forked from OSchip/llvm-project
463 lines
29 KiB
C++
463 lines
29 KiB
C++
//===-- X86DisassemblerDecoderCommon.h - Disassembler decoder ---*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is part of the X86 Disassembler.
|
|
// It contains common definitions used by both the disassembler and the table
|
|
// generator.
|
|
// Documentation for the disassembler can be found in X86Disassembler.h.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODERCOMMON_H
|
|
#define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODERCOMMON_H
|
|
|
|
#include "llvm/Support/DataTypes.h"
|
|
|
|
namespace llvm {
|
|
namespace X86Disassembler {
|
|
|
|
#define INSTRUCTIONS_SYM x86DisassemblerInstrSpecifiers
|
|
#define CONTEXTS_SYM x86DisassemblerContexts
|
|
#define ONEBYTE_SYM x86DisassemblerOneByteOpcodes
|
|
#define TWOBYTE_SYM x86DisassemblerTwoByteOpcodes
|
|
#define THREEBYTE38_SYM x86DisassemblerThreeByte38Opcodes
|
|
#define THREEBYTE3A_SYM x86DisassemblerThreeByte3AOpcodes
|
|
#define XOP8_MAP_SYM x86DisassemblerXOP8Opcodes
|
|
#define XOP9_MAP_SYM x86DisassemblerXOP9Opcodes
|
|
#define XOPA_MAP_SYM x86DisassemblerXOPAOpcodes
|
|
|
|
#define INSTRUCTIONS_STR "x86DisassemblerInstrSpecifiers"
|
|
#define CONTEXTS_STR "x86DisassemblerContexts"
|
|
#define ONEBYTE_STR "x86DisassemblerOneByteOpcodes"
|
|
#define TWOBYTE_STR "x86DisassemblerTwoByteOpcodes"
|
|
#define THREEBYTE38_STR "x86DisassemblerThreeByte38Opcodes"
|
|
#define THREEBYTE3A_STR "x86DisassemblerThreeByte3AOpcodes"
|
|
#define XOP8_MAP_STR "x86DisassemblerXOP8Opcodes"
|
|
#define XOP9_MAP_STR "x86DisassemblerXOP9Opcodes"
|
|
#define XOPA_MAP_STR "x86DisassemblerXOPAOpcodes"
|
|
|
|
// Attributes of an instruction that must be known before the opcode can be
|
|
// processed correctly. Most of these indicate the presence of particular
|
|
// prefixes, but ATTR_64BIT is simply an attribute of the decoding context.
|
|
#define ATTRIBUTE_BITS \
|
|
ENUM_ENTRY(ATTR_NONE, 0x00) \
|
|
ENUM_ENTRY(ATTR_64BIT, (0x1 << 0)) \
|
|
ENUM_ENTRY(ATTR_XS, (0x1 << 1)) \
|
|
ENUM_ENTRY(ATTR_XD, (0x1 << 2)) \
|
|
ENUM_ENTRY(ATTR_REXW, (0x1 << 3)) \
|
|
ENUM_ENTRY(ATTR_OPSIZE, (0x1 << 4)) \
|
|
ENUM_ENTRY(ATTR_ADSIZE, (0x1 << 5)) \
|
|
ENUM_ENTRY(ATTR_VEX, (0x1 << 6)) \
|
|
ENUM_ENTRY(ATTR_VEXL, (0x1 << 7)) \
|
|
ENUM_ENTRY(ATTR_EVEX, (0x1 << 8)) \
|
|
ENUM_ENTRY(ATTR_EVEXL, (0x1 << 9)) \
|
|
ENUM_ENTRY(ATTR_EVEXL2, (0x1 << 10)) \
|
|
ENUM_ENTRY(ATTR_EVEXK, (0x1 << 11)) \
|
|
ENUM_ENTRY(ATTR_EVEXKZ, (0x1 << 12)) \
|
|
ENUM_ENTRY(ATTR_EVEXB, (0x1 << 13))
|
|
|
|
#define ENUM_ENTRY(n, v) n = v,
|
|
enum attributeBits {
|
|
ATTRIBUTE_BITS
|
|
ATTR_max
|
|
};
|
|
#undef ENUM_ENTRY
|
|
|
|
// Combinations of the above attributes that are relevant to instruction
|
|
// decode. Although other combinations are possible, they can be reduced to
|
|
// these without affecting the ultimately decoded instruction.
