forked from OSchip/llvm-project
801 lines
29 KiB
C++
801 lines
29 KiB
C++
//===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Subclass of MipsTargetLowering specialized for mips16.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "Mips16ISelLowering.h"
|
|
#include "MCTargetDesc/MipsBaseInfo.h"
|
|
#include "Mips16HardFloatInfo.h"
|
|
#include "MipsMachineFunction.h"
|
|
#include "MipsRegisterInfo.h"
|
|
#include "MipsTargetMachine.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "mips-lower"
|
|
|
|
static cl::opt<bool> DontExpandCondPseudos16(
|
|
"mips16-dont-expand-cond-pseudo",
|
|
cl::init(false),
|
|
cl::desc("Don't expand conditional move related "
|
|
"pseudos for Mips 16"),
|
|
cl::Hidden);
|
|
|
|
namespace {
|
|
struct Mips16Libcall {
|
|
RTLIB::Libcall Libcall;
|
|
const char *Name;
|
|
|
|
bool operator<(const Mips16Libcall &RHS) const {
|
|
return std::strcmp(Name, RHS.Name) < 0;
|
|
}
|
|
};
|
|
|
|
struct Mips16IntrinsicHelperType{
|
|
const char* Name;
|
|
const char* Helper;
|
|
|
|
bool operator<(const Mips16IntrinsicHelperType &RHS) const {
|
|
return std::strcmp(Name, RHS.Name) < 0;
|
|
}
|
|
bool operator==(const Mips16IntrinsicHelperType &RHS) const {
|
|
return std::strcmp(Name, RHS.Name) == 0;
|
|
}
|
|
};
|
|
}
|
|
|
|
// Libcalls for which no helper is generated. Sorted by name for binary search.
|
|
static const Mips16Libcall HardFloatLibCalls[] = {
|
|
{ RTLIB::ADD_F64, "__mips16_adddf3" },
|
|
{ RTLIB::ADD_F32, "__mips16_addsf3" },
|
|
{ RTLIB::DIV_F64, "__mips16_divdf3" },
|
|
{ RTLIB::DIV_F32, "__mips16_divsf3" },
|
|
{ RTLIB::OEQ_F64, "__mips16_eqdf2" },
|
|
{ RTLIB::OEQ_F32, "__mips16_eqsf2" },
|
|
{ RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
|
|
{ RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
|
|
{ RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
|
|
{ RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
|
|
{ RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
|
|
{ RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
|
|
{ RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
|
|
{ RTLIB::OGE_F64, "__mips16_gedf2" },
|
|
{ RTLIB::OGE_F32, "__mips16_gesf2" },
|
|
{ RTLIB::OGT_F64, "__mips16_gtdf2" },
|
|
{ RTLIB::OGT_F32, "__mips16_gtsf2" },
|
|
{ RTLIB::OLE_F64, "__mips16_ledf2" },
|
|
{ RTLIB::OLE_F32, "__mips16_lesf2" },
|
|
{ RTLIB::OLT_F64, "__mips16_ltdf2" },
|
|
{ RTLIB::OLT_F32, "__mips16_ltsf2" },
|
|
{ RTLIB::MUL_F64, "__mips16_muldf3" },
|
|
{ RTLIB::MUL_F32, "__mips16_mulsf3" },
|
|
{ RTLIB::UNE_F64, "__mips16_nedf2" },
|
|
{ RTLIB::UNE_F32, "__mips16_nesf2" },
|
|
{ RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
|
|
{ RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
|
|
{ RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
|
|
{ RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
|
|
{ RTLIB::SUB_F64, "__mips16_subdf3" },
|
|
{ RTLIB::SUB_F32, "__mips16_subsf3" },
|
|
{ RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
|
|
{ RTLIB::UO_F64, "__mips16_unorddf2" },
|
|
{ RTLIB::UO_F32, "__mips16_unordsf2" }
|
|
};
|
|
|
|
static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
|
|
{"__fixunsdfsi", "__mips16_call_stub_2" },
|
|
{"ceil", "__mips16_call_stub_df_2"},
|
|
{"ceilf", "__mips16_call_stub_sf_1"},
|
|
{"copysign", "__mips16_call_stub_df_10"},
|
|
{"copysignf", "__mips16_call_stub_sf_5"},
|
|
