llvm-project/clang/lib/Sema/SemaExprCXX.cpp

3112 lines
123 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for C++ expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/TemplateDeduction.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/STLExtras.h"
using namespace clang;
using namespace sema;
ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
IdentifierInfo &II,
SourceLocation NameLoc,
Scope *S, CXXScopeSpec &SS,
ParsedType ObjectTypePtr,
bool EnteringContext) {
// Determine where to perform name lookup.
// FIXME: This area of the standard is very messy, and the current
// wording is rather unclear about which scopes we search for the
// destructor name; see core issues 399 and 555. Issue 399 in
// particular shows where the current description of destructor name
// lookup is completely out of line with existing practice, e.g.,
// this appears to be ill-formed:
//
// namespace N {
// template <typename T> struct S {
// ~S();
// };
// }
//
// void f(N::S<int>* s) {
// s->N::S<int>::~S();
// }
//
// See also PR6358 and PR6359.
// For this reason, we're currently only doing the C++03 version of this
// code; the C++0x version has to wait until we get a proper spec.
QualType SearchType;
DeclContext *LookupCtx = 0;
bool isDependent = false;
bool LookInScope = false;
// If we have an object type, it's because we are in a
// pseudo-destructor-expression or a member access expression, and
// we know what type we're looking for.
if (ObjectTypePtr)
SearchType = GetTypeFromParser(ObjectTypePtr);
if (SS.isSet()) {
NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
bool AlreadySearched = false;
bool LookAtPrefix = true;
// C++ [basic.lookup.qual]p6:
// If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
// the type-names are looked up as types in the scope designated by the
// nested-name-specifier. In a qualified-id of the form:
//
// ::[opt] nested-name-specifier ̃ class-name
//
// where the nested-name-specifier designates a namespace scope, and in
// a qualified-id of the form:
//
// ::opt nested-name-specifier class-name :: ̃ class-name
//
// the class-names are looked up as types in the scope designated by
// the nested-name-specifier.
//
// Here, we check the first case (completely) and determine whether the
// code below is permitted to look at the prefix of the
// nested-name-specifier.
DeclContext *DC = computeDeclContext(SS, EnteringContext);
if (DC && DC->isFileContext()) {
AlreadySearched = true;
LookupCtx = DC;
isDependent = false;
} else if (DC && isa<CXXRecordDecl>(DC))
LookAtPrefix = false;
// The second case from the C++03 rules quoted further above.
NestedNameSpecifier *Prefix = 0;
if (AlreadySearched) {
// Nothing left to do.
} else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
CXXScopeSpec PrefixSS;
PrefixSS.setScopeRep(Prefix);
LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
isDependent = isDependentScopeSpecifier(PrefixSS);
} else if (ObjectTypePtr) {
LookupCtx = computeDeclContext(SearchType);
isDependent = SearchType->isDependentType();
} else {
LookupCtx = computeDeclContext(SS, EnteringContext);
isDependent = LookupCtx && LookupCtx->isDependentContext();
}
LookInScope = false;
} else if (ObjectTypePtr) {
// C++ [basic.lookup.classref]p3:
// If the unqualified-id is ~type-name, the type-name is looked up
// in the context of the entire postfix-expression. If the type T
// of the object expression is of a class type C, the type-name is
// also looked up in the scope of class C. At least one of the
// lookups shall find a name that refers to (possibly
// cv-qualified) T.
LookupCtx = computeDeclContext(SearchType);
isDependent = SearchType->isDependentType();
assert((isDependent || !SearchType->isIncompleteType()) &&
"Caller should have completed object type");
LookInScope = true;
} else {
// Perform lookup into the current scope (only).
LookInScope = true;
}
LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
for (unsigned Step = 0; Step != 2; ++Step) {
// Look for the name first in the computed lookup context (if we
// have one) and, if that fails to find a match, in the sope (if
// we're allowed to look there).
Found.clear();
if (Step == 0 && LookupCtx)
LookupQualifiedName(Found, LookupCtx);
else if (Step == 1 && LookInScope && S)
LookupName(Found, S);
else
continue;
// FIXME: Should we be suppressing ambiguities here?
if (Found.isAmbiguous())
return ParsedType();
if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
QualType T = Context.getTypeDeclType(Type);
if (SearchType.isNull() || SearchType->isDependentType() ||
Context.hasSameUnqualifiedType(T, SearchType)) {
// We found our type!
return ParsedType::make(T);
}
}
// If the name that we found is a class template name, and it is
// the same name as the template name in the last part of the
// nested-name-specifier (if present) or the object type, then
// this is the destructor for that class.
// FIXME: This is a workaround until we get real drafting for core
// issue 399, for which there isn't even an obvious direction.
if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
QualType MemberOfType;
if (SS.isSet()) {
if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
// Figure out the type of the context, if it has one.
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
MemberOfType = Context.getTypeDeclType(Record);
}
}
if (MemberOfType.isNull())
MemberOfType = SearchType;
if (MemberOfType.isNull())
continue;
// We're referring into a class template specialization. If the
// class template we found is the same as the template being
// specialized, we found what we are looking for.
if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
Template->getCanonicalDecl())
return ParsedType::make(MemberOfType);
}
continue;
}
// We're referring to an unresolved class template
// specialization. Determine whether we class template we found
// is the same as the template being specialized or, if we don't
// know which template is being specialized, that it at least
// has the same name.
if (const TemplateSpecializationType *SpecType
= MemberOfType->getAs<TemplateSpecializationType>()) {
TemplateName SpecName = SpecType->getTemplateName();
// The class template we found is the same template being
// specialized.
if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
return ParsedType::make(MemberOfType);
continue;
}
// The class template we found has the same name as the
// (dependent) template name being specialized.
if (DependentTemplateName *DepTemplate
= SpecName.getAsDependentTemplateName()) {
if (DepTemplate->isIdentifier() &&
DepTemplate->getIdentifier() == Template->getIdentifier())
return ParsedType::make(MemberOfType);
continue;
}
}
}
}
if (isDependent) {
// We didn't find our type, but that's okay: it's dependent
// anyway.
NestedNameSpecifier *NNS = 0;
SourceRange Range;
if (SS.isSet()) {
NNS = (NestedNameSpecifier *)SS.getScopeRep();
Range = SourceRange(SS.getRange().getBegin(), NameLoc);
} else {
NNS = NestedNameSpecifier::Create(Context, &II);
Range = SourceRange(NameLoc);
}
QualType T = CheckTypenameType(ETK_None, NNS, II,
SourceLocation(),
Range, NameLoc);
return ParsedType::make(T);
}
if (ObjectTypePtr)
Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
<< &II;
else
Diag(NameLoc, diag::err_destructor_class_name);
return ParsedType();
}
/// \brief Build a C++ typeid expression with a type operand.
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
// C++ [expr.typeid]p4:
// The top-level cv-qualifiers of the lvalue expression or the type-id
// that is the operand of typeid are always ignored.
// If the type of the type-id is a class type or a reference to a class
// type, the class shall be completely-defined.
Qualifiers Quals;
QualType T
= Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
Quals);
if (T->getAs<RecordType>() &&
RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
return ExprError();
return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
Operand,
SourceRange(TypeidLoc, RParenLoc)));
}
/// \brief Build a C++ typeid expression with an expression operand.
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *E,
SourceLocation RParenLoc) {
bool isUnevaluatedOperand = true;
if (E && !E->isTypeDependent()) {
QualType T = E->getType();
if (const RecordType *RecordT = T->getAs<RecordType>()) {
CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
// C++ [expr.typeid]p3:
// [...] If the type of the expression is a class type, the class
// shall be completely-defined.
if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
return ExprError();
// C++ [expr.typeid]p3:
// When typeid is applied to an expression other than an glvalue of a
// polymorphic class type [...] [the] expression is an unevaluated
// operand. [...]
if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
isUnevaluatedOperand = false;
// We require a vtable to query the type at run time.
MarkVTableUsed(TypeidLoc, RecordD);
}
}
// C++ [expr.typeid]p4:
// [...] If the type of the type-id is a reference to a possibly
// cv-qualified type, the result of the typeid expression refers to a
// std::type_info object representing the cv-unqualified referenced
// type.
Qualifiers Quals;
QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
if (!Context.hasSameType(T, UnqualT)) {
T = UnqualT;
ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
}
}
// If this is an unevaluated operand, clear out the set of
// declaration references we have been computing and eliminate any
// temporaries introduced in its computation.
if (isUnevaluatedOperand)
ExprEvalContexts.back().Context = Unevaluated;
return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
E,
SourceRange(TypeidLoc, RParenLoc)));
}
/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
ExprResult
Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
// Find the std::type_info type.
if (!StdNamespace)
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
if (!CXXTypeInfoDecl) {
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
LookupQualifiedName(R, getStdNamespace());
CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
if (!CXXTypeInfoDecl)
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
}
QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
if (isType) {
// The operand is a type; handle it as such.
TypeSourceInfo *TInfo = 0;
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
&TInfo);
if (T.isNull())
return ExprError();
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
}
// The operand is an expression.
return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
}
/// \brief Build a Microsoft __uuidof expression with a type operand.
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
// FIXME: add __uuidof semantic analysis for type operand.
return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
Operand,
SourceRange(TypeidLoc, RParenLoc)));
}
/// \brief Build a Microsoft __uuidof expression with an expression operand.
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *E,
SourceLocation RParenLoc) {
// FIXME: add __uuidof semantic analysis for expr operand.
return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
E,
SourceRange(TypeidLoc, RParenLoc)));
}
/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
ExprResult
Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
// If MSVCGuidDecl has not been cached, do the lookup.
if (!MSVCGuidDecl) {
IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
LookupQualifiedName(R, Context.getTranslationUnitDecl());
MSVCGuidDecl = R.getAsSingle<RecordDecl>();
if (!MSVCGuidDecl)
return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
}
QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
if (isType) {
// The operand is a type; handle it as such.
TypeSourceInfo *TInfo = 0;
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
&TInfo);
if (T.isNull())
return ExprError();
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
}
// The operand is an expression.
return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
}
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
ExprResult
Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
"Unknown C++ Boolean value!");
return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
Context.BoolTy, OpLoc));
}
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
ExprResult
Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
}
/// ActOnCXXThrow - Parse throw expressions.
ExprResult
Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
return ExprError();
return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
}
/// CheckCXXThrowOperand - Validate the operand of a throw.
bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
// C++ [except.throw]p3:
// A throw-expression initializes a temporary object, called the exception
// object, the type of which is determined by removing any top-level
// cv-qualifiers from the static type of the operand of throw and adjusting
// the type from "array of T" or "function returning T" to "pointer to T"
// or "pointer to function returning T", [...]
if (E->getType().hasQualifiers())
ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
CastCategory(E));
DefaultFunctionArrayConversion(E);
// If the type of the exception would be an incomplete type or a pointer
// to an incomplete type other than (cv) void the program is ill-formed.
