llvm-project/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp

1309 lines
46 KiB
C++

//===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Subclass of MipsDAGToDAGISel specialized for mips32/64.
//
//===----------------------------------------------------------------------===//
#include "MipsSEISelDAGToDAG.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "Mips.h"
#include "MipsAnalyzeImmediate.h"
#include "MipsMachineFunction.h"
#include "MipsRegisterInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "mips-isel"
bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
if (Subtarget->inMips16Mode())
return false;
return MipsDAGToDAGISel::runOnMachineFunction(MF);
}
void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTreeWrapperPass>();
SelectionDAGISel::getAnalysisUsage(AU);
}
void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
MachineFunction &MF) {
MachineInstrBuilder MIB(MF, &MI);
unsigned Mask = MI.getOperand(1).getImm();
unsigned Flag =
IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
if (Mask & 1)
MIB.addReg(Mips::DSPPos, Flag);
if (Mask & 2)
MIB.addReg(Mips::DSPSCount, Flag);
if (Mask & 4)
MIB.addReg(Mips::DSPCarry, Flag);
if (Mask & 8)
MIB.addReg(Mips::DSPOutFlag, Flag);
if (Mask & 16)
MIB.addReg(Mips::DSPCCond, Flag);
if (Mask & 32)
MIB.addReg(Mips::DSPEFI, Flag);
}
unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
default:
llvm_unreachable("Could not map int to register");
case 0: return Mips::MSAIR;
case 1: return Mips::MSACSR;
case 2: return Mips::MSAAccess;
case 3: return Mips::MSASave;
case 4: return Mips::MSAModify;
case 5: return Mips::MSARequest;
case 6: return Mips::MSAMap;
case 7: return Mips::MSAUnmap;
}
}
bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
const MachineInstr& MI) {
unsigned DstReg = 0, ZeroReg = 0;
// Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
if ((MI.getOpcode() == Mips::ADDiu) &&
(MI.getOperand(1).getReg() == Mips::ZERO) &&
(MI.getOperand(2).isImm()) &&
(MI.getOperand(2).getImm() == 0)) {
DstReg = MI.getOperand(0).getReg();
ZeroReg = Mips::ZERO;
} else if ((MI.getOpcode() == Mips::DADDiu) &&
(MI.getOperand(1).getReg() == Mips::ZERO_64) &&
(MI.getOperand(2).isImm()) &&
(MI.getOperand(2).getImm() == 0)) {
DstReg = MI.getOperand(0).getReg();
ZeroReg = Mips::ZERO_64;
}
if (!DstReg)
return false;
// Replace uses with ZeroReg.
for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
E = MRI->use_end(); U != E;) {
MachineOperand &MO = *U;
unsigned OpNo = U.getOperandNo();
MachineInstr *MI = MO.getParent();
++U;
// Do not replace if it is a phi's operand or is tied to def operand.
if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
continue;
// Also, we have to check that the register class of the operand
// contains the zero register.
if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
continue;
MO.setReg(ZeroReg);
}
return true;
}
void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
if (!MipsFI->globalBaseRegSet())
return;
MachineBasicBlock &MBB = MF.front();
MachineBasicBlock::iterator I = MBB.begin();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL;
unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
const TargetRegisterClass *RC;
const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
V0 = RegInfo.createVirtualRegister(RC);
V1 = RegInfo.createVirtualRegister(RC);
if (ABI.IsN64()) {
MF.getRegInfo().addLiveIn(Mips::T9_64);
MBB.addLiveIn(Mips::T9_64);
// lui $v0, %hi(%neg(%gp_rel(fname)))
// daddu $v1, $v0, $t9
// daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
const GlobalValue *FName = MF.getFunction();
BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
.addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
.addReg(Mips::T9_64);
BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
.addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
return;
}
if (!MF.getTarget().isPositionIndependent()) {
// Set global register to __gnu_local_gp.