|
|
|
|
// Class name Rank Rationale for rank assignment
|
|
#define INSTRUCTION_CONTEXTS \
|
|
ENUM_ENTRY(IC, 0, "says nothing about the instruction") \
|
|
ENUM_ENTRY(IC_64BIT, 1, "says the instruction applies in " \
|
|
"64-bit mode but no more") \
|
|
ENUM_ENTRY(IC_OPSIZE, 3, "requires an OPSIZE prefix, so " \
|
|
"operands change width") \
|
|
ENUM_ENTRY(IC_ADSIZE, 3, "requires an ADSIZE prefix, so " \
|
|
"operands change width") \
|
|
ENUM_ENTRY(IC_OPSIZE_ADSIZE, 4, "requires ADSIZE and OPSIZE prefixes") \
|
|
ENUM_ENTRY(IC_XD, 2, "may say something about the opcode " \
|
|
"but not the operands") \
|
|
ENUM_ENTRY(IC_XS, 2, "may say something about the opcode " \
|
|
"but not the operands") \
|
|
ENUM_ENTRY(IC_XD_OPSIZE, 3, "requires an OPSIZE prefix, so " \
|
|
"operands change width") \
|
|
ENUM_ENTRY(IC_XS_OPSIZE, 3, "requires an OPSIZE prefix, so " \
|
|
"operands change width") \
|
|
ENUM_ENTRY(IC_64BIT_REXW, 5, "requires a REX.W prefix, so operands "\
|
|
"change width; overrides IC_OPSIZE") \
|
|
ENUM_ENTRY(IC_64BIT_REXW_ADSIZE, 6, "requires a REX.W prefix and 0x67 " \
|
|
"prefix") \
|
|
ENUM_ENTRY(IC_64BIT_OPSIZE, 3, "Just as meaningful as IC_OPSIZE") \
|
|
ENUM_ENTRY(IC_64BIT_ADSIZE, 3, "Just as meaningful as IC_ADSIZE") \
|
|
ENUM_ENTRY(IC_64BIT_OPSIZE_ADSIZE, 4, "Just as meaningful as IC_OPSIZE/" \
|
|
"IC_ADSIZE") \
|
|
ENUM_ENTRY(IC_64BIT_XD, 6, "XD instructions are SSE; REX.W is " \
|
|
"secondary") \
|
|
ENUM_ENTRY(IC_64BIT_XS, 6, "Just as meaningful as IC_64BIT_XD") \
|
|
ENUM_ENTRY(IC_64BIT_XD_OPSIZE, 3, "Just as meaningful as IC_XD_OPSIZE") \
|
|
ENUM_ENTRY(IC_64BIT_XS_OPSIZE, 3, "Just as meaningful as IC_XS_OPSIZE") \
|
|
ENUM_ENTRY(IC_64BIT_REXW_XS, 7, "OPSIZE could mean a different " \
|
|
"opcode") \
|
|
ENUM_ENTRY(IC_64BIT_REXW_XD, 7, "Just as meaningful as " \
|
|
"IC_64BIT_REXW_XS") \
|
|
ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 8, "The Dynamic Duo! Prefer over all " \
|
|
"else because this changes most " \
|
|
"operands' meaning") \
|
|
ENUM_ENTRY(IC_VEX, 1, "requires a VEX prefix") \
|
|
ENUM_ENTRY(IC_VEX_XS, 2, "requires VEX and the XS prefix") \
|
|
ENUM_ENTRY(IC_VEX_XD, 2, "requires VEX and the XD prefix") \
|
|
ENUM_ENTRY(IC_VEX_OPSIZE, 2, "requires VEX and the OpSize prefix") \
|
|
ENUM_ENTRY(IC_VEX_W, 3, "requires VEX and the W prefix") \
|
|
ENUM_ENTRY(IC_VEX_W_XS, 4, "requires VEX, W, and XS prefix") \
|
|
ENUM_ENTRY(IC_VEX_W_XD, 4, "requires VEX, W, and XD prefix") \
|
|
ENUM_ENTRY(IC_VEX_W_OPSIZE, 4, "requires VEX, W, and OpSize") \
|
|
ENUM_ENTRY(IC_VEX_L, 3, "requires VEX and the L prefix") \
|
|
ENUM_ENTRY(IC_VEX_L_XS, 4, "requires VEX and the L and XS prefix")\
|
|
ENUM_ENTRY(IC_VEX_L_XD, 4, "requires VEX and the L and XD prefix")\
|
|
ENUM_ENTRY(IC_VEX_L_OPSIZE, 4, "requires VEX, L, and OpSize") \
|
|
ENUM_ENTRY(IC_VEX_L_W, 4, "requires VEX, L and W") \
|
|
ENUM_ENTRY(IC_VEX_L_W_XS, 5, "requires VEX, L, W and XS prefix") \
|
|
ENUM_ENTRY(IC_VEX_L_W_XD, 5, "requires VEX, L, W and XD prefix") \
|
|
ENUM_ENTRY(IC_VEX_L_W_OPSIZE, 5, "requires VEX, L, W and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX, 1, "requires an EVEX prefix") \
|
|
ENUM_ENTRY(IC_EVEX_XS, 2, "requires EVEX and the XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_XD, 2, "requires EVEX and the XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_OPSIZE, 2, "requires EVEX and the OpSize prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W, 3, "requires EVEX and the W prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_XS, 4, "requires EVEX, W, and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_XD, 4, "requires EVEX, W, and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_OPSIZE, 4, "requires EVEX, W, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L, 3, "requires EVEX and the L prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_XS, 4, "requires EVEX and the L and XS prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L_XD, 4, "requires EVEX and the L and XD prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L_OPSIZE, 4, "requires EVEX, L, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L_W, 3, "requires EVEX, L and W") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_XS, 4, "requires EVEX, L, W and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_XD, 4, "requires EVEX, L, W and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE, 4, "requires EVEX, L, W and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L2, 3, "requires EVEX and the L2 prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_XS, 4, "requires EVEX and the L2 and XS prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L2_XD, 4, "requires EVEX and the L2 and XD prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L2_OPSIZE, 4, "requires EVEX, L2, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W, 3, "requires EVEX, L2 and W") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_XS, 4, "requires EVEX, L2, W and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_XD, 4, "requires EVEX, L2, W and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE, 4, "requires EVEX, L2, W and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_K, 1, "requires an EVEX_K prefix") \
