forked from OSchip/llvm-project
1245 lines
50 KiB
C++
1245 lines
50 KiB
C++
//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass lowers LLVM IR exception handling into something closer to what the
|
|
// backend wants for functions using a personality function from a runtime
|
|
// provided by MSVC. Functions with other personality functions are left alone
|
|
// and may be prepared by other passes. In particular, all supported MSVC
|
|
// personality functions require cleanup code to be outlined, and the C++
|
|
// personality requires catch handler code to be outlined.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/LibCallSemantics.h"
|
|
#include "llvm/CodeGen/WinEHFuncInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "winehprepare"
|
|
|
|
static cl::opt<bool> DisableDemotion(
|
|
"disable-demotion", cl::Hidden,
|
|
cl::desc(
|
|
"Clone multicolor basic blocks but do not demote cross funclet values"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> DisableCleanups(
|
|
"disable-cleanups", cl::Hidden,
|
|
cl::desc("Do not remove implausible terminators or other similar cleanups"),
|
|
cl::init(false));
|
|
|
|
namespace {
|
|
|
|
class WinEHPrepare : public FunctionPass {
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid.
|
|
WinEHPrepare(const TargetMachine *TM = nullptr) : FunctionPass(ID) {}
|
|
|
|
bool runOnFunction(Function &Fn) override;
|
|
|
|
bool doFinalization(Module &M) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
const char *getPassName() const override {
|
|
return "Windows exception handling preparation";
|
|
}
|
|
|
|
private:
|
|
void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
|
|
void
|
|
insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
|
|
SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
|
|
AllocaInst *insertPHILoads(PHINode *PN, Function &F);
|
|
void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
|
|
DenseMap<BasicBlock *, Value *> &Loads, Function &F);
|
|
void demoteNonlocalUses(Value *V, std::set<BasicBlock *> &ColorsForBB,
|
|
Function &F);
|
|
bool prepareExplicitEH(Function &F,
|
|
SmallVectorImpl<BasicBlock *> &EntryBlocks);
|
|
void replaceTerminatePadWithCleanup(Function &F);
|
|
void colorFunclets(Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks);
|
|
void demotePHIsOnFunclets(Function &F);
|
|
void demoteUsesBetweenFunclets(Function &F);
|
|
void demoteArgumentUses(Function &F);
|
|
void cloneCommonBlocks(Function &F,
|
|
SmallVectorImpl<BasicBlock *> &EntryBlocks);
|
|
void removeImplausibleTerminators(Function &F);
|
|
void cleanupPreparedFunclets(Function &F);
|
|
void verifyPreparedFunclets(Function &F);
|
|
|
|
// All fields are reset by runOnFunction.
|
|
EHPersonality Personality = EHPersonality::Unknown;
|
|
|
|
std::map<BasicBlock *, std::set<BasicBlock *>> BlockColors;
|
|
std::map<BasicBlock *, std::set<BasicBlock *>> FuncletBlocks;
|
|
std::map<BasicBlock *, std::set<BasicBlock *>> FuncletChildren;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char WinEHPrepare::ID = 0;
|
|
INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
|
|
return new WinEHPrepare(TM);
|
|
}
|
|
|
|
static void findFuncletEntryPoints(Function &Fn,
|
|
SmallVectorImpl<BasicBlock *> &EntryBlocks) {
|
|
EntryBlocks.push_back(&Fn.getEntryBlock());
|
|
for (BasicBlock &BB : Fn) {
|
|
Instruction *First = BB.getFirstNonPHI();
|
|
if (!First->isEHPad())
|
|
continue;
|
|
assert(!isa<LandingPadInst>(First) &&
|
|
"landingpad cannot be used with funclet EH personality");
|
|
// Find EH pad blocks that represent funclet start points.
|
|
if (!isa<CatchEndPadInst>(First) && !isa<CleanupEndPadInst>(First))
|
|
EntryBlocks.push_back(&BB);
|
|
}
|
|
}
|
|
|
|
bool WinEHPrepare::runOnFunction(Function &Fn) {
|
|
if (!Fn.hasPersonalityFn())
|
|
return false;
|
|
|
|
// Classify the personality to see what kind of preparation we need.
|
|
Personality = classifyEHPersonality(Fn.getPersonalityFn());
|
|
|
|
// Do nothing if this is not a funclet-based personality.
|
|
if (!isFuncletEHPersonality(Personality))
|
|
return false;
|
|
|
|
// Remove unreachable blocks. It is not valuable to assign them a color and
|
|
// their existence can trick us into thinking values are alive when they are
|
|
// not.
|
|
removeUnreachableBlocks(Fn);
|
|
|
|
SmallVector<BasicBlock *, 4> EntryBlocks;
|
|
findFuncletEntryPoints(Fn, EntryBlocks);
|
|
return prepareExplicitEH(Fn, EntryBlocks);
|
|
}
|
|
|
|
bool WinEHPrepare::doFinalization(Module &M) { return false; }
|
|
|
|
void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
|
|
|
|
static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
|
|
const BasicBlock *BB) {
|
|
CxxUnwindMapEntry UME;
|
|
UME.ToState = ToState;
|
|
UME.Cleanup = BB;
|
|
FuncInfo.CxxUnwindMap.push_back(UME);
|
|
return FuncInfo.getLastStateNumber();
|
|
}
|
|
|
|
static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
|
|
int TryHigh, int CatchHigh,
|
|
ArrayRef<const CatchPadInst *> Handlers) {
|
|
WinEHTryBlockMapEntry TBME;
|
|
TBME.TryLow = TryLow;
|
|
TBME.TryHigh = TryHigh;
|
|
TBME.CatchHigh = CatchHigh;
|
|
assert(TBME.TryLow <= TBME.TryHigh);
|
|
for (const CatchPadInst *CPI : Handlers) {
|
|
WinEHHandlerType HT;
|
|
Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
|
|
if (TypeInfo->isNullValue())
|
|
HT.TypeDescriptor = nullptr;
|
|
else
|
|
HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
|
|
HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
|
|
HT.Handler = CPI->getParent();
|
|
if (isa<ConstantPointerNull>(CPI->getArgOperand(2)))
|
|
HT.CatchObj.Alloca = nullptr;
|
|
else
|
|
HT.CatchObj.Alloca = cast<AllocaInst>(CPI->getArgOperand(2));
|
|
TBME.HandlerArray.push_back(HT);
|
|
}
|
|
FuncInfo.TryBlockMap.push_back(TBME);
|
|
}
|
|
|
|
static const CatchPadInst *getSingleCatchPadPredecessor(const BasicBlock *BB) {
|
|
for (const BasicBlock *PredBlock : predecessors(BB))
|
|
if (auto *CPI = dyn_cast<CatchPadInst>(PredBlock->getFirstNonPHI()))
|
|
return CPI;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Find all the catchpads that feed directly into the catchendpad. Frontends
|
|
/// using this personality should ensure that each catchendpad and catchpad has
|
|
/// one or zero catchpad predecessors.
