llvm-project/lld/ELF/SymbolTable.cpp

310 lines
9.5 KiB
C++

//===- SymbolTable.cpp ----------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SymbolTable.h"
#include "Config.h"
#include "Error.h"
#include "Symbols.h"
#include "Target.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf2;
SymbolTable::SymbolTable() {}
bool SymbolTable::shouldUseRela() const {
ELFKind K = getFirstELF()->getELFKind();
return K == ELF64LEKind || K == ELF64BEKind;
}
void SymbolTable::addFile(std::unique_ptr<InputFile> File) {
if (auto *AF = dyn_cast<ArchiveFile>(File.get())) {
File.release();
ArchiveFiles.emplace_back(AF);
if (Config->WholeArchive) {
for (MemoryBufferRef &MBRef : AF->getMembers())
addFile(createELFFile<ObjectFile>(MBRef));
return;
}
AF->parse();
for (Lazy &Sym : AF->getLazySymbols())
addLazy(&Sym);
return;
}
if (auto *S = dyn_cast<SharedFileBase>(File.get())) {
S->parseSoName();
if (!IncludedSoNames.insert(S->getSoName()).second)
return;
}
File->parse();
addELFFile(cast<ELFFileBase>(File.release()));
}
static TargetInfo *createTarget(uint16_t EMachine) {
switch (EMachine) {
case EM_386:
return new X86TargetInfo();
case EM_AARCH64:
return new AArch64TargetInfo();
case EM_ARM:
return new ARMTargetInfo();
case EM_MIPS:
return new MipsTargetInfo();
case EM_PPC:
return new PPCTargetInfo();
case EM_PPC64:
return new PPC64TargetInfo();
case EM_X86_64:
return new X86_64TargetInfo();
}
error("Unknown target machine");
}
void SymbolTable::addUndefinedSym(StringRef Name) {
switch (getFirstELF()->getELFKind()) {
case ELF32LEKind:
addUndefinedSym<ELF32LE>(Name);
break;
case ELF32BEKind:
addUndefinedSym<ELF32BE>(Name);
break;
case ELF64LEKind:
addUndefinedSym<ELF64LE>(Name);
break;
case ELF64BEKind:
addUndefinedSym<ELF64BE>(Name);
break;
default:
llvm_unreachable("Invalid kind");
}
}
template <class ELFT> void SymbolTable::addUndefinedSym(StringRef Name) {
Undefined<ELFT>::SyntheticOptional.setVisibility(STV_HIDDEN);
resolve<ELFT>(new (Alloc)
Undefined<ELFT>(Name, Undefined<ELFT>::SyntheticOptional));
}
template <class ELFT>
void SymbolTable::addSyntheticSym(StringRef Name, OutputSection<ELFT> &Section,
typename ELFFile<ELFT>::uintX_t Value) {
typedef typename DefinedSynthetic<ELFT>::Elf_Sym Elf_Sym;
auto ESym = new (Alloc) Elf_Sym;
memset(ESym, 0, sizeof(Elf_Sym));
ESym->st_value = Value;
auto Sym = new (Alloc) DefinedSynthetic<ELFT>(Name, *ESym, Section);
resolve<ELFT>(Sym);
}
template <class ELFT> void SymbolTable::addIgnoredSym(StringRef Name) {
DefinedAbsolute<ELFT>::IgnoreUndef.setBinding(STB_WEAK);
DefinedAbsolute<ELFT>::IgnoreUndef.setVisibility(STV_HIDDEN);
auto Sym = new (Alloc)
DefinedAbsolute<ELFT>(Name, DefinedAbsolute<ELFT>::IgnoreUndef);
resolve<ELFT>(Sym);
}
template <class ELFT> void SymbolTable::init(uint16_t EMachine) {
Target.reset(createTarget(EMachine));
if (Config->Shared)
return;
EntrySym = new (Alloc) Undefined<ELFT>(
Config->Entry.empty() ? Target->getDefaultEntry() : Config->Entry,
Undefined<ELFT>::SyntheticRequired);
resolve<ELFT>(EntrySym);
// In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol is magical
// and is used to produce a R_386_GOTPC relocation.
// The R_386_GOTPC relocation value doesn't actually depend on the
// symbol value, so it could use an index of STN_UNDEF which, according to the
// spec, means the symbol value is 0.
// Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in
// the object file.
// The situation is even stranger on x86_64 where the assembly doesn't
// need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as
// an undefined symbol in the .o files.
// Given that the symbol is effectively unused, we just create a dummy
// hidden one to avoid the undefined symbol error.
