DL, VT,
joinDwords(DAG, DL, Elem1, Elem2));
Done[I1] = true;
Done[I2] = true;
} else
Result = DAG.getUNDEF(VT);
}
// Use VLVGx to insert the other elements.
for (unsigned I = 0; I < NumElements; ++I)
if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF)
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
DAG.getConstant(I, DL, MVT::i32));
return Result;
}
SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
const SystemZInstrInfo *TII =
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
SDLoc DL(Op);
EVT VT = Op.getValueType();
if (BVN->isConstant()) {
// Try using VECTOR GENERATE BYTE MASK. This is the architecturally-
// preferred way of creating all-zero and all-one vectors so give it
// priority over other methods below.
uint64_t Mask = 0;
if (tryBuildVectorByteMask(BVN, Mask)) {
SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
DAG.getConstant(Mask, DL, MVT::i32));
return DAG.getNode(ISD::BITCAST, DL, VT, Op);
}
// Try using some form of replication.
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
8, true) &&
SplatBitSize <= 64) {
// First try assuming that any undefined bits above the highest set bit
// and below the lowest set bit are 1s. This increases the likelihood of
// being able to use a sign-extended element value in VECTOR REPLICATE
// IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
uint64_t SplatBitsZ = SplatBits.getZExtValue();
uint64_t SplatUndefZ = SplatUndef.getZExtValue();
uint64_t Lower = (SplatUndefZ
& ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
uint64_t Upper = (SplatUndefZ
& ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
uint64_t Value = SplatBitsZ | Upper | Lower;
SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
SplatBitSize);
if (Op.getNode())
return Op;
// Now try assuming that any undefined bits between the first and
// last defined set bits are set. This increases the chances of
// using a non-wraparound mask.
uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
Value = SplatBitsZ | Middle;
Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
if (Op.getNode())
return Op;
}
// Fall back to loading it from memory.
return SDValue();
}
// See if we should use shuffles to construct the vector from other vectors.
SDValue Res = tryBuildVectorShuffle(DAG, BVN);
if (Res.getNode())
return Res;
// Detect SCALAR_TO_VECTOR conversions.
if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
// Otherwise use buildVector to build the vector up from GPRs.
unsigned NumElements = Op.getNumOperands();
SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
for (unsigned I = 0; I < NumElements; ++I)
Ops[I] = Op.getOperand(I);
return buildVector(DAG, DL, VT, Ops);
}
SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
SelectionDAG &DAG) const {
auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
SDLoc DL(Op);
EVT VT = Op.getValueType();
unsigned NumElements = VT.getVectorNumElements();
if (VSN->isSplat()) {
SDValue Op0 = Op.getOperand(0);
unsigned Index = VSN->getSplatIndex();
assert(Index < VT.getVectorNumElements() &&
"Splat index should be defined and in first operand");
// See whether the value we're splatting is directly available as a scalar.
if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
Op0.getOpcode() == ISD::BUILD_VECTOR)
return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
// Otherwise keep it as a vector-to-vector operation.
return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
DAG.getConstant(Index, DL, MVT::i32));
}
GeneralShuffle GS(VT);
for (unsigned I = 0; I < NumElements; ++I) {
int Elt = VSN->getMaskElt(I);
if (Elt < 0)
GS.addUndef();
else
GS.add(Op.getOperand(unsigned(Elt) / NumElements),
unsigned(Elt) % NumElements);
}
return GS.getNode(DAG, SDLoc(VSN));
}
SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
// Just insert the scalar into element 0 of an undefined vector.
return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
}
SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
// Handle insertions of floating-point values.
SDLoc DL(Op);
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Op2 = Op.getOperand(2);
EVT VT = Op.getValueType();
// Insertions into constant indices of a v2f64 can be done using VPDI.
// However, if the inserted value is a bitcast or a constant then it's
// better to use GPRs, as below.
if (VT == MVT::v2f64 &&
Op1.getOpcode() != ISD::BITCAST &&
Op1.getOpcode() != ISD::ConstantFP &&
Op2.getOpcode() == ISD::Constant) {
uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
unsigned Mask = VT.getVectorNumElements() - 1;
if (Index <= Mask)
return Op;
}
// Otherwise bitcast to the equivalent integer form and insert via a GPR.
MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
return DAG.getNode(ISD::BITCAST, DL, VT, Res);
}
SDValue
SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
// Handle extractions of floating-point values.
SDLoc DL(Op);
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
EVT VT = Op.getValueType();
EVT VecVT = Op0.getValueType();
// Extractions of constant indices can be done directly.
if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
uint64_t Index = CIndexN->getZExtValue();
unsigned Mask = VecVT.getVectorNumElements() - 1;
if (Index <= Mask)
return Op;
}
// Otherwise bitcast to the equivalent integer form and extract via a GPR.
MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
return DAG.getNode(ISD::BITCAST, DL, VT, Res);
}
SDValue
SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
unsigned UnpackHigh) const {
SDValue PackedOp = Op.getOperand(0);
EVT OutVT = Op.getValueType();
EVT InVT = PackedOp.getValueType();
unsigned ToBits = OutVT.getVectorElementType().getSizeInBits();
unsigned FromBits = InVT.getVectorElementType().getSizeInBits();
do {
FromBits *= 2;
EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
SystemZ::VectorBits / FromBits);
PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
} while (FromBits != ToBits);
return PackedOp;
}
SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
unsigned ByScalar) const {
// Look for cases where a vector shift can use the *_BY_SCALAR form.
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDLoc DL(Op);
EVT VT = Op.getValueType();
unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits();
// See whether the shift vector is a splat represented as BUILD_VECTOR.
if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
APInt SplatBits, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
// Check for constant splats. Use ElemBitSize as the minimum element
// width and reject splats that need wider elements.
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
ElemBitSize, true) &&
SplatBitSize == ElemBitSize) {
SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
DL, MVT::i32);
return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
}
// Check for variable splats.
BitVector UndefElements;
SDValue Splat = BVN->getSplatValue(&UndefElements);
if (Splat) {
// Since i32 is the smallest legal type, we either need a no-op
// or a truncation.
SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
}
}
// See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
// and the shift amount is directly available in a GPR.
if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
if (VSN->isSplat()) {
SDValue VSNOp0 = VSN->getOperand(0);
unsigned Index = VSN->getSplatIndex();
assert(Index < VT.getVectorNumElements() &&
"Splat index should be defined and in first operand");
if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
// Since i32 is the smallest legal type, we either need a no-op
// or a truncation.
SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
VSNOp0.getOperand(Index));
return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
}
}
}
// Otherwise just treat the current form as legal.
return Op;
}
SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
case ISD::BR_CC:
return lowerBR_CC(Op, DAG);
case ISD::SELECT_CC:
return lowerSELECT_CC(Op, DAG);
case ISD::SETCC:
return lowerSETCC(Op, DAG);
case ISD::GlobalAddress:
return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
case ISD::GlobalTLSAddress:
return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
case ISD::BlockAddress:
return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
case ISD::JumpTable:
return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
case ISD::ConstantPool:
return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
case ISD::BITCAST:
return lowerBITCAST(Op, DAG);
case ISD::VASTART:
return lowerVASTART(Op, DAG);
case ISD::VACOPY:
return lowerVACOPY(Op, DAG);
case ISD::DYNAMIC_STACKALLOC:
return lowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::SMUL_LOHI:
return lowerSMUL_LOHI(Op, DAG);
case ISD::UMUL_LOHI:
return lowerUMUL_LOHI(Op, DAG);
case ISD::SDIVREM:
return lowerSDIVREM(Op, DAG);
case ISD::UDIVREM:
return lowerUDIVREM(Op, DAG);
case ISD::OR:
return lowerOR(Op, DAG);
case ISD::CTPOP:
return lowerCTPOP(Op, DAG);
case ISD::CTLZ_ZERO_UNDEF:
return DAG.getNode(ISD::CTLZ, SDLoc(Op),
Op.getValueType(), Op.getOperand(0));
case ISD::CTTZ_ZERO_UNDEF:
return DAG.getNode(ISD::CTTZ, SDLoc(Op),
Op.getValueType(), Op.getOperand(0));
case ISD::ATOMIC_SWAP:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
case ISD::ATOMIC_STORE:
return lowerATOMIC_STORE(Op, DAG);
case ISD::ATOMIC_LOAD:
return lowerATOMIC_LOAD(Op, DAG);
case ISD::ATOMIC_LOAD_ADD:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
case ISD::ATOMIC_LOAD_SUB:
return lowerATOMIC_LOAD_SUB(Op, DAG);
case ISD::ATOMIC_LOAD_AND:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
case ISD::ATOMIC_LOAD_OR:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
case ISD::ATOMIC_LOAD_XOR:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
case ISD::ATOMIC_LOAD_NAND:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
case ISD::ATOMIC_LOAD_MIN:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
case ISD::ATOMIC_LOAD_MAX:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
case ISD::ATOMIC_LOAD_UMIN:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
case ISD::ATOMIC_LOAD_UMAX:
return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
case ISD::ATOMIC_CMP_SWAP:
return lowerATOMIC_CMP_SWAP(Op, DAG);
case ISD::STACKSAVE:
return lowerSTACKSAVE(Op, DAG);
case ISD::STACKRESTORE:
return lowerSTACKRESTORE(Op, DAG);
case ISD::PREFETCH:
return lowerPREFETCH(Op, DAG);
case ISD::INTRINSIC_W_CHAIN:
return lowerINTRINSIC_W_CHAIN(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN:
return lowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::BUILD_VECTOR:
return lowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE:
return lowerVECTOR_SHUFFLE(Op, DAG);
case ISD::SCALAR_TO_VECTOR:
return lowerSCALAR_TO_VECTOR(Op, DAG);
case ISD::INSERT_VECTOR_ELT:
return lowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT:
return lowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::SIGN_EXTEND_VECTOR_INREG:
return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
case ISD::ZERO_EXTEND_VECTOR_INREG:
return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
case ISD::SHL:
return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
case ISD::SRL:
return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
case ISD::SRA:
return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
default:
llvm_unreachable("Unexpected node to lower");
}
}
const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
switch ((SystemZISD::NodeType)Opcode) {
case SystemZISD::FIRST_NUMBER: break;
OPCODE(RET_FLAG);
OPCODE(CALL);
OPCODE(SIBCALL);
OPCODE(TLS_GDCALL);
OPCODE(TLS_LDCALL);
OPCODE(PCREL_WRAPPER);
OPCODE(PCREL_OFFSET);
OPCODE(IABS);
OPCODE(ICMP);
OPCODE(FCMP);
OPCODE(TM);
OPCODE(BR_CCMASK);
OPCODE(SELECT_CCMASK);
OPCODE(ADJDYNALLOC);
OPCODE(EXTRACT_ACCESS);
OPCODE(POPCNT);
OPCODE(UMUL_LOHI64);
OPCODE(SDIVREM32);
OPCODE(SDIVREM64);
OPCODE(UDIVREM32);
OPCODE(UDIVREM64);
OPCODE(MVC);
OPCODE(MVC_LOOP);
OPCODE(NC);
OPCODE(NC_LOOP);
OPCODE(OC);
OPCODE(OC_LOOP);
OPCODE(XC);
OPCODE(XC_LOOP);
OPCODE(CLC);
OPCODE(CLC_LOOP);
OPCODE(STPCPY);
OPCODE(STRCMP);
OPCODE(SEARCH_STRING);
OPCODE(IPM);
OPCODE(SERIALIZE);
OPCODE(TBEGIN);
OPCODE(TBEGIN_NOFLOAT);
OPCODE(TEND);
OPCODE(BYTE_MASK);
OPCODE(ROTATE_MASK);
OPCODE(REPLICATE);
OPCODE(JOIN_DWORDS);
OPCODE(SPLAT);
OPCODE(MERGE_HIGH);
OPCODE(MERGE_LOW);
OPCODE(SHL_DOUBLE);
OPCODE(PERMUTE_DWORDS);
OPCODE(PERMUTE);
OPCODE(PACK);
OPCODE(PACKS_CC);
OPCODE(PACKLS_CC);
OPCODE(UNPACK_HIGH);
OPCODE(UNPACKL_HIGH);
OPCODE(UNPACK_LOW);
OPCODE(UNPACKL_LOW);
OPCODE(VSHL_BY_SCALAR);
OPCODE(VSRL_BY_SCALAR);
OPCODE(VSRA_BY_SCALAR);
OPCODE(VSUM);
OPCODE(VICMPE);
OPCODE(VICMPH);
OPCODE(VICMPHL);
OPCODE(VICMPES);
OPCODE(VICMPHS);
OPCODE(VICMPHLS);
OPCODE(VFCMPE);
OPCODE(VFCMPH);
OPCODE(VFCMPHE);
OPCODE(VFCMPES);
OPCODE(VFCMPHS);
OPCODE(VFCMPHES);
OPCODE(VFTCI);
OPCODE(VEXTEND);
OPCODE(VROUND);
OPCODE(VTM);
OPCODE(VFAE_CC);
OPCODE(VFAEZ_CC);
OPCODE(VFEE_CC);
OPCODE(VFEEZ_CC);
OPCODE(VFENE_CC);
OPCODE(VFENEZ_CC);
OPCODE(VISTR_CC);
OPCODE(VSTRC_CC);
OPCODE(VSTRCZ_CC);
OPCODE(ATOMIC_SWAPW);
OPCODE(ATOMIC_LOADW_ADD);
OPCODE(ATOMIC_LOADW_SUB);
OPCODE(ATOMIC_LOADW_AND);
OPCODE(ATOMIC_LOADW_OR);
OPCODE(ATOMIC_LOADW_XOR);
OPCODE(ATOMIC_LOADW_NAND);
OPCODE(ATOMIC_LOADW_MIN);
OPCODE(ATOMIC_LOADW_MAX);
OPCODE(ATOMIC_LOADW_UMIN);
OPCODE(ATOMIC_LOADW_UMAX);
OPCODE(ATOMIC_CMP_SWAPW);
OPCODE(PREFETCH);
}
return nullptr;
#undef OPCODE
}
// Return true if VT is a vector whose elements are a whole number of bytes
// in width.