QualType Ty = E->getType();
bool isPointer = false;
if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
Ty = Ptr->getPointeeType();
isPointer = true;
}
if (!isPointer || !Ty->isVoidType()) {
if (RequireCompleteType(ThrowLoc, Ty,
PDiag(isPointer ? diag::err_throw_incomplete_ptr
: diag::err_throw_incomplete)
<< E->getSourceRange()))
return true;
if (RequireNonAbstractType(ThrowLoc, E->getType(),
PDiag(diag::err_throw_abstract_type)
<< E->getSourceRange()))
return true;
}
// Initialize the exception result. This implicitly weeds out
// abstract types or types with inaccessible copy constructors.
// FIXME: Determine whether we can elide this copy per C++0x [class.copy]p34.
InitializedEntity Entity =
InitializedEntity::InitializeException(ThrowLoc, E->getType(),
/*NRVO=*/false);
ExprResult Res = PerformCopyInitialization(Entity,
SourceLocation(),
Owned(E));
if (Res.isInvalid())
return true;
E = Res.takeAs<Expr>();
// If the exception has class type, we need additional handling.
const RecordType *RecordTy = Ty->getAs<RecordType>();
if (!RecordTy)
return false;
CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
// If we are throwing a polymorphic class type or pointer thereof,
// exception handling will make use of the vtable.
MarkVTableUsed(ThrowLoc, RD);
// If the class has a non-trivial destructor, we must be able to call it.
if (RD->hasTrivialDestructor())
return false;
CXXDestructorDecl *Destructor
= const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
if (!Destructor)
return false;
MarkDeclarationReferenced(E->getExprLoc(), Destructor);
CheckDestructorAccess(E->getExprLoc(), Destructor,
PDiag(diag::err_access_dtor_exception) << Ty);
return false;
}
ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
/// C++ 9.3.2: In the body of a non-static member function, the keyword this
/// is a non-lvalue expression whose value is the address of the object for
/// which the function is called.
DeclContext *DC = getFunctionLevelDeclContext();
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
if (MD->isInstance())
return Owned(new (Context) CXXThisExpr(ThisLoc,
MD->getThisType(Context),
/*isImplicit=*/false));
return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
}
ExprResult
Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
SourceLocation LParenLoc,
MultiExprArg exprs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
if (!TypeRep)
return ExprError();
TypeSourceInfo *TInfo;
QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
}
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
ExprResult
Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
SourceLocation LParenLoc,
MultiExprArg exprs,
SourceLocation RParenLoc) {
QualType Ty = TInfo->getType();
unsigned NumExprs = exprs.size();
Expr **Exprs = (Expr**)exprs.get();
SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
if (Ty->isDependentType() ||
CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
exprs.release();
return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
LParenLoc,
Exprs, NumExprs,
RParenLoc));
}
if (Ty->isArrayType())
return ExprError(Diag(TyBeginLoc,
diag::err_value_init_for_array_type) << FullRange);
if (!Ty->isVoidType() &&
RequireCompleteType(TyBeginLoc, Ty,
PDiag(diag::err_invalid_incomplete_type_use)
<< FullRange))
return ExprError();
if (RequireNonAbstractType(TyBeginLoc, Ty,
diag::err_allocation_of_abstract_type))
return ExprError();
// C++ [expr.type.conv]p1:
// If the expression list is a single expression, the type conversion
// expression is equivalent (in definedness, and if defined in meaning) to the
// corresponding cast expression.
//
if (NumExprs == 1) {
CastKind Kind = CK_Unknown;
CXXCastPath BasePath;
if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
Kind, BasePath,
/*FunctionalStyle=*/true))
return ExprError();
exprs.release();
return Owned(CXXFunctionalCastExpr::Create(Context,
Ty.getNonLValueExprType(Context),
TInfo, TyBeginLoc, Kind,
Exprs[0], &BasePath,
RParenLoc));
}
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
InitializationKind Kind
= NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
LParenLoc, RParenLoc)
: InitializationKind::CreateValue(TyBeginLoc,
LParenLoc, RParenLoc);
InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
// FIXME: Improve AST representation?
return move(Result);
}
/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
/// @code new (memory) int[size][4] @endcode
/// or
/// @code ::new Foo(23, "hello") @endcode
/// For the interpretation of this heap of arguments, consult the base version.
ExprResult
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
SourceLocation PlacementRParen, SourceRange TypeIdParens,
Declarator &D, SourceLocation ConstructorLParen,
MultiExprArg ConstructorArgs,
SourceLocation ConstructorRParen) {
Expr *ArraySize = 0;
// If the specified type is an array, unwrap it and save the expression.
if (D.getNumTypeObjects() > 0 &&
D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
DeclaratorChunk &Chunk = D.getTypeObject(0);
if (Chunk.Arr.hasStatic)
return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
<< D.getSourceRange());
if (!Chunk.Arr.NumElts)
return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
<< D.getSourceRange());
ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
D.DropFirstTypeObject();
}
// Every dimension shall be of constant size.
if (ArraySize) {
for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
break;
DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
if (Expr *NumElts = (Expr *)Array.NumElts) {
if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
!NumElts->isIntegerConstantExpr(Context)) {
Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
<< NumElts->getSourceRange();
return ExprError();
}
}
}
}
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
QualType AllocType = TInfo->getType();
if (D.isInvalidType())
return ExprError();
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(AllocType);
SourceRange R = TInfo->getTypeLoc().getSourceRange();
return BuildCXXNew(StartLoc, UseGlobal,
PlacementLParen,
move(PlacementArgs),
PlacementRParen,
TypeIdParens,
AllocType,
TInfo,
ArraySize,
ConstructorLParen,
move(ConstructorArgs),
ConstructorRParen);
}
ExprResult
Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
SourceRange TypeIdParens,
QualType AllocType,
TypeSourceInfo *AllocTypeInfo,
Expr *ArraySize,
SourceLocation ConstructorLParen,
MultiExprArg ConstructorArgs,
SourceLocation ConstructorRParen) {
SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
return ExprError();
// Per C++0x [expr.new]p5, the type being constructed may be a
// typedef of an array type.
if (!ArraySize) {
if (const ConstantArrayType *Array
= Context.getAsConstantArrayType(AllocType)) {
ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
Context.getSizeType(),
TypeRange.getEnd());
AllocType = Array->getElementType();
}
}
QualType ResultType = Context.getPointerType(AllocType);
// C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
// or enumeration type with a non-negative value."
if (ArraySize && !ArraySize->isTypeDependent()) {
QualType SizeType = ArraySize->getType();
ExprResult ConvertedSize
= ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
PDiag(diag::err_array_size_not_integral),
PDiag(diag::err_array_size_incomplete_type)
<< ArraySize->getSourceRange(),
PDiag(diag::err_array_size_explicit_conversion),
PDiag(diag::note_array_size_conversion),
PDiag(diag::err_array_size_ambiguous_conversion),
PDiag(diag::note_array_size_conversion),
PDiag(getLangOptions().CPlusPlus0x? 0
: diag::ext_array_size_conversion));
if (ConvertedSize.isInvalid())
return ExprError();
ArraySize = ConvertedSize.take();
SizeType = ArraySize->getType();
if (!SizeType->isIntegralOrEnumerationType())
return ExprError();
// Let's see if this is a constant < 0. If so, we reject it out of hand.
// We don't care about special rules, so we tell the machinery it's not
// evaluated - it gives us a result in more cases.
if (!ArraySize->isValueDependent()) {
llvm::APSInt Value;
if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
if (Value < llvm::APSInt(
llvm::APInt::getNullValue(Value.getBitWidth()),
Value.isUnsigned()))
return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
diag::err_typecheck_negative_array_size)
<< ArraySize->getSourceRange());
if (!AllocType->isDependentType()) {
unsigned ActiveSizeBits
= ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
Diag(ArraySize->getSourceRange().getBegin(),
diag::err_array_too_large)
<< Value.toString(10)
<< ArraySize->getSourceRange();
return ExprError();
}
}
} else if (TypeIdParens.isValid()) {
// Can't have dynamic array size when the type-id is in parentheses.
Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
<< ArraySize->getSourceRange()
<< FixItHint::CreateRemoval(TypeIdParens.getBegin())
<< FixItHint::CreateRemoval(TypeIdParens.getEnd());
TypeIdParens = SourceRange();
}
}
ImpCastExprToType(ArraySize, Context.getSizeType(),
CK_IntegralCast);
}
FunctionDecl *OperatorNew = 0;
FunctionDecl *OperatorDelete = 0;
Expr **PlaceArgs = (Expr**)PlacementArgs.get();
unsigned NumPlaceArgs = PlacementArgs.size();
if (!AllocType->isDependentType() &&
!Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
FindAllocationFunctions(StartLoc,
SourceRange(PlacementLParen, PlacementRParen),
UseGlobal, AllocType, ArraySize, PlaceArgs,
NumPlaceArgs, OperatorNew, OperatorDelete))
return ExprError();
llvm::SmallVector<Expr *, 8> AllPlaceArgs;
if (OperatorNew) {
// Add default arguments, if any.
const FunctionProtoType *Proto =
OperatorNew->getType()->getAs<FunctionProtoType>();
VariadicCallType CallType =
Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
Proto, 1, PlaceArgs, NumPlaceArgs,
AllPlaceArgs, CallType))
return ExprError();
NumPlaceArgs = AllPlaceArgs.size();
if (NumPlaceArgs > 0)
PlaceArgs = &AllPlaceArgs[0];
}
bool Init = ConstructorLParen.isValid();
// --- Choosing a constructor ---
CXXConstructorDecl *Constructor = 0;
Expr **ConsArgs = (Expr**)ConstructorArgs.get();
unsigned NumConsArgs = ConstructorArgs.size();
ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
// Array 'new' can't have any initializers.
if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
SourceRange InitRange(ConsArgs[0]->getLocStart(),
ConsArgs[NumConsArgs - 1]->getLocEnd());
Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
return ExprError();
}
if (!AllocType->isDependentType() &&
!Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
// C++0x [expr.new]p15:
// A new-expression that creates an object of type T initializes that
// object as follows:
InitializationKind Kind
// - If the new-initializer is omitted, the object is default-
// initialized (8.5); if no initialization is performed,
// the object has indeterminate value
= !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
// - Otherwise, the new-initializer is interpreted according to the
// initialization rules of 8.5 for direct-initialization.