|
|
///
|
|
/// The following C++ generates the IR after it:
|
|
/// try {
|
|
/// } catch (A) {
|
|
/// } catch (B) {
|
|
/// }
|
|
///
|
|
/// IR:
|
|
/// %catchpad.A
|
|
/// catchpad [i8* A typeinfo]
|
|
/// to label %catch.A unwind label %catchpad.B
|
|
/// %catchpad.B
|
|
/// catchpad [i8* B typeinfo]
|
|
/// to label %catch.B unwind label %endcatches
|
|
/// %endcatches
|
|
/// catchendblock unwind to caller
|
|
static void
|
|
findCatchPadsForCatchEndPad(const BasicBlock *CatchEndBB,
|
|
SmallVectorImpl<const CatchPadInst *> &Handlers) {
|
|
const CatchPadInst *CPI = getSingleCatchPadPredecessor(CatchEndBB);
|
|
while (CPI) {
|
|
Handlers.push_back(CPI);
|
|
CPI = getSingleCatchPadPredecessor(CPI->getParent());
|
|
}
|
|
// We've pushed these back into reverse source order. Reverse them to get
|
|
// the list back into source order.
|
|
std::reverse(Handlers.begin(), Handlers.end());
|
|
}
|
|
|
|
// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
|
|
// to. If the unwind edge came from an invoke, return null.
|
|
static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB) {
|
|
const TerminatorInst *TI = BB->getTerminator();
|
|
if (isa<InvokeInst>(TI))
|
|
return nullptr;
|
|
if (TI->isEHPad())
|
|
return BB;
|
|
return cast<CleanupReturnInst>(TI)->getCleanupPad()->getParent();
|
|
}
|
|
|
|
static void calculateExplicitCXXStateNumbers(WinEHFuncInfo &FuncInfo,
|
|
const BasicBlock &BB,
|
|
int ParentState) {
|
|
assert(BB.isEHPad());
|
|
const Instruction *FirstNonPHI = BB.getFirstNonPHI();
|
|
// All catchpad instructions will be handled when we process their
|
|
// respective catchendpad instruction.
|
|
if (isa<CatchPadInst>(FirstNonPHI))
|
|
return;
|
|
|
|
if (isa<CatchEndPadInst>(FirstNonPHI)) {
|
|
SmallVector<const CatchPadInst *, 2> Handlers;
|
|
findCatchPadsForCatchEndPad(&BB, Handlers);
|
|
const BasicBlock *FirstTryPad = Handlers.front()->getParent();
|
|
int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
|
|
FuncInfo.EHPadStateMap[Handlers.front()] = TryLow;
|
|
for (const BasicBlock *PredBlock : predecessors(FirstTryPad))
|
|
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
|
|
calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, TryLow);
|
|
int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
|
|
|
|
// catchpads are separate funclets in C++ EH due to the way rethrow works.
|
|
// In SEH, they aren't, so no invokes will unwind to the catchendpad.
|
|
FuncInfo.EHPadStateMap[FirstNonPHI] = CatchLow;
|
|
int TryHigh = CatchLow - 1;
|
|
for (const BasicBlock *PredBlock : predecessors(&BB))
|
|
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
|
|
calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, CatchLow);
|
|
int CatchHigh = FuncInfo.getLastStateNumber();
|
|
addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
|
|
DEBUG(dbgs() << "TryLow[" << FirstTryPad->getName() << "]: " << TryLow
|
|
<< '\n');
|
|
DEBUG(dbgs() << "TryHigh[" << FirstTryPad->getName() << "]: " << TryHigh
|
|
<< '\n');
|
|
DEBUG(dbgs() << "CatchHigh[" << FirstTryPad->getName() << "]: " << CatchHigh
|
|
<< '\n');
|
|
} else if (isa<CleanupPadInst>(FirstNonPHI)) {
|
|
// A cleanup can have multiple exits; don't re-process after the first.
|
|
if (FuncInfo.EHPadStateMap.count(FirstNonPHI))
|
|
return;
|
|
int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, &BB);
|
|
FuncInfo.EHPadStateMap[FirstNonPHI] = CleanupState;
|
|
DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
|
|
<< BB.getName() << '\n');
|
|
for (const BasicBlock *PredBlock : predecessors(&BB))
|
|
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
|
|
calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, CleanupState);
|
|
} else if (auto *CEPI = dyn_cast<CleanupEndPadInst>(FirstNonPHI)) {
|
|
// Propagate ParentState to the cleanuppad in case it doesn't have
|
|
// any cleanuprets.
|
|
BasicBlock *CleanupBlock = CEPI->getCleanupPad()->getParent();
|
|
calculateExplicitCXXStateNumbers(FuncInfo, *CleanupBlock, ParentState);
|
|
// Anything unwinding through CleanupEndPadInst is in ParentState.
|
|
FuncInfo.EHPadStateMap[FirstNonPHI] = ParentState;
|
|
for (const BasicBlock *PredBlock : predecessors(&BB))
|
|
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
|
|
calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, ParentState);
|
|
} else if (isa<TerminatePadInst>(FirstNonPHI)) {
|
|
report_fatal_error("Not yet implemented!");
|
|
} else {
|
|
llvm_unreachable("unexpected EH Pad!");
|
|
}
|
|
}
|
|
|
|
static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
|
|
const Function *Filter, const BasicBlock *Handler) {
|
|
SEHUnwindMapEntry Entry;
|
|
Entry.ToState = ParentState;
|
|
Entry.IsFinally = false;
|
|
Entry.Filter = Filter;
|
|
Entry.Handler = Handler;
|
|
FuncInfo.SEHUnwindMap.push_back(Entry);
|
|
return FuncInfo.SEHUnwindMap.size() - 1;
|
|
}
|
|
|
|
static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
|
|
const BasicBlock *Handler) {
|
|
SEHUnwindMapEntry Entry;
|
|
Entry.ToState = ParentState;
|
|
Entry.IsFinally = true;
|
|
Entry.Filter = nullptr;
|
|
Entry.Handler = Handler;
|
|
FuncInfo.SEHUnwindMap.push_back(Entry);
|
|
return FuncInfo.SEHUnwindMap.size() - 1;
|
|
}
|
|
|
|
static void calculateExplicitSEHStateNumbers(WinEHFuncInfo &FuncInfo,
|
|
const BasicBlock &BB,
|
|
int ParentState) {
|
|
assert(BB.isEHPad());
|
|
const Instruction *FirstNonPHI = BB.getFirstNonPHI();
|
|
// All catchpad instructions will be handled when we process their
|
|
// respective catchendpad instruction.
|
|
if (isa<CatchPadInst>(FirstNonPHI))
|
|
return;
|
|
|
|
if (isa<CatchEndPadInst>(FirstNonPHI)) {
|
|
// Extract the filter function and the __except basic block and create a
|
|
// state for them.