static bool canTreatAsByteVector(EVT VT) {
return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0;
}
// Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
// producing a result of type ResVT. Op is a possibly bitcast version
// of the input vector and Index is the index (based on type VecVT) that
// should be extracted. Return the new extraction if a simplification
// was possible or if Force is true.
SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT,
SDValue Op, unsigned Index,
DAGCombinerInfo &DCI,
bool Force) const {
SelectionDAG &DAG = DCI.DAG;
// The number of bytes being extracted.
unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
for (;;) {
unsigned Opcode = Op.getOpcode();
if (Opcode == ISD::BITCAST)
// Look through bitcasts.
Op = Op.getOperand(0);
else if (Opcode == ISD::VECTOR_SHUFFLE &&
canTreatAsByteVector(Op.getValueType())) {
// Get a VPERM-like permute mask and see whether the bytes covered
// by the extracted element are a contiguous sequence from one
// source operand.
SmallVector<int, SystemZ::VectorBytes> Bytes;
getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
int First;
if (!getShuffleInput(Bytes, Index * BytesPerElement,
BytesPerElement, First))
break;
if (First < 0)
return DAG.getUNDEF(ResVT);
// Make sure the contiguous sequence starts at a multiple of the
// original element size.
unsigned Byte = unsigned(First) % Bytes.size();
if (Byte % BytesPerElement != 0)
break;
// We can get the extracted value directly from an input.
Index = Byte / BytesPerElement;
Op = Op.getOperand(unsigned(First) / Bytes.size());
Force = true;
} else if (Opcode == ISD::BUILD_VECTOR &&
canTreatAsByteVector(Op.getValueType())) {
// We can only optimize this case if the BUILD_VECTOR elements are
// at least as wide as the extracted value.
EVT OpVT = Op.getValueType();
unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
if (OpBytesPerElement < BytesPerElement)
break;
// Make sure that the least-significant bit of the extracted value
// is the least significant bit of an input.
unsigned End = (Index + 1) * BytesPerElement;
if (End % OpBytesPerElement != 0)
break;
// We're extracting the low part of one operand of the BUILD_VECTOR.
Op = Op.getOperand(End / OpBytesPerElement - 1);
if (!Op.getValueType().isInteger()) {
EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits());
Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
DCI.AddToWorklist(Op.getNode());
}
EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
if (VT != ResVT) {
DCI.AddToWorklist(Op.getNode());
Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
}
return Op;
} else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
canTreatAsByteVector(Op.getValueType()) &&
canTreatAsByteVector(Op.getOperand(0).getValueType())) {
// Make sure that only the unextended bits are significant.
EVT ExtVT = Op.getValueType();
EVT OpVT = Op.getOperand(0).getValueType();
unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
unsigned Byte = Index * BytesPerElement;
unsigned SubByte = Byte % ExtBytesPerElement;
unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
if (SubByte < MinSubByte ||
SubByte + BytesPerElement > ExtBytesPerElement)
break;
// Get the byte offset of the unextended element
Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
// ...then add the byte offset relative to that element.
Byte += SubByte - MinSubByte;
if (Byte % BytesPerElement != 0)
break;
Op = Op.getOperand(0);
Index = Byte / BytesPerElement;
Force = true;
} else
break;
}
if (Force) {
if (Op.getValueType() != VecVT) {
Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
DCI.AddToWorklist(Op.getNode());
}
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
DAG.getConstant(Index, DL, MVT::i32));
}
return SDValue();
}
// Optimize vector operations in scalar value Op on the basis that Op
// is truncated to TruncVT.
SDValue
SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op,
DAGCombinerInfo &DCI) const {
// If we have (trunc (extract_vector_elt X, Y)), try to turn it into
// (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
// of type TruncVT.
if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
TruncVT.getSizeInBits() % 8 == 0) {
SDValue Vec = Op.getOperand(0);
EVT VecVT = Vec.getValueType();
if (canTreatAsByteVector(VecVT)) {
if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
unsigned TruncBytes = TruncVT.getStoreSize();
if (BytesPerElement % TruncBytes == 0) {
// Calculate the value of Y' in the above description. We are
// splitting the original elements into Scale equal-sized pieces
// and for truncation purposes want the last (least-significant)
// of these pieces for IndexN. This is easiest to do by calculating
// the start index of the following element and then subtracting 1.
unsigned Scale = BytesPerElement / TruncBytes;
unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
// Defer the creation of the bitcast from X to combineExtract,
// which might be able to optimize the extraction.
VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
VecVT.getStoreSize() / TruncBytes);
EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
}
}
}
}
return SDValue();
}
SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
unsigned Opcode = N->getOpcode();
if (Opcode == ISD::SIGN_EXTEND) {
// Convert (sext (ashr (shl X, C1), C2)) to
// (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
// cheap as narrower ones.
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
SDValue Inner = N0.getOperand(0);
if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
unsigned Extra = (VT.getSizeInBits() -
N0.getValueType().getSizeInBits());
unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
EVT ShiftVT = N0.getOperand(1).getValueType();
SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
Inner.getOperand(0));
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
DAG.getConstant(NewShlAmt, SDLoc(Inner),
ShiftVT));
return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
}
}
}
}
if (Opcode == SystemZISD::MERGE_HIGH ||
Opcode == SystemZISD::MERGE_LOW) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
if (Op0.getOpcode() == ISD::BITCAST)
Op0 = Op0.getOperand(0);
if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
// (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF
// for v4f32.
if (Op1 == N->getOperand(0))
return Op1;
// (z_merge_? 0, X) -> (z_unpackl_? 0, X).