|
|
ENUM_ENTRY(IC_EVEX_XS_K, 2, "requires EVEX_K and the XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_XD_K, 2, "requires EVEX_K and the XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_OPSIZE_K, 2, "requires EVEX_K and the OpSize prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_K, 3, "requires EVEX_K and the W prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_XS_K, 4, "requires EVEX_K, W, and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_XD_K, 4, "requires EVEX_K, W, and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_OPSIZE_K, 4, "requires EVEX_K, W, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L_K, 3, "requires EVEX_K and the L prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_XS_K, 4, "requires EVEX_K and the L and XS prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L_XD_K, 4, "requires EVEX_K and the L and XD prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L_OPSIZE_K, 4, "requires EVEX_K, L, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_K, 3, "requires EVEX_K, L and W") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_XS_K, 4, "requires EVEX_K, L, W and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_XD_K, 4, "requires EVEX_K, L, W and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K, 4, "requires EVEX_K, L, W and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L2_K, 3, "requires EVEX_K and the L2 prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_XS_K, 4, "requires EVEX_K and the L2 and XS prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L2_XD_K, 4, "requires EVEX_K and the L2 and XD prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K, 4, "requires EVEX_K, L2, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_K, 3, "requires EVEX_K, L2 and W") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_XS_K, 4, "requires EVEX_K, L2, W and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_XD_K, 4, "requires EVEX_K, L2, W and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K, 4, "requires EVEX_K, L2, W and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_B, 1, "requires an EVEX_B prefix") \
|
|
ENUM_ENTRY(IC_EVEX_XS_B, 2, "requires EVEX_B and the XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_XD_B, 2, "requires EVEX_B and the XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_OPSIZE_B, 2, "requires EVEX_B and the OpSize prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_B, 3, "requires EVEX_B and the W prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_XS_B, 4, "requires EVEX_B, W, and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_XD_B, 4, "requires EVEX_B, W, and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_OPSIZE_B, 4, "requires EVEX_B, W, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L_B, 3, "requires EVEX_B and the L prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_XS_B, 4, "requires EVEX_B and the L and XS prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L_XD_B, 4, "requires EVEX_B and the L and XD prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L_OPSIZE_B, 4, "requires EVEX_B, L, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_B, 3, "requires EVEX_B, L and W") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_XS_B, 4, "requires EVEX_B, L, W and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_XD_B, 4, "requires EVEX_B, L, W and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_B, 4, "requires EVEX_B, L, W and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L2_B, 3, "requires EVEX_B and the L2 prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_XS_B, 4, "requires EVEX_B and the L2 and XS prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L2_XD_B, 4, "requires EVEX_B and the L2 and XD prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L2_OPSIZE_B, 4, "requires EVEX_B, L2, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_B, 3, "requires EVEX_B, L2 and W") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_XS_B, 4, "requires EVEX_B, L2, W and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_XD_B, 4, "requires EVEX_B, L2, W and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_B, 4, "requires EVEX_B, L2, W and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_K_B, 1, "requires EVEX_B and EVEX_K prefix") \
|
|
