forked from OSchip/llvm-project
1098 lines
51 KiB
TableGen
1098 lines
51 KiB
TableGen
//==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Move instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [FeatureVector] in {
|
|
// Register move.
|
|
def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>;
|
|
def VLR32 : UnaryAliasVRR<null_frag, v32eb, v32eb>;
|
|
def VLR64 : UnaryAliasVRR<null_frag, v64db, v64db>;
|
|
|
|
// Load GR from VR element.
|
|
def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>;
|
|
def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>;
|
|
def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>;
|
|
def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>;
|
|
|
|
// Load VR element from GR.
|
|
def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert,
|
|
v128b, v128b, GR32, 0>;
|
|
def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert,
|
|
v128h, v128h, GR32, 1>;
|
|
def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert,
|
|
v128f, v128f, GR32, 2>;
|
|
def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert,
|
|
v128g, v128g, GR64, 3>;
|
|
|
|
// Load VR from GRs disjoint.
|
|
def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>;
|
|
def VLVGP32 : BinaryAliasVRRf<GR32>;
|
|
}
|
|
|
|
// Extractions always assign to the full GR64, even if the element would
|
|
// fit in the lower 32 bits. Sub-i64 extracts therefore need to take a
|
|
// subreg of the result.
|
|
class VectorExtractSubreg<ValueType type, Instruction insn>
|
|
: Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)),
|
|
(EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>;
|
|
|
|
def : VectorExtractSubreg<v16i8, VLGVB>;
|
|
def : VectorExtractSubreg<v8i16, VLGVH>;
|
|
def : VectorExtractSubreg<v4i32, VLGVF>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Immediate instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [FeatureVector] in {
|
|
// Generate byte mask.
|
|
def VZERO : InherentVRIa<"vzero", 0xE744, 0>;
|
|
def VONE : InherentVRIa<"vone", 0xE744, 0xffff>;
|
|
def VGBM : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16>;
|
|
|
|
// Generate mask.
|
|
def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>;
|
|
def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>;
|
|
def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>;
|
|
def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>;
|
|
|
|
// Load element immediate.
|
|
//
|
|
// We want these instructions to be used ahead of VLVG* where possible.
|
|
// However, VLVG* takes a variable BD-format index whereas VLEI takes
|
|
// a plain immediate index. This means that VLVG* has an extra "base"
|
|
// register operand and is 3 units more complex. Bumping the complexity
|
|
// of the VLEI* instructions by 4 means that they are strictly better
|
|
// than VLVG* in cases where both forms match.
|
|
let AddedComplexity = 4 in {
|
|
def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert,
|
|
v128b, v128b, imm32sx16trunc, imm32zx4>;
|
|
def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert,
|
|
v128h, v128h, imm32sx16trunc, imm32zx3>;
|
|
def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert,
|
|
v128f, v128f, imm32sx16, imm32zx2>;
|
|
def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert,
|
|
v128g, v128g, imm64sx16, imm32zx1>;
|
|
}
|
|
|
|
// Replicate immediate.
|
|
def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16, 0>;
|
|
def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16, 1>;
|
|
def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16, 2>;
|
|
def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16, 3>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loads
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [FeatureVector] in {
|
|
// Load.
|
|
def VL : UnaryVRX<"vl", 0xE706, null_frag, v128any, 16>;
|
|
|
|
// Load to block boundary. The number of loaded bytes is only known
|
|
// at run time. The instruction is really polymorphic, but v128b matches
|
|
// the return type of the associated intrinsic.
|
|
def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>;
|
|
|
|
// Load count to block boundary.
|
|
let Defs = [CC] in
|
|
def LCBB : InstRXE<0xE727, (outs GR32:$R1),
|
|
(ins bdxaddr12only:$XBD2, imm32zx4:$M3),
|
|
"lcbb\t$R1, $XBD2, $M3",
|
|
[(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2,
|
|
imm32zx4:$M3))]>;
|
|
|
|
// Load with length. The number of loaded bytes is only known at run time.
|
|
def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>;
|
|
|
|
// Load multiple.
|
|
def VLM : LoadMultipleVRSa<"vlm", 0xE736>;
|
|
|
|
// Load and replicate
|
|
def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8, v128b, 1, 0>;
|
|
def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>;
|
|
def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>;
|
|
def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>;
|
|
def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)),
|
|
(VLREPF bdxaddr12only:$addr)>;
|
|
def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)),
|
|
(VLREPG bdxaddr12only:$addr)>;
|
|
|
|
// Use VLREP to load subvectors. These patterns use "12pair" because
|
|
// LEY and LDY offer full 20-bit displacement fields. It's often better
|
|
// to use those instructions rather than force a 20-bit displacement
|
|
// into a GPR temporary.