{"cos", "__mips16_call_stub_df_2"},
|
|
{"cosf", "__mips16_call_stub_sf_1"},
|
|
{"exp2", "__mips16_call_stub_df_2"},
|
|
{"exp2f", "__mips16_call_stub_sf_1"},
|
|
{"floor", "__mips16_call_stub_df_2"},
|
|
{"floorf", "__mips16_call_stub_sf_1"},
|
|
{"log2", "__mips16_call_stub_df_2"},
|
|
{"log2f", "__mips16_call_stub_sf_1"},
|
|
{"nearbyint", "__mips16_call_stub_df_2"},
|
|
{"nearbyintf", "__mips16_call_stub_sf_1"},
|
|
{"rint", "__mips16_call_stub_df_2"},
|
|
{"rintf", "__mips16_call_stub_sf_1"},
|
|
{"sin", "__mips16_call_stub_df_2"},
|
|
{"sinf", "__mips16_call_stub_sf_1"},
|
|
{"sqrt", "__mips16_call_stub_df_2"},
|
|
{"sqrtf", "__mips16_call_stub_sf_1"},
|
|
{"trunc", "__mips16_call_stub_df_2"},
|
|
{"truncf", "__mips16_call_stub_sf_1"},
|
|
};
|
|
|
|
Mips16TargetLowering::Mips16TargetLowering(const MipsTargetMachine &TM,
|
|
const MipsSubtarget &STI)
|
|
: MipsTargetLowering(TM, STI) {
|
|
|
|
// Set up the register classes
|
|
addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
|
|
|
|
if (!Subtarget.useSoftFloat())
|
|
setMips16HardFloatLibCalls();
|
|
|
|
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
|
|
|
|
setOperationAction(ISD::ROTR, MVT::i32, Expand);
|
|
setOperationAction(ISD::ROTR, MVT::i64, Expand);
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
|
|
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
|
|
|
|
computeRegisterProperties(STI.getRegisterInfo());
|
|
}
|
|
|
|
const MipsTargetLowering *
|
|
llvm::createMips16TargetLowering(const MipsTargetMachine &TM,
|
|
const MipsSubtarget &STI) {
|
|
return new Mips16TargetLowering(TM, STI);
|
|
}
|
|
|
|
bool
|
|
Mips16TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
|
|
unsigned,
|
|
unsigned,
|
|
bool *Fast) const {
|
|
return false;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
|
|
case Mips::SelBeqZ:
|
|
return emitSel16(Mips::BeqzRxImm16, MI, BB);
|
|
case Mips::SelBneZ:
|
|
return emitSel16(Mips::BnezRxImm16, MI, BB);
|
|
case Mips::SelTBteqZCmpi:
|
|
return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB);
|
|
case Mips::SelTBteqZSlti:
|
|
return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB);
|
|
case Mips::SelTBteqZSltiu:
|
|
return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB);
|
|
case Mips::SelTBtneZCmpi:
|
|
return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB);
|
|
case Mips::SelTBtneZSlti:
|
|
return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB);
|
|
case Mips::SelTBtneZSltiu:
|
|
return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB);
|
|
case Mips::SelTBteqZCmp:
|
|
return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
|
|
case Mips::SelTBteqZSlt:
|
|
return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
|
|
case Mips::SelTBteqZSltu:
|
|
return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
|
|
case Mips::SelTBtneZCmp:
|
|
return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
|
|
case Mips::SelTBtneZSlt:
|
|
return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
|
|
case Mips::SelTBtneZSltu:
|
|
return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
|
|
case Mips::BteqzT8CmpX16:
|
|
return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
|
|
case Mips::BteqzT8SltX16:
|
|
return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
|
|
case Mips::BteqzT8SltuX16:
|
|
// TBD: figure out a way to get this or remove the instruction
|
|
// altogether.