ENUM_ENTRY(IC_EVEX_XS_K_B, 2, "requires EVEX_B, EVEX_K and the XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_XD_K_B, 2, "requires EVEX_B, EVEX_K and the XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_OPSIZE_K_B, 2, "requires EVEX_B, EVEX_K and the OpSize prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_K_B, 3, "requires EVEX_B, EVEX_K and the W prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, W, and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, W, and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, W, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L_K_B, 3, "requires EVEX_B, EVEX_K and the L prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L and XS prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L and XD prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_K_B, 3, "requires EVEX_B, EVEX_K, L and W") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K_B,4, "requires EVEX_B, EVEX_K, L, W and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L2_K_B, 3, "requires EVEX_B, EVEX_K and the L2 prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XS prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L2_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XD prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L2, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_K_B, 3, "requires EVEX_B, EVEX_K, L2 and W") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K_B,4, "requires EVEX_B, EVEX_K, L2, W and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_KZ_B, 1, "requires EVEX_B and EVEX_KZ prefix") \
|
|
ENUM_ENTRY(IC_EVEX_XS_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_XD_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_OPSIZE_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the OpSize prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the W prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XS prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XD prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L and W") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L2_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L2 prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XS prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L2_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XD prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L2 and W") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_KZ, 1, "requires an EVEX_KZ prefix") \
|
|
ENUM_ENTRY(IC_EVEX_XS_KZ, 2, "requires EVEX_KZ and the XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_XD_KZ, 2, "requires EVEX_KZ and the XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_OPSIZE_KZ, 2, "requires EVEX_KZ and the OpSize prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_KZ, 3, "requires EVEX_KZ and the W prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_XS_KZ, 4, "requires EVEX_KZ, W, and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_XD_KZ, 4, "requires EVEX_KZ, W, and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ, 4, "requires EVEX_KZ, W, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L_KZ, 3, "requires EVEX_KZ and the L prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_XS_KZ, 4, "requires EVEX_KZ and the L and XS prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L_XD_KZ, 4, "requires EVEX_KZ and the L and XD prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ, 4, "requires EVEX_KZ, L, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_KZ, 3, "requires EVEX_KZ, L and W") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_XS_KZ, 4, "requires EVEX_KZ, L, W and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_XD_KZ, 4, "requires EVEX_KZ, L, W and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L, W and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L2_KZ, 3, "requires EVEX_KZ and the L2 prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_XS_KZ, 4, "requires EVEX_KZ and the L2 and XS prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L2_XD_KZ, 4, "requires EVEX_KZ and the L2 and XD prefix")\
|
|
ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, and OpSize") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_KZ, 3, "requires EVEX_KZ, L2 and W") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ, 4, "requires EVEX_KZ, L2, W and XS prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ, 4, "requires EVEX_KZ, L2, W and XD prefix") \
|
|
ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, W and OpSize")
|
|
|
|
#define ENUM_ENTRY(n, r, d) n,
|
|
enum InstructionContext {
|
|
INSTRUCTION_CONTEXTS
|
|
IC_max
|
|
};
|
|
#undef ENUM_ENTRY
|
|
|
|
// Opcode types, which determine which decode table to use, both in the Intel
|
|
// manual and also for the decoder.