addIgnoredSym<ELFT>("_GLOBAL_OFFSET_TABLE_");
}
template <class ELFT> void SymbolTable::addELFFile(ELFFileBase *File) {
const ELFFileBase *Old = getFirstELF();
if (auto *O = dyn_cast<ObjectFileBase>(File))
ObjectFiles.emplace_back(O);
else if (auto *S = dyn_cast<SharedFile<ELFT>>(File))
SharedFiles.emplace_back(S);
if (!Old)
init<ELFT>(File->getEMachine());
if (auto *O = dyn_cast<ObjectFileBase>(File)) {
for (SymbolBody *Body : O->getSymbols())
resolve<ELFT>(Body);
}
if (auto *S = dyn_cast<SharedFile<ELFT>>(File)) {
for (SharedSymbol<ELFT> &Body : S->getSharedSymbols())
resolve<ELFT>(&Body);
}
}
void SymbolTable::addELFFile(ELFFileBase *File) {
switch (File->getELFKind()) {
case ELF32LEKind:
addELFFile<ELF32LE>(File);
break;
case ELF32BEKind:
addELFFile<ELF32BE>(File);
break;
case ELF64LEKind:
addELFFile<ELF64LE>(File);
break;
case ELF64BEKind:
addELFFile<ELF64BE>(File);
break;
default:
llvm_unreachable("Invalid kind");
}
}
template <class ELFT>
void SymbolTable::dupError(const SymbolBody &Old, const SymbolBody &New) {
typedef typename ELFFile<ELFT>::Elf_Sym Elf_Sym;
typedef typename ELFFile<ELFT>::Elf_Sym_Range Elf_Sym_Range;
const Elf_Sym &OldE = cast<ELFSymbolBody<ELFT>>(Old).Sym;
const Elf_Sym &NewE = cast<ELFSymbolBody<ELFT>>(New).Sym;
ELFFileBase *OldFile = nullptr;
ELFFileBase *NewFile = nullptr;
for (const std::unique_ptr<ObjectFileBase> &F : ObjectFiles) {
const auto &File = cast<ObjectFile<ELFT>>(*F);
Elf_Sym_Range Syms = File.getObj().symbols(File.getSymbolTable());
if (&OldE > Syms.begin() && &OldE < Syms.end())
OldFile = F.get();
if (&NewE > Syms.begin() && &NewE < Syms.end())
NewFile = F.get();
}
std::string Msg = (Twine("duplicate symbol: ") + Old.getName() + " in " +
OldFile->getName() + " and " + NewFile->getName())
.str();
if (Config->AllowMultipleDefinition)
warning(Msg);
else
error(Msg);
}
// This function resolves conflicts if there's an existing symbol with
// the same name. Decisions are made based on symbol type.
template <class ELFT> void SymbolTable::resolve(SymbolBody *New) {
Symbol *Sym = insert(New);
if (Sym->Body == New)
return;
SymbolBody *Existing = Sym->Body;
if (Lazy *L = dyn_cast<Lazy>(Existing)) {
if (New->isUndefined()) {
if (New->isWeak()) {
// See the explanation in SymbolTable::addLazy
L->setUsedInRegularObj();
L->setWeak();
return;
}
addMemberFile(L);
return;
}
// Found a definition for something also in an archive. Ignore the archive
// definition.
Sym->Body = New;
return;
}
// compare() returns -1, 0, or 1 if the lhs symbol is less preferable,
// equivalent (conflicting), or more preferable, respectively.
int comp = Existing->compare<ELFT>(New);
if (comp < 0)
Sym->Body = New;
else if (comp == 0)
dupError<ELFT>(*Existing, *New);
}
Symbol *SymbolTable::insert(SymbolBody *New) {
// Find an existing Symbol or create and insert a new one.
StringRef Name = New->getName();
Symbol *&Sym = Symtab[Name];
if (!Sym) {
Sym = new (Alloc) Symbol(New);
New->setBackref(Sym);
return Sym;
}
New->setBackref(Sym);
return Sym;
}
void SymbolTable::addLazy(Lazy *New) {
Symbol *Sym = insert(New);
if (Sym->Body == New)
return;
SymbolBody *Existing = Sym->Body;
if (Existing->isDefined() || Existing->isLazy())
return;
Sym->Body = New;
assert(Existing->isUndefined() && "Unexpected symbol kind.");
// Weak undefined symbols should not fetch members from archives.
// If we were to keep old symbol we would not know that an archive member was
// available if a strong undefined symbol shows up afterwards in the link.
// If a strong undefined symbol never shows up, this lazy symbol will
// get to the end of the link and must be treated as the weak undefined one.
// We set UsedInRegularObj in a similar way to what is done with shared
// symbols and mark it as weak to reduce how many special cases are needed.
if (Existing->isWeak()) {
New->setUsedInRegularObj();
New->setWeak();
return;
}
addMemberFile(New);
}
void SymbolTable::addMemberFile(Lazy *Body) {
std::unique_ptr<InputFile> File = Body->getMember();
// getMember returns nullptr if the member was already read from the library.
if (!File)
return;
addFile(std::move(File));
}
namespace lld {
namespace elf2 {
template void SymbolTable::addSyntheticSym(StringRef, OutputSection<ELF32LE> &,
ELFFile<ELF32LE>::uintX_t);
template void SymbolTable::addSyntheticSym(StringRef, OutputSection<ELF32BE> &,
ELFFile<ELF32BE>::uintX_t);
template void SymbolTable::addSyntheticSym(StringRef, OutputSection<ELF64LE> &,
ELFFile<ELF64LE>::uintX_t);
template void SymbolTable::addSyntheticSym(StringRef, OutputSection<ELF64BE> &,
ELFFile<ELF64BE>::uintX_t);
template void SymbolTable::addIgnoredSym<ELF32LE>(StringRef);
template void SymbolTable::addIgnoredSym<ELF32BE>(StringRef);
template void SymbolTable::addIgnoredSym<ELF64LE>(StringRef);
template void SymbolTable::addIgnoredSym<ELF64BE>(StringRef);
}
}