|
|
def VL32 : UnaryAliasVRX<load, v32eb, bdxaddr12pair>;
|
|
def VL64 : UnaryAliasVRX<load, v64db, bdxaddr12pair>;
|
|
|
|
// Load logical element and zero.
|
|
def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8, v128b, 1, 0>;
|
|
def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>;
|
|
def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>;
|
|
def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>;
|
|
def : Pat<(v4f32 (z_vllezf32 bdxaddr12only:$addr)),
|
|
(VLLEZF bdxaddr12only:$addr)>;
|
|
def : Pat<(v2f64 (z_vllezf64 bdxaddr12only:$addr)),
|
|
(VLLEZG bdxaddr12only:$addr)>;
|
|
|
|
// Load element.
|
|
def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8, v128b, v128b, 1, imm32zx4>;
|
|
def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>;
|
|
def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>;
|
|
def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>;
|
|
def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index),
|
|
(VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
|
|
def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index),
|
|
(VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
|
|
|
|
// Gather element.
|
|
def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>;
|
|
def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>;
|
|
}
|
|
|
|
// Use replicating loads if we're inserting a single element into an
|
|
// undefined vector. This avoids a false dependency on the previous
|
|
// register contents.
|
|
multiclass ReplicatePeephole<Instruction vlrep, ValueType vectype,
|
|
SDPatternOperator load, ValueType scalartype> {
|
|
def : Pat<(vectype (z_vector_insert
|
|
(undef), (scalartype (load bdxaddr12only:$addr)), 0)),
|
|
(vlrep bdxaddr12only:$addr)>;
|
|
def : Pat<(vectype (scalar_to_vector
|
|
(scalartype (load bdxaddr12only:$addr)))),
|
|
(vlrep bdxaddr12only:$addr)>;
|
|
}
|
|
defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>;
|
|
defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>;
|
|
defm : ReplicatePeephole<VLREPF, v4i32, load, i32>;
|
|
defm : ReplicatePeephole<VLREPG, v2i64, load, i64>;
|
|
defm : ReplicatePeephole<VLREPF, v4f32, load, f32>;
|
|
defm : ReplicatePeephole<VLREPG, v2f64, load, f64>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Stores
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [FeatureVector] in {
|
|
// Store.
|
|
def VST : StoreVRX<"vst", 0xE70E, null_frag, v128any, 16>;
|
|
|
|
// Store with length. The number of stored bytes is only known at run time.
|
|
def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>;
|
|
|
|
// Store multiple.
|
|
def VSTM : StoreMultipleVRSa<"vstm", 0xE73E>;
|
|
|
|
// Store element.
|
|
def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8, v128b, 1, imm32zx4>;
|
|
def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>;
|
|
def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>;
|
|
def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>;
|
|
def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr,
|
|
imm32zx2:$index),
|
|
(VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
|
|
def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr,
|
|
imm32zx1:$index),
|
|
(VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
|
|
|
|
// Use VSTE to store subvectors. These patterns use "12pair" because
|
|
// STEY and STDY offer full 20-bit displacement fields. It's often better
|
|
// to use those instructions rather than force a 20-bit displacement
|
|
// into a GPR temporary.
|
|
def VST32 : StoreAliasVRX<store, v32eb, bdxaddr12pair>;
|
|
def VST64 : StoreAliasVRX<store, v64db, bdxaddr12pair>;
|
|
|
|
// Scatter element.
|
|
def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>;
|
|
def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Selects and permutes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [FeatureVector] in {
|
|
// Merge high.
|
|
def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>;
|
|
def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>;
|
|
def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>;
|
|
def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>;
|
|
def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>;
|
|
def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>;
|
|
|
|
// Merge low.
|
|
def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>;
|
|
def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>;
|
|
def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>;
|
|
def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>;
|
|
def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>;
|
|
def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>;
|
|
|
|
// Permute.
|
|
def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>;
|
|
|
|
// Permute doubleword immediate.
|
|
def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>;
|
|
|
|
// Replicate.
|
|
def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>;
|
|
def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>;
|
|
def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>;
|
|
def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>;
|
|
def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16:$index)),
|
|
(VREPF VR128:$vec, imm32zx16:$index)>;
|
|
def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16:$index)),
|
|
(VREPG VR128:$vec, imm32zx16:$index)>;
|
|
|
|
// Select.
|
|
def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Widening and narrowing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [FeatureVector] in {
|
|
// Pack
|
|
def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>;
|
|
def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>;
|
|
def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>;
|
|
|
|
// Pack saturate.
|
|
defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc,
|
|
v128b, v128h, 1>;
|
|
defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc,
|
|
v128h, v128f, 2>;
|
|
defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc,
|
|
v128f, v128g, 3>;
|
|
|
|
// Pack saturate logical.