|
|
SmallVector<const CatchPadInst *, 1> Handlers;
|
|
findCatchPadsForCatchEndPad(&BB, Handlers);
|
|
assert(Handlers.size() == 1 &&
|
|
"SEH doesn't have multiple handlers per __try");
|
|
const CatchPadInst *CPI = Handlers.front();
|
|
const BasicBlock *CatchPadBB = CPI->getParent();
|
|
const Constant *FilterOrNull =
|
|
cast<Constant>(CPI->getArgOperand(0)->stripPointerCasts());
|
|
const Function *Filter = dyn_cast<Function>(FilterOrNull);
|
|
assert((Filter || FilterOrNull->isNullValue()) &&
|
|
"unexpected filter value");
|
|
int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
|
|
|
|
// Everything in the __try block uses TryState as its parent state.
|
|
FuncInfo.EHPadStateMap[CPI] = TryState;
|
|
DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
|
|
<< CatchPadBB->getName() << '\n');
|
|
for (const BasicBlock *PredBlock : predecessors(CatchPadBB))
|
|
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
|
|
calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, TryState);
|
|
|
|
// Everything in the __except block unwinds to ParentState, just like code
|
|
// outside the __try.
|
|
FuncInfo.EHPadStateMap[FirstNonPHI] = ParentState;
|
|
DEBUG(dbgs() << "Assigning state #" << ParentState << " to BB "
|
|
<< BB.getName() << '\n');
|
|
for (const BasicBlock *PredBlock : predecessors(&BB))
|
|
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
|
|
calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, ParentState);
|
|
} else if (isa<CleanupPadInst>(FirstNonPHI)) {
|
|
// A cleanup can have multiple exits; don't re-process after the first.
|
|
if (FuncInfo.EHPadStateMap.count(FirstNonPHI))
|
|
return;
|
|
int CleanupState = addSEHFinally(FuncInfo, ParentState, &BB);
|
|
FuncInfo.EHPadStateMap[FirstNonPHI] = CleanupState;
|
|
DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
|
|
<< BB.getName() << '\n');
|
|
for (const BasicBlock *PredBlock : predecessors(&BB))
|
|
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
|
|
calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, CleanupState);
|
|
} else if (auto *CEPI = dyn_cast<CleanupEndPadInst>(FirstNonPHI)) {
|
|
// Propagate ParentState to the cleanuppad in case it doesn't have
|
|
// any cleanuprets.
|
|
BasicBlock *CleanupBlock = CEPI->getCleanupPad()->getParent();
|
|
calculateExplicitSEHStateNumbers(FuncInfo, *CleanupBlock, ParentState);
|
|
// Anything unwinding through CleanupEndPadInst is in ParentState.
|
|
FuncInfo.EHPadStateMap[FirstNonPHI] = ParentState;
|
|
DEBUG(dbgs() << "Assigning state #" << ParentState << " to BB "
|
|
<< BB.getName() << '\n');
|
|
for (const BasicBlock *PredBlock : predecessors(&BB))
|
|
if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
|
|
calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, ParentState);
|
|
} else if (isa<TerminatePadInst>(FirstNonPHI)) {
|
|
report_fatal_error("Not yet implemented!");
|
|
} else {
|
|
llvm_unreachable("unexpected EH Pad!");
|
|
}
|
|
}
|
|
|
|
/// Check if the EH Pad unwinds to caller. Cleanups are a little bit of a
|
|
/// special case because we have to look at the cleanupret instruction that uses
|
|
/// the cleanuppad.
|
|
static bool doesEHPadUnwindToCaller(const Instruction *EHPad) {
|
|
auto *CPI = dyn_cast<CleanupPadInst>(EHPad);
|
|
if (!CPI)
|
|
return EHPad->mayThrow();
|
|
|
|
// This cleanup does not return or unwind, so we say it unwinds to caller.
|
|
if (CPI->use_empty())
|
|
return true;
|
|
|
|
const Instruction *User = CPI->user_back();
|
|
if (auto *CRI = dyn_cast<CleanupReturnInst>(User))
|
|
return CRI->unwindsToCaller();
|
|
return cast<CleanupEndPadInst>(User)->unwindsToCaller();
|
|
}
|
|
|
|
void llvm::calculateSEHStateNumbers(const Function *Fn,
|
|
WinEHFuncInfo &FuncInfo) {
|
|
// Don't compute state numbers twice.
|
|
if (!FuncInfo.SEHUnwindMap.empty())
|
|
return;
|
|
|
|
for (const BasicBlock &BB : *Fn) {
|
|
if (!BB.isEHPad() || !doesEHPadUnwindToCaller(BB.getFirstNonPHI()))
|
|
continue;
|
|
calculateExplicitSEHStateNumbers(FuncInfo, BB, -1);
|
|
}
|
|
}
|
|
|
|
void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
|
|
WinEHFuncInfo &FuncInfo) {
|
|
// Return if it's already been done.
|
|
if (!FuncInfo.EHPadStateMap.empty())
|
|
return;
|
|
|
|
for (const BasicBlock &BB : *Fn) {
|
|
if (!BB.isEHPad())
|
|
continue;
|
|
if (BB.isLandingPad())
|
|
report_fatal_error("MSVC C++ EH cannot use landingpads");
|
|
const Instruction *FirstNonPHI = BB.getFirstNonPHI();
|
|
if (!doesEHPadUnwindToCaller(FirstNonPHI))
|
|
continue;
|
|
calculateExplicitCXXStateNumbers(FuncInfo, BB, -1);
|
|
}
|
|
}
|
|
|
|
static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int ParentState,
|
|
ClrHandlerType HandlerType, uint32_t TypeToken,
|
|
const BasicBlock *Handler) {
|
|
ClrEHUnwindMapEntry Entry;
|
|
Entry.Parent = ParentState;
|
|
Entry.Handler = Handler;
|
|
Entry.HandlerType = HandlerType;
|
|
Entry.TypeToken = TypeToken;
|
|
FuncInfo.ClrEHUnwindMap.push_back(Entry);
|
|
return FuncInfo.ClrEHUnwindMap.size() - 1;
|
|
}
|
|
|
|
void llvm::calculateClrEHStateNumbers(const Function *Fn,
|
|
WinEHFuncInfo &FuncInfo) {
|
|
// Return if it's already been done.
|
|
if (!FuncInfo.EHPadStateMap.empty())
|
|
return;
|
|
|
|
SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
|
|
|
|
// Each pad needs to be able to refer to its parent, so scan the function
|
|
// looking for top-level handlers and seed the worklist with them.
|
|
for (const BasicBlock &BB : *Fn) {
|
|
if (!BB.isEHPad())
|
|
continue;
|
|
if (BB.isLandingPad())
|
|
report_fatal_error("CoreCLR EH cannot use landingpads");
|
|
const Instruction *FirstNonPHI = BB.getFirstNonPHI();
|
|
if (!doesEHPadUnwindToCaller(FirstNonPHI))
|
|
continue;
|
|
// queue this with sentinel parent state -1 to mean unwind to caller.
|
|
Worklist.emplace_back(FirstNonPHI, -1);
|
|
}
|
|
|
|
while (!Worklist.empty()) {
|
|
const Instruction *Pad;
|
|
int ParentState;
|
|
std::tie(Pad, ParentState) = Worklist.pop_back_val();
|
|
|
|
int PredState;
|
|
if (const CleanupEndPadInst *EndPad = dyn_cast<CleanupEndPadInst>(Pad)) {
|
|
FuncInfo.EHPadStateMap[EndPad] = ParentState;
|
|
// Queue the cleanuppad, in case it doesn't have a cleanupret.