EVT VT = Op1.getValueType();
unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
if (ElemBytes <= 4) {
Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
EVT InVT = VT.changeVectorElementTypeToInteger();
EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
SystemZ::VectorBytes / ElemBytes / 2);
if (VT != InVT) {
Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
DCI.AddToWorklist(Op1.getNode());
}
SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
DCI.AddToWorklist(Op.getNode());
return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
}
}
}
// If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
// for the extraction to be done on a vMiN value, so that we can use VSTE.
// If X has wider elements then convert it to:
// (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
if (Opcode == ISD::STORE) {
auto *SN = cast<StoreSDNode>(N);
EVT MemVT = SN->getMemoryVT();
if (MemVT.isInteger()) {
SDValue Value = combineTruncateExtract(SDLoc(N), MemVT,
SN->getValue(), DCI);
if (Value.getNode()) {
DCI.AddToWorklist(Value.getNode());
// Rewrite the store with the new form of stored value.
return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
SN->getBasePtr(), SN->getMemoryVT(),
SN->getMemOperand());
}
}
}
// Try to simplify a vector extraction.
if (Opcode == ISD::EXTRACT_VECTOR_ELT) {
if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
SDValue Op0 = N->getOperand(0);
EVT VecVT = Op0.getValueType();
return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
IndexN->getZExtValue(), DCI, false);
}
}
// (join_dwords X, X) == (replicate X)
if (Opcode == SystemZISD::JOIN_DWORDS &&
N->getOperand(0) == N->getOperand(1))
return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
N->getOperand(0));
// (fround (extract_vector_elt X 0))
// (fround (extract_vector_elt X 1)) ->
// (extract_vector_elt (VROUND X) 0)
// (extract_vector_elt (VROUND X) 1)
//
// This is a special case since the target doesn't really support v2f32s.
if (Opcode == ISD::FP_ROUND) {
SDValue Op0 = N->getOperand(0);
if (N->getValueType(0) == MVT::f32 &&
Op0.hasOneUse() &&
Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op0.getOperand(0).getValueType() == MVT::v2f64 &&
Op0.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
SDValue Vec = Op0.getOperand(0);
for (auto *U : Vec->uses()) {
if (U != Op0.getNode() &&
U->hasOneUse() &&
U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
U->getOperand(0) == Vec &&
U->getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
SDValue OtherRound = SDValue(*U->use_begin(), 0);
if (OtherRound.getOpcode() == ISD::FP_ROUND &&
OtherRound.getOperand(0) == SDValue(U, 0) &&
OtherRound.getValueType() == MVT::f32) {
SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
MVT::v4f32, Vec);
DCI.AddToWorklist(VRound.getNode());
SDValue Extract1 =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
DCI.AddToWorklist(Extract1.getNode());
DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
SDValue Extract0 =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
return Extract0;
}
}
}
}
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// Custom insertion
//===----------------------------------------------------------------------===//
// Create a new basic block after MBB.
static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
MachineFunction &MF = *MBB->getParent();
MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
return NewMBB;
}
// Split MBB after MI and return the new block (the one that contains
// instructions after MI).
static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
MachineBasicBlock *MBB) {
MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
NewMBB->splice(NewMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
return NewMBB;
}
// Split MBB before MI and return the new block (the one that contains MI).
static MachineBasicBlock *splitBlockBefore(MachineInstr *MI,
MachineBasicBlock *MBB) {
MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
return NewMBB;
}
// Force base value Base into a register before MI. Return the register.
static unsigned forceReg(MachineInstr *MI, MachineOperand &Base,
const SystemZInstrInfo *TII) {
if (Base.isReg())
return Base.getReg();
MachineBasicBlock *MBB = MI->getParent();
MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg)
.addOperand(Base).addImm(0).addReg(0);
return Reg;
}
// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
MachineBasicBlock *
SystemZTargetLowering::emitSelect(MachineInstr *MI,
MachineBasicBlock *MBB) const {
const SystemZInstrInfo *TII =
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
unsigned DestReg = MI->getOperand(0).getReg();
unsigned TrueReg = MI->getOperand(1).getReg();
unsigned FalseReg = MI->getOperand(2).getReg();
unsigned CCValid = MI->getOperand(3).getImm();
unsigned CCMask = MI->getOperand(4).getImm();
DebugLoc DL = MI->getDebugLoc();
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
// StartMBB:
// BRC CCMask, JoinMBB
// # fallthrough to FalseMBB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
MBB->addSuccessor(JoinMBB);
MBB->addSuccessor(FalseMBB);
// FalseMBB:
// # fallthrough to JoinMBB
MBB = FalseMBB;
MBB->addSuccessor(JoinMBB);
// JoinMBB:
// %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
// ...
MBB = JoinMBB;
BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
.addReg(TrueReg).addMBB(StartMBB)
.addReg(FalseReg).addMBB(FalseMBB);
MI->eraseFromParent();
return JoinMBB;
}
// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
// StoreOpcode is the store to use and Invert says whether the store should
// happen when the condition is false rather than true. If a STORE ON
// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
MachineBasicBlock *
SystemZTargetLowering::emitCondStore(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned StoreOpcode, unsigned STOCOpcode,
bool Invert) const {
const SystemZInstrInfo *TII =
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
unsigned SrcReg = MI->getOperand(0).getReg();
MachineOperand Base = MI->getOperand(1);
int64_t Disp = MI->getOperand(2).getImm();
unsigned IndexReg = MI->getOperand(3).getReg();
unsigned CCValid = MI->getOperand(4).getImm();
unsigned CCMask = MI->getOperand(5).getImm();
DebugLoc DL = MI->getDebugLoc();
StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
// Use STOCOpcode if possible. We could use different store patterns in
// order to avoid matching the index register, but the performance trade-offs
// might be more complicated in that case.
if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
if (Invert)
CCMask ^= CCValid;
BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
.addReg(SrcReg).addOperand(Base).addImm(Disp)
.addImm(CCValid).addImm(CCMask);
MI->eraseFromParent();
return MBB;
}
// Get the condition needed to branch around the store.
if (!Invert)
CCMask ^= CCValid;
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
// StartMBB:
// BRC CCMask, JoinMBB
// # fallthrough to FalseMBB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
MBB->addSuccessor(JoinMBB);
MBB->addSuccessor(FalseMBB);
// FalseMBB:
// store %SrcReg, %Disp(%Index,%Base)
// # fallthrough to JoinMBB
MBB = FalseMBB;
BuildMI(MBB, DL, TII->get(StoreOpcode))
.addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
MBB->addSuccessor(JoinMBB);
MI->eraseFromParent();
return JoinMBB;
}
// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that
// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
// BitSize is the width of the field in bits, or 0 if this is a partword
// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
// is one of the operands. Invert says whether the field should be
// inverted after performing BinOpcode (e.g. for NAND).