|
|
defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc,
|
|
v128b, v128h, 1>;
|
|
defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc,
|
|
v128h, v128f, 2>;
|
|
defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc,
|
|
v128f, v128g, 3>;
|
|
|
|
// Sign-extend to doubleword.
|
|
def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8, v128g, v128g, 0>;
|
|
def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>;
|
|
def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>;
|
|
def : Pat<(z_vsei8_by_parts (v16i8 VR128:$src)), (VSEGB VR128:$src)>;
|
|
def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>;
|
|
def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>;
|
|
|
|
// Unpack high.
|
|
def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>;
|
|
def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>;
|
|
def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>;
|
|
|
|
// Unpack logical high.
|
|
def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>;
|
|
def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>;
|
|
def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>;
|
|
|
|
// Unpack low.
|
|
def VUPLB : UnaryVRRa<"vuplb", 0xE7D6, z_unpack_low, v128h, v128b, 0>;
|
|
def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>;
|
|
def VUPLF : UnaryVRRa<"vuplf", 0xE7D6, z_unpack_low, v128g, v128f, 2>;
|
|
|
|
// Unpack logical low.
|
|
def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>;
|
|
def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>;
|
|
def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instantiating generic operations for specific types.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
multiclass GenericVectorOps<ValueType type, ValueType inttype> {
|
|
let Predicates = [FeatureVector] in {
|
|
def : Pat<(type (load bdxaddr12only:$addr)),
|
|
(VL bdxaddr12only:$addr)>;
|
|
def : Pat<(store (type VR128:$src), bdxaddr12only:$addr),
|
|
(VST VR128:$src, bdxaddr12only:$addr)>;
|
|
def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)),
|
|
(VSEL VR128:$y, VR128:$z, VR128:$x)>;
|
|
def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)),
|
|
(VSEL VR128:$z, VR128:$y, VR128:$x)>;
|
|
}
|
|
}
|
|
|
|
defm : GenericVectorOps<v16i8, v16i8>;
|
|
defm : GenericVectorOps<v8i16, v8i16>;
|
|
defm : GenericVectorOps<v4i32, v4i32>;
|
|
defm : GenericVectorOps<v2i64, v2i64>;
|
|
defm : GenericVectorOps<v4f32, v4i32>;
|
|
defm : GenericVectorOps<v2f64, v2i64>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Integer arithmetic
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [FeatureVector] in {
|
|
// Add.
|
|
def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>;
|
|
def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>;
|
|
def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>;
|
|
def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>;
|
|
def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>;
|
|
|
|
// Add compute carry.
|
|
def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>;
|
|
def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>;
|
|
def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>;
|
|
def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>;
|
|
def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>;
|
|
|
|
// Add with carry.
|
|
def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>;
|
|
|
|
// Add with carry compute carry.
|
|
def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>;
|
|
|
|
// And.
|
|
def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>;
|
|
|
|
// And with complement.
|
|
def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>;
|
|
|
|
// Average.
|
|
def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>;
|
|
def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>;
|
|
def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>;
|
|
def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>;
|
|
|
|
// Average logical.
|
|
def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>;
|
|
def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>;
|
|
def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>;
|
|
def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>;
|
|
|
|
// Checksum.
|
|
def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>;
|
|
|
|
// Count leading zeros.
|
|
def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>;
|
|
def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>;
|
|
def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>;
|
|
def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>;
|
|
|
|
// Count trailing zeros.
|
|
def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>;
|
|
def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>;
|
|
def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>;
|
|
def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>;
|
|
|
|
// Exclusive or.
|
|
def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>;
|
|
|
|
// Galois field multiply sum.
|
|
def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>;
|
|
def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>;
|
|
def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>;
|
|
def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>;
|
|
|
|
// Galois field multiply sum and accumulate.
|
|
def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>;
|
|
def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>;
|
|
def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>;
|
|
def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>;
|
|
|
|
// Load complement.
|
|
def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>;
|
|
def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>;
|
|
def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>;
|
|
def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>;
|
|
|
|
// Load positive.
|
|
def VLPB : UnaryVRRa<"vlpb", 0xE7DF, z_viabs8, v128b, v128b, 0>;
|
|
def VLPH : UnaryVRRa<"vlph", 0xE7DF, z_viabs16, v128h, v128h, 1>;
|
|
def VLPF : UnaryVRRa<"vlpf", 0xE7DF, z_viabs32, v128f, v128f, 2>;
|
|
def VLPG : UnaryVRRa<"vlpg", 0xE7DF, z_viabs64, v128g, v128g, 3>;
|
|
|
|
// Maximum.
|
|
def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>;
|
|
def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>;
|
|
def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>;
|
|
def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>;
|
|
|
|
// Maximum logical.