|
|
Worklist.emplace_back(EndPad->getCleanupPad(), ParentState);
|
|
// Preds of the endpad should get the parent state.
|
|
PredState = ParentState;
|
|
} else if (const CleanupPadInst *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
|
|
// A cleanup can have multiple exits; don't re-process after the first.
|
|
if (FuncInfo.EHPadStateMap.count(Pad))
|
|
continue;
|
|
// CoreCLR personality uses arity to distinguish faults from finallies.
|
|
const BasicBlock *PadBlock = Cleanup->getParent();
|
|
ClrHandlerType HandlerType =
|
|
(Cleanup->getNumOperands() ? ClrHandlerType::Fault
|
|
: ClrHandlerType::Finally);
|
|
int NewState =
|
|
addClrEHHandler(FuncInfo, ParentState, HandlerType, 0, PadBlock);
|
|
FuncInfo.EHPadStateMap[Cleanup] = NewState;
|
|
// Propagate the new state to all preds of the cleanup
|
|
PredState = NewState;
|
|
} else if (const CatchEndPadInst *EndPad = dyn_cast<CatchEndPadInst>(Pad)) {
|
|
FuncInfo.EHPadStateMap[EndPad] = ParentState;
|
|
// Preds of the endpad should get the parent state.
|
|
PredState = ParentState;
|
|
} else if (const CatchPadInst *Catch = dyn_cast<CatchPadInst>(Pad)) {
|
|
const BasicBlock *PadBlock = Catch->getParent();
|
|
uint32_t TypeToken = static_cast<uint32_t>(
|
|
cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
|
|
int NewState = addClrEHHandler(FuncInfo, ParentState,
|
|
ClrHandlerType::Catch, TypeToken, PadBlock);
|
|
FuncInfo.EHPadStateMap[Catch] = NewState;
|
|
// Preds of the catch get its state
|
|
PredState = NewState;
|
|
} else {
|
|
llvm_unreachable("Unexpected EH pad");
|
|
}
|
|
|
|
// Queue all predecessors with the given state
|
|
for (const BasicBlock *Pred : predecessors(Pad->getParent())) {
|
|
if ((Pred = getEHPadFromPredecessor(Pred)))
|
|
Worklist.emplace_back(Pred->getFirstNonPHI(), PredState);
|
|
}
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::replaceTerminatePadWithCleanup(Function &F) {
|
|
if (Personality != EHPersonality::MSVC_CXX)
|
|
return;
|
|
for (BasicBlock &BB : F) {
|
|
Instruction *First = BB.getFirstNonPHI();
|
|
auto *TPI = dyn_cast<TerminatePadInst>(First);
|
|
if (!TPI)
|
|
continue;
|
|
|
|
if (TPI->getNumArgOperands() != 1)
|
|
report_fatal_error(
|
|
"Expected a unary terminatepad for MSVC C++ personalities!");
|
|
|
|
auto *TerminateFn = dyn_cast<Function>(TPI->getArgOperand(0));
|
|
if (!TerminateFn)
|
|
report_fatal_error("Function operand expected in terminatepad for MSVC "
|
|
"C++ personalities!");
|
|
|
|
// Insert the cleanuppad instruction.
|
|
auto *CPI = CleanupPadInst::Create(
|
|
BB.getContext(), {}, Twine("terminatepad.for.", BB.getName()), &BB);
|
|
|
|
// Insert the call to the terminate instruction.
|
|
auto *CallTerminate = CallInst::Create(TerminateFn, {}, &BB);
|
|
CallTerminate->setDoesNotThrow();
|
|
CallTerminate->setDoesNotReturn();
|
|
CallTerminate->setCallingConv(TerminateFn->getCallingConv());
|
|
|
|
// Insert a new terminator for the cleanuppad using the same successor as
|
|
// the terminatepad.
|
|
CleanupReturnInst::Create(CPI, TPI->getUnwindDest(), &BB);
|
|
|
|
// Let's remove the terminatepad now that we've inserted the new
|
|
// instructions.
|
|
TPI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
static void
|
|
colorFunclets(Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks,
|
|
std::map<BasicBlock *, std::set<BasicBlock *>> &BlockColors,
|
|
std::map<BasicBlock *, std::set<BasicBlock *>> &FuncletBlocks,
|
|
std::map<BasicBlock *, std::set<BasicBlock *>> &FuncletChildren) {
|
|
SmallVector<std::pair<BasicBlock *, BasicBlock *>, 16> Worklist;
|
|
BasicBlock *EntryBlock = &F.getEntryBlock();
|
|
|
|
// Build up the color map, which maps each block to its set of 'colors'.
|
|
// For any block B, the "colors" of B are the set of funclets F (possibly
|
|
// including a root "funclet" representing the main function), such that
|
|
// F will need to directly contain B or a copy of B (where the term "directly
|
|
// contain" is used to distinguish from being "transitively contained" in
|
|
// a nested funclet).
|
|
// Use a CFG walk driven by a worklist of (block, color) pairs. The "color"
|
|
// sets attached during this processing to a block which is the entry of some
|
|
// funclet F is actually the set of F's parents -- i.e. the union of colors
|
|
// of all predecessors of F's entry. For all other blocks, the color sets
|
|
// are as defined above. A post-pass fixes up the block color map to reflect
|
|
// the same sense of "color" for funclet entries as for other blocks.
|
|
|
|
Worklist.push_back({EntryBlock, EntryBlock});
|
|
|
|
while (!Worklist.empty()) {
|
|
BasicBlock *Visiting;
|
|
BasicBlock *Color;
|
|
std::tie(Visiting, Color) = Worklist.pop_back_val();
|
|
Instruction *VisitingHead = Visiting->getFirstNonPHI();
|
|
if (VisitingHead->isEHPad() && !isa<CatchEndPadInst>(VisitingHead) &&
|
|
!isa<CleanupEndPadInst>(VisitingHead)) {
|
|
// Mark this as a funclet head as a member of itself.
|
|
FuncletBlocks[Visiting].insert(Visiting);
|
|
// Queue exits (i.e. successors of rets/endpads) with the parent color.
|
|
// Skip any exits that are catchendpads, since the parent color must then
|
|
// represent one of the catches chained to that catchendpad, but the
|
|
// catchendpad should get the color of the common parent of all its
|
|
// chained catches (i.e. the grandparent color of the current pad).
|
|
// We don't need to worry abou catchendpads going unvisited, since the
|
|
// catches chained to them must have unwind edges to them by which we will
|
|
// visit them.
|
|
for (User *U : VisitingHead->users()) {
|
|
if (auto *Exit = dyn_cast<TerminatorInst>(U)) {
|
|
for (BasicBlock *Succ : successors(Exit->getParent()))
|
|
if (!isa<CatchEndPadInst>(*Succ->getFirstNonPHI()))
|
|
if (BlockColors[Succ].insert(Color).second)
|
|
Worklist.push_back({Succ, Color});
|
|
}
|
|
}
|
|
// Handle CatchPad specially since its successors need different colors.