|
|
return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
|
|
case Mips::BtnezT8CmpX16:
|
|
return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
|
|
case Mips::BtnezT8SltX16:
|
|
return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
|
|
case Mips::BtnezT8SltuX16:
|
|
// TBD: figure out a way to get this or remove the instruction
|
|
// altogether.
|
|
return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
|
|
case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
|
|
Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
|
|
case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
|
|
Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
|
|
case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
|
|
Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
|
|
case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
|
|
Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
|
|
case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
|
|
Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
|
|
case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
|
|
Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
|
|
break;
|
|
case Mips::SltCCRxRy16:
|
|
return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
|
|
break;
|
|
case Mips::SltiCCRxImmX16:
|
|
return emitFEXT_CCRXI16_ins
|
|
(Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
|
|
case Mips::SltiuCCRxImmX16:
|
|
return emitFEXT_CCRXI16_ins
|
|
(Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
|
|
case Mips::SltuCCRxRy16:
|
|
return emitFEXT_CCRX16_ins
|
|
(Mips::SltuRxRy16, MI, BB);
|
|
}
|
|
}
|
|
|
|
bool Mips16TargetLowering::isEligibleForTailCallOptimization(
|
|
const CCState &CCInfo, unsigned NextStackOffset,
|
|
const MipsFunctionInfo &FI) const {
|
|
// No tail call optimization for mips16.
|
|
return false;
|
|
}
|
|
|
|
void Mips16TargetLowering::setMips16HardFloatLibCalls() {
|
|
for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
|
|
assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
|
|
"Array not sorted!");
|
|
if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
|
|
setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
|
|
}
|
|
|
|
setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
|
|
setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
|
|
}
|
|
|
|
//
|
|
// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
|
|
// cleaner way to do all of this but it will have to wait until the traditional
|
|
// gcc mechanism is completed.
|
|
//
|
|
// For Pic, in order for Mips16 code to call Mips32 code which according the abi
|
|
// have either arguments or returned values placed in floating point registers,
|
|
// we use a set of helper functions. (This includes functions which return type
|
|
// complex which on Mips are returned in a pair of floating point registers).
|
|
//
|
|
// This is an encoding that we inherited from gcc.
|
|
// In Mips traditional O32, N32 ABI, floating point numbers are passed in
|
|
// floating point argument registers 1,2 only when the first and optionally
|
|
// the second arguments are float (sf) or double (df).
|
|
// For Mips16 we are only concerned with the situations where floating point
|
|
// arguments are being passed in floating point registers by the ABI, because
|
|
// Mips16 mode code cannot execute floating point instructions to load those
|
|
// values and hence helper functions are needed.
|
|
// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
|
|
// the helper function suffixs for these are:
|
|
// 0, 1, 5, 9, 2, 6, 10
|
|
// this suffix can then be calculated as follows:
|
|
// for a given argument Arg:
|
|
// Arg1x, Arg2x = 1 : Arg is sf
|
|
// 2 : Arg is df
|
|
// 0: Arg is neither sf or df
|
|
// So this stub is the string for number Arg1x + Arg2x*4.
|
|
// However not all numbers between 0 and 10 are possible, we check anyway and
|
|
// assert if the impossible exists.
|
|
//
|
|
|
|
unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
|
|
(ArgListTy &Args) const {
|
|
unsigned int resultNum = 0;
|
|
if (Args.size() >= 1) {
|
|
Type *t = Args[0].Ty;
|
|
if (t->isFloatTy()) {
|
|
resultNum = 1;
|
|
}
|
|
else if (t->isDoubleTy()) {
|
|
resultNum = 2;
|
|
}
|
|
}
|
|
if (resultNum) {
|
|
if (Args.size() >=2) {
|
|
Type *t = Args[1].Ty;
|
|
if (t->isFloatTy()) {
|
|
resultNum += 4;
|
|
}
|
|
else if (t->isDoubleTy()) {
|
|
resultNum += 8;
|
|
}
|
|
}
|
|
}
|
|
return resultNum;
|
|
}
|
|
|
|
//
|
|
// Prefixes are attached to stub numbers depending on the return type.