: InitializationKind::CreateDirect(TypeRange.getBegin(),
ConstructorLParen,
ConstructorRParen);
InitializedEntity Entity
= InitializedEntity::InitializeNew(StartLoc, AllocType);
InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
move(ConstructorArgs));
if (FullInit.isInvalid())
return ExprError();
// FullInit is our initializer; walk through it to determine if it's a
// constructor call, which CXXNewExpr handles directly.
if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
if (CXXBindTemporaryExpr *Binder
= dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
FullInitExpr = Binder->getSubExpr();
if (CXXConstructExpr *Construct
= dyn_cast<CXXConstructExpr>(FullInitExpr)) {
Constructor = Construct->getConstructor();
for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
AEnd = Construct->arg_end();
A != AEnd; ++A)
ConvertedConstructorArgs.push_back(A->Retain());
} else {
// Take the converted initializer.
ConvertedConstructorArgs.push_back(FullInit.release());
}
} else {
// No initialization required.
}
// Take the converted arguments and use them for the new expression.
NumConsArgs = ConvertedConstructorArgs.size();
ConsArgs = (Expr **)ConvertedConstructorArgs.take();
}
// Mark the new and delete operators as referenced.
if (OperatorNew)
MarkDeclarationReferenced(StartLoc, OperatorNew);
if (OperatorDelete)
MarkDeclarationReferenced(StartLoc, OperatorDelete);
// FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
PlacementArgs.release();
ConstructorArgs.release();
return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
PlaceArgs, NumPlaceArgs, TypeIdParens,
ArraySize, Constructor, Init,
ConsArgs, NumConsArgs, OperatorDelete,
ResultType, AllocTypeInfo,
StartLoc,
Init ? ConstructorRParen :
TypeRange.getEnd()));
}
/// CheckAllocatedType - Checks that a type is suitable as the allocated type
/// in a new-expression.
/// dimension off and stores the size expression in ArraySize.
bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
SourceRange R) {
// C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
// abstract class type or array thereof.
if (AllocType->isFunctionType())
return Diag(Loc, diag::err_bad_new_type)
<< AllocType << 0 << R;
else if (AllocType->isReferenceType())
return Diag(Loc, diag::err_bad_new_type)
<< AllocType << 1 << R;
else if (!AllocType->isDependentType() &&
RequireCompleteType(Loc, AllocType,
PDiag(diag::err_new_incomplete_type)
<< R))
return true;
else if (RequireNonAbstractType(Loc, AllocType,
diag::err_allocation_of_abstract_type))
return true;
return false;
}
/// \brief Determine whether the given function is a non-placement
/// deallocation function.
static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
if (FD->isInvalidDecl())
return false;
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
return Method->isUsualDeallocationFunction();
return ((FD->getOverloadedOperator() == OO_Delete ||
FD->getOverloadedOperator() == OO_Array_Delete) &&
FD->getNumParams() == 1);
}
/// FindAllocationFunctions - Finds the overloads of operator new and delete
/// that are appropriate for the allocation.
bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
bool UseGlobal, QualType AllocType,
bool IsArray, Expr **PlaceArgs,
unsigned NumPlaceArgs,
FunctionDecl *&OperatorNew,
FunctionDecl *&OperatorDelete) {
// --- Choosing an allocation function ---
// C++ 5.3.4p8 - 14 & 18
// 1) If UseGlobal is true, only look in the global scope. Else, also look
// in the scope of the allocated class.
// 2) If an array size is given, look for operator new[], else look for
// operator new.
// 3) The first argument is always size_t. Append the arguments from the
// placement form.
llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
// We don't care about the actual value of this argument.
// FIXME: Should the Sema create the expression and embed it in the syntax
// tree? Or should the consumer just recalculate the value?
IntegerLiteral Size(Context, llvm::APInt::getNullValue(
Context.Target.getPointerWidth(0)),
Context.getSizeType(),
SourceLocation());
AllocArgs[0] = &Size;
std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
// C++ [expr.new]p8:
// If the allocated type is a non-array type, the allocation
// functions name is operator new and the deallocation functions
// name is operator delete. If the allocated type is an array
// type, the allocation functions name is operator new[] and the
// deallocation functions name is operator delete[].
DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
IsArray ? OO_Array_New : OO_New);
DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
IsArray ? OO_Array_Delete : OO_Delete);
QualType AllocElemType = Context.getBaseElementType(AllocType);
if (AllocElemType->isRecordType() && !UseGlobal) {
CXXRecordDecl *Record
= cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
AllocArgs.size(), Record, /*AllowMissing=*/true,
OperatorNew))
return true;
}
if (!OperatorNew) {
// Didn't find a member overload. Look for a global one.
DeclareGlobalNewDelete();
DeclContext *TUDecl = Context.getTranslationUnitDecl();
if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
OperatorNew))
return true;
}
// We don't need an operator delete if we're running under
// -fno-exceptions.
if (!getLangOptions().Exceptions) {
OperatorDelete = 0;
return false;
}
// FindAllocationOverload can change the passed in arguments, so we need to
// copy them back.
if (NumPlaceArgs > 0)
std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
// C++ [expr.new]p19:
//
// If the new-expression begins with a unary :: operator, the
// deallocation functions name is looked up in the global
// scope. Otherwise, if the allocated type is a class type T or an
// array thereof, the deallocation functions name is looked up in
// the scope of T. If this lookup fails to find the name, or if
// the allocated type is not a class type or array thereof, the
// deallocation functions name is looked up in the global scope.
LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
if (AllocElemType->isRecordType() && !UseGlobal) {
CXXRecordDecl *RD
= cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
LookupQualifiedName(FoundDelete, RD);
}
if (FoundDelete.isAmbiguous())
return true; // FIXME: clean up expressions?
if (FoundDelete.empty()) {
DeclareGlobalNewDelete();
LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
}
FoundDelete.suppressDiagnostics();
llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
if (NumPlaceArgs > 0) {
// C++ [expr.new]p20:
// A declaration of a placement deallocation function matches the
// declaration of a placement allocation function if it has the
// same number of parameters and, after parameter transformations
// (8.3.5), all parameter types except the first are
// identical. [...]
//
// To perform this comparison, we compute the function type that
// the deallocation function should have, and use that type both
// for template argument deduction and for comparison purposes.
QualType ExpectedFunctionType;
{
const FunctionProtoType *Proto
= OperatorNew->getType()->getAs<FunctionProtoType>();
llvm::SmallVector<QualType, 4> ArgTypes;
ArgTypes.push_back(Context.VoidPtrTy);
for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
ArgTypes.push_back(Proto->getArgType(I));
ExpectedFunctionType
= Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
ArgTypes.size(),
Proto->isVariadic(),
0, false, false, 0, 0,
FunctionType::ExtInfo());
}
for (LookupResult::iterator D = FoundDelete.begin(),
DEnd = FoundDelete.end();
D != DEnd; ++D) {
FunctionDecl *Fn = 0;
if (FunctionTemplateDecl *FnTmpl
= dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
// Perform template argument deduction to try to match the
// expected function type.
TemplateDeductionInfo Info(Context, StartLoc);
if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
continue;
} else
Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
Matches.push_back(std::make_pair(D.getPair(), Fn));
}
} else {
// C++ [expr.new]p20:
// [...] Any non-placement deallocation function matches a
// non-placement allocation function. [...]
for (LookupResult::iterator D = FoundDelete.begin(),
DEnd = FoundDelete.end();
D != DEnd; ++D) {
if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
if (isNonPlacementDeallocationFunction(Fn))
Matches.push_back(std::make_pair(D.getPair(), Fn));
}
}
// C++ [expr.new]p20:
// [...] If the lookup finds a single matching deallocation
// function, that function will be called; otherwise, no
// deallocation function will be called.
if (Matches.size() == 1) {
OperatorDelete = Matches[0].second;
// C++0x [expr.new]p20:
// If the lookup finds the two-parameter form of a usual
// deallocation function (3.7.4.2) and that function, considered
// as a placement deallocation function, would have been
// selected as a match for the allocation function, the program
// is ill-formed.
if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
isNonPlacementDeallocationFunction(OperatorDelete)) {
Diag(StartLoc, diag::err_placement_new_non_placement_delete)
<< SourceRange(PlaceArgs[0]->getLocStart(),
PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
<< DeleteName;
} else {
CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
Matches[0].first);
}
}
return false;
}
/// FindAllocationOverload - Find an fitting overload for the allocation
/// function in the specified scope.
bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
DeclarationName Name, Expr** Args,
unsigned NumArgs, DeclContext *Ctx,
bool AllowMissing, FunctionDecl *&Operator) {
LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
LookupQualifiedName(R, Ctx);
if (R.empty()) {
if (AllowMissing)
return false;
return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
<< Name << Range;
}
if (R.isAmbiguous())
return true;
R.suppressDiagnostics();
OverloadCandidateSet Candidates(StartLoc);
for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
Alloc != AllocEnd; ++Alloc) {
// Even member operator new/delete are implicitly treated as
// static, so don't use AddMemberCandidate.
NamedDecl *D = (*Alloc)->getUnderlyingDecl();
if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
/*ExplicitTemplateArgs=*/0, Args, NumArgs,
Candidates,
/*SuppressUserConversions=*/false);
continue;
}
FunctionDecl *Fn = cast<FunctionDecl>(D);
AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
/*SuppressUserConversions=*/false);
}
// Do the resolution.
OverloadCandidateSet::iterator Best;
switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
case OR_Success: {
// Got one!
FunctionDecl *FnDecl = Best->Function;
// The first argument is size_t, and the first parameter must be size_t,
// too. This is checked on declaration and can be assumed. (It can't be
// asserted on, though, since invalid decls are left in there.)
// Watch out for variadic allocator function.
unsigned NumArgsInFnDecl = FnDecl->getNumParams();
for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
ExprResult Result
= PerformCopyInitialization(InitializedEntity::InitializeParameter(
FnDecl->getParamDecl(i)),
SourceLocation(),
Owned(Args[i]->Retain()));
if (Result.isInvalid())
return true;
Args[i] = Result.takeAs<Expr>();
}
Operator = FnDecl;
CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
return false;
}
case OR_No_Viable_Function:
Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
<< Name << Range;
Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
return true;
case OR_Ambiguous:
Diag(StartLoc, diag::err_ovl_ambiguous_call)
<< Name << Range;
Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
return true;
case OR_Deleted:
Diag(StartLoc, diag::err_ovl_deleted_call)
<< Best->Function->isDeleted()
<< Name << Range;
Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
return true;
}
assert(false && "Unreachable, bad result from BestViableFunction");
return true;
}
/// DeclareGlobalNewDelete - Declare the global forms of operator new and
/// delete. These are:
/// @code
/// void* operator new(std::size_t) throw(std::bad_alloc);
/// void* operator new[](std::size_t) throw(std::bad_alloc);
/// void operator delete(void *) throw();
/// void operator delete[](void *) throw();
/// @endcode
/// Note that the placement and nothrow forms of new are *not* implicitly
/// declared. Their use requires including \<new\>.
void Sema::DeclareGlobalNewDelete() {
if (GlobalNewDeleteDeclared)
return;
// C++ [basic.std.dynamic]p2:
// [...] The following allocation and deallocation functions (18.4) are
// implicitly declared in global scope in each translation unit of a
// program
//
// void* operator new(std::size_t) throw(std::bad_alloc);
// void* operator new[](std::size_t) throw(std::bad_alloc);
// void operator delete(void*) throw();
// void operator delete[](void*) throw();
//
// These implicit declarations introduce only the function names operator
// new, operator new[], operator delete, operator delete[].