|
|
def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>;
|
|
def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>;
|
|
def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>;
|
|
def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>;
|
|
|
|
// Minimum.
|
|
def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>;
|
|
def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>;
|
|
def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>;
|
|
def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>;
|
|
|
|
// Minimum logical.
|
|
def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>;
|
|
def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>;
|
|
def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>;
|
|
def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>;
|
|
|
|
// Multiply and add low.
|
|
def VMALB : TernaryVRRd<"vmalb", 0xE7AA, z_muladd, v128b, v128b, 0>;
|
|
def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>;
|
|
def VMALF : TernaryVRRd<"vmalf", 0xE7AA, z_muladd, v128f, v128f, 2>;
|
|
|
|
// Multiply and add high.
|
|
def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>;
|
|
def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>;
|
|
def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>;
|
|
|
|
// Multiply and add logical high.
|
|
def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>;
|
|
def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>;
|
|
def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>;
|
|
|
|
// Multiply and add even.
|
|
def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>;
|
|
def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>;
|
|
def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>;
|
|
|
|
// Multiply and add logical even.
|
|
def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>;
|
|
def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>;
|
|
def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>;
|
|
|
|
// Multiply and add odd.
|
|
def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>;
|
|
def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>;
|
|
def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>;
|
|
|
|
// Multiply and add logical odd.
|
|
def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>;
|
|
def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>;
|
|
def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>;
|
|
|
|
// Multiply high.
|
|
def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>;
|
|
def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>;
|
|
def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>;
|
|
|
|
// Multiply logical high.
|
|
def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>;
|
|
def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>;
|
|
def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>;
|
|
|
|
// Multiply low.
|
|
def VMLB : BinaryVRRc<"vmlb", 0xE7A2, mul, v128b, v128b, 0>;
|
|
def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>;
|
|
def VMLF : BinaryVRRc<"vmlf", 0xE7A2, mul, v128f, v128f, 2>;
|
|
|
|
// Multiply even.
|
|
def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>;
|
|
def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>;
|
|
def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>;
|
|
|
|
// Multiply logical even.
|
|
def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>;
|
|
def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>;
|
|
def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>;
|
|
|
|
// Multiply odd.
|
|
def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>;
|
|
def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>;
|
|
def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>;
|
|
|
|
// Multiply logical odd.
|
|
def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>;
|
|
def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>;
|
|
def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>;
|
|
|
|
// Nor.
|
|
def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>;
|
|
|
|
// Or.
|
|
def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>;
|
|
|
|
// Population count.
|
|
def VPOPCT : BinaryVRRa<"vpopct", 0xE750>;
|
|
def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>;
|
|
|
|
// Element rotate left logical (with vector shift amount).
|
|
def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb,
|
|
v128b, v128b, 0>;
|
|
def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh,
|
|
v128h, v128h, 1>;
|
|
def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf,
|
|
v128f, v128f, 2>;
|
|
def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg,
|
|
v128g, v128g, 3>;
|
|
|
|
// Element rotate left logical (with scalar shift amount).
|
|
def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>;
|
|
def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>;
|
|
def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>;
|
|
def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>;
|
|
|
|
// Element rotate and insert under mask.
|
|
def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>;
|
|
def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>;
|
|
def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>;
|
|
def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>;
|
|
|
|
// Element shift left (with vector shift amount).
|
|
def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>;
|
|
def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>;
|
|
def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>;
|
|
def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>;
|
|
|
|
// Element shift left (with scalar shift amount).
|
|
def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>;
|
|
def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>;
|
|
def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>;
|
|
def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>;
|
|
|
|
// Element shift right arithmetic (with vector shift amount).
|
|
def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>;
|
|
def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>;
|
|
def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>;
|
|
def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>;
|
|
|
|
// Element shift right arithmetic (with scalar shift amount).
|
|
def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>;
|
|
def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>;
|
|
def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>;
|
|
def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>;
|
|
|
|
// Element shift right logical (with vector shift amount).
|
|
def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>;
|
|
def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>;
|
|
def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>;
|
|
def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>;
|
|
|
|
// Element shift right logical (with scalar shift amount).
|
|
def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>;
|
|
def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>;
|
|
def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>;
|
|
def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>;
|
|
|
|
// Shift left.
|
|
def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>;
|
|
|
|
// Shift left by byte.
|
|
def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>;
|
|
|
|
// Shift left double by byte.
|
|
def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>;
|
|
def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8:$z),
|
|
(VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>;
|
|
|
|
// Shift right arithmetic.
|
|
def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>;
|
|
|
|
// Shift right arithmetic by byte.
|
|
def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>;
|
|
|
|
// Shift right logical.
|
|
def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>;
|
|
|
|
// Shift right logical by byte.