|
|
enum OpcodeType {
|
|
ONEBYTE = 0,
|
|
TWOBYTE = 1,
|
|
THREEBYTE_38 = 2,
|
|
THREEBYTE_3A = 3,
|
|
XOP8_MAP = 4,
|
|
XOP9_MAP = 5,
|
|
XOPA_MAP = 6
|
|
};
|
|
|
|
// The following structs are used for the hierarchical decode table. After
|
|
// determining the instruction's class (i.e., which IC_* constant applies to
|
|
// it), the decoder reads the opcode. Some instructions require specific
|
|
// values of the ModR/M byte, so the ModR/M byte indexes into the final table.
|
|
//
|
|
// If a ModR/M byte is not required, "required" is left unset, and the values
|
|
// for each instructionID are identical.
|
|
typedef uint16_t InstrUID;
|
|
|
|
// ModRMDecisionType - describes the type of ModR/M decision, allowing the
|
|
// consumer to determine the number of entries in it.
|
|
//
|
|
// MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded
|
|
// instruction is the same.
|
|
// MODRM_SPLITRM - If the ModR/M byte is between 0x00 and 0xbf, the opcode
|
|
// corresponds to one instruction; otherwise, it corresponds to
|
|
// a different instruction.
|
|
// MODRM_SPLITMISC- If the ModR/M byte is between 0x00 and 0xbf, ModR/M byte
|
|
// divided by 8 is used to select instruction; otherwise, each
|
|
// value of the ModR/M byte could correspond to a different
|
|
// instruction.
|
|
// MODRM_SPLITREG - ModR/M byte divided by 8 is used to select instruction. This
|
|
// corresponds to instructions that use reg field as opcode
|
|
// MODRM_FULL - Potentially, each value of the ModR/M byte could correspond
|
|
// to a different instruction.
|
|
#define MODRMTYPES \
|
|
ENUM_ENTRY(MODRM_ONEENTRY) \
|
|
ENUM_ENTRY(MODRM_SPLITRM) \
|
|
ENUM_ENTRY(MODRM_SPLITMISC) \
|
|
ENUM_ENTRY(MODRM_SPLITREG) \
|
|
ENUM_ENTRY(MODRM_FULL)
|
|
|
|
#define ENUM_ENTRY(n) n,
|
|
enum ModRMDecisionType {
|
|
MODRMTYPES
|
|
MODRM_max
|
|
};
|
|
#undef ENUM_ENTRY
|
|
|
|
#define CASE_ENCODING_RM \
|
|
case ENCODING_RM: \
|
|
case ENCODING_RM_CD2: \
|
|
case ENCODING_RM_CD4: \
|
|
case ENCODING_RM_CD8: \
|
|
case ENCODING_RM_CD16: \
|
|
case ENCODING_RM_CD32: \
|
|
case ENCODING_RM_CD64
|
|
|
|
#define CASE_ENCODING_VSIB \
|
|
case ENCODING_VSIB: \
|
|
case ENCODING_VSIB_CD2: \
|
|
case ENCODING_VSIB_CD4: \
|
|
case ENCODING_VSIB_CD8: \
|
|
case ENCODING_VSIB_CD16: \
|
|
case ENCODING_VSIB_CD32: \
|
|
case ENCODING_VSIB_CD64
|
|
|
|
// Physical encodings of instruction operands.