MachineBasicBlock *
SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned BinOpcode,
unsigned BitSize,
bool Invert) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII =
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
bool IsSubWord = (BitSize < 32);
// Extract the operands. Base can be a register or a frame index.
// Src2 can be a register or immediate.
unsigned Dest = MI->getOperand(0).getReg();
MachineOperand Base = earlyUseOperand(MI->getOperand(1));
int64_t Disp = MI->getOperand(2).getImm();
MachineOperand Src2 = earlyUseOperand(MI->getOperand(3));
unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
DebugLoc DL = MI->getDebugLoc();
if (IsSubWord)
BitSize = MI->getOperand(6).getImm();
// Subword operations use 32-bit registers.
const TargetRegisterClass *RC = (BitSize <= 32 ?
&SystemZ::GR32BitRegClass :
&SystemZ::GR64BitRegClass);
unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
// Get the right opcodes for the displacement.
LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
assert(LOpcode && CSOpcode && "Displacement out of range");
// Create virtual registers for temporary results.
unsigned OrigVal = MRI.createVirtualRegister(RC);
unsigned OldVal = MRI.createVirtualRegister(RC);
unsigned NewVal = (BinOpcode || IsSubWord ?
MRI.createVirtualRegister(RC) : Src2.getReg());
unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
// Insert a basic block for the main loop.
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
// StartMBB:
// ...
// %OrigVal = L Disp(%Base)
// # fall through to LoopMMB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
.addOperand(Base).addImm(Disp).addReg(0);
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
// %RotatedOldVal = RLL %OldVal, 0(%BitShift)
// %RotatedNewVal = OP %RotatedOldVal, %Src2
// %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
// %Dest = CS %OldVal, %NewVal, Disp(%Base)
// JNE LoopMBB
// # fall through to DoneMMB
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
.addReg(OrigVal).addMBB(StartMBB)
.addReg(Dest).addMBB(LoopMBB);
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
.addReg(OldVal).addReg(BitShift).addImm(0);
if (Invert) {
// Perform the operation normally and then invert every bit of the field.
unsigned Tmp = MRI.createVirtualRegister(RC);
BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
.addReg(RotatedOldVal).addOperand(Src2);
if (BitSize <= 32)
// XILF with the upper BitSize bits set.
BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
.addReg(Tmp).addImm(-1U << (32 - BitSize));
else {
// Use LCGR and add -1 to the result, which is more compact than
// an XILF, XILH pair.
unsigned Tmp2 = MRI.createVirtualRegister(RC);
BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
.addReg(Tmp2).addImm(-1);
}
} else if (BinOpcode)
// A simply binary operation.
BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
.addReg(RotatedOldVal).addOperand(Src2);
else if (IsSubWord)
// Use RISBG to rotate Src2 into position and use it to replace the
// field in RotatedOldVal.
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
.addReg(RotatedOldVal).addReg(Src2.getReg())
.addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
.addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
.addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
MI->eraseFromParent();
return DoneMBB;
}
// Implement EmitInstrWithCustomInserter for pseudo
// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the
// instruction that should be used to compare the current field with the
// minimum or maximum value. KeepOldMask is the BRC condition-code mask
// for when the current field should be kept. BitSize is the width of
// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
MachineBasicBlock *
SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned CompareOpcode,
unsigned KeepOldMask,
unsigned BitSize) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII =
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
bool IsSubWord = (BitSize < 32);
// Extract the operands. Base can be a register or a frame index.
unsigned Dest = MI->getOperand(0).getReg();
MachineOperand Base = earlyUseOperand(MI->getOperand(1));
int64_t Disp = MI->getOperand(2).getImm();
unsigned Src2 = MI->getOperand(3).getReg();
unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0);
unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
DebugLoc DL = MI->getDebugLoc();
if (IsSubWord)
BitSize = MI->getOperand(6).getImm();
// Subword operations use 32-bit registers.
const TargetRegisterClass *RC = (BitSize <= 32 ?
&SystemZ::GR32BitRegClass :
&SystemZ::GR64BitRegClass);
unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG;
unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
// Get the right opcodes for the displacement.
LOpcode = TII->getOpcodeForOffset(LOpcode, Disp);
CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
assert(LOpcode && CSOpcode && "Displacement out of range");
// Create virtual registers for temporary results.
unsigned OrigVal = MRI.createVirtualRegister(RC);
unsigned OldVal = MRI.createVirtualRegister(RC);
unsigned NewVal = MRI.createVirtualRegister(RC);
unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
// Insert 3 basic blocks for the loop.
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
// StartMBB:
// ...
// %OrigVal = L Disp(%Base)
// # fall through to LoopMMB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
.addOperand(Base).addImm(Disp).addReg(0);
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
// %RotatedOldVal = RLL %OldVal, 0(%BitShift)
// CompareOpcode %RotatedOldVal, %Src2
// BRC KeepOldMask, UpdateMBB
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
.addReg(OrigVal).addMBB(StartMBB)
.addReg(Dest).addMBB(UpdateMBB);
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
.addReg(OldVal).addReg(BitShift).addImm(0);
BuildMI(MBB, DL, TII->get(CompareOpcode))
.addReg(RotatedOldVal).addReg(Src2);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
MBB->addSuccessor(UpdateMBB);
MBB->addSuccessor(UseAltMBB);
// UseAltMBB:
// %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
// # fall through to UpdateMMB
MBB = UseAltMBB;
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
.addReg(RotatedOldVal).addReg(Src2)
.addImm(32).addImm(31 + BitSize).addImm(0);
MBB->addSuccessor(UpdateMBB);
// UpdateMBB:
// %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
// [ %RotatedAltVal, UseAltMBB ]
// %NewVal = RLL %RotatedNewVal, 0(%NegBitShift)
// %Dest = CS %OldVal, %NewVal, Disp(%Base)
// JNE LoopMBB
// # fall through to DoneMMB
MBB = UpdateMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
.addReg(RotatedOldVal).addMBB(LoopMBB)
.addReg(RotatedAltVal).addMBB(UseAltMBB);
if (IsSubWord)
BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
.addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
.addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
MI->eraseFromParent();
return DoneMBB;
}
// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
// instruction MI.