//
// Here, we need to refer to std::bad_alloc, so we will implicitly declare
// "std" or "bad_alloc" as necessary to form the exception specification.
// However, we do not make these implicit declarations visible to name
// lookup.
if (!StdBadAlloc) {
// The "std::bad_alloc" class has not yet been declared, so build it
// implicitly.
StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
getOrCreateStdNamespace(),
SourceLocation(),
&PP.getIdentifierTable().get("bad_alloc"),
SourceLocation(), 0);
getStdBadAlloc()->setImplicit(true);
}
GlobalNewDeleteDeclared = true;
QualType VoidPtr = Context.getPointerType(Context.VoidTy);
QualType SizeT = Context.getSizeType();
bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_New),
VoidPtr, SizeT, AssumeSaneOperatorNew);
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
VoidPtr, SizeT, AssumeSaneOperatorNew);
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_Delete),
Context.VoidTy, VoidPtr);
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
Context.VoidTy, VoidPtr);
}
/// DeclareGlobalAllocationFunction - Declares a single implicit global
/// allocation function if it doesn't already exist.
void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
QualType Return, QualType Argument,
bool AddMallocAttr) {
DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
// Check if this function is already declared.
{
DeclContext::lookup_iterator Alloc, AllocEnd;
for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
Alloc != AllocEnd; ++Alloc) {
// Only look at non-template functions, as it is the predefined,
// non-templated allocation function we are trying to declare here.
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
QualType InitialParamType =
Context.getCanonicalType(
Func->getParamDecl(0)->getType().getUnqualifiedType());
// FIXME: Do we need to check for default arguments here?
if (Func->getNumParams() == 1 && InitialParamType == Argument) {
if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
return;
}
}
}
}
QualType BadAllocType;
bool HasBadAllocExceptionSpec
= (Name.getCXXOverloadedOperator() == OO_New ||
Name.getCXXOverloadedOperator() == OO_Array_New);
if (HasBadAllocExceptionSpec) {
assert(StdBadAlloc && "Must have std::bad_alloc declared");
BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
}
QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0,
true, false,
HasBadAllocExceptionSpec? 1 : 0,
&BadAllocType,
FunctionType::ExtInfo());
FunctionDecl *Alloc =
FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
FnType, /*TInfo=*/0, SC_None,
SC_None, false, true);
Alloc->setImplicit();
if (AddMallocAttr)
Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
0, Argument, /*TInfo=*/0,
SC_None,
SC_None, 0);
Alloc->setParams(&Param, 1);
// FIXME: Also add this declaration to the IdentifierResolver, but
// make sure it is at the end of the chain to coincide with the
// global scope.
Context.getTranslationUnitDecl()->addDecl(Alloc);
}
bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
DeclarationName Name,
FunctionDecl* &Operator) {
LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
// Try to find operator delete/operator delete[] in class scope.
LookupQualifiedName(Found, RD);
if (Found.isAmbiguous())
return true;
Found.suppressDiagnostics();
llvm::SmallVector<DeclAccessPair,4> Matches;
for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
F != FEnd; ++F) {
NamedDecl *ND = (*F)->getUnderlyingDecl();
// Ignore template operator delete members from the check for a usual
// deallocation function.
if (isa<FunctionTemplateDecl>(ND))
continue;
if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
Matches.push_back(F.getPair());
}
// There's exactly one suitable operator; pick it.
if (Matches.size() == 1) {
Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
Matches[0]);
return false;
// We found multiple suitable operators; complain about the ambiguity.
} else if (!Matches.empty()) {
Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
<< Name << RD;
for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
Diag((*F)->getUnderlyingDecl()->getLocation(),
diag::note_member_declared_here) << Name;
return true;
}
// We did find operator delete/operator delete[] declarations, but
// none of them were suitable.
if (!Found.empty()) {
Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
<< Name << RD;
for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
F != FEnd; ++F)
Diag((*F)->getUnderlyingDecl()->getLocation(),
diag::note_member_declared_here) << Name;
return true;
}
// Look for a global declaration.
DeclareGlobalNewDelete();
DeclContext *TUDecl = Context.getTranslationUnitDecl();
CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
Expr* DeallocArgs[1];
DeallocArgs[0] = &Null;
if (FindAllocationOverload(StartLoc, SourceRange(), Name,
DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
Operator))
return true;
assert(Operator && "Did not find a deallocation function!");
return false;
}
/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
/// @code ::delete ptr; @endcode
/// or
/// @code delete [] ptr; @endcode
ExprResult
Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
bool ArrayForm, Expr *Ex) {
// C++ [expr.delete]p1:
// The operand shall have a pointer type, or a class type having a single
// conversion function to a pointer type. The result has type void.
//
// DR599 amends "pointer type" to "pointer to object type" in both cases.
FunctionDecl *OperatorDelete = 0;
if (!Ex->isTypeDependent()) {
QualType Type = Ex->getType();
if (const RecordType *Record = Type->getAs<RecordType>()) {
if (RequireCompleteType(StartLoc, Type,
PDiag(diag::err_delete_incomplete_class_type)))
return ExprError();
llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
E = Conversions->end(); I != E; ++I) {
NamedDecl *D = I.getDecl();
if (isa<UsingShadowDecl>(D))
D = cast<UsingShadowDecl>(D)->getTargetDecl();
// Skip over templated conversion functions; they aren't considered.
if (isa<FunctionTemplateDecl>(D))
continue;
CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
QualType ConvType = Conv->getConversionType().getNonReferenceType();
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
ObjectPtrConversions.push_back(Conv);
}
if (ObjectPtrConversions.size() == 1) {
// We have a single conversion to a pointer-to-object type. Perform
// that conversion.
// TODO: don't redo the conversion calculation.
if (!PerformImplicitConversion(Ex,
ObjectPtrConversions.front()->getConversionType(),
AA_Converting)) {
Type = Ex->getType();
}
}
else if (ObjectPtrConversions.size() > 1) {
Diag(StartLoc, diag::err_ambiguous_delete_operand)
<< Type << Ex->getSourceRange();
for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
NoteOverloadCandidate(ObjectPtrConversions[i]);
return ExprError();
}
}
if (!Type->isPointerType())
return ExprError(Diag(StartLoc, diag::err_delete_operand)
<< Type << Ex->getSourceRange());
QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
if (Pointee->isVoidType() && !isSFINAEContext()) {
// The C++ standard bans deleting a pointer to a non-object type, which
// effectively bans deletion of "void*". However, most compilers support
// this, so we treat it as a warning unless we're in a SFINAE context.
Diag(StartLoc, diag::ext_delete_void_ptr_operand)
<< Type << Ex->getSourceRange();
} else if (Pointee->isFunctionType() || Pointee->isVoidType())
return ExprError(Diag(StartLoc, diag::err_delete_operand)
<< Type << Ex->getSourceRange());
else if (!Pointee->isDependentType() &&
RequireCompleteType(StartLoc, Pointee,
PDiag(diag::warn_delete_incomplete)
<< Ex->getSourceRange()))
return ExprError();
// C++ [expr.delete]p2:
// [Note: a pointer to a const type can be the operand of a
// delete-expression; it is not necessary to cast away the constness
// (5.2.11) of the pointer expression before it is used as the operand
// of the delete-expression. ]
ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
CK_NoOp);
DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
ArrayForm ? OO_Array_Delete : OO_Delete);
QualType PointeeElem = Context.getBaseElementType(Pointee);
if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
if (!UseGlobal &&
FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
return ExprError();
if (!RD->hasTrivialDestructor())
if (const CXXDestructorDecl *Dtor = LookupDestructor(RD))
MarkDeclarationReferenced(StartLoc,
const_cast<CXXDestructorDecl*>(Dtor));
}
if (!OperatorDelete) {
// Look for a global declaration.
DeclareGlobalNewDelete();
DeclContext *TUDecl = Context.getTranslationUnitDecl();
if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
&Ex, 1, TUDecl, /*AllowMissing=*/false,
OperatorDelete))
return ExprError();
}
MarkDeclarationReferenced(StartLoc, OperatorDelete);
// FIXME: Check access and ambiguity of operator delete and destructor.
}
return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
OperatorDelete, Ex, StartLoc));
}
/// \brief Check the use of the given variable as a C++ condition in an if,
/// while, do-while, or switch statement.
ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
SourceLocation StmtLoc,
bool ConvertToBoolean) {
QualType T = ConditionVar->getType();
// C++ [stmt.select]p2:
// The declarator shall not specify a function or an array.
if (T->isFunctionType())
return ExprError(Diag(ConditionVar->getLocation(),
diag::err_invalid_use_of_function_type)
<< ConditionVar->getSourceRange());
else if (T->isArrayType())
return ExprError(Diag(ConditionVar->getLocation(),
diag::err_invalid_use_of_array_type)
<< ConditionVar->getSourceRange());
Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
ConditionVar->getLocation(),
ConditionVar->getType().getNonReferenceType());
if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
return ExprError();
return Owned(Condition);
}
/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
// C++ 6.4p4:
// The value of a condition that is an initialized declaration in a statement
// other than a switch statement is the value of the declared variable
// implicitly converted to type bool. If that conversion is ill-formed, the
// program is ill-formed.
// The value of a condition that is an expression is the value of the
// expression, implicitly converted to bool.