|
|
if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(VisitingHead)) {
|
|
// Visit the normal successor with the color of the new EH pad, and
|
|
// visit the unwind successor with the color of the parent.
|
|
BasicBlock *NormalSucc = CatchPad->getNormalDest();
|
|
if (BlockColors[NormalSucc].insert(Visiting).second) {
|
|
Worklist.push_back({NormalSucc, Visiting});
|
|
}
|
|
BasicBlock *UnwindSucc = CatchPad->getUnwindDest();
|
|
if (BlockColors[UnwindSucc].insert(Color).second) {
|
|
Worklist.push_back({UnwindSucc, Color});
|
|
}
|
|
continue;
|
|
}
|
|
// Switch color to the current node, except for terminate pads which
|
|
// have no bodies and only unwind successors and so need their successors
|
|
// visited with the color of the parent.
|
|
if (!isa<TerminatePadInst>(VisitingHead))
|
|
Color = Visiting;
|
|
} else {
|
|
// Note that this is a member of the given color.
|
|
FuncletBlocks[Color].insert(Visiting);
|
|
}
|
|
|
|
TerminatorInst *Terminator = Visiting->getTerminator();
|
|
if (isa<CleanupReturnInst>(Terminator) ||
|
|
isa<CatchReturnInst>(Terminator) ||
|
|
isa<CleanupEndPadInst>(Terminator)) {
|
|
// These blocks' successors have already been queued with the parent
|
|
// color.
|
|
continue;
|
|
}
|
|
for (BasicBlock *Succ : successors(Visiting)) {
|
|
if (isa<CatchEndPadInst>(Succ->getFirstNonPHI())) {
|
|
// The catchendpad needs to be visited with the parent's color, not
|
|
// the current color. This will happen in the code above that visits
|
|
// any catchpad unwind successor with the parent color, so we can
|
|
// safely skip this successor here.
|
|
continue;
|
|
}
|
|
if (BlockColors[Succ].insert(Color).second) {
|
|
Worklist.push_back({Succ, Color});
|
|
}
|
|
}
|
|
}
|
|
|
|
// The processing above actually accumulated the parent set for this
|
|
// funclet into the color set for its entry; use the parent set to
|
|
// populate the children map, and reset the color set to include just
|
|
// the funclet itself (no instruction can target a funclet entry except on
|
|
// that transitions to the child funclet).
|
|
for (BasicBlock *FuncletEntry : EntryBlocks) {
|
|
std::set<BasicBlock *> &ColorMapItem = BlockColors[FuncletEntry];
|
|
for (BasicBlock *Parent : ColorMapItem)
|
|
FuncletChildren[Parent].insert(FuncletEntry);
|
|
ColorMapItem.clear();
|
|
ColorMapItem.insert(FuncletEntry);
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::colorFunclets(Function &F,
|
|
SmallVectorImpl<BasicBlock *> &EntryBlocks) {
|
|
::colorFunclets(F, EntryBlocks, BlockColors, FuncletBlocks, FuncletChildren);
|
|
}
|
|
|
|
void llvm::calculateCatchReturnSuccessorColors(const Function *Fn,
|
|
WinEHFuncInfo &FuncInfo) {
|
|
SmallVector<BasicBlock *, 4> EntryBlocks;
|
|
// colorFunclets needs the set of EntryBlocks, get them using
|
|
// findFuncletEntryPoints.
|
|
findFuncletEntryPoints(const_cast<Function &>(*Fn), EntryBlocks);
|
|
|
|
std::map<BasicBlock *, std::set<BasicBlock *>> BlockColors;
|
|
std::map<BasicBlock *, std::set<BasicBlock *>> FuncletBlocks;
|
|
std::map<BasicBlock *, std::set<BasicBlock *>> FuncletChildren;
|
|
// Figure out which basic blocks belong to which funclets.
|
|
colorFunclets(const_cast<Function &>(*Fn), EntryBlocks, BlockColors,
|
|
FuncletBlocks, FuncletChildren);
|
|
|
|
// We need to find the catchret successors. To do this, we must first find
|
|
// all the catchpad funclets.
|
|
for (auto &Funclet : FuncletBlocks) {
|
|
// Figure out what kind of funclet we are looking at; We only care about
|
|
// catchpads.
|
|
BasicBlock *FuncletPadBB = Funclet.first;
|
|
Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
|
|
auto *CatchPad = dyn_cast<CatchPadInst>(FirstNonPHI);
|
|
if (!CatchPad)
|
|
continue;
|
|
|
|
// The users of a catchpad are always catchrets.
|
|
for (User *Exit : CatchPad->users()) {
|
|
auto *CatchReturn = dyn_cast<CatchReturnInst>(Exit);
|
|
if (!CatchReturn)
|
|
continue;
|
|
BasicBlock *CatchRetSuccessor = CatchReturn->getSuccessor();
|
|
std::set<BasicBlock *> &SuccessorColors = BlockColors[CatchRetSuccessor];
|
|
assert(SuccessorColors.size() == 1 && "Expected BB to be monochrome!");
|
|
BasicBlock *Color = *SuccessorColors.begin();
|
|
// Record the catchret successor's funclet membership.
|
|
FuncInfo.CatchRetSuccessorColorMap[CatchReturn] = Color;
|
|
}
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::demotePHIsOnFunclets(Function &F) {
|
|
// Strip PHI nodes off of EH pads.
|
|
SmallVector<PHINode *, 16> PHINodes;
|
|
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
|
|
BasicBlock *BB = &*FI++;
|
|
if (!BB->isEHPad())
|
|
continue;
|
|
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
|
|
Instruction *I = &*BI++;
|
|
auto *PN = dyn_cast<PHINode>(I);
|
|
// Stop at the first non-PHI.
|
|
if (!PN)
|
|
break;
|
|
|
|
AllocaInst *SpillSlot = insertPHILoads(PN, F);
|
|
if (SpillSlot)
|
|
insertPHIStores(PN, SpillSlot);
|
|
|
|
PHINodes.push_back(PN);
|
|
}
|
|
}
|
|
|
|
for (auto *PN : PHINodes) {
|
|
// There may be lingering uses on other EH PHIs being removed
|
|
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::demoteUsesBetweenFunclets(Function &F) {
|
|
// Turn all inter-funclet uses of a Value into loads and stores.
|
|
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
|
|
BasicBlock *BB = &*FI++;
|
|
std::set<BasicBlock *> &ColorsForBB = BlockColors[BB];
|
|
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
|
|
Instruction *I = &*BI++;
|
|
// Funclets are permitted to use static allocas.
|
|
if (auto *AI = dyn_cast<AllocaInst>(I))
|
|
if (AI->isStaticAlloca())
|
|
continue;
|
|
|
|
demoteNonlocalUses(I, ColorsForBB, F);
|
|
}
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::demoteArgumentUses(Function &F) {
|
|
// Also demote function parameters used in funclets.