|
|
#define ENCODINGS \
|
|
ENUM_ENTRY(ENCODING_NONE, "") \
|
|
ENUM_ENTRY(ENCODING_REG, "Register operand in ModR/M byte.") \
|
|
ENUM_ENTRY(ENCODING_RM, "R/M operand in ModR/M byte.") \
|
|
ENUM_ENTRY(ENCODING_RM_CD2, "R/M operand with CDisp scaling of 2") \
|
|
ENUM_ENTRY(ENCODING_RM_CD4, "R/M operand with CDisp scaling of 4") \
|
|
ENUM_ENTRY(ENCODING_RM_CD8, "R/M operand with CDisp scaling of 8") \
|
|
ENUM_ENTRY(ENCODING_RM_CD16,"R/M operand with CDisp scaling of 16") \
|
|
ENUM_ENTRY(ENCODING_RM_CD32,"R/M operand with CDisp scaling of 32") \
|
|
ENUM_ENTRY(ENCODING_RM_CD64,"R/M operand with CDisp scaling of 64") \
|
|
ENUM_ENTRY(ENCODING_VSIB, "VSIB operand in ModR/M byte.") \
|
|
ENUM_ENTRY(ENCODING_VSIB_CD2, "VSIB operand with CDisp scaling of 2") \
|
|
ENUM_ENTRY(ENCODING_VSIB_CD4, "VSIB operand with CDisp scaling of 4") \
|
|
ENUM_ENTRY(ENCODING_VSIB_CD8, "VSIB operand with CDisp scaling of 8") \
|
|
ENUM_ENTRY(ENCODING_VSIB_CD16,"VSIB operand with CDisp scaling of 16") \
|
|
ENUM_ENTRY(ENCODING_VSIB_CD32,"VSIB operand with CDisp scaling of 32") \
|
|
ENUM_ENTRY(ENCODING_VSIB_CD64,"VSIB operand with CDisp scaling of 64") \
|
|
ENUM_ENTRY(ENCODING_VVVV, "Register operand in VEX.vvvv byte.") \
|
|
ENUM_ENTRY(ENCODING_WRITEMASK, "Register operand in EVEX.aaa byte.") \
|
|
ENUM_ENTRY(ENCODING_IB, "1-byte immediate") \
|
|
ENUM_ENTRY(ENCODING_IW, "2-byte") \
|
|
ENUM_ENTRY(ENCODING_ID, "4-byte") \
|
|
ENUM_ENTRY(ENCODING_IO, "8-byte") \
|
|
ENUM_ENTRY(ENCODING_RB, "(AL..DIL, R8L..R15L) Register code added to " \
|
|
"the opcode byte") \
|
|
ENUM_ENTRY(ENCODING_RW, "(AX..DI, R8W..R15W)") \
|
|
ENUM_ENTRY(ENCODING_RD, "(EAX..EDI, R8D..R15D)") \
|
|
ENUM_ENTRY(ENCODING_RO, "(RAX..RDI, R8..R15)") \
|
|
ENUM_ENTRY(ENCODING_FP, "Position on floating-point stack in ModR/M " \
|
|
"byte.") \
|
|
\
|
|
ENUM_ENTRY(ENCODING_Iv, "Immediate of operand size") \
|
|
ENUM_ENTRY(ENCODING_Ia, "Immediate of address size") \
|
|
ENUM_ENTRY(ENCODING_Rv, "Register code of operand size added to the " \
|
|
"opcode byte") \
|
|
ENUM_ENTRY(ENCODING_DUP, "Duplicate of another operand; ID is encoded " \
|
|
"in type") \
|
|
ENUM_ENTRY(ENCODING_SI, "Source index; encoded in OpSize/Adsize prefix") \
|
|
ENUM_ENTRY(ENCODING_DI, "Destination index; encoded in prefixes")
|
|
|
|
#define ENUM_ENTRY(n, d) n,
|
|
enum OperandEncoding {
|
|
ENCODINGS
|
|
ENCODING_max
|
|
};
|
|
#undef ENUM_ENTRY
|
|
|
|
// Semantic interpretations of instruction operands.