//
return PerformContextuallyConvertToBool(CondExpr);
}
/// Helper function to determine whether this is the (deprecated) C++
/// conversion from a string literal to a pointer to non-const char or
/// non-const wchar_t (for narrow and wide string literals,
/// respectively).
bool
Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
// Look inside the implicit cast, if it exists.
if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
From = Cast->getSubExpr();
// A string literal (2.13.4) that is not a wide string literal can
// be converted to an rvalue of type "pointer to char"; a wide
// string literal can be converted to an rvalue of type "pointer
// to wchar_t" (C++ 4.2p2).
if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
if (const BuiltinType *ToPointeeType
= ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
// This conversion is considered only when there is an
// explicit appropriate pointer target type (C++ 4.2p2).
if (!ToPtrType->getPointeeType().hasQualifiers() &&
((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
(!StrLit->isWide() &&
(ToPointeeType->getKind() == BuiltinType::Char_U ||
ToPointeeType->getKind() == BuiltinType::Char_S))))
return true;
}
return false;
}
static ExprResult BuildCXXCastArgument(Sema &S,
SourceLocation CastLoc,
QualType Ty,
CastKind Kind,
CXXMethodDecl *Method,
Expr *From) {
switch (Kind) {
default: assert(0 && "Unhandled cast kind!");
case CK_ConstructorConversion: {
ASTOwningVector<Expr*> ConstructorArgs(S);
if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
MultiExprArg(&From, 1),
CastLoc, ConstructorArgs))
return ExprError();
ExprResult Result =
S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
move_arg(ConstructorArgs),
/*ZeroInit*/ false, CXXConstructExpr::CK_Complete);
if (Result.isInvalid())
return ExprError();
return S.MaybeBindToTemporary(Result.takeAs<Expr>());
}
case CK_UserDefinedConversion: {
assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
// Create an implicit call expr that calls it.
// FIXME: pass the FoundDecl for the user-defined conversion here
CXXMemberCallExpr *CE = S.BuildCXXMemberCallExpr(From, Method, Method);
return S.MaybeBindToTemporary(CE);
}
}
}
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType using the pre-computed implicit
/// conversion sequence ICS. Returns true if there was an error, false
/// otherwise. The expression From is replaced with the converted
/// expression. Action is the kind of conversion we're performing,
/// used in the error message.
bool
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
const ImplicitConversionSequence &ICS,
AssignmentAction Action, bool IgnoreBaseAccess) {
switch (ICS.getKind()) {
case ImplicitConversionSequence::StandardConversion:
if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
IgnoreBaseAccess))
return true;
break;
case ImplicitConversionSequence::UserDefinedConversion: {
FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
CastKind CastKind = CK_Unknown;
QualType BeforeToType;
if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
CastKind = CK_UserDefinedConversion;
// If the user-defined conversion is specified by a conversion function,
// the initial standard conversion sequence converts the source type to
// the implicit object parameter of the conversion function.
BeforeToType = Context.getTagDeclType(Conv->getParent());
} else if (const CXXConstructorDecl *Ctor =
dyn_cast<CXXConstructorDecl>(FD)) {
CastKind = CK_ConstructorConversion;
// Do no conversion if dealing with ... for the first conversion.
if (!ICS.UserDefined.EllipsisConversion) {
// If the user-defined conversion is specified by a constructor, the
// initial standard conversion sequence converts the source type to the
// type required by the argument of the constructor
BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
}
}
else
assert(0 && "Unknown conversion function kind!");
// Whatch out for elipsis conversion.
if (!ICS.UserDefined.EllipsisConversion) {
if (PerformImplicitConversion(From, BeforeToType,
ICS.UserDefined.Before, AA_Converting,
IgnoreBaseAccess))
return true;
}
ExprResult CastArg
= BuildCXXCastArgument(*this,
From->getLocStart(),
ToType.getNonReferenceType(),
CastKind, cast<CXXMethodDecl>(FD),
From);
if (CastArg.isInvalid())
return true;
From = CastArg.takeAs<Expr>();
return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
AA_Converting, IgnoreBaseAccess);
}
case ImplicitConversionSequence::AmbiguousConversion:
ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
PDiag(diag::err_typecheck_ambiguous_condition)
<< From->getSourceRange());
return true;
case ImplicitConversionSequence::EllipsisConversion:
assert(false && "Cannot perform an ellipsis conversion");
return false;
case ImplicitConversionSequence::BadConversion:
return true;
}
// Everything went well.
return false;
}
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType by following the standard
/// conversion sequence SCS. Returns true if there was an error, false
/// otherwise. The expression From is replaced with the converted
/// expression. Flavor is the context in which we're performing this
/// conversion, for use in error messages.
bool
Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
const StandardConversionSequence& SCS,
AssignmentAction Action, bool IgnoreBaseAccess) {
// Overall FIXME: we are recomputing too many types here and doing far too
// much extra work. What this means is that we need to keep track of more
// information that is computed when we try the implicit conversion initially,
// so that we don't need to recompute anything here.
QualType FromType = From->getType();
if (SCS.CopyConstructor) {
// FIXME: When can ToType be a reference type?
assert(!ToType->isReferenceType());
if (SCS.Second == ICK_Derived_To_Base) {
ASTOwningVector<Expr*> ConstructorArgs(*this);
if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
MultiExprArg(*this, &From, 1),
/*FIXME:ConstructLoc*/SourceLocation(),
ConstructorArgs))
return true;
ExprResult FromResult =
BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
ToType, SCS.CopyConstructor,
move_arg(ConstructorArgs),
/*ZeroInit*/ false,
CXXConstructExpr::CK_Complete);
if (FromResult.isInvalid())
return true;
From = FromResult.takeAs<Expr>();
return false;
}
ExprResult FromResult =
BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
ToType, SCS.CopyConstructor,
MultiExprArg(*this, &From, 1),
/*ZeroInit*/ false,
CXXConstructExpr::CK_Complete);
if (FromResult.isInvalid())
return true;
From = FromResult.takeAs<Expr>();
return false;
}
// Resolve overloaded function references.
if (Context.hasSameType(FromType, Context.OverloadTy)) {
DeclAccessPair Found;
FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
true, Found);
if (!Fn)
return true;
if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
return true;
From = FixOverloadedFunctionReference(From, Found, Fn);
FromType = From->getType();
}
// Perform the first implicit conversion.
switch (SCS.First) {
case ICK_Identity:
case ICK_Lvalue_To_Rvalue:
// Nothing to do.
break;
case ICK_Array_To_Pointer:
FromType = Context.getArrayDecayedType(FromType);
ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
break;
case ICK_Function_To_Pointer:
FromType = Context.getPointerType(FromType);
ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
break;
default:
assert(false && "Improper first standard conversion");
break;
}
// Perform the second implicit conversion
switch (SCS.Second) {
case ICK_Identity:
// If both sides are functions (or pointers/references to them), there could
// be incompatible exception declarations.
if (CheckExceptionSpecCompatibility(From, ToType))
return true;
// Nothing else to do.
break;
case ICK_NoReturn_Adjustment:
// If both sides are functions (or pointers/references to them), there could
// be incompatible exception declarations.
if (CheckExceptionSpecCompatibility(From, ToType))
return true;
ImpCastExprToType(From, Context.getNoReturnType(From->getType(), false),
CK_NoOp);
break;
case ICK_Integral_Promotion:
case ICK_Integral_Conversion:
ImpCastExprToType(From, ToType, CK_IntegralCast);
break;
case ICK_Floating_Promotion:
case ICK_Floating_Conversion:
ImpCastExprToType(From, ToType, CK_FloatingCast);
break;
case ICK_Complex_Promotion:
case ICK_Complex_Conversion:
ImpCastExprToType(From, ToType, CK_Unknown);
break;
case ICK_Floating_Integral:
if (ToType->isRealFloatingType())
ImpCastExprToType(From, ToType, CK_IntegralToFloating);
else
ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
break;
case ICK_Compatible_Conversion:
ImpCastExprToType(From, ToType, CK_NoOp);
break;
case ICK_Pointer_Conversion: {
if (SCS.IncompatibleObjC) {
// Diagnose incompatible Objective-C conversions
Diag(From->getSourceRange().getBegin(),
diag::ext_typecheck_convert_incompatible_pointer)
<< From->getType() << ToType << Action
<< From->getSourceRange();
}
CastKind Kind = CK_Unknown;
CXXCastPath BasePath;
if (CheckPointerConversion(From, ToType, Kind, BasePath, IgnoreBaseAccess))
return true;
ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
break;
}
case ICK_Pointer_Member: {
CastKind Kind = CK_Unknown;
CXXCastPath BasePath;
if (CheckMemberPointerConversion(From, ToType, Kind, BasePath,
IgnoreBaseAccess))
return true;
if (CheckExceptionSpecCompatibility(From, ToType))
return true;
ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
break;
}
case ICK_Boolean_Conversion: {
CastKind Kind = CK_Unknown;
if (FromType->isMemberPointerType())
Kind = CK_MemberPointerToBoolean;
ImpCastExprToType(From, Context.BoolTy, Kind);
break;
}
case ICK_Derived_To_Base: {
CXXCastPath BasePath;
if (CheckDerivedToBaseConversion(From->getType(),
ToType.getNonReferenceType(),
From->getLocStart(),
From->getSourceRange(),
&BasePath,
IgnoreBaseAccess))
return true;
ImpCastExprToType(From, ToType.getNonReferenceType(),
CK_DerivedToBase, CastCategory(From),
&BasePath);
break;
}
case ICK_Vector_Conversion:
ImpCastExprToType(From, ToType, CK_BitCast);
break;
case ICK_Vector_Splat:
ImpCastExprToType(From, ToType, CK_VectorSplat);
break;
case ICK_Complex_Real:
ImpCastExprToType(From, ToType, CK_Unknown);
break;
case ICK_Lvalue_To_Rvalue:
case ICK_Array_To_Pointer:
case ICK_Function_To_Pointer:
case ICK_Qualification:
case ICK_Num_Conversion_Kinds:
assert(false && "Improper second standard conversion");
break;
}
switch (SCS.Third) {
case ICK_Identity:
// Nothing to do.
break;
case ICK_Qualification: {
// The qualification keeps the category of the inner expression, unless the
// target type isn't a reference.
ExprValueKind VK = ToType->isReferenceType() ?
CastCategory(From) : VK_RValue;
ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
CK_NoOp, VK);
if (SCS.DeprecatedStringLiteralToCharPtr)
Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
<< ToType.getNonReferenceType();
break;
}
default:
assert(false && "Improper third standard conversion");
break;
}
return false;
}
ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
SourceLocation KWLoc,
SourceLocation LParen,
ParsedType Ty,
SourceLocation RParen) {
QualType T = GetTypeFromParser(Ty);
// According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
// all traits except __is_class, __is_enum and __is_union require a the type
// to be complete, an array of unknown bound, or void.
if (OTT != UTT_IsClass && OTT != UTT_IsEnum && OTT != UTT_IsUnion) {
QualType E = T;
if (T->isIncompleteArrayType())
E = Context.getAsArrayType(T)->getElementType();
if (!T->isVoidType() &&
RequireCompleteType(KWLoc, E,
diag::err_incomplete_type_used_in_type_trait_expr))
return ExprError();
}
// There is no point in eagerly computing the value. The traits are designed
// to be used from type trait templates, so Ty will be a template parameter
// 99% of the time.
return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, T,
RParen, Context.BoolTy));
}
QualType Sema::CheckPointerToMemberOperands(
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) {
const char *OpSpelling = isIndirect ? "->*" : ".*";
// C++ 5.5p2
// The binary operator .* [p3: ->*] binds its second operand, which shall
// be of type "pointer to member of T" (where T is a completely-defined
// class type) [...]