|
|
std::set<BasicBlock *> &ColorsForEntry = BlockColors[&F.getEntryBlock()];
|
|
for (Argument &Arg : F.args())
|
|
demoteNonlocalUses(&Arg, ColorsForEntry, F);
|
|
}
|
|
|
|
void WinEHPrepare::cloneCommonBlocks(
|
|
Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks) {
|
|
// We need to clone all blocks which belong to multiple funclets. Values are
|
|
// remapped throughout the funclet to propogate both the new instructions
|
|
// *and* the new basic blocks themselves.
|
|
for (BasicBlock *FuncletPadBB : EntryBlocks) {
|
|
std::set<BasicBlock *> &BlocksInFunclet = FuncletBlocks[FuncletPadBB];
|
|
|
|
std::map<BasicBlock *, BasicBlock *> Orig2Clone;
|
|
ValueToValueMapTy VMap;
|
|
for (BasicBlock *BB : BlocksInFunclet) {
|
|
std::set<BasicBlock *> &ColorsForBB = BlockColors[BB];
|
|
// We don't need to do anything if the block is monochromatic.
|
|
size_t NumColorsForBB = ColorsForBB.size();
|
|
if (NumColorsForBB == 1)
|
|
continue;
|
|
|
|
// Create a new basic block and copy instructions into it!
|
|
BasicBlock *CBB =
|
|
CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
|
|
// Insert the clone immediately after the original to ensure determinism
|
|
// and to keep the same relative ordering of any funclet's blocks.
|
|
CBB->insertInto(&F, BB->getNextNode());
|
|
|
|
// Add basic block mapping.
|
|
VMap[BB] = CBB;
|
|
|
|
// Record delta operations that we need to perform to our color mappings.
|
|
Orig2Clone[BB] = CBB;
|
|
}
|
|
|
|
// If nothing was cloned, we're done cloning in this funclet.
|
|
if (Orig2Clone.empty())
|
|
continue;
|
|
|
|
// Update our color mappings to reflect that one block has lost a color and
|
|
// another has gained a color.
|
|
for (auto &BBMapping : Orig2Clone) {
|
|
BasicBlock *OldBlock = BBMapping.first;
|
|
BasicBlock *NewBlock = BBMapping.second;
|
|
|
|
BlocksInFunclet.insert(NewBlock);
|
|
BlockColors[NewBlock].insert(FuncletPadBB);
|
|
|
|
BlocksInFunclet.erase(OldBlock);
|
|
BlockColors[OldBlock].erase(FuncletPadBB);
|
|
}
|
|
|
|
// Loop over all of the instructions in this funclet, fixing up operand
|
|
// references as we go. This uses VMap to do all the hard work.
|
|
for (BasicBlock *BB : BlocksInFunclet)
|
|
// Loop over all instructions, fixing each one as we find it...
|
|
for (Instruction &I : *BB)
|
|
RemapInstruction(&I, VMap,
|
|
RF_IgnoreMissingEntries | RF_NoModuleLevelChanges);
|
|
|
|
// Check to see if SuccBB has PHI nodes. If so, we need to add entries to
|
|
// the PHI nodes for NewBB now.
|
|
for (auto &BBMapping : Orig2Clone) {
|
|
BasicBlock *OldBlock = BBMapping.first;
|
|
BasicBlock *NewBlock = BBMapping.second;
|
|
for (BasicBlock *SuccBB : successors(NewBlock)) {
|
|
for (Instruction &SuccI : *SuccBB) {
|
|
auto *SuccPN = dyn_cast<PHINode>(&SuccI);
|
|
if (!SuccPN)
|
|
break;
|
|
|
|
// Ok, we have a PHI node. Figure out what the incoming value was for
|
|
// the OldBlock.
|
|
int OldBlockIdx = SuccPN->getBasicBlockIndex(OldBlock);
|
|
if (OldBlockIdx == -1)
|
|
break;
|
|
Value *IV = SuccPN->getIncomingValue(OldBlockIdx);
|
|
|
|
// Remap the value if necessary.
|
|
if (auto *Inst = dyn_cast<Instruction>(IV)) {
|
|
ValueToValueMapTy::iterator I = VMap.find(Inst);
|
|
if (I != VMap.end())
|
|
IV = I->second;
|
|
}
|
|
|
|
SuccPN->addIncoming(IV, NewBlock);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (ValueToValueMapTy::value_type VT : VMap) {
|
|
// If there were values defined in BB that are used outside the funclet,
|
|
// then we now have to update all uses of the value to use either the
|
|
// original value, the cloned value, or some PHI derived value. This can
|
|
// require arbitrary PHI insertion, of which we are prepared to do, clean
|
|
// these up now.
|
|
SmallVector<Use *, 16> UsesToRename;
|
|
|
|
auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
|
|
if (!OldI)
|
|
continue;
|
|
auto *NewI = cast<Instruction>(VT.second);
|
|
// Scan all uses of this instruction to see if it is used outside of its
|
|
// funclet, and if so, record them in UsesToRename.
|
|
for (Use &U : OldI->uses()) {
|
|
Instruction *UserI = cast<Instruction>(U.getUser());
|
|
BasicBlock *UserBB = UserI->getParent();
|
|
std::set<BasicBlock *> &ColorsForUserBB = BlockColors[UserBB];
|
|
assert(!ColorsForUserBB.empty());
|
|
if (ColorsForUserBB.size() > 1 ||
|
|
*ColorsForUserBB.begin() != FuncletPadBB)
|
|
UsesToRename.push_back(&U);
|
|
}
|
|
|
|
// If there are no uses outside the block, we're done with this
|
|
// instruction.
|
|
if (UsesToRename.empty())
|
|
continue;
|
|
|
|
// We found a use of OldI outside of the funclet. Rename all uses of OldI
|
|
// that are outside its funclet to be uses of the appropriate PHI node
|
|
// etc.
|
|
SSAUpdater SSAUpdate;
|
|
SSAUpdate.Initialize(OldI->getType(), OldI->getName());
|
|
SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
|
|
SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
|
|
|
|
while (!UsesToRename.empty())
|
|
SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
|
|
}
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::removeImplausibleTerminators(Function &F) {
|
|
// Remove implausible terminators and replace them with UnreachableInst.
|
|
for (auto &Funclet : FuncletBlocks) {
|
|
BasicBlock *FuncletPadBB = Funclet.first;
|
|
std::set<BasicBlock *> &BlocksInFunclet = Funclet.second;
|
|
Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
|
|
auto *CatchPad = dyn_cast<CatchPadInst>(FirstNonPHI);
|
|
auto *CleanupPad = dyn_cast<CleanupPadInst>(FirstNonPHI);
|
|
|
|
for (BasicBlock *BB : BlocksInFunclet) {
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
// CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
|
|
bool IsUnreachableRet = isa<ReturnInst>(TI) && (CatchPad || CleanupPad);
|
|
// The token consumed by a CatchReturnInst must match the funclet token.
|
|
bool IsUnreachableCatchret = false;
|
|
if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
|
|
IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
|
|
// The token consumed by a CleanupReturnInst must match the funclet token.
|
|
bool IsUnreachableCleanupret = false;
|
|
if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
|
|
IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
|
|
// The token consumed by a CleanupEndPadInst must match the funclet token.