|
|
def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>;
|
|
|
|
// Subtract.
|
|
def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>;
|
|
def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>;
|
|
def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>;
|
|
def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>;
|
|
def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>;
|
|
|
|
// Subtract compute borrow indication.
|
|
def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>;
|
|
def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>;
|
|
def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>;
|
|
def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>;
|
|
def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>;
|
|
|
|
// Subtract with borrow indication.
|
|
def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>;
|
|
|
|
// Subtract with borrow compute borrow indication.
|
|
def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq,
|
|
v128q, v128q, 4>;
|
|
|
|
// Sum across doubleword.
|
|
def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>;
|
|
def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>;
|
|
|
|
// Sum across quadword.
|
|
def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>;
|
|
def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>;
|
|
|
|
// Sum across word.
|
|
def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>;
|
|
def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>;
|
|
}
|
|
|
|
// Instantiate the bitwise ops for type TYPE.
|
|
multiclass BitwiseVectorOps<ValueType type> {
|
|
let Predicates = [FeatureVector] in {
|
|
def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>;
|
|
def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))),
|
|
(VNC VR128:$x, VR128:$y)>;
|
|
def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>;
|
|
def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>;
|
|
def : Pat<(type (or (and VR128:$x, VR128:$z),
|
|
(and VR128:$y, (z_vnot VR128:$z)))),
|
|
(VSEL VR128:$x, VR128:$y, VR128:$z)>;
|
|
def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))),
|
|
(VNO VR128:$x, VR128:$y)>;
|
|
def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>;
|
|
}
|
|
}
|
|
|
|
defm : BitwiseVectorOps<v16i8>;
|
|
defm : BitwiseVectorOps<v8i16>;
|
|
defm : BitwiseVectorOps<v4i32>;
|
|
defm : BitwiseVectorOps<v2i64>;
|
|
|
|
// Instantiate additional patterns for absolute-related expressions on
|
|
// type TYPE. LC is the negate instruction for TYPE and LP is the absolute
|
|
// instruction.
|
|
multiclass IntegerAbsoluteVectorOps<ValueType type, Instruction lc,
|
|
Instruction lp, int shift> {
|
|
let Predicates = [FeatureVector] in {
|
|
def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)),
|
|
(z_vneg VR128:$x), VR128:$x)),
|
|
(lc (lp VR128:$x))>;
|
|
def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))),
|
|
VR128:$x, (z_vneg VR128:$x))),
|
|
(lc (lp VR128:$x))>;
|
|
def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)),
|
|
VR128:$x, (z_vneg VR128:$x))),
|
|
(lc (lp VR128:$x))>;
|
|
def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))),
|
|
(z_vneg VR128:$x), VR128:$x)),
|
|
(lc (lp VR128:$x))>;
|
|
def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
|
|
(z_vneg VR128:$x)),
|
|
(and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
|
|
VR128:$x))),
|
|
(lp VR128:$x)>;
|
|
def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
|
|
VR128:$x),
|
|
(and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
|
|
(z_vneg VR128:$x)))),
|
|
(lc (lp VR128:$x))>;
|
|
}
|
|
}
|
|
|
|
defm : IntegerAbsoluteVectorOps<v16i8, VLCB, VLPB, 7>;
|
|
defm : IntegerAbsoluteVectorOps<v8i16, VLCH, VLPH, 15>;
|
|
defm : IntegerAbsoluteVectorOps<v4i32, VLCF, VLPF, 31>;
|
|
defm : IntegerAbsoluteVectorOps<v2i64, VLCG, VLPG, 63>;
|
|
|
|
// Instantiate minimum- and maximum-related patterns for TYPE. CMPH is the
|
|
// signed or unsigned "set if greater than" comparison instruction and
|
|
// MIN and MAX are the associated minimum and maximum instructions.
|
|
multiclass IntegerMinMaxVectorOps<ValueType type, SDPatternOperator cmph,
|
|
Instruction min, Instruction max> {
|
|
let Predicates = [FeatureVector] in {
|
|
def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)),
|
|
(max VR128:$x, VR128:$y)>;
|
|
def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)),
|
|
(min VR128:$x, VR128:$y)>;
|
|
def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
|
|
VR128:$x, VR128:$y)),
|
|
(min VR128:$x, VR128:$y)>;
|
|
def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
|
|
VR128:$y, VR128:$x)),
|
|
(max VR128:$x, VR128:$y)>;
|
|
}
|
|
}
|
|
|
|
// Signed min/max.
|
|
defm : IntegerMinMaxVectorOps<v16i8, z_vicmph, VMNB, VMXB>;
|
|
defm : IntegerMinMaxVectorOps<v8i16, z_vicmph, VMNH, VMXH>;
|
|
defm : IntegerMinMaxVectorOps<v4i32, z_vicmph, VMNF, VMXF>;
|
|
defm : IntegerMinMaxVectorOps<v2i64, z_vicmph, VMNG, VMXG>;
|
|
|
|
// Unsigned min/max.