MachineBasicBlock *
SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
MachineBasicBlock *MBB) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII =
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
// Extract the operands. Base can be a register or a frame index.
unsigned Dest = MI->getOperand(0).getReg();
MachineOperand Base = earlyUseOperand(MI->getOperand(1));
int64_t Disp = MI->getOperand(2).getImm();
unsigned OrigCmpVal = MI->getOperand(3).getReg();
unsigned OrigSwapVal = MI->getOperand(4).getReg();
unsigned BitShift = MI->getOperand(5).getReg();
unsigned NegBitShift = MI->getOperand(6).getReg();
int64_t BitSize = MI->getOperand(7).getImm();
DebugLoc DL = MI->getDebugLoc();
const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
// Get the right opcodes for the displacement.
unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp);
unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
assert(LOpcode && CSOpcode && "Displacement out of range");
// Create virtual registers for temporary results.
unsigned OrigOldVal = MRI.createVirtualRegister(RC);
unsigned OldVal = MRI.createVirtualRegister(RC);
unsigned CmpVal = MRI.createVirtualRegister(RC);
unsigned SwapVal = MRI.createVirtualRegister(RC);
unsigned StoreVal = MRI.createVirtualRegister(RC);
unsigned RetryOldVal = MRI.createVirtualRegister(RC);
unsigned RetryCmpVal = MRI.createVirtualRegister(RC);
unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
// Insert 2 basic blocks for the loop.
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB);
// StartMBB:
// ...
// %OrigOldVal = L Disp(%Base)
// # fall through to LoopMMB
MBB = StartMBB;
BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
.addOperand(Base).addImm(Disp).addReg(0);
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
// %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
// %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
// %Dest = RLL %OldVal, BitSize(%BitShift)
// ^^ The low BitSize bits contain the field
// of interest.
// %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
// ^^ Replace the upper 32-BitSize bits of the
// comparison value with those that we loaded,
// so that we can use a full word comparison.
// CR %Dest, %RetryCmpVal
// JNE DoneMBB
// # Fall through to SetMBB
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
.addReg(OrigOldVal).addMBB(StartMBB)
.addReg(RetryOldVal).addMBB(SetMBB);
BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
.addReg(OrigCmpVal).addMBB(StartMBB)
.addReg(RetryCmpVal).addMBB(SetMBB);
BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
.addReg(OrigSwapVal).addMBB(StartMBB)
.addReg(RetrySwapVal).addMBB(SetMBB);
BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
.addReg(OldVal).addReg(BitShift).addImm(BitSize);
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
.addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
BuildMI(MBB, DL, TII->get(SystemZ::CR))
.addReg(Dest).addReg(RetryCmpVal);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP)
.addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
MBB->addSuccessor(DoneMBB);
MBB->addSuccessor(SetMBB);
// SetMBB:
// %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
// ^^ Replace the upper 32-BitSize bits of the new
// value with those that we loaded.
// %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift)
// ^^ Rotate the new field to its proper position.
// %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
// JNE LoopMBB
// # fall through to ExitMMB
MBB = SetMBB;
BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
.addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
.addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
.addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
MI->eraseFromParent();
return DoneMBB;
}
// Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true
// if the high register of the GR128 value must be cleared or false if
// it's "don't care". SubReg is subreg_l32 when extending a GR32
// and subreg_l64 when extending a GR64.
MachineBasicBlock *
SystemZTargetLowering::emitExt128(MachineInstr *MI,
MachineBasicBlock *MBB,
bool ClearEven, unsigned SubReg) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII =
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Dest = MI->getOperand(0).getReg();
unsigned Src = MI->getOperand(1).getReg();
unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
if (ClearEven) {
unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
.addImm(0);
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
.addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
In128 = NewIn128;
}
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
.addReg(In128).addReg(Src).addImm(SubReg);
MI->eraseFromParent();
return MBB;
}
MachineBasicBlock *
SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned Opcode) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII =
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI->getDebugLoc();
MachineOperand DestBase = earlyUseOperand(MI->getOperand(0));
uint64_t DestDisp = MI->getOperand(1).getImm();
MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2));
uint64_t SrcDisp = MI->getOperand(3).getImm();
uint64_t Length = MI->getOperand(4).getImm();
// When generating more than one CLC, all but the last will need to
// branch to the end when a difference is found.
MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
splitBlockAfter(MI, MBB) : nullptr);
// Check for the loop form, in which operand 5 is the trip count.
if (MI->getNumExplicitOperands() > 5) {
bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
uint64_t StartCountReg = MI->getOperand(5).getReg();
uint64_t StartSrcReg = forceReg(MI, SrcBase, TII);
uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg :
forceReg(MI, DestBase, TII));
const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
uint64_t ThisSrcReg = MRI.createVirtualRegister(RC);
uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
MRI.createVirtualRegister(RC));
uint64_t NextSrcReg = MRI.createVirtualRegister(RC);
uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
MRI.createVirtualRegister(RC));
RC = &SystemZ::GR64BitRegClass;
uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
uint64_t NextCountReg = MRI.createVirtualRegister(RC);
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
// StartMBB:
// # fall through to LoopMMB
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %ThisDestReg = phi [ %StartDestReg, StartMBB ],
// [ %NextDestReg, NextMBB ]
// %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
// [ %NextSrcReg, NextMBB ]
// %ThisCountReg = phi [ %StartCountReg, StartMBB ],
// [ %NextCountReg, NextMBB ]
// ( PFD 2, 768+DestDisp(%ThisDestReg) )
// Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
// ( JLH EndMBB )
//
// The prefetch is used only for MVC. The JLH is used only for CLC.
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
.addReg(StartDestReg).addMBB(StartMBB)
.addReg(NextDestReg).addMBB(NextMBB);
if (!HaveSingleBase)
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
.addReg(StartSrcReg).addMBB(StartMBB)
.addReg(NextSrcReg).addMBB(NextMBB);
BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
.addReg(StartCountReg).addMBB(StartMBB)
.addReg(NextCountReg).addMBB(NextMBB);
if (Opcode == SystemZ::MVC)
BuildMI(MBB, DL, TII->get(SystemZ::PFD))
.addImm(SystemZ::PFD_WRITE)
.addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
BuildMI(MBB, DL, TII->get(Opcode))
.addReg(ThisDestReg).addImm(DestDisp).addImm(256)
.addReg(ThisSrcReg).addImm(SrcDisp);
if (EndMBB) {
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
.addMBB(EndMBB);
MBB->addSuccessor(EndMBB);
MBB->addSuccessor(NextMBB);
}
// NextMBB:
// %NextDestReg = LA 256(%ThisDestReg)
// %NextSrcReg = LA 256(%ThisSrcReg)
// %NextCountReg = AGHI %ThisCountReg, -1
// CGHI %NextCountReg, 0
// JLH LoopMBB
// # fall through to DoneMMB
//
// The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
MBB = NextMBB;
BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
.addReg(ThisDestReg).addImm(256).addReg(0);
if (!HaveSingleBase)
BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
.addReg(ThisSrcReg).addImm(256).addReg(0);
BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
.addReg(ThisCountReg).addImm(-1);
BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
.addReg(NextCountReg).addImm(0);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
.addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
DestBase = MachineOperand::CreateReg(NextDestReg, false);
SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
Length &= 255;
MBB = DoneMBB;
}
// Handle any remaining bytes with straight-line code.
while (Length > 0) {
uint64_t ThisLength = std::min(Length, uint64_t(256));
// The previous iteration might have created out-of-range displacements.