|
|
bool IsUnreachableCleanupendpad = false;
|
|
if (auto *CEPI = dyn_cast<CleanupEndPadInst>(TI))
|
|
IsUnreachableCleanupendpad = CEPI->getCleanupPad() != CleanupPad;
|
|
if (IsUnreachableRet || IsUnreachableCatchret ||
|
|
IsUnreachableCleanupret || IsUnreachableCleanupendpad) {
|
|
// Loop through all of our successors and make sure they know that one
|
|
// of their predecessors is going away.
|
|
for (BasicBlock *SuccBB : TI->successors())
|
|
SuccBB->removePredecessor(BB);
|
|
|
|
if (IsUnreachableCleanupendpad) {
|
|
// We can't simply replace a cleanupendpad with unreachable, because
|
|
// its predecessor edges are EH edges and unreachable is not an EH
|
|
// pad. Change all predecessors to the "unwind to caller" form.
|
|
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
PI != PE;) {
|
|
BasicBlock *Pred = *PI++;
|
|
removeUnwindEdge(Pred);
|
|
}
|
|
}
|
|
|
|
new UnreachableInst(BB->getContext(), TI);
|
|
TI->eraseFromParent();
|
|
}
|
|
// FIXME: Check for invokes/cleanuprets/cleanupendpads which unwind to
|
|
// implausible catchendpads (i.e. catchendpad not in immediate parent
|
|
// funclet).
|
|
}
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
|
|
// Clean-up some of the mess we made by removing useles PHI nodes, trivial
|
|
// branches, etc.
|
|
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
|
|
BasicBlock *BB = &*FI++;
|
|
SimplifyInstructionsInBlock(BB);
|
|
ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
|
|
MergeBlockIntoPredecessor(BB);
|
|
}
|
|
|
|
// We might have some unreachable blocks after cleaning up some impossible
|
|
// control flow.
|
|
removeUnreachableBlocks(F);
|
|
}
|
|
|
|
void WinEHPrepare::verifyPreparedFunclets(Function &F) {
|
|
// Recolor the CFG to verify that all is well.
|
|
for (BasicBlock &BB : F) {
|
|
size_t NumColors = BlockColors[&BB].size();
|
|
assert(NumColors == 1 && "Expected monochromatic BB!");
|
|
if (NumColors == 0)
|
|
report_fatal_error("Uncolored BB!");
|
|
if (NumColors > 1)
|
|
report_fatal_error("Multicolor BB!");
|
|
if (!DisableDemotion) {
|
|
bool EHPadHasPHI = BB.isEHPad() && isa<PHINode>(BB.begin());
|
|
assert(!EHPadHasPHI && "EH Pad still has a PHI!");
|
|
if (EHPadHasPHI)
|
|
report_fatal_error("EH Pad still has a PHI!");
|
|
}
|
|
}
|
|
}
|
|
|
|
bool WinEHPrepare::prepareExplicitEH(
|
|
Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks) {
|
|
replaceTerminatePadWithCleanup(F);
|
|
|
|
// Determine which blocks are reachable from which funclet entries.
|
|
colorFunclets(F, EntryBlocks);
|
|
|
|
if (!DisableDemotion) {
|
|
demotePHIsOnFunclets(F);
|
|
|
|
demoteUsesBetweenFunclets(F);
|
|
|
|
demoteArgumentUses(F);
|
|
}
|
|
|
|
cloneCommonBlocks(F, EntryBlocks);
|
|
|
|
if (!DisableCleanups) {
|
|
removeImplausibleTerminators(F);
|
|
|
|
cleanupPreparedFunclets(F);
|
|
}
|
|
|
|
verifyPreparedFunclets(F);
|
|
|
|
BlockColors.clear();
|
|
FuncletBlocks.clear();
|
|
FuncletChildren.clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
// TODO: Share loads when one use dominates another, or when a catchpad exit
|
|
// dominates uses (needs dominators).
|
|
AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
|
|
BasicBlock *PHIBlock = PN->getParent();
|
|
AllocaInst *SpillSlot = nullptr;
|
|
|
|
if (isa<CleanupPadInst>(PHIBlock->getFirstNonPHI())) {
|
|
// Insert a load in place of the PHI and replace all uses.
|
|
SpillSlot = new AllocaInst(PN->getType(), nullptr,
|
|
Twine(PN->getName(), ".wineh.spillslot"),
|
|
&F.getEntryBlock().front());
|
|
Value *V = new LoadInst(SpillSlot, Twine(PN->getName(), ".wineh.reload"),
|
|
&*PHIBlock->getFirstInsertionPt());
|
|
PN->replaceAllUsesWith(V);
|
|
return SpillSlot;
|
|
}
|
|
|
|
DenseMap<BasicBlock *, Value *> Loads;
|
|
for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
|
|
UI != UE;) {
|
|
Use &U = *UI++;
|
|
auto *UsingInst = cast<Instruction>(U.getUser());
|
|
BasicBlock *UsingBB = UsingInst->getParent();
|
|
if (UsingBB->isEHPad()) {
|
|
// Use is on an EH pad phi. Leave it alone; we'll insert loads and
|
|
// stores for it separately.
|
|
assert(isa<PHINode>(UsingInst));
|
|
continue;
|
|
}
|
|
replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
|
|
}
|
|
return SpillSlot;
|
|
}
|
|
|
|
// TODO: improve store placement. Inserting at def is probably good, but need
|
|
// to be careful not to introduce interfering stores (needs liveness analysis).
|
|
// TODO: identify related phi nodes that can share spill slots, and share them
|
|
// (also needs liveness).
|
|
void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
|
|
AllocaInst *SpillSlot) {
|
|
// Use a worklist of (Block, Value) pairs -- the given Value needs to be
|
|
// stored to the spill slot by the end of the given Block.
|
|
SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
|
|
|
|
Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
|
|
|
|
while (!Worklist.empty()) {
|
|
BasicBlock *EHBlock;
|
|
Value *InVal;
|
|
std::tie(EHBlock, InVal) = Worklist.pop_back_val();
|
|
|
|
PHINode *PN = dyn_cast<PHINode>(InVal);
|
|
if (PN && PN->getParent() == EHBlock) {
|
|
// The value is defined by another PHI we need to remove, with no room to
|
|
// insert a store after the PHI, so each predecessor needs to store its
|
|
// incoming value.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
|
|
Value *PredVal = PN->getIncomingValue(i);
|
|
|
|
// Undef can safely be skipped.
|
|
if (isa<UndefValue>(PredVal))
|
|
continue;
|
|
|
|
insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
|
|
}
|
|
} else {
|
|
// We need to store InVal, which dominates EHBlock, but can't put a store
|
|
// in EHBlock, so need to put stores in each predecessor.
|
|
for (BasicBlock *PredBlock : predecessors(EHBlock)) {
|
|
insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::insertPHIStore(
|
|
BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
|
|
SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
|
|
|
|
if (PredBlock->isEHPad() &&
|
|
!isa<CleanupPadInst>(PredBlock->getFirstNonPHI())) {
|
|
// Pred is unsplittable, so we need to queue it on the worklist.