|
|
defm : IntegerMinMaxVectorOps<v16i8, z_vicmphl, VMNLB, VMXLB>;
|
|
defm : IntegerMinMaxVectorOps<v8i16, z_vicmphl, VMNLH, VMXLH>;
|
|
defm : IntegerMinMaxVectorOps<v4i32, z_vicmphl, VMNLF, VMXLF>;
|
|
defm : IntegerMinMaxVectorOps<v2i64, z_vicmphl, VMNLG, VMXLG>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Integer comparison
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [FeatureVector] in {
|
|
// Element compare.
|
|
let Defs = [CC] in {
|
|
def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>;
|
|
def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>;
|
|
def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>;
|
|
def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>;
|
|
}
|
|
|
|
// Element compare logical.
|
|
let Defs = [CC] in {
|
|
def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>;
|
|
def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>;
|
|
def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>;
|
|
def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>;
|
|
}
|
|
|
|
// Compare equal.
|
|
defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes,
|
|
v128b, v128b, 0>;
|
|
defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes,
|
|
v128h, v128h, 1>;
|
|
defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes,
|
|
v128f, v128f, 2>;
|
|
defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes,
|
|
v128g, v128g, 3>;
|
|
|
|
// Compare high.
|
|
defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs,
|
|
v128b, v128b, 0>;
|
|
defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs,
|
|
v128h, v128h, 1>;
|
|
defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs,
|
|
v128f, v128f, 2>;
|
|
defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs,
|
|
v128g, v128g, 3>;
|
|
|
|
// Compare high logical.
|
|
defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls,
|
|
v128b, v128b, 0>;
|
|
defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls,
|
|
v128h, v128h, 1>;
|
|
defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls,
|
|
v128f, v128f, 2>;
|
|
defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls,
|
|
v128g, v128g, 3>;
|
|
|
|
// Test under mask.
|
|
let Defs = [CC] in
|
|
def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating-point arithmetic
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// See comments in SystemZInstrFP.td for the suppression flags and
|
|
// rounding modes.
|
|
multiclass VectorRounding<Instruction insn, TypedReg tr> {
|
|
def : FPConversion<insn, frint, tr, tr, 0, 0>;
|
|
def : FPConversion<insn, fnearbyint, tr, tr, 4, 0>;
|
|
def : FPConversion<insn, ffloor, tr, tr, 4, 7>;
|
|
def : FPConversion<insn, fceil, tr, tr, 4, 6>;
|
|
def : FPConversion<insn, ftrunc, tr, tr, 4, 5>;
|
|
def : FPConversion<insn, frnd, tr, tr, 4, 1>;
|
|
}
|
|
|
|
let Predicates = [FeatureVector] in {
|
|
// Add.
|
|
def VFADB : BinaryVRRc<"vfadb", 0xE7E3, fadd, v128db, v128db, 3, 0>;
|
|
def WFADB : BinaryVRRc<"wfadb", 0xE7E3, fadd, v64db, v64db, 3, 8>;
|
|
|
|
// Convert from fixed 64-bit.
|
|
def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>;
|
|
def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>;
|
|
def : FPConversion<VCDGB, sint_to_fp, v128db, v128g, 0, 0>;
|
|
|
|
// Convert from logical 64-bit.
|
|
def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>;
|
|
def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>;
|
|
def : FPConversion<VCDLGB, uint_to_fp, v128db, v128g, 0, 0>;
|
|
|
|
// Convert to fixed 64-bit.
|
|
def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>;
|
|
def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>;
|
|
// Rounding mode should agree with SystemZInstrFP.td.
|
|
def : FPConversion<VCGDB, fp_to_sint, v128g, v128db, 0, 5>;
|
|
|
|
// Convert to logical 64-bit.
|
|
def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>;
|
|
def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>;
|
|
// Rounding mode should agree with SystemZInstrFP.td.
|
|
def : FPConversion<VCLGDB, fp_to_uint, v128g, v128db, 0, 5>;
|
|
|
|
// Divide.
|
|
def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, fdiv, v128db, v128db, 3, 0>;
|
|
def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, fdiv, v64db, v64db, 3, 8>;
|
|
|
|
// Load FP integer.
|
|
def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>;
|
|
def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>;
|
|
defm : VectorRounding<VFIDB, v128db>;
|
|
defm : VectorRounding<WFIDB, v64db>;
|
|
|
|
// Load lengthened.