|
|
#define TYPES \
|
|
ENUM_ENTRY(TYPE_NONE, "") \
|
|
ENUM_ENTRY(TYPE_REL, "immediate address") \
|
|
ENUM_ENTRY(TYPE_R8, "1-byte register operand") \
|
|
ENUM_ENTRY(TYPE_R16, "2-byte") \
|
|
ENUM_ENTRY(TYPE_R32, "4-byte") \
|
|
ENUM_ENTRY(TYPE_R64, "8-byte") \
|
|
ENUM_ENTRY(TYPE_IMM, "immediate operand") \
|
|
ENUM_ENTRY(TYPE_IMM3, "1-byte immediate operand between 0 and 7") \
|
|
ENUM_ENTRY(TYPE_IMM5, "1-byte immediate operand between 0 and 31") \
|
|
ENUM_ENTRY(TYPE_AVX512ICC, "1-byte immediate operand for AVX512 icmp") \
|
|
ENUM_ENTRY(TYPE_UIMM8, "1-byte unsigned immediate operand") \
|
|
ENUM_ENTRY(TYPE_M, "Memory operand") \
|
|
ENUM_ENTRY(TYPE_SRCIDX, "memory at source index") \
|
|
ENUM_ENTRY(TYPE_DSTIDX, "memory at destination index") \
|
|
ENUM_ENTRY(TYPE_MOFFS, "memory offset (relative to segment base)") \
|
|
ENUM_ENTRY(TYPE_ST, "Position on the floating-point stack") \
|
|
ENUM_ENTRY(TYPE_MM64, "8-byte MMX register") \
|
|
ENUM_ENTRY(TYPE_XMM, "16-byte") \
|
|
ENUM_ENTRY(TYPE_YMM, "32-byte") \
|
|
ENUM_ENTRY(TYPE_ZMM, "64-byte") \
|
|
ENUM_ENTRY(TYPE_VK, "mask register") \
|
|
ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand") \
|
|
ENUM_ENTRY(TYPE_DEBUGREG, "Debug register operand") \
|
|
ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand") \
|
|
ENUM_ENTRY(TYPE_BNDR, "MPX bounds register") \
|
|
\
|
|
ENUM_ENTRY(TYPE_Rv, "Register operand of operand size") \
|
|
ENUM_ENTRY(TYPE_RELv, "Immediate address of operand size") \
|
|
ENUM_ENTRY(TYPE_DUP0, "Duplicate of operand 0") \
|
|
ENUM_ENTRY(TYPE_DUP1, "operand 1") \
|
|
ENUM_ENTRY(TYPE_DUP2, "operand 2") \
|
|
ENUM_ENTRY(TYPE_DUP3, "operand 3") \
|
|
ENUM_ENTRY(TYPE_DUP4, "operand 4") \
|
|
|
|
#define ENUM_ENTRY(n, d) n,
|
|
enum OperandType {
|
|
TYPES
|
|
TYPE_max
|
|
};
|
|
#undef ENUM_ENTRY
|
|
|
|
/// \brief The specification for how to extract and interpret one operand.
|
|
struct OperandSpecifier {
|
|
uint8_t encoding;
|
|
uint8_t type;
|
|
};
|
|
|
|
static const unsigned X86_MAX_OPERANDS = 6;
|
|
|
|
/// Decoding mode for the Intel disassembler. 16-bit, 32-bit, and 64-bit mode
|
|
/// are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode,
|
|
/// respectively.
|
|
enum DisassemblerMode {
|
|
MODE_16BIT,
|
|
MODE_32BIT,
|
|
MODE_64BIT
|
|
};
|
|
|
|
} // namespace X86Disassembler
|
|
} // namespace llvm
|
|
|
|
#endif
|