|
|
// return type: float sf_
|
|
// double df_
|
|
// single complex sc_
|
|
// double complext dc_
|
|
// others NO PREFIX
|
|
//
|
|
//
|
|
// The full name of a helper function is__mips16_call_stub +
|
|
// return type dependent prefix + stub number
|
|
//
|
|
// FIXME: This is something that probably should be in a different source file
|
|
// and perhaps done differently but my main purpose is to not waste runtime
|
|
// on something that we can enumerate in the source. Another possibility is
|
|
// to have a python script to generate these mapping tables. This will do
|
|
// for now. There are a whole series of helper function mapping arrays, one
|
|
// for each return type class as outlined above. There there are 11 possible
|
|
// entries. Ones with 0 are ones which should never be selected.
|
|
//
|
|
// All the arrays are similar except for ones which return neither
|
|
// sf, df, sc, dc, in which we only care about ones which have sf or df as a
|
|
// first parameter.
|
|
//
|
|
#define P_ "__mips16_call_stub_"
|
|
#define MAX_STUB_NUMBER 10
|
|
#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
|
|
#define T P "0" , T1
|
|
#define P P_
|
|
static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
|
|
{nullptr, T1 };
|
|
#undef P
|
|
#define P P_ "sf_"
|
|
static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
|
|
{ T };
|
|
#undef P
|
|
#define P P_ "df_"
|
|
static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
|
|
{ T };
|
|
#undef P
|
|
#define P P_ "sc_"
|
|
static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
|
|
{ T };
|
|
#undef P
|
|
#define P P_ "dc_"
|
|
static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
|
|
{ T };
|
|
#undef P
|
|
#undef P_
|
|
|
|
|
|
const char* Mips16TargetLowering::
|
|
getMips16HelperFunction
|
|
(Type* RetTy, ArgListTy &Args, bool &needHelper) const {
|
|
const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
|
|
#ifndef NDEBUG
|
|
const unsigned int maxStubNum = 10;
|
|
assert(stubNum <= maxStubNum);
|
|
const bool validStubNum[maxStubNum+1] =
|
|
{true, true, true, false, false, true, true, false, false, true, true};
|
|
assert(validStubNum[stubNum]);
|
|
#endif
|
|
const char *result;
|
|
if (RetTy->isFloatTy()) {
|
|
result = sfMips16Helper[stubNum];
|
|
}
|
|
else if (RetTy ->isDoubleTy()) {
|
|
result = dfMips16Helper[stubNum];
|
|
}
|
|
else if (RetTy->isStructTy()) {
|
|
// check if it's complex
|
|
if (RetTy->getNumContainedTypes() == 2) {
|
|
if ((RetTy->getContainedType(0)->isFloatTy()) &&
|
|
(RetTy->getContainedType(1)->isFloatTy())) {
|
|
result = scMips16Helper[stubNum];
|
|
}
|
|
else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
|
|
(RetTy->getContainedType(1)->isDoubleTy())) {
|
|
result = dcMips16Helper[stubNum];
|
|
}
|
|
else {
|
|
llvm_unreachable("Uncovered condition");
|
|
}
|
|
}
|
|
else {
|
|
llvm_unreachable("Uncovered condition");
|
|
}
|
|
}
|
|
else {
|
|
if (stubNum == 0) {
|
|
needHelper = false;
|
|
return "";
|
|
}
|
|
result = vMips16Helper[stubNum];
|
|
}
|
|
needHelper = true;
|
|
return result;
|
|
}
|
|
|
|
void Mips16TargetLowering::
|
|
getOpndList(SmallVectorImpl<SDValue> &Ops,
|
|
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
|
|
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
|
|
bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
|
|
SDValue Chain) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
|
|
const char* Mips16HelperFunction = nullptr;
|
|
bool NeedMips16Helper = false;
|
|
|
|
if (Subtarget.inMips16HardFloat()) {
|
|
//
|
|
// currently we don't have symbols tagged with the mips16 or mips32
|
|
// qualifier so we will assume that we don't know what kind it is.