|
|
def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_vextend, v128db, v128eb, 2, 0>;
|
|
def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, fextend, v64db, v32eb, 2, 8>;
|
|
|
|
// Load rounded,
|
|
def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128eb, v128db, 3, 0>;
|
|
def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32eb, v64db, 3, 8>;
|
|
def : Pat<(v4f32 (z_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>;
|
|
def : FPConversion<WLEDB, fround, v32eb, v64db, 0, 0>;
|
|
|
|
// Multiply.
|
|
def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, fmul, v128db, v128db, 3, 0>;
|
|
def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, fmul, v64db, v64db, 3, 8>;
|
|
|
|
// Multiply and add.
|
|
def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, fma, v128db, v128db, 0, 3>;
|
|
def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, fma, v64db, v64db, 8, 3>;
|
|
|
|
// Multiply and subtract.
|
|
def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, fms, v128db, v128db, 0, 3>;
|
|
def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, fms, v64db, v64db, 8, 3>;
|
|
|
|
// Load complement,
|
|
def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>;
|
|
def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>;
|
|
|
|
// Load negative.
|
|
def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>;
|
|
def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>;
|
|
|
|
// Load positive.
|
|
def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>;
|
|
def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>;
|
|
|
|
// Square root.
|
|
def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, fsqrt, v128db, v128db, 3, 0>;
|
|
def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, fsqrt, v64db, v64db, 3, 8>;
|
|
|
|
// Subtract.
|
|
def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, fsub, v128db, v128db, 3, 0>;
|
|
def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, fsub, v64db, v64db, 3, 8>;
|
|
|
|
// Test data class immediate.
|
|
let Defs = [CC] in {
|
|
def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>;
|
|
def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating-point comparison
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [FeatureVector] in {
|
|
// Compare scalar.
|
|
let Defs = [CC] in
|
|
def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_fcmp, v64db, 3>;
|
|
|
|
// Compare and signal scalar.
|
|
let Defs = [CC] in
|
|
def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, null_frag, v64db, 3>;
|
|
|
|
// Compare equal.
|
|
defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_vfcmpe, z_vfcmpes,
|
|
v128g, v128db, 3, 0>;
|
|
defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag,
|
|
v64g, v64db, 3, 8>;
|
|
|
|
// Compare high.
|
|
defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_vfcmph, z_vfcmphs,
|
|
v128g, v128db, 3, 0>;
|
|
defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag,
|
|
v64g, v64db, 3, 8>;
|
|
|
|
// Compare high or equal.
|
|
defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_vfcmphe, z_vfcmphes,
|
|
v128g, v128db, 3, 0>;
|
|
defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag,
|
|
v64g, v64db, 3, 8>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conversions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
|
|
def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
|
|
|
|
def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
|
|
def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
|
|
|
|
def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
|
|
def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
|
|
|
|
def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
|
|
def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
|
|
|
|
def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
|
|
def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
|
|
|
|
def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
|
|
def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Replicating scalars
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Define patterns for replicating a scalar GR32 into a vector of type TYPE.
|
|
// INDEX is 8 minus the element size in bytes.
|
|
class VectorReplicateScalar<ValueType type, Instruction insn, bits<16> index>
|
|
: Pat<(type (z_replicate GR32:$scalar)),
|
|
(insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>;
|
|
|
|
def : VectorReplicateScalar<v16i8, VREPB, 7>;
|
|
def : VectorReplicateScalar<v8i16, VREPH, 3>;
|
|
def : VectorReplicateScalar<v4i32, VREPF, 1>;
|
|
|
|
// i64 replications are just a single isntruction.
|
|
def : Pat<(v2i64 (z_replicate GR64:$scalar)),
|
|
(VLVGP GR64:$scalar, GR64:$scalar)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating-point insertion and extraction
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Moving 32-bit values between GPRs and FPRs can be done using VLVGF
|
|
// and VLGVF.
|
|
def LEFR : UnaryAliasVRS<VR32, GR32>;
|
|
def LFER : UnaryAliasVRS<GR64, VR32>;
|
|
def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>;
|
|
def : Pat<(i32 (bitconvert (f32 VR32:$src))),
|
|
(EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>;
|
|
|
|
// Floating-point values are stored in element 0 of the corresponding
|
|
// vector register. Scalar to vector conversion is just a subreg and
|
|
// scalar replication can just replicate element 0 of the vector register.
|
|
multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls,
|
|
SubRegIndex subreg> {
|
|
def : Pat<(vt (scalar_to_vector cls:$scalar)),
|
|
(INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>;
|
|
def : Pat<(vt (z_replicate cls:$scalar)),
|
|
(vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar,
|
|
subreg), 0)>;
|
|
}
|
|
defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_r32>;
|
|
defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_r64>;
|
|
|
|
// Match v2f64 insertions. The AddedComplexity counters the 3 added by
|
|
// TableGen for the base register operand in VLVG-based integer insertions
|
|
// and ensures that this version is strictly better.