QualType RType = rex->getType();
const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
if (!MemPtr) {
Diag(Loc, diag::err_bad_memptr_rhs)
<< OpSpelling << RType << rex->getSourceRange();
return QualType();
}
QualType Class(MemPtr->getClass(), 0);
if (RequireCompleteType(Loc, Class, diag::err_memptr_rhs_to_incomplete))
return QualType();
// C++ 5.5p2
// [...] to its first operand, which shall be of class T or of a class of
// which T is an unambiguous and accessible base class. [p3: a pointer to
// such a class]
QualType LType = lex->getType();
if (isIndirect) {
if (const PointerType *Ptr = LType->getAs<PointerType>())
LType = Ptr->getPointeeType().getNonReferenceType();
else {
Diag(Loc, diag::err_bad_memptr_lhs)
<< OpSpelling << 1 << LType
<< FixItHint::CreateReplacement(SourceRange(Loc), ".*");
return QualType();
}
}
if (!Context.hasSameUnqualifiedType(Class, LType)) {
// If we want to check the hierarchy, we need a complete type.
if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
<< OpSpelling << (int)isIndirect)) {
return QualType();
}
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
/*DetectVirtual=*/false);
// FIXME: Would it be useful to print full ambiguity paths, or is that
// overkill?
if (!IsDerivedFrom(LType, Class, Paths) ||
Paths.isAmbiguous(Context.getCanonicalType(Class))) {
Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
<< (int)isIndirect << lex->getType();
return QualType();
}
// Cast LHS to type of use.
QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
ExprValueKind VK =
isIndirect ? VK_RValue : CastCategory(lex);
CXXCastPath BasePath;
BuildBasePathArray(Paths, BasePath);
ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
}
if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
// Diagnose use of pointer-to-member type which when used as
// the functional cast in a pointer-to-member expression.
Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
return QualType();
}
// C++ 5.5p2
// The result is an object or a function of the type specified by the
// second operand.
// The cv qualifiers are the union of those in the pointer and the left side,
// in accordance with 5.5p5 and 5.2.5.
// FIXME: This returns a dereferenced member function pointer as a normal
// function type. However, the only operation valid on such functions is
// calling them. There's also a GCC extension to get a function pointer to the
// thing, which is another complication, because this type - unlike the type
// that is the result of this expression - takes the class as the first
// argument.
// We probably need a "MemberFunctionClosureType" or something like that.
QualType Result = MemPtr->getPointeeType();
Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
return Result;
}
/// \brief Try to convert a type to another according to C++0x 5.16p3.
///
/// This is part of the parameter validation for the ? operator. If either
/// value operand is a class type, the two operands are attempted to be
/// converted to each other. This function does the conversion in one direction.
/// It returns true if the program is ill-formed and has already been diagnosed
/// as such.
static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
SourceLocation QuestionLoc,
bool &HaveConversion,
QualType &ToType) {
HaveConversion = false;
ToType = To->getType();
InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
SourceLocation());
// C++0x 5.16p3
// The process for determining whether an operand expression E1 of type T1
// can be converted to match an operand expression E2 of type T2 is defined
// as follows:
// -- If E2 is an lvalue:
bool ToIsLvalue = (To->isLvalue(Self.Context) == Expr::LV_Valid);
if (ToIsLvalue) {
// E1 can be converted to match E2 if E1 can be implicitly converted to
// type "lvalue reference to T2", subject to the constraint that in the
// conversion the reference must bind directly to E1.
QualType T = Self.Context.getLValueReferenceType(ToType);
InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
if (InitSeq.isDirectReferenceBinding()) {
ToType = T;
HaveConversion = true;
return false;
}
if (InitSeq.isAmbiguous())
return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
}
// -- If E2 is an rvalue, or if the conversion above cannot be done:
// -- if E1 and E2 have class type, and the underlying class types are
// the same or one is a base class of the other:
QualType FTy = From->getType();
QualType TTy = To->getType();
const RecordType *FRec = FTy->getAs<RecordType>();
const RecordType *TRec = TTy->getAs<RecordType>();
bool FDerivedFromT = FRec && TRec && FRec != TRec &&
Self.IsDerivedFrom(FTy, TTy);
if (FRec && TRec &&
(FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
// E1 can be converted to match E2 if the class of T2 is the
// same type as, or a base class of, the class of T1, and
// [cv2 > cv1].
if (FRec == TRec || FDerivedFromT) {
if (TTy.isAtLeastAsQualifiedAs(FTy)) {
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
HaveConversion = true;
return false;
}
if (InitSeq.isAmbiguous())
return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
}
}
return false;
}
// -- Otherwise: E1 can be converted to match E2 if E1 can be
// implicitly converted to the type that expression E2 would have
// if E2 were converted to an rvalue (or the type it has, if E2 is
// an rvalue).
//
// This actually refers very narrowly to the lvalue-to-rvalue conversion, not
// to the array-to-pointer or function-to-pointer conversions.
if (!TTy->getAs<TagType>())
TTy = TTy.getUnqualifiedType();
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
ToType = TTy;
if (InitSeq.isAmbiguous())
return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
return false;
}
/// \brief Try to find a common type for two according to C++0x 5.16p5.
///
/// This is part of the parameter validation for the ? operator. If either
/// value operand is a class type, overload resolution is used to find a
/// conversion to a common type.
static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
SourceLocation Loc) {
Expr *Args[2] = { LHS, RHS };
OverloadCandidateSet CandidateSet(Loc);
Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet);
OverloadCandidateSet::iterator Best;
switch (CandidateSet.BestViableFunction(Self, Loc, Best)) {
case OR_Success:
// We found a match. Perform the conversions on the arguments and move on.
if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
Best->Conversions[0], Sema::AA_Converting) ||
Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
Best->Conversions[1], Sema::AA_Converting))
break;
return false;
case OR_No_Viable_Function:
Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
<< LHS->getType() << RHS->getType()
<< LHS->getSourceRange() << RHS->getSourceRange();
return true;
case OR_Ambiguous:
Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
<< LHS->getType() << RHS->getType()
<< LHS->getSourceRange() << RHS->getSourceRange();
// FIXME: Print the possible common types by printing the return types of
// the viable candidates.
break;
case OR_Deleted:
assert(false && "Conditional operator has only built-in overloads");
break;
}
return true;
}
/// \brief Perform an "extended" implicit conversion as returned by
/// TryClassUnification.
static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
SourceLocation());
InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
if (Result.isInvalid())
return true;
E = Result.takeAs<Expr>();
return false;
}
/// \brief Check the operands of ?: under C++ semantics.
///
/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
/// extension. In this case, LHS == Cond. (But they're not aliases.)
QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
SourceLocation QuestionLoc) {
// FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
// interface pointers.
// C++0x 5.16p1
// The first expression is contextually converted to bool.
if (!Cond->isTypeDependent()) {
if (CheckCXXBooleanCondition(Cond))
return QualType();
}
// Either of the arguments dependent?
if (LHS->isTypeDependent() || RHS->isTypeDependent())
return Context.DependentTy;
// C++0x 5.16p2
// If either the second or the third operand has type (cv) void, ...
QualType LTy = LHS->getType();
QualType RTy = RHS->getType();
bool LVoid = LTy->isVoidType();
bool RVoid = RTy->isVoidType();
if (LVoid || RVoid) {
// ... then the [l2r] conversions are performed on the second and third
// operands ...
DefaultFunctionArrayLvalueConversion(LHS);
DefaultFunctionArrayLvalueConversion(RHS);
LTy = LHS->getType();
RTy = RHS->getType();
// ... and one of the following shall hold:
// -- The second or the third operand (but not both) is a throw-
// expression; the result is of the type of the other and is an rvalue.
bool LThrow = isa<CXXThrowExpr>(LHS);
bool RThrow = isa<CXXThrowExpr>(RHS);
if (LThrow && !RThrow)
return RTy;
if (RThrow && !LThrow)
return LTy;
// -- Both the second and third operands have type void; the result is of
// type void and is an rvalue.
if (LVoid && RVoid)
return Context.VoidTy;
// Neither holds, error.
Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
<< (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
<< LHS->getSourceRange() << RHS->getSourceRange();
return QualType();
}
// Neither is void.
// C++0x 5.16p3
// Otherwise, if the second and third operand have different types, and
// either has (cv) class type, and attempt is made to convert each of those
// operands to the other.
if (!Context.hasSameType(LTy, RTy) &&
(LTy->isRecordType() || RTy->isRecordType())) {
ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
// These return true if a single direction is already ambiguous.
QualType L2RType, R2LType;
bool HaveL2R, HaveR2L;
if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
return QualType();
if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
return QualType();
// If both can be converted, [...] the program is ill-formed.
if (HaveL2R && HaveR2L) {
Diag(QuestionLoc, diag::err_conditional_ambiguous)
<< LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
return QualType();
}
// If exactly one conversion is possible, that conversion is applied to
// the chosen operand and the converted operands are used in place of the
// original operands for the remainder of this section.
if (HaveL2R) {
if (ConvertForConditional(*this, LHS, L2RType))
return QualType();
LTy = LHS->getType();
} else if (HaveR2L) {
if (ConvertForConditional(*this, RHS, R2LType))
return QualType();
RTy = RHS->getType();
}
}
// C++0x 5.16p4
// If the second and third operands are lvalues and have the same type,
// the result is of that type [...]
bool Same = Context.hasSameType(LTy, RTy);
if (Same && LHS->isLvalue(Context) == Expr::LV_Valid &&
RHS->isLvalue(Context) == Expr::LV_Valid)
return LTy;
// C++0x 5.16p5
// Otherwise, the result is an rvalue. If the second and third operands
// do not have the same type, and either has (cv) class type, ...
if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
// ... overload resolution is used to determine the conversions (if any)
// to be applied to the operands. If the overload resolution fails, the
// program is ill-formed.
if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
return QualType();
}
// C++0x 5.16p6
// LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
// conversions are performed on the second and third operands.
DefaultFunctionArrayLvalueConversion(LHS);
DefaultFunctionArrayLvalueConversion(RHS);
LTy = LHS->getType();
RTy = RHS->getType();
// After those conversions, one of the following shall hold:
// -- The second and third operands have the same type; the result
// is of that type. If the operands have class type, the result
// is a prvalue temporary of the result type, which is
// copy-initialized from either the second operand or the third
// operand depending on the value of the first operand.
if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
if (LTy->isRecordType()) {
// The operands have class type. Make a temporary copy.
InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
ExprResult LHSCopy = PerformCopyInitialization(Entity,
SourceLocation(),
Owned(LHS));
if (LHSCopy.isInvalid())
return QualType();
ExprResult RHSCopy = PerformCopyInitialization(Entity,
SourceLocation(),
Owned(RHS));
if (RHSCopy.isInvalid())
return QualType();
LHS = LHSCopy.takeAs<Expr>();
RHS = RHSCopy.takeAs<Expr>();
}
return LTy;
}
// Extension: conditional operator involving vector types.
if (LTy->isVectorType() || RTy->isVectorType())
return CheckVectorOperands(QuestionLoc, LHS, RHS);
// -- The second and third operands have arithmetic or enumeration type;
// the usual arithmetic conversions are performed to bring them to a
// common type, and the result is of that type.
if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
UsualArithmeticConversions(LHS, RHS);
return LHS->getType();
}
// -- The second and third operands have pointer type, or one has pointer
// type and the other is a null pointer constant; pointer conversions
// and qualification conversions are performed to bring them to their
// composite pointer type. The result is of the composite pointer type.
// -- The second and third operands have pointer to member type, or one has
// pointer to member type and the other is a null pointer constant;
// pointer to member conversions and qualification conversions are
// performed to bring them to a common type, whose cv-qualification
// shall match the cv-qualification of either the second or the third
// operand. The result is of the common type.
bool NonStandardCompositeType = false;
QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
isSFINAEContext()? 0 : &NonStandardCompositeType);
if (!Composite.isNull()) {
if (NonStandardCompositeType)
Diag(QuestionLoc,
diag::ext_typecheck_cond_incompatible_operands_nonstandard)
<< LTy << RTy << Composite
<< LHS->getSourceRange() << RHS->getSourceRange();
return Composite;
}
// Similarly, attempt to find composite type of two objective-c pointers.
Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
if (!Composite.isNull())
return Composite;
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
<< LHS->getType() << RHS->getType()
<< LHS->getSourceRange() << RHS->getSourceRange();
return QualType();
}
/// \brief Find a merged pointer type and convert the two expressions to it.
///
/// This finds the composite pointer type (or member pointer type) for @p E1
/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
/// type and returns it.
/// It does not emit diagnostics.
///
/// \param Loc The location of the operator requiring these two expressions to
/// be converted to the composite pointer type.
///
/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
/// a non-standard (but still sane) composite type to which both expressions
/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
/// will be set true.
QualType Sema::FindCompositePointerType(SourceLocation Loc,
Expr *&E1, Expr *&E2,
bool *NonStandardCompositeType) {
if (NonStandardCompositeType)
*NonStandardCompositeType = false;
assert(getLangOptions().CPlusPlus && "This function assumes C++");
QualType T1 = E1->getType(), T2 = E2->getType();
if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
!T2->isAnyPointerType() && !T2->isMemberPointerType())
return QualType();
// C++0x 5.9p2
// Pointer conversions and qualification conversions are performed on
// pointer operands to bring them to their composite pointer type. If
// one operand is a null pointer constant, the composite pointer type is
// the type of the other operand.
if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
if (T2->isMemberPointerType())
ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
else
ImpCastExprToType(E1, T2, CK_IntegralToPointer);
return T2;
}
if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
if (T1->isMemberPointerType())
ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
else
ImpCastExprToType(E2, T1, CK_IntegralToPointer);
return T1;
}
// Now both have to be pointers or member pointers.
if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
(!T2->isPointerType() && !T2->isMemberPointerType()))
return QualType();
// Otherwise, of one of the operands has type "pointer to cv1 void," then
// the other has type "pointer to cv2 T" and the composite pointer type is
// "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
// Otherwise, the composite pointer type is a pointer type similar to the
// type of one of the operands, with a cv-qualification signature that is
// the union of the cv-qualification signatures of the operand types.
// In practice, the first part here is redundant; it's subsumed by the second.
// What we do here is, we build the two possible composite types, and try the
// conversions in both directions. If only one works, or if the two composite
// types are the same, we have succeeded.
// FIXME: extended qualifiers?
typedef llvm::SmallVector<unsigned, 4> QualifierVector;
QualifierVector QualifierUnion;
typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
ContainingClassVector;
ContainingClassVector MemberOfClass;
QualType Composite1 = Context.getCanonicalType(T1),
Composite2 = Context.getCanonicalType(T2);
unsigned NeedConstBefore = 0;
do {
const PointerType *Ptr1, *Ptr2;
if ((Ptr1 = Composite1->getAs<PointerType>()) &&
(Ptr2 = Composite2->getAs<PointerType>())) {
Composite1 = Ptr1->getPointeeType();
Composite2 = Ptr2->getPointeeType();
// If we're allowed to create a non-standard composite type, keep track
// of where we need to fill in additional 'const' qualifiers.
if (NonStandardCompositeType &&
Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
NeedConstBefore = QualifierUnion.size();
QualifierUnion.push_back(
Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
continue;
}
const MemberPointerType *MemPtr1, *MemPtr2;
if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
(MemPtr2 = Composite2->getAs<MemberPointerType>())) {
Composite1 = MemPtr1->getPointeeType();
Composite2 = MemPtr2->getPointeeType();
// If we're allowed to create a non-standard composite type, keep track
// of where we need to fill in additional 'const' qualifiers.
if (NonStandardCompositeType &&
Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
NeedConstBefore = QualifierUnion.size();
QualifierUnion.push_back(
Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
MemPtr2->getClass()));
continue;
}
// FIXME: block pointer types?
// Cannot unwrap any more types.
break;
} while (true);
if (NeedConstBefore && NonStandardCompositeType) {
// Extension: Add 'const' to qualifiers that come before the first qualifier
// mismatch, so that our (non-standard!) composite type meets the
// requirements of C++ [conv.qual]p4 bullet 3.
for (unsigned I = 0; I != NeedConstBefore; ++I) {
if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
*NonStandardCompositeType = true;
}
}
}
// Rewrap the composites as pointers or member pointers with the union CVRs.
ContainingClassVector::reverse_iterator MOC
= MemberOfClass.rbegin();
for (QualifierVector::reverse_iterator
I = QualifierUnion.rbegin(),
E = QualifierUnion.rend();
I != E; (void)++I, ++MOC) {
Qualifiers Quals = Qualifiers::fromCVRMask(*I);
if (MOC->first && MOC->second) {
// Rebuild member pointer type
Composite1 = Context.getMemberPointerType(
Context.getQualifiedType(Composite1, Quals),
MOC->first);
Composite2 = Context.getMemberPointerType(
Context.getQualifiedType(Composite2, Quals),
MOC->second);
} else {
// Rebuild pointer type
Composite1
= Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
Composite2
= Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
}
}
// Try to convert to the first composite pointer type.
InitializedEntity Entity1
= InitializedEntity::InitializeTemporary(Composite1);
InitializationKind Kind
= InitializationKind::CreateCopy(Loc, SourceLocation());
InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
if (E1ToC1 && E2ToC1) {
// Conversion to Composite1 is viable.
if (!Context.hasSameType(Composite1, Composite2)) {
// Composite2 is a different type from Composite1. Check whether
// Composite2 is also viable.
InitializedEntity Entity2
= InitializedEntity::InitializeTemporary(Composite2);
InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
if (E1ToC2 && E2ToC2) {
// Both Composite1 and Composite2 are viable and are different;
// this is an ambiguity.
return QualType();
}
}
// Convert E1 to Composite1
ExprResult E1Result
= E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
if (E1Result.isInvalid())
return QualType();
E1 = E1Result.takeAs<Expr>();
// Convert E2 to Composite1
ExprResult E2Result
= E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
if (E2Result.isInvalid())
return QualType();
E2 = E2Result.takeAs<Expr>();
return Composite1;
}
// Check whether Composite2 is viable.
InitializedEntity Entity2
= InitializedEntity::InitializeTemporary(Composite2);
InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
if (!E1ToC2 || !E2ToC2)
return QualType();
// Convert E1 to Composite2
ExprResult E1Result
= E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
if (E1Result.isInvalid())
return QualType();
E1 = E1Result.takeAs<Expr>();
// Convert E2 to Composite2
ExprResult E2Result
= E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
if (E2Result.isInvalid())
return QualType();
E2 = E2Result.takeAs<Expr>();
return Composite2;
}
ExprResult Sema::MaybeBindToTemporary(Expr *E) {
if (!Context.getLangOptions().CPlusPlus)
return Owned(E);
assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
const RecordType *RT = E->getType()->getAs<RecordType>();
if (!RT)
return Owned(E);
// If this is the result of a call or an Objective-C message send expression,
// our source might actually be a reference, in which case we shouldn't bind.
if (CallExpr *CE = dyn_cast<CallExpr>(E)) {
if (CE->getCallReturnType()->isReferenceType())
return Owned(E);
} else if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
if (const ObjCMethodDecl *MD = ME->getMethodDecl()) {
if (MD->getResultType()->isReferenceType())
return Owned(E);
}
}
// That should be enough to guarantee that this type is complete.
// If it has a trivial destructor, we can avoid the extra copy.
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
return Owned(E);
CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
ExprTemporaries.push_back(Temp);
if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
MarkDeclarationReferenced(E->getExprLoc(), Destructor);
CheckDestructorAccess(E->getExprLoc(), Destructor,
PDiag(diag::err_access_dtor_temp)
<< E->getType());
}
// FIXME: Add the temporary to the temporaries vector.
return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
}
Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr) {
assert(SubExpr && "sub expression can't be null!");
// Check any implicit conversions within the expression.
CheckImplicitConversions(SubExpr);
unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
assert(ExprTemporaries.size() >= FirstTemporary);
if (ExprTemporaries.size() == FirstTemporary)
return SubExpr;
Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr,
&ExprTemporaries[FirstTemporary],
ExprTemporaries.size() - FirstTemporary);
ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
ExprTemporaries.end());
return E;
}
ExprResult
Sema::MaybeCreateCXXExprWithTemporaries(ExprResult SubExpr) {
if (SubExpr.isInvalid())
return ExprError();
return Owned(MaybeCreateCXXExprWithTemporaries(SubExpr.takeAs<Expr>()));
}
FullExpr Sema::CreateFullExpr(Expr *SubExpr) {
unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
assert(ExprTemporaries.size() >= FirstTemporary);
unsigned NumTemporaries = ExprTemporaries.size() - FirstTemporary;
CXXTemporary **Temporaries =
NumTemporaries == 0 ? 0 : &ExprTemporaries[FirstTemporary];
FullExpr E = FullExpr::Create(Context, SubExpr, Temporaries, NumTemporaries);
ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
ExprTemporaries.end());
return E;
}
ExprResult
Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
tok::TokenKind OpKind, ParsedType &ObjectType,
bool &MayBePseudoDestructor) {
// Since this might be a postfix expression, get rid of ParenListExprs.