//
// lui $v0, %hi(__gnu_local_gp)
// addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
.addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
.addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
return;
}
MF.getRegInfo().addLiveIn(Mips::T9);
MBB.addLiveIn(Mips::T9);
if (ABI.IsN32()) {
// lui $v0, %hi(%neg(%gp_rel(fname)))
// addu $v1, $v0, $t9
// addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
const GlobalValue *FName = MF.getFunction();
BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
.addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
.addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
return;
}
assert(ABI.IsO32());
// For O32 ABI, the following instruction sequence is emitted to initialize
// the global base register:
//
// 0. lui $2, %hi(_gp_disp)
// 1. addiu $2, $2, %lo(_gp_disp)
// 2. addu $globalbasereg, $2, $t9
//
// We emit only the last instruction here.
//
// GNU linker requires that the first two instructions appear at the beginning
// of a function and no instructions be inserted before or between them.
// The two instructions are emitted during lowering to MC layer in order to
// avoid any reordering.
//
// Register $2 (Mips::V0) is added to the list of live-in registers to ensure
// the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
// reads it.
MF.getRegInfo().addLiveIn(Mips::V0);
MBB.addLiveIn(Mips::V0);
BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
.addReg(Mips::V0).addReg(Mips::T9);
}
void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
initGlobalBaseReg(MF);
MachineRegisterInfo *MRI = &MF.getRegInfo();
for (auto &MBB: MF) {
for (auto &MI: MBB) {
switch (MI.getOpcode()) {
case Mips::RDDSP:
addDSPCtrlRegOperands(false, MI, MF);
break;
case Mips::WRDSP:
addDSPCtrlRegOperands(true, MI, MF);
break;
default:
replaceUsesWithZeroReg(MRI, MI);
}
}
}
}
void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const {
SDValue InFlag = Node->getOperand(2);
unsigned Opc = InFlag.getOpcode();
SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
EVT VT = LHS.getValueType();
// In the base case, we can rely on the carry bit from the addsc
// instruction.
if (Opc == ISD::ADDC) {
SDValue Ops[3] = {LHS, RHS, InFlag};
CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops);
return;
}
assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!");
// The more complex case is when there is a chain of ISD::ADDE nodes like:
// (adde (adde (adde (addc a b) c) d) e).
//
// The addwc instruction does not write to the carry bit, instead it writes
// to bit 20 of the dsp control register. To match this series of nodes, each
// intermediate adde node must be expanded to write the carry bit before the
// addition.
// Start by reading the overflow field for addsc and moving the value to the
// carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
// corresponds to reading/writing the entire control register to/from a GPR.
SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32);
SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32);
SDNode *DSPCtrlField =
CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32, MVT::Glue, CstOne, InFlag);
SDNode *Carry = CurDAG->getMachineNode(
Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne);
SDValue Ops[4] = {SDValue(DSPCtrlField, 0),
CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne,
SDValue(Carry, 0)};
SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops);
// My reading of the the MIPS DSP 3.01 specification isn't as clear as I
// would like about whether bit 20 always gets overwritten by addwc.
// Hence take an extremely conservative view and presume it's sticky. We
// therefore need to clear it.
SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32);
SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)};
SDNode *DSPCtrlFinal = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps);
SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue,
SDValue(DSPCtrlFinal, 0), CstOne);
SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)};
CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands);
}
/// Match frameindex
bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
EVT ValTy = Addr.getValueType();
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
return true;
}
return false;
}
/// Match frameindex+offset and frameindex|offset
bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits,
unsigned ShiftAmount = 0) const {
if (CurDAG->isBaseWithConstantOffset(Addr)) {
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) {
EVT ValTy = Addr.getValueType();
// If the first operand is a FI, get the TargetFI Node
if (FrameIndexSDNode *FIN =
dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
else {
Base = Addr.getOperand(0);
// If base is a FI, additional offset calculation is done in
// eliminateFrameIndex, otherwise we need to check the alignment
if (OffsetToAlignment(CN->getZExtValue(), 1ull << ShiftAmount) != 0)
return false;
}
Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
ValTy);
return true;
}
}
return false;
}
/// ComplexPattern used on MipsInstrInfo
/// Used on Mips Load/Store instructions
bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
// if Address is FI, get the TargetFrameIndex.
if (selectAddrFrameIndex(Addr, Base, Offset))
return true;
// on PIC code Load GA
if (Addr.getOpcode() == MipsISD::Wrapper) {
Base = Addr.getOperand(0);
Offset = Addr.getOperand(1);
return true;
}
if (!TM.isPositionIndependent()) {
if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress))
return false;
}
// Addresses of the form FI+const or FI|const
if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
return true;
// Operand is a result from an ADD.