|
|
Worklist.push_back({PredBlock, PredVal});
|
|
return;
|
|
}
|
|
|
|
// Otherwise, insert the store at the end of the basic block.
|
|
new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
|
|
}
|
|
|
|
// TODO: Share loads for same-funclet uses (requires dominators if funclets
|
|
// aren't properly nested).
|
|
void WinEHPrepare::demoteNonlocalUses(Value *V,
|
|
std::set<BasicBlock *> &ColorsForBB,
|
|
Function &F) {
|
|
// Tokens can only be used non-locally due to control flow involving
|
|
// unreachable edges. Don't try to demote the token usage, we'll simply
|
|
// delete the cloned user later.
|
|
if (isa<CatchPadInst>(V) || isa<CleanupPadInst>(V))
|
|
return;
|
|
|
|
DenseMap<BasicBlock *, Value *> Loads;
|
|
AllocaInst *SpillSlot = nullptr;
|
|
for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;) {
|
|
Use &U = *UI++;
|
|
auto *UsingInst = cast<Instruction>(U.getUser());
|
|
BasicBlock *UsingBB = UsingInst->getParent();
|
|
|
|
// Is the Use inside a block which is colored the same as the Def?
|
|
// If so, we don't need to escape the Def because we will clone
|
|
// ourselves our own private copy.
|
|
std::set<BasicBlock *> &ColorsForUsingBB = BlockColors[UsingBB];
|
|
if (ColorsForUsingBB == ColorsForBB)
|
|
continue;
|
|
|
|
replaceUseWithLoad(V, U, SpillSlot, Loads, F);
|
|
}
|
|
if (SpillSlot) {
|
|
// Insert stores of the computed value into the stack slot.
|
|
// We have to be careful if I is an invoke instruction,
|
|
// because we can't insert the store AFTER the terminator instruction.
|
|
BasicBlock::iterator InsertPt;
|
|
if (isa<Argument>(V)) {
|
|
InsertPt = F.getEntryBlock().getTerminator()->getIterator();
|
|
} else if (isa<TerminatorInst>(V)) {
|
|
auto *II = cast<InvokeInst>(V);
|
|
// We cannot demote invoke instructions to the stack if their normal
|
|
// edge is critical. Therefore, split the critical edge and create a
|
|
// basic block into which the store can be inserted.
|
|
if (!II->getNormalDest()->getSinglePredecessor()) {
|
|
unsigned SuccNum =
|
|
GetSuccessorNumber(II->getParent(), II->getNormalDest());
|
|
assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!");
|
|
BasicBlock *NewBlock = SplitCriticalEdge(II, SuccNum);
|
|
assert(NewBlock && "Unable to split critical edge.");
|
|
// Update the color mapping for the newly split edge.
|
|
std::set<BasicBlock *> &ColorsForUsingBB = BlockColors[II->getParent()];
|
|
BlockColors[NewBlock] = ColorsForUsingBB;
|
|
for (BasicBlock *FuncletPad : ColorsForUsingBB)
|
|
FuncletBlocks[FuncletPad].insert(NewBlock);
|
|
}
|
|
InsertPt = II->getNormalDest()->getFirstInsertionPt();
|
|
} else {
|
|
InsertPt = cast<Instruction>(V)->getIterator();
|
|
++InsertPt;
|
|
// Don't insert before PHI nodes or EH pad instrs.
|
|
for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
|
|
;
|
|
}
|
|
new StoreInst(V, SpillSlot, &*InsertPt);
|
|
}
|
|
}
|
|
|
|
void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
|
|
DenseMap<BasicBlock *, Value *> &Loads,
|
|
Function &F) {
|
|
// Lazilly create the spill slot.
|
|
if (!SpillSlot)
|
|
SpillSlot = new AllocaInst(V->getType(), nullptr,
|
|
Twine(V->getName(), ".wineh.spillslot"),
|
|
&F.getEntryBlock().front());
|
|
|
|
auto *UsingInst = cast<Instruction>(U.getUser());
|
|
if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
|
|
// If this is a PHI node, we can't insert a load of the value before
|
|
// the use. Instead insert the load in the predecessor block
|
|
// corresponding to the incoming value.
|
|
//
|
|
// Note that if there are multiple edges from a basic block to this
|
|
// PHI node that we cannot have multiple loads. The problem is that
|
|
// the resulting PHI node will have multiple values (from each load)
|
|
// coming in from the same block, which is illegal SSA form.
|
|
// For this reason, we keep track of and reuse loads we insert.
|
|
BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
|
|
if (auto *CatchRet =
|
|
dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
|
|
// Putting a load above a catchret and use on the phi would still leave
|
|
// a cross-funclet def/use. We need to split the edge, change the
|
|
// catchret to target the new block, and put the load there.
|
|
BasicBlock *PHIBlock = UsingInst->getParent();
|
|
BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
|
|
// SplitEdge gives us:
|
|
// IncomingBlock:
|
|
// ...
|
|
// br label %NewBlock
|
|
// NewBlock:
|
|
// catchret label %PHIBlock
|
|
// But we need:
|
|
// IncomingBlock:
|
|
// ...
|
|
// catchret label %NewBlock
|
|
// NewBlock:
|
|
// br label %PHIBlock
|
|
// So move the terminators to each others' blocks and swap their
|
|
// successors.
|
|
BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
|
|
Goto->removeFromParent();
|
|
CatchRet->removeFromParent();
|
|
IncomingBlock->getInstList().push_back(CatchRet);
|
|
NewBlock->getInstList().push_back(Goto);
|
|
Goto->setSuccessor(0, PHIBlock);
|
|
CatchRet->setSuccessor(NewBlock);
|
|
// Update the color mapping for the newly split edge.
|
|
std::set<BasicBlock *> &ColorsForPHIBlock = BlockColors[PHIBlock];
|
|
BlockColors[NewBlock] = ColorsForPHIBlock;
|
|
for (BasicBlock *FuncletPad : ColorsForPHIBlock)
|
|
FuncletBlocks[FuncletPad].insert(NewBlock);
|
|
// Treat the new block as incoming for load insertion.
|
|
IncomingBlock = NewBlock;
|
|
}
|
|
Value *&Load = Loads[IncomingBlock];
|
|
// Insert the load into the predecessor block
|
|
if (!Load)
|
|
Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
|
|
/*Volatile=*/false, IncomingBlock->getTerminator());
|
|
|
|
U.set(Load);
|
|
} else {
|
|
// Reload right before the old use.
|
|
auto *Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
|
|
/*Volatile=*/false, UsingInst);
|
|
U.set(Load);
|
|
}
|
|
}
|
|
|
|
void WinEHFuncInfo::addIPToStateRange(const BasicBlock *PadBB,
|
|
MCSymbol *InvokeBegin,
|
|
MCSymbol *InvokeEnd) {
|
|
assert(PadBB->isEHPad() && EHPadStateMap.count(PadBB->getFirstNonPHI()) &&
|
|
"should get EH pad BB with precomputed state");
|
|
InvokeToStateMap[InvokeBegin] =
|
|
std::make_pair(EHPadStateMap[PadBB->getFirstNonPHI()], InvokeEnd);
|
|
}
|