|
|
// and generate the helper
|
|
//
|
|
bool LookupHelper = true;
|
|
if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
|
|
Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
|
|
|
|
if (std::binary_search(std::begin(HardFloatLibCalls),
|
|
std::end(HardFloatLibCalls), Find))
|
|
LookupHelper = false;
|
|
else {
|
|
const char *Symbol = S->getSymbol();
|
|
Mips16IntrinsicHelperType IntrinsicFind = { Symbol, "" };
|
|
const Mips16HardFloatInfo::FuncSignature *Signature =
|
|
Mips16HardFloatInfo::findFuncSignature(Symbol);
|
|
if (!IsPICCall && (Signature && (FuncInfo->StubsNeeded.find(Symbol) ==
|
|
FuncInfo->StubsNeeded.end()))) {
|
|
FuncInfo->StubsNeeded[Symbol] = Signature;
|
|
//
|
|
// S2 is normally saved if the stub is for a function which
|
|
// returns a float or double value and is not otherwise. This is
|
|
// because more work is required after the function the stub
|
|
// is calling completes, and so the stub cannot directly return
|
|
// and the stub has no stack space to store the return address so
|
|
// S2 is used for that purpose.
|
|
// In order to take advantage of not saving S2, we need to also
|
|
// optimize the call in the stub and this requires some further
|
|
// functionality in MipsAsmPrinter which we don't have yet.
|
|
// So for now we always save S2. The optimization will be done
|
|
// in a follow-on patch.
|
|
//
|
|
if (1 || (Signature->RetSig != Mips16HardFloatInfo::NoFPRet))
|
|
FuncInfo->setSaveS2();
|
|
}
|
|
// one more look at list of intrinsics
|
|
const Mips16IntrinsicHelperType *Helper =
|
|
std::lower_bound(std::begin(Mips16IntrinsicHelper),
|
|
std::end(Mips16IntrinsicHelper), IntrinsicFind);
|
|
if (Helper != std::end(Mips16IntrinsicHelper) &&
|
|
*Helper == IntrinsicFind) {
|
|
Mips16HelperFunction = Helper->Helper;
|
|
NeedMips16Helper = true;
|
|
LookupHelper = false;
|
|
}
|
|
|
|
}
|
|
} else if (GlobalAddressSDNode *G =
|
|
dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
|
|
Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
|
|
G->getGlobal()->getName().data() };
|
|
|
|
if (std::binary_search(std::begin(HardFloatLibCalls),
|
|
std::end(HardFloatLibCalls), Find))
|
|
LookupHelper = false;
|
|
}
|
|
if (LookupHelper)
|
|
Mips16HelperFunction =
|
|
getMips16HelperFunction(CLI.RetTy, CLI.getArgs(), NeedMips16Helper);
|
|
}
|
|
|
|
SDValue JumpTarget = Callee;
|
|
|
|
// T9 should contain the address of the callee function if
|
|
// -relocation-model=pic or it is an indirect call.
|
|
if (IsPICCall || !GlobalOrExternal) {
|
|
unsigned V0Reg = Mips::V0;
|
|
if (NeedMips16Helper) {
|
|
RegsToPass.push_front(std::make_pair(V0Reg, Callee));
|
|
JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction,
|
|
getPointerTy(DAG.getDataLayout()));
|
|
ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget);
|
|
JumpTarget = getAddrGlobal(S, CLI.DL, JumpTarget.getValueType(), DAG,
|
|
MipsII::MO_GOT, Chain,
|
|
FuncInfo->callPtrInfo(S->getSymbol()));
|
|
} else
|
|
RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
|
|
}
|
|
|
|
Ops.push_back(JumpTarget);
|
|
|
|
MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
|
|
InternalLinkage, IsCallReloc, CLI, Callee,
|
|
Chain);
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
Mips16TargetLowering::emitSel16(unsigned Opc, MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
if (DontExpandCondPseudos16)
|
|
return BB;
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = ++BB->getIterator();
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// setcc r1, r2, r3
|
|
// bNE r1, r0, copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Next, add the true and fallthrough blocks as its successors.