if (Addr.getOpcode() == ISD::ADD) {
// When loading from constant pools, load the lower address part in
// the instruction itself. Example, instead of:
// lui $2, %hi($CPI1_0)
// addiu $2, $2, %lo($CPI1_0)
// lwc1 $f0, 0($2)
// Generate:
// lui $2, %hi($CPI1_0)
// lwc1 $f0, %lo($CPI1_0)($2)
if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
isa<JumpTableSDNode>(Opnd0)) {
Base = Addr.getOperand(0);
Offset = Opnd0;
return true;
}
}
}
return false;
}
/// ComplexPattern used on MipsInstrInfo
/// Used on Mips Load/Store instructions
bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
Base = Addr;
Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
return true;
}
bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
return selectAddrRegImm(Addr, Base, Offset) ||
selectAddrDefault(Addr, Base, Offset);
}
bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
if (selectAddrFrameIndex(Addr, Base, Offset))
return true;
if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
return true;
return false;
}
/// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
if (selectAddrFrameIndex(Addr, Base, Offset))
return true;
if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
return true;
return false;
}
/// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
if (selectAddrFrameIndex(Addr, Base, Offset))
return true;
if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
return true;
return false;
}
bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
if (selectAddrFrameIndex(Addr, Base, Offset))
return true;
if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
return true;
return false;
}
bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
return selectAddrRegImm11(Addr, Base, Offset) ||
selectAddrDefault(Addr, Base, Offset);
}
bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
return selectAddrRegImm12(Addr, Base, Offset) ||
selectAddrDefault(Addr, Base, Offset);
}
bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
return selectAddrRegImm16(Addr, Base, Offset) ||
selectAddrDefault(Addr, Base, Offset);
}
bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
if (isa<FrameIndexSDNode>(Base))
return false;
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
unsigned CnstOff = CN->getZExtValue();
return (CnstOff == (CnstOff & 0x3c));
}
return false;
}
// For all other cases where "lw" would be selected, don't select "lw16"
// because it would result in additional instructions to prepare operands.
if (selectAddrRegImm(Addr, Base, Offset))
return false;
return selectAddrDefault(Addr, Base, Offset);
}
bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
if (selectAddrFrameIndex(Addr, Base, Offset))
return true;
if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
return true;
return selectAddrDefault(Addr, Base, Offset);
}
bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
if (selectAddrFrameIndex(Addr, Base, Offset))
return true;
if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1))
return true;
return selectAddrDefault(Addr, Base, Offset);
}
bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
if (selectAddrFrameIndex(Addr, Base, Offset))
return true;
if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2))
return true;
return selectAddrDefault(Addr, Base, Offset);
}
bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base,
SDValue &Offset) const {
if (selectAddrFrameIndex(Addr, Base, Offset))
return true;
if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3))
return true;
return selectAddrDefault(Addr, Base, Offset);
}
// Select constant vector splats.
//
// Returns true and sets Imm if:
// * MSA is enabled
// * N is a ISD::BUILD_VECTOR representing a constant splat
bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
unsigned MinSizeInBits) const {
if (!Subtarget->hasMSA())
return false;
BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
if (!Node)
return false;
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
MinSizeInBits, !Subtarget->isLittle()))
return false;
Imm = SplatValue;
return true;
}
// Select constant vector splats.
//
// In addition to the requirements of selectVSplat(), this function returns
// true and sets Imm if:
// * The splat value is the same width as the elements of the vector
// * The splat value fits in an integer with the specified signed-ness and
// width.
//
// This function looks through ISD::BITCAST nodes.
// TODO: This might not be appropriate for big-endian MSA since BITCAST is
// sometimes a shuffle in big-endian mode.