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
if (Result.isInvalid()) return ExprError();
Base = Result.get();
QualType BaseType = Base->getType();
MayBePseudoDestructor = false;
if (BaseType->isDependentType()) {
// If we have a pointer to a dependent type and are using the -> operator,
// the object type is the type that the pointer points to. We might still
// have enough information about that type to do something useful.
if (OpKind == tok::arrow)
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
BaseType = Ptr->getPointeeType();
ObjectType = ParsedType::make(BaseType);
MayBePseudoDestructor = true;
return Owned(Base);
}
// C++ [over.match.oper]p8:
// [...] When operator->returns, the operator-> is applied to the value
// returned, with the original second operand.
if (OpKind == tok::arrow) {
// The set of types we've considered so far.
llvm::SmallPtrSet<CanQualType,8> CTypes;
llvm::SmallVector<SourceLocation, 8> Locations;
CTypes.insert(Context.getCanonicalType(BaseType));
while (BaseType->isRecordType()) {
Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
Locations.push_back(OpCall->getDirectCallee()->getLocation());
BaseType = Base->getType();
CanQualType CBaseType = Context.getCanonicalType(BaseType);
if (!CTypes.insert(CBaseType)) {
Diag(OpLoc, diag::err_operator_arrow_circular);
for (unsigned i = 0; i < Locations.size(); i++)
Diag(Locations[i], diag::note_declared_at);
return ExprError();
}
}
if (BaseType->isPointerType())
BaseType = BaseType->getPointeeType();
}
// We could end up with various non-record types here, such as extended
// vector types or Objective-C interfaces. Just return early and let
// ActOnMemberReferenceExpr do the work.
if (!BaseType->isRecordType()) {
// C++ [basic.lookup.classref]p2:
// [...] If the type of the object expression is of pointer to scalar
// type, the unqualified-id is looked up in the context of the complete
// postfix-expression.
//
// This also indicates that we should be parsing a
// pseudo-destructor-name.
ObjectType = ParsedType();
MayBePseudoDestructor = true;
return Owned(Base);
}
// The object type must be complete (or dependent).
if (!BaseType->isDependentType() &&
RequireCompleteType(OpLoc, BaseType,
PDiag(diag::err_incomplete_member_access)))
return ExprError();
// C++ [basic.lookup.classref]p2:
// If the id-expression in a class member access (5.2.5) is an
// unqualified-id, and the type of the object expression is of a class
// type C (or of pointer to a class type C), the unqualified-id is looked
// up in the scope of class C. [...]
ObjectType = ParsedType::make(BaseType);
return move(Base);
}
ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
Expr *MemExpr) {
SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
<< isa<CXXPseudoDestructorExpr>(MemExpr)
<< FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
return ActOnCallExpr(/*Scope*/ 0,
MemExpr,
/*LPLoc*/ ExpectedLParenLoc,
MultiExprArg(),
/*CommaLocs*/ 0,
/*RPLoc*/ ExpectedLParenLoc);
}
ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
const CXXScopeSpec &SS,
TypeSourceInfo *ScopeTypeInfo,
SourceLocation CCLoc,
SourceLocation TildeLoc,
PseudoDestructorTypeStorage Destructed,
bool HasTrailingLParen) {
TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
// C++ [expr.pseudo]p2:
// The left-hand side of the dot operator shall be of scalar type. The
// left-hand side of the arrow operator shall be of pointer to scalar type.
// This scalar type is the object type.
QualType ObjectType = Base->getType();
if (OpKind == tok::arrow) {
if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
ObjectType = Ptr->getPointeeType();
} else if (!Base->isTypeDependent()) {
// The user wrote "p->" when she probably meant "p."; fix it.
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
<< ObjectType << true
<< FixItHint::CreateReplacement(OpLoc, ".");
if (isSFINAEContext())
return ExprError();
OpKind = tok::period;
}
}
if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
<< ObjectType << Base->getSourceRange();
return ExprError();
}
// C++ [expr.pseudo]p2:
// [...] The cv-unqualified versions of the object type and of the type
// designated by the pseudo-destructor-name shall be the same type.
if (DestructedTypeInfo) {
QualType DestructedType = DestructedTypeInfo->getType();
SourceLocation DestructedTypeStart
= DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
<< ObjectType << DestructedType << Base->getSourceRange()
<< DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
// Recover by setting the destructed type to the object type.
DestructedType = ObjectType;
DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
DestructedTypeStart);
Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
}
}
// C++ [expr.pseudo]p2:
// [...] Furthermore, the two type-names in a pseudo-destructor-name of the
// form
//
// ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
//
// shall designate the same scalar type.
if (ScopeTypeInfo) {
QualType ScopeType = ScopeTypeInfo->getType();
if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
!Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
diag::err_pseudo_dtor_type_mismatch)
<< ObjectType << ScopeType << Base->getSourceRange()
<< ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
ScopeType = QualType();
ScopeTypeInfo = 0;
}
}
Expr *Result
= new (Context) CXXPseudoDestructorExpr(Context, Base,
OpKind == tok::arrow, OpLoc,
SS.getScopeRep(), SS.getRange(),
ScopeTypeInfo,
CCLoc,
TildeLoc,
Destructed);
if (HasTrailingLParen)
return Owned(Result);
return DiagnoseDtorReference(Destructed.getLocation(), Result);
}
ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
UnqualifiedId &FirstTypeName,
SourceLocation CCLoc,
SourceLocation TildeLoc,
UnqualifiedId &SecondTypeName,
bool HasTrailingLParen) {
assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid first type name in pseudo-destructor");
assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid second type name in pseudo-destructor");
// C++ [expr.pseudo]p2:
// The left-hand side of the dot operator shall be of scalar type. The
// left-hand side of the arrow operator shall be of pointer to scalar type.
// This scalar type is the object type.
QualType ObjectType = Base->getType();
if (OpKind == tok::arrow) {
if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
ObjectType = Ptr->getPointeeType();
} else if (!ObjectType->isDependentType()) {
// The user wrote "p->" when she probably meant "p."; fix it.
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
<< ObjectType << true
<< FixItHint::CreateReplacement(OpLoc, ".");
if (isSFINAEContext())
return ExprError();
OpKind = tok::period;
}
}
// Compute the object type that we should use for name lookup purposes. Only
// record types and dependent types matter.
ParsedType ObjectTypePtrForLookup;
if (!SS.isSet()) {
if (const Type *T = ObjectType->getAs<RecordType>())
ObjectTypePtrForLookup = ParsedType::make(QualType(T, 0));
else if (ObjectType->isDependentType())
ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
}
// Convert the name of the type being destructed (following the ~) into a
// type (with source-location information).
QualType DestructedType;
TypeSourceInfo *DestructedTypeInfo = 0;
PseudoDestructorTypeStorage Destructed;
if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
ParsedType T = getTypeName(*SecondTypeName.Identifier,
SecondTypeName.StartLocation,
S, &SS, true, ObjectTypePtrForLookup);
if (!T &&
((SS.isSet() && !computeDeclContext(SS, false)) ||
(!SS.isSet() && ObjectType->isDependentType()))) {
// The name of the type being destroyed is a dependent name, and we
// couldn't find anything useful in scope. Just store the identifier and
// it's location, and we'll perform (qualified) name lookup again at
// template instantiation time.
Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
SecondTypeName.StartLocation);
} else if (!T) {
Diag(SecondTypeName.StartLocation,
diag::err_pseudo_dtor_destructor_non_type)
<< SecondTypeName.Identifier << ObjectType;
if (isSFINAEContext())
return ExprError();
// Recover by assuming we had the right type all along.
DestructedType = ObjectType;
} else
DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
} else {
// Resolve the template-id to a type.
TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
ASTTemplateArgsPtr TemplateArgsPtr(*this,
TemplateId->getTemplateArgs(),
TemplateId->NumArgs);
TypeResult T = ActOnTemplateIdType(TemplateId->Template,
TemplateId->TemplateNameLoc,
TemplateId->LAngleLoc,
TemplateArgsPtr,
TemplateId->RAngleLoc);
if (T.isInvalid() || !T.get()) {
// Recover by assuming we had the right type all along.
DestructedType = ObjectType;
} else
DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
}
// If we've performed some kind of recovery, (re-)build the type source
// information.
if (!DestructedType.isNull()) {
if (!DestructedTypeInfo)
DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
SecondTypeName.StartLocation);
Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
}
// Convert the name of the scope type (the type prior to '::') into a type.
TypeSourceInfo *ScopeTypeInfo = 0;
QualType ScopeType;
if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
FirstTypeName.Identifier) {
if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
ParsedType T = getTypeName(*FirstTypeName.Identifier,
FirstTypeName.StartLocation,
S, &SS, false, ObjectTypePtrForLookup);
if (!T) {
Diag(FirstTypeName.StartLocation,
diag::err_pseudo_dtor_destructor_non_type)
<< FirstTypeName.Identifier << ObjectType;
if (isSFINAEContext())
return ExprError();
// Just drop this type. It's unnecessary anyway.
ScopeType = QualType();
} else
ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
} else {
// Resolve the template-id to a type.
TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
ASTTemplateArgsPtr TemplateArgsPtr(*this,
TemplateId->getTemplateArgs(),
TemplateId->NumArgs);
TypeResult T = ActOnTemplateIdType(TemplateId->Template,
TemplateId->TemplateNameLoc,
TemplateId->LAngleLoc,
TemplateArgsPtr,
TemplateId->RAngleLoc);
if (T.isInvalid() || !T.get()) {
// Recover by dropping this type.
ScopeType = QualType();
} else
ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
}
}
if (!ScopeType.isNull() && !ScopeTypeInfo)
ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
FirstTypeName.StartLocation);
return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
ScopeTypeInfo, CCLoc, TildeLoc,
Destructed, HasTrailingLParen);
}
CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp,
NamedDecl *FoundDecl,
CXXMethodDecl *Method) {
if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
FoundDecl, Method))
assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?");
MemberExpr *ME =
new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
SourceLocation(), Method->getType());
QualType ResultType = Method->getCallResultType();
MarkDeclarationReferenced(Exp->getLocStart(), Method);
CXXMemberCallExpr *CE =
new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType,
Exp->getLocEnd());
return CE;
}
ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
if (!FullExpr) return ExprError();
return MaybeCreateCXXExprWithTemporaries(FullExpr);
}