|
|
let AddedComplexity = 4 in {
|
|
def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0),
|
|
(VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
|
|
subreg_r64), VR128:$vec, 1)>;
|
|
def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1),
|
|
(VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
|
|
subreg_r64), 0)>;
|
|
}
|
|
|
|
// We extract floating-point element X by replicating (for elements other
|
|
// than 0) and then taking a high subreg. The AddedComplexity counters the
|
|
// 3 added by TableGen for the base register operand in VLGV-based integer
|
|
// extractions and ensures that this version is strictly better.
|
|
let AddedComplexity = 4 in {
|
|
def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)),
|
|
(EXTRACT_SUBREG VR128:$vec, subreg_r32)>;
|
|
def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)),
|
|
(EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_r32)>;
|
|
|
|
def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)),
|
|
(EXTRACT_SUBREG VR128:$vec, subreg_r64)>;
|
|
def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)),
|
|
(EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_r64)>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// String instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Predicates = [FeatureVector] in {
|
|
defm VFAEB : TernaryVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb, z_vfae_cc,
|
|
v128b, v128b, 0, 0>;
|
|
defm VFAEH : TernaryVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh, z_vfae_cc,
|
|
v128h, v128h, 1, 0>;
|
|
defm VFAEF : TernaryVRRbSPair<"vfaef", 0xE782, int_s390_vfaef, z_vfae_cc,
|
|
v128f, v128f, 2, 0>;
|
|
defm VFAEZB : TernaryVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb, z_vfaez_cc,
|
|
v128b, v128b, 0, 2>;
|
|
defm VFAEZH : TernaryVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh, z_vfaez_cc,
|
|
v128h, v128h, 1, 2>;
|
|
defm VFAEZF : TernaryVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf, z_vfaez_cc,
|
|
v128f, v128f, 2, 2>;
|
|
|
|
defm VFEEB : BinaryVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb, z_vfee_cc,
|
|
v128b, v128b, 0, 0, 1>;
|
|
defm VFEEH : BinaryVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh, z_vfee_cc,
|
|
v128h, v128h, 1, 0, 1>;
|
|
defm VFEEF : BinaryVRRbSPair<"vfeef", 0xE780, int_s390_vfeef, z_vfee_cc,
|
|
v128f, v128f, 2, 0, 1>;
|
|
defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb, z_vfeez_cc,
|
|
v128b, v128b, 0, 2, 3>;
|
|
defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh, z_vfeez_cc,
|
|
v128h, v128h, 1, 2, 3>;
|
|
defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf, z_vfeez_cc,
|
|
v128f, v128f, 2, 2, 3>;
|
|
|
|
defm VFENEB : BinaryVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb, z_vfene_cc,
|
|
v128b, v128b, 0, 0, 1>;
|
|
defm VFENEH : BinaryVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh, z_vfene_cc,
|
|
v128h, v128h, 1, 0, 1>;
|
|
defm VFENEF : BinaryVRRbSPair<"vfenef", 0xE781, int_s390_vfenef, z_vfene_cc,
|
|
v128f, v128f, 2, 0, 1>;
|
|
defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb,
|
|
z_vfenez_cc, v128b, v128b, 0, 2, 3>;
|
|
defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh,
|
|
z_vfenez_cc, v128h, v128h, 1, 2, 3>;
|
|
defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf,
|
|
z_vfenez_cc, v128f, v128f, 2, 2, 3>;
|
|
|
|
defm VISTRB : UnaryVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb, z_vistr_cc,
|
|
v128b, v128b, 0>;
|
|
defm VISTRH : UnaryVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh, z_vistr_cc,
|
|
v128h, v128h, 1>;
|
|
defm VISTRF : UnaryVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf, z_vistr_cc,
|
|
v128f, v128f, 2>;
|
|
|
|
defm VSTRCB : QuaternaryVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb,
|
|
z_vstrc_cc, v128b, v128b, 0, 0>;
|
|
defm VSTRCH : QuaternaryVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch,
|
|
z_vstrc_cc, v128h, v128h, 1, 0>;
|
|
defm VSTRCF : QuaternaryVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf,
|
|
z_vstrc_cc, v128f, v128f, 2, 0>;
|
|
defm VSTRCZB : QuaternaryVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb,
|
|
z_vstrcz_cc, v128b, v128b, 0, 2>;
|
|
defm VSTRCZH : QuaternaryVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh,
|
|
z_vstrcz_cc, v128h, v128h, 1, 2>;
|
|
defm VSTRCZF : QuaternaryVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf,
|
|
z_vstrcz_cc, v128f, v128f, 2, 2>;
|
|
}
|