//
// It's worth noting that this function is not used as part of the selection
// of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
// instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
// MipsSEDAGToDAGISel::selectNode.
bool MipsSEDAGToDAGISel::
selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
unsigned ImmBitSize) const {
APInt ImmValue;
EVT EltTy = N->getValueType(0).getVectorElementType();
if (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0);
if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
(!Signed && ImmValue.isIntN(ImmBitSize))) {
Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
return true;
}
}
return false;
}
// Select constant vector splats.
bool MipsSEDAGToDAGISel::
selectVSplatUimm1(SDValue N, SDValue &Imm) const {
return selectVSplatCommon(N, Imm, false, 1);
}
bool MipsSEDAGToDAGISel::
selectVSplatUimm2(SDValue N, SDValue &Imm) const {
return selectVSplatCommon(N, Imm, false, 2);
}
bool MipsSEDAGToDAGISel::
selectVSplatUimm3(SDValue N, SDValue &Imm) const {
return selectVSplatCommon(N, Imm, false, 3);
}
// Select constant vector splats.
bool MipsSEDAGToDAGISel::
selectVSplatUimm4(SDValue N, SDValue &Imm) const {
return selectVSplatCommon(N, Imm, false, 4);
}
// Select constant vector splats.
bool MipsSEDAGToDAGISel::
selectVSplatUimm5(SDValue N, SDValue &Imm) const {
return selectVSplatCommon(N, Imm, false, 5);
}
// Select constant vector splats.
bool MipsSEDAGToDAGISel::
selectVSplatUimm6(SDValue N, SDValue &Imm) const {
return selectVSplatCommon(N, Imm, false, 6);
}
// Select constant vector splats.
bool MipsSEDAGToDAGISel::
selectVSplatUimm8(SDValue N, SDValue &Imm) const {
return selectVSplatCommon(N, Imm, false, 8);
}
// Select constant vector splats.
bool MipsSEDAGToDAGISel::
selectVSplatSimm5(SDValue N, SDValue &Imm) const {
return selectVSplatCommon(N, Imm, true, 5);
}
// Select constant vector splats whose value is a power of 2.
//
// In addition to the requirements of selectVSplat(), this function returns
// true and sets Imm if:
// * The splat value is the same width as the elements of the vector
// * The splat value is a power of two.
//
// This function looks through ISD::BITCAST nodes.
// TODO: This might not be appropriate for big-endian MSA since BITCAST is
// sometimes a shuffle in big-endian mode.
bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
APInt ImmValue;
EVT EltTy = N->getValueType(0).getVectorElementType();
if (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0);
if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
int32_t Log2 = ImmValue.exactLogBase2();
if (Log2 != -1) {
Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
return true;
}
}
return false;
}
// Select constant vector splats whose value only has a consecutive sequence
// of left-most bits set (e.g. 0b11...1100...00).
//
// In addition to the requirements of selectVSplat(), this function returns
// true and sets Imm if:
// * The splat value is the same width as the elements of the vector
// * The splat value is a consecutive sequence of left-most bits.
//
// This function looks through ISD::BITCAST nodes.
// TODO: This might not be appropriate for big-endian MSA since BITCAST is
// sometimes a shuffle in big-endian mode.
bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
APInt ImmValue;
EVT EltTy = N->getValueType(0).getVectorElementType();
if (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0);
if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
// Extract the run of set bits starting with bit zero from the bitwise
// inverse of ImmValue, and test that the inverse of this is the same
// as the original value.
if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
EltTy);
return true;
}
}
return false;
}
// Select constant vector splats whose value only has a consecutive sequence
// of right-most bits set (e.g. 0b00...0011...11).
//
// In addition to the requirements of selectVSplat(), this function returns
// true and sets Imm if:
// * The splat value is the same width as the elements of the vector
// * The splat value is a consecutive sequence of right-most bits.
//
// This function looks through ISD::BITCAST nodes.
// TODO: This might not be appropriate for big-endian MSA since BITCAST is
// sometimes a shuffle in big-endian mode.
bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
APInt ImmValue;
EVT EltTy = N->getValueType(0).getVectorElementType();
if (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0);
if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
// Extract the run of set bits starting with bit zero, and test that the
// result is the same as the original value
if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
EltTy);
return true;
}
}
return false;
}
bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
SDValue &Imm) const {
APInt ImmValue;
EVT EltTy = N->getValueType(0).getVectorElementType();
if (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0);
if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
int32_t Log2 = (~ImmValue).exactLogBase2();
if (Log2 != -1) {
Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
return true;
}
}
return false;
}
bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
unsigned Opcode = Node->getOpcode();
SDLoc DL(Node);
///
// Instruction Selection not handled by the auto-generated
// tablegen selection should be handled here.