// Apply them using LAY if so.
if (!isUInt<12>(DestDisp)) {
unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
.addOperand(DestBase).addImm(DestDisp).addReg(0);
DestBase = MachineOperand::CreateReg(Reg, false);
DestDisp = 0;
}
if (!isUInt<12>(SrcDisp)) {
unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg)
.addOperand(SrcBase).addImm(SrcDisp).addReg(0);
SrcBase = MachineOperand::CreateReg(Reg, false);
SrcDisp = 0;
}
BuildMI(*MBB, MI, DL, TII->get(Opcode))
.addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
.addOperand(SrcBase).addImm(SrcDisp);
DestDisp += ThisLength;
SrcDisp += ThisLength;
Length -= ThisLength;
// If there's another CLC to go, branch to the end if a difference
// was found.
if (EndMBB && Length > 0) {
MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
.addMBB(EndMBB);
MBB->addSuccessor(EndMBB);
MBB->addSuccessor(NextMBB);
MBB = NextMBB;
}
}
if (EndMBB) {
MBB->addSuccessor(EndMBB);
MBB = EndMBB;
MBB->addLiveIn(SystemZ::CC);
}
MI->eraseFromParent();
return MBB;
}
// Decompose string pseudo-instruction MI into a loop that continually performs
// Opcode until CC != 3.
MachineBasicBlock *
SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned Opcode) const {
MachineFunction &MF = *MBB->getParent();
const SystemZInstrInfo *TII =
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
MachineRegisterInfo &MRI = MF.getRegInfo();
DebugLoc DL = MI->getDebugLoc();
uint64_t End1Reg = MI->getOperand(0).getReg();
uint64_t Start1Reg = MI->getOperand(1).getReg();
uint64_t Start2Reg = MI->getOperand(2).getReg();
uint64_t CharReg = MI->getOperand(3).getReg();
const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
uint64_t This1Reg = MRI.createVirtualRegister(RC);
uint64_t This2Reg = MRI.createVirtualRegister(RC);
uint64_t End2Reg = MRI.createVirtualRegister(RC);
MachineBasicBlock *StartMBB = MBB;
MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
// StartMBB:
// # fall through to LoopMMB
MBB->addSuccessor(LoopMBB);
// LoopMBB:
// %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
// %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
// R0L = %CharReg
// %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
// JO LoopMBB
// # fall through to DoneMMB
//
// The load of R0L can be hoisted by post-RA LICM.
MBB = LoopMBB;
BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
.addReg(Start1Reg).addMBB(StartMBB)
.addReg(End1Reg).addMBB(LoopMBB);
BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
.addReg(Start2Reg).addMBB(StartMBB)
.addReg(End2Reg).addMBB(LoopMBB);
BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
BuildMI(MBB, DL, TII->get(Opcode))
.addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
.addReg(This1Reg).addReg(This2Reg);
BuildMI(MBB, DL, TII->get(SystemZ::BRC))
.addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
MBB->addSuccessor(LoopMBB);
MBB->addSuccessor(DoneMBB);
DoneMBB->addLiveIn(SystemZ::CC);
MI->eraseFromParent();
return DoneMBB;
}
// Update TBEGIN instruction with final opcode and register clobbers.
MachineBasicBlock *
SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned Opcode,
bool NoFloat) const {
MachineFunction &MF = *MBB->getParent();
const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
// Update opcode.
MI->setDesc(TII->get(Opcode));
// We cannot handle a TBEGIN that clobbers the stack or frame pointer.
// Make sure to add the corresponding GRSM bits if they are missing.
uint64_t Control = MI->getOperand(2).getImm();
static const unsigned GPRControlBit[16] = {
0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
};
Control |= GPRControlBit[15];
if (TFI->hasFP(MF))
Control |= GPRControlBit[11];
MI->getOperand(2).setImm(Control);
// Add GPR clobbers.
for (int I = 0; I < 16; I++) {
if ((Control & GPRControlBit[I]) == 0) {
unsigned Reg = SystemZMC::GR64Regs[I];
MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
}
}
// Add FPR/VR clobbers.
if (!NoFloat && (Control & 4) != 0) {
if (Subtarget.hasVector()) {
for (int I = 0; I < 32; I++) {
unsigned Reg = SystemZMC::VR128Regs[I];
MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
}
} else {
for (int I = 0; I < 16; I++) {
unsigned Reg = SystemZMC::FP64Regs[I];
MI->addOperand(MachineOperand::CreateReg(Reg, true, true));
}
}
}
return MBB;
}
MachineBasicBlock *
SystemZTargetLowering::emitLoadAndTestCmp0(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned Opcode) const {
MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo *MRI = &MF.getRegInfo();
const SystemZInstrInfo *TII =
static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
DebugLoc DL = MI->getDebugLoc();
unsigned SrcReg = MI->getOperand(0).getReg();
// Create new virtual register of the same class as source.
const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
unsigned DstReg = MRI->createVirtualRegister(RC);
// Replace pseudo with a normal load-and-test that models the def as
// well.
BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
.addReg(SrcReg);
MI->eraseFromParent();
return MBB;
}
MachineBasicBlock *SystemZTargetLowering::
EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
switch (MI->getOpcode()) {
case SystemZ::Select32Mux:
case SystemZ::Select32:
case SystemZ::SelectF32:
case SystemZ::Select64:
case SystemZ::SelectF64:
case SystemZ::SelectF128:
return emitSelect(MI, MBB);
case SystemZ::CondStore8Mux:
return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
case SystemZ::CondStore8MuxInv:
return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
case SystemZ::CondStore16Mux:
return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
case SystemZ::CondStore16MuxInv:
return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
case SystemZ::CondStore8:
return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
case SystemZ::CondStore8Inv:
return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
case SystemZ::CondStore16:
return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
case SystemZ::CondStore16Inv:
return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
case SystemZ::CondStore32:
return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
case SystemZ::CondStore32Inv:
return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
case SystemZ::CondStore64:
return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
case SystemZ::CondStore64Inv:
return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
case SystemZ::CondStoreF32:
return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
case SystemZ::CondStoreF32Inv:
return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
case SystemZ::CondStoreF64:
return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
case SystemZ::CondStoreF64Inv:
return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
case SystemZ::AEXT128_64:
return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
case SystemZ::ZEXT128_32:
return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
case SystemZ::ZEXT128_64:
return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
case SystemZ::ATOMIC_SWAPW:
return emitAtomicLoadBinary(MI, MBB, 0, 0);
case SystemZ::ATOMIC_SWAP_32:
return emitAtomicLoadBinary(MI, MBB, 0, 32);
case SystemZ::ATOMIC_SWAP_64:
return emitAtomicLoadBinary(MI, MBB, 0, 64);
case SystemZ::ATOMIC_LOADW_AR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
case SystemZ::ATOMIC_LOADW_AFI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
case SystemZ::ATOMIC_LOAD_AR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
case SystemZ::ATOMIC_LOAD_AHI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
case SystemZ::ATOMIC_LOAD_AFI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
case SystemZ::ATOMIC_LOAD_AGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
case SystemZ::ATOMIC_LOAD_AGHI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
case SystemZ::ATOMIC_LOAD_AGFI:
return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
case SystemZ::ATOMIC_LOADW_SR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
case SystemZ::ATOMIC_LOAD_SR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
case SystemZ::ATOMIC_LOAD_SGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
case SystemZ::ATOMIC_LOADW_NR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
case SystemZ::ATOMIC_LOADW_NILH:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
case SystemZ::ATOMIC_LOAD_NR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
case SystemZ::ATOMIC_LOAD_NILL:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
case SystemZ::ATOMIC_LOAD_NILH:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
case SystemZ::ATOMIC_LOAD_NILF:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
case SystemZ::ATOMIC_LOAD_NGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
case SystemZ::ATOMIC_LOAD_NILL64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
case SystemZ::ATOMIC_LOAD_NILH64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
case SystemZ::ATOMIC_LOAD_NIHL64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
case SystemZ::ATOMIC_LOAD_NIHH64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
case SystemZ::ATOMIC_LOAD_NILF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
case SystemZ::ATOMIC_LOAD_NIHF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
case SystemZ::ATOMIC_LOADW_OR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
case SystemZ::ATOMIC_LOADW_OILH:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
case SystemZ::ATOMIC_LOAD_OR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
case SystemZ::ATOMIC_LOAD_OILL:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
case SystemZ::ATOMIC_LOAD_OILH:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
case SystemZ::ATOMIC_LOAD_OILF:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
case SystemZ::ATOMIC_LOAD_OGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
case SystemZ::ATOMIC_LOAD_OILL64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
case SystemZ::ATOMIC_LOAD_OILH64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
case SystemZ::ATOMIC_LOAD_OIHL64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
case SystemZ::ATOMIC_LOAD_OIHH64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
case SystemZ::ATOMIC_LOAD_OILF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
case SystemZ::ATOMIC_LOAD_OIHF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
case SystemZ::ATOMIC_LOADW_XR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
case SystemZ::ATOMIC_LOADW_XILF:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
case SystemZ::ATOMIC_LOAD_XR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
case SystemZ::ATOMIC_LOAD_XILF:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
case SystemZ::ATOMIC_LOAD_XGR:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
case SystemZ::ATOMIC_LOAD_XILF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
case SystemZ::ATOMIC_LOAD_XIHF64:
return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
case SystemZ::ATOMIC_LOADW_NRi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
case SystemZ::ATOMIC_LOADW_NILHi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
case SystemZ::ATOMIC_LOAD_NRi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
case SystemZ::ATOMIC_LOAD_NILLi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
case SystemZ::ATOMIC_LOAD_NILHi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
case SystemZ::ATOMIC_LOAD_NILFi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
case SystemZ::ATOMIC_LOAD_NGRi:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
case SystemZ::ATOMIC_LOAD_NILL64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
case SystemZ::ATOMIC_LOAD_NILH64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
case SystemZ::ATOMIC_LOAD_NIHL64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
case SystemZ::ATOMIC_LOAD_NIHH64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
case SystemZ::ATOMIC_LOAD_NILF64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
case SystemZ::ATOMIC_LOAD_NIHF64i:
return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
case SystemZ::ATOMIC_LOADW_MIN:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
SystemZ::CCMASK_CMP_LE, 0);
case SystemZ::ATOMIC_LOAD_MIN_32:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
SystemZ::CCMASK_CMP_LE, 32);
case SystemZ::ATOMIC_LOAD_MIN_64:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
SystemZ::CCMASK_CMP_LE, 64);
case SystemZ::ATOMIC_LOADW_MAX:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
SystemZ::CCMASK_CMP_GE, 0);
case SystemZ::ATOMIC_LOAD_MAX_32:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
SystemZ::CCMASK_CMP_GE, 32);
case SystemZ::ATOMIC_LOAD_MAX_64:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
SystemZ::CCMASK_CMP_GE, 64);
case SystemZ::ATOMIC_LOADW_UMIN:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
SystemZ::CCMASK_CMP_LE, 0);
case SystemZ::ATOMIC_LOAD_UMIN_32:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
SystemZ::CCMASK_CMP_LE, 32);
case SystemZ::ATOMIC_LOAD_UMIN_64:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
SystemZ::CCMASK_CMP_LE, 64);
case SystemZ::ATOMIC_LOADW_UMAX:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
SystemZ::CCMASK_CMP_GE, 0);
case SystemZ::ATOMIC_LOAD_UMAX_32:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
SystemZ::CCMASK_CMP_GE, 32);
case SystemZ::ATOMIC_LOAD_UMAX_64:
return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
SystemZ::CCMASK_CMP_GE, 64);
case SystemZ::ATOMIC_CMP_SWAPW:
return emitAtomicCmpSwapW(MI, MBB);
case SystemZ::MVCSequence:
case SystemZ::MVCLoop:
return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
case SystemZ::NCSequence:
case SystemZ::NCLoop:
return emitMemMemWrapper(MI, MBB, SystemZ::NC);
case SystemZ::OCSequence:
case SystemZ::OCLoop:
return emitMemMemWrapper(MI, MBB, SystemZ::OC);
case SystemZ::XCSequence:
case SystemZ::XCLoop:
return emitMemMemWrapper(MI, MBB, SystemZ::XC);
case SystemZ::CLCSequence:
case SystemZ::CLCLoop:
return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
case SystemZ::CLSTLoop:
return emitStringWrapper(MI, MBB, SystemZ::CLST);
case SystemZ::MVSTLoop:
return emitStringWrapper(MI, MBB, SystemZ::MVST);
case SystemZ::SRSTLoop:
return emitStringWrapper(MI, MBB, SystemZ::SRST);
case SystemZ::TBEGIN:
return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
case SystemZ::TBEGIN_nofloat:
return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
case SystemZ::TBEGINC:
return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
case SystemZ::LTEBRCompare_VecPseudo:
return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
case SystemZ::LTDBRCompare_VecPseudo:
return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
case SystemZ::LTXBRCompare_VecPseudo:
return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
default:
llvm_unreachable("Unexpected instr type to insert");
}
}