///
switch(Opcode) {
default: break;
case ISD::ADDE: {
selectAddE(Node, DL);
return true;
}
case ISD::ConstantFP: {
ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
if (Subtarget->isGP64bit()) {
SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
Mips::ZERO_64, MVT::i64);
ReplaceNode(Node,
CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
} else if (Subtarget->isFP64bit()) {
SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
Mips::ZERO, MVT::i32);
ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
MVT::f64, Zero, Zero));
} else {
SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
Mips::ZERO, MVT::i32);
ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
MVT::f64, Zero, Zero));
}
return true;
}
break;
}
case ISD::Constant: {
const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
int64_t Imm = CN->getSExtValue();
unsigned Size = CN->getValueSizeInBits(0);
if (isInt<32>(Imm))
break;
MipsAnalyzeImmediate AnalyzeImm;
const MipsAnalyzeImmediate::InstSeq &Seq =
AnalyzeImm.Analyze(Imm, Size, false);
MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
SDLoc DL(CN);
SDNode *RegOpnd;
SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
DL, MVT::i64);
// The first instruction can be a LUi which is different from other
// instructions (ADDiu, ORI and SLL) in that it does not have a register
// operand.
if (Inst->Opc == Mips::LUi64)
RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
else
RegOpnd =
CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
ImmOpnd);
// The remaining instructions in the sequence are handled here.
for (++Inst; Inst != Seq.end(); ++Inst) {
ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
MVT::i64);
RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
SDValue(RegOpnd, 0), ImmOpnd);
}
ReplaceNode(Node, RegOpnd);
return true;
}
case ISD::INTRINSIC_W_CHAIN: {
switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
default:
break;
case Intrinsic::mips_cfcmsa: {
SDValue ChainIn = Node->getOperand(0);
SDValue RegIdx = Node->getOperand(2);
SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
getMSACtrlReg(RegIdx), MVT::i32);
ReplaceNode(Node, Reg.getNode());
return true;
}
}
break;
}
case ISD::INTRINSIC_WO_CHAIN: {
switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
default:
break;
case Intrinsic::mips_move_v:
// Like an assignment but will always produce a move.v even if
// unnecessary.
ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
Node->getValueType(0),
Node->getOperand(1)));
return true;
}
break;
}
case ISD::INTRINSIC_VOID: {
switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
default:
break;
case Intrinsic::mips_ctcmsa: {
SDValue ChainIn = Node->getOperand(0);
SDValue RegIdx = Node->getOperand(2);
SDValue Value = Node->getOperand(3);
SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
getMSACtrlReg(RegIdx), Value);
ReplaceNode(Node, ChainOut.getNode());
return true;
}
}
break;
}
case MipsISD::ThreadPointer: {
EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
unsigned RdhwrOpc, DestReg;
if (PtrVT == MVT::i32) {
RdhwrOpc = Mips::RDHWR;
DestReg = Mips::V1;
} else {
RdhwrOpc = Mips::RDHWR64;
DestReg = Mips::V1_64;
}
SDNode *Rdhwr =
CurDAG->getMachineNode(RdhwrOpc, DL,
Node->getValueType(0),
CurDAG->getRegister(Mips::HWR29, MVT::i32));
SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
SDValue(Rdhwr, 0));
SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
ReplaceNode(Node, ResNode.getNode());
return true;
}
case ISD::BUILD_VECTOR: {
// Select appropriate ldi.[bhwd] instructions for constant splats of
// 128-bit when MSA is enabled. Fixup any register class mismatches that
// occur as a result.
//
// This allows the compiler to use a wider range of immediates than would
// otherwise be allowed. If, for example, v4i32 could only use ldi.h then
// it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
// 0x01010101 } without using a constant pool. This would be sub-optimal
// when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
// same set/ of registers. Similarly, ldi.h isn't capable of producing {
// 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
const MipsABIInfo &ABI =
static_cast<const MipsTargetMachine &>(TM).getABI();
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
unsigned LdiOp;
EVT ResVecTy = BVN->getValueType(0);
EVT ViaVecTy;
if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
return false;
if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
HasAnyUndefs, 8,
!Subtarget->isLittle()))
return false;
switch (SplatBitSize) {
default:
return false;
case 8:
LdiOp = Mips::LDI_B;
ViaVecTy = MVT::v16i8;
break;
case 16:
LdiOp = Mips::LDI_H;
ViaVecTy = MVT::v8i16;
break;
case 32:
LdiOp = Mips::LDI_W;
ViaVecTy = MVT::v4i32;
break;
case 64:
LdiOp = Mips::LDI_D;
ViaVecTy = MVT::v2i64;
break;
}
SDNode *Res;
// If we have a signed 10 bit integer, we can splat it directly.
//
// If we have something bigger we can synthesize the value into a GPR and
// splat from there.
if (SplatValue.isSignedIntN(10)) {
SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
ViaVecTy.getVectorElementType());
Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
} else if (SplatValue.isSignedIntN(16) &&
((ABI.IsO32() && SplatBitSize < 64) ||
(ABI.IsN32() || ABI.IsN64()))) {
// Only handle signed 16 bit values when the element size is GPR width.
// MIPS64 can handle all the cases but MIPS32 would need to handle
// negative cases specifically here. Instead, handle those cases as
// 64bit values.
bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64;
const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu;
const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64;
SDValue ZeroVal = CurDAG->getRegister(
Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT);
const unsigned FILLOp =
SplatBitSize == 16
? Mips::FILL_H
: (SplatBitSize == 32 ? Mips::FILL_W
: (SplatBitSize == 64 ? Mips::FILL_D : 0));
assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!");
assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) &&
"Attempting to use fill.d on MIPS32!");
const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT);
Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal);
Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0));
} else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) {
// Only handle the cases where the splat size agrees with the size
// of the SplatValue here.
const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
if (Hi)
Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
if (Lo)
Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!");
Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0));
} else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 &&
(ABI.IsN32() || ABI.IsN64())) {
// N32 and N64 can perform some tricks that O32 can't for signed 32 bit
// integers due to having 64bit registers. lui will cause the necessary
// zero/sign extension.
const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
if (Hi)
Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
if (Lo)
Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
Res = CurDAG->getMachineNode(
Mips::SUBREG_TO_REG, DL, MVT::i64,
CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
SDValue(Res, 0),
CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
Res =
CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
} else if (SplatValue.isSignedIntN(64)) {
// If we have a 64 bit Splat value, we perform a similar sequence to the
// above:
//
// MIPS32: MIPS64:
// lui $res, %highest(val) lui $res, %highest(val)
// ori $res, $res, %higher(val) ori $res, $res, %higher(val)
// lui $res2, %hi(val) lui $res2, %hi(val)
// ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val)
// $res3 = fill $res2 dinsu $res, $res2, 0, 32
// $res4 = insert.w $res3[1], $res fill.d $res
// splat.d $res4, 0
//
// The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves
// having to materialize the value by shifts and ors.
//
// FIXME: Implement the preferred sequence for MIPS64R6:
//
// MIPS64R6:
// ori $res, $zero, %lo(val)
// daui $res, $res, %hi(val)
// dahi $res, $res, %higher(val)
// dati $res, $res, %highest(cal)
// fill.d $res
//
const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue();
const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue();
SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32);
SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32);
SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
// Independent of whether we're targeting MIPS64 or not, the basic
// operations are the same. Also, directly use the $zero register if
// the 16 bit chunk is zero.
//
// For optimization purposes we always synthesize the splat value as
// an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
// just before combining the values with dinsu to produce an i64. This
// enables SelectionDAG to aggressively share components of splat values
// where possible.
//
// FIXME: This is the general constant synthesis problem. This code
// should be factored out into a class shared between all the
// classes that need it. Specifically, for a splat size of 64
// bits that's a negative number we can do better than LUi/ORi
// for the upper 32bits.
if (Hi)
Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
if (Lo)
Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
SDNode *HiRes;
if (Highest)
HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal);
if (Higher)
HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
Highest ? SDValue(HiRes, 0) : ZeroVal,
HigherVal);
if (ABI.IsO32()) {
Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32,
(Hi || Lo) ? SDValue(Res, 0) : ZeroVal);
Res = CurDAG->getMachineNode(
Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0),
(Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal,
CurDAG->getTargetConstant(1, DL, MVT::i32));
const TargetLowering *TLI = getTargetLowering();
const TargetRegisterClass *RC =
TLI->getRegClassFor(ViaVecTy.getSimpleVT());
Res = CurDAG->getMachineNode(
Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0),
CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32));
Res = CurDAG->getMachineNode(
Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0),
CurDAG->getTargetConstant(0, DL, MVT::i32));
} else if (ABI.IsN64() || ABI.IsN32()) {
SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64);
const bool HiResNonZero = Highest || Higher;
const bool ResNonZero = Hi || Lo;
if (HiResNonZero)
HiRes = CurDAG->getMachineNode(
Mips::SUBREG_TO_REG, DL, MVT::i64,
CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64),
SDValue(HiRes, 0),
CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
if (ResNonZero)
Res = CurDAG->getMachineNode(
Mips::SUBREG_TO_REG, DL, MVT::i64,
CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
SDValue(Res, 0),
CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
// We have 3 cases:
// The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0
// The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32
// Both are non zero => dinsu Res, HiRes, 32, 32
//
// The obvious "missing" case is when both are zero, but that case is
// handled by the ldi case.
if (ResNonZero) {
IntegerType *Int32Ty =
IntegerType::get(MF->getFunction()->getContext(), 32);
const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32);
SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val,
CurDAG->getConstant(*Const32, DL, MVT::i32),
CurDAG->getConstant(*Const32, DL, MVT::i32),
SDValue(Res, 0)};
Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops);
} else if (HiResNonZero) {
Res = CurDAG->getMachineNode(
Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0),
CurDAG->getTargetConstant(0, DL, MVT::i32));
} else
llvm_unreachable(
"Zero splat value handled by non-zero 64bit splat synthesis!");
Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
} else
llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
} else
return false;
if (ResVecTy != ViaVecTy) {
// If LdiOp is writing to a different register class to ResVecTy, then
// fix it up here. This COPY_TO_REGCLASS should never cause a move.v
// since the source and destination register sets contain the same
// registers.
const TargetLowering *TLI = getTargetLowering();
MVT ResVecTySimple = ResVecTy.getSimpleVT();
const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
ResVecTy, SDValue(Res, 0),
CurDAG->getTargetConstant(RC->getID(), DL,
MVT::i32));
}
ReplaceNode(Node, Res);
return true;
}
}
return false;
}
bool MipsSEDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
std::vector<SDValue> &OutOps) {
SDValue Base, Offset;
switch(ConstraintID) {
default:
llvm_unreachable("Unexpected asm memory constraint");
// All memory constraints can at least accept raw pointers.
case InlineAsm::Constraint_i:
OutOps.push_back(Op);
OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
return false;
case InlineAsm::Constraint_m:
if (selectAddrRegImm16(Op, Base, Offset)) {
OutOps.push_back(Base);
OutOps.push_back(Offset);
return false;
}
OutOps.push_back(Op);
OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
return false;
case InlineAsm::Constraint_R:
// The 'R' constraint is supposed to be much more complicated than this.
// However, it's becoming less useful due to architectural changes and
// ought to be replaced by other constraints such as 'ZC'.
// For now, support 9-bit signed offsets which is supportable by all
// subtargets for all instructions.
if (selectAddrRegImm9(Op, Base, Offset)) {
OutOps.push_back(Base);
OutOps.push_back(Offset);
return false;
}
OutOps.push_back(Op);
OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
return false;
case InlineAsm::Constraint_ZC:
// ZC matches whatever the pref, ll, and sc instructions can handle for the
// given subtarget.
if (Subtarget->inMicroMipsMode()) {
// On microMIPS, they can handle 12-bit offsets.
if (selectAddrRegImm12(Op, Base, Offset)) {
OutOps.push_back(Base);
OutOps.push_back(Offset);
return false;
}
} else if (Subtarget->hasMips32r6()) {
// On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
if (selectAddrRegImm9(Op, Base, Offset)) {
OutOps.push_back(Base);
OutOps.push_back(Offset);
return false;
}
} else if (selectAddrRegImm16(Op, Base, Offset)) {
// Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
OutOps.push_back(Base);
OutOps.push_back(Offset);
return false;
}
// In all cases, 0-bit offsets are acceptable.
OutOps.push_back(Op);
OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
return false;
}
return true;
}
FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new MipsSEDAGToDAGISel(TM, OptLevel);
}