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
BuildMI(BB, DL, TII->get(Opc))
|
|
.addReg(MI.getOperand(3).getReg())
|
|
.addMBB(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
|
|
BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
|
|
.addReg(MI.getOperand(1).getReg())
|
|
.addMBB(thisMBB)
|
|
.addReg(MI.getOperand(2).getReg())
|
|
.addMBB(copy0MBB);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
Mips16TargetLowering::emitSelT16(unsigned Opc1, unsigned Opc2, MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
if (DontExpandCondPseudos16)
|
|
return BB;
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = ++BB->getIterator();
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// setcc r1, r2, r3
|
|
// bNE r1, r0, copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Next, add the true and fallthrough blocks as its successors.
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
BuildMI(BB, DL, TII->get(Opc2))
|
|
.addReg(MI.getOperand(3).getReg())
|
|
.addReg(MI.getOperand(4).getReg());
|
|
BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
|
|
BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
|
|
.addReg(MI.getOperand(1).getReg())
|
|
.addMBB(thisMBB)
|
|
.addReg(MI.getOperand(2).getReg())
|
|
.addMBB(copy0MBB);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
Mips16TargetLowering::emitSeliT16(unsigned Opc1, unsigned Opc2,
|
|
MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
if (DontExpandCondPseudos16)
|
|
return BB;
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = ++BB->getIterator();
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// setcc r1, r2, r3
|
|
// bNE r1, r0, copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Next, add the true and fallthrough blocks as its successors.
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
BuildMI(BB, DL, TII->get(Opc2))
|
|
.addReg(MI.getOperand(3).getReg())
|
|
.addImm(MI.getOperand(4).getImm());
|
|
BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
|
|
BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
|
|
.addReg(MI.getOperand(1).getReg())
|
|
.addMBB(thisMBB)
|
|
.addReg(MI.getOperand(2).getReg())
|
|
.addMBB(copy0MBB);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
|
|
MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
if (DontExpandCondPseudos16)
|
|
return BB;
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
unsigned regX = MI.getOperand(0).getReg();
|
|
unsigned regY = MI.getOperand(1).getReg();
|
|
MachineBasicBlock *target = MI.getOperand(2).getMBB();
|
|
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc))
|
|
.addReg(regX)
|
|
.addReg(regY);
|
|
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target);
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
|
|
unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
|
|
MachineInstr &MI, MachineBasicBlock *BB) const {
|
|
if (DontExpandCondPseudos16)
|
|
return BB;
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
unsigned regX = MI.getOperand(0).getReg();
|
|
int64_t imm = MI.getOperand(1).getImm();
|
|
MachineBasicBlock *target = MI.getOperand(2).getMBB();
|
|
unsigned CmpOpc;
|
|
if (isUInt<8>(imm))
|
|
CmpOpc = CmpiOpc;
|
|
else if ((!ImmSigned && isUInt<16>(imm)) ||
|
|
(ImmSigned && isInt<16>(imm)))
|
|
CmpOpc = CmpiXOpc;
|
|
else
|
|
llvm_unreachable("immediate field not usable");
|
|
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(CmpOpc)).addReg(regX).addImm(imm);
|
|
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(BtOpc)).addMBB(target);
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
static unsigned Mips16WhichOp8uOr16simm
|
|
(unsigned shortOp, unsigned longOp, int64_t Imm) {
|
|
if (isUInt<8>(Imm))
|
|
return shortOp;
|
|
else if (isInt<16>(Imm))
|
|
return longOp;
|
|
else
|
|
llvm_unreachable("immediate field not usable");
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
Mips16TargetLowering::emitFEXT_CCRX16_ins(unsigned SltOpc, MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
if (DontExpandCondPseudos16)
|
|
return BB;
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
unsigned CC = MI.getOperand(0).getReg();
|
|
unsigned regX = MI.getOperand(1).getReg();
|
|
unsigned regY = MI.getOperand(2).getReg();
|
|
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc))
|
|
.addReg(regX)
|
|
.addReg(regY);
|
|
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC)
|
|
.addReg(Mips::T8);
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
Mips16TargetLowering::emitFEXT_CCRXI16_ins(unsigned SltiOpc, unsigned SltiXOpc,
|
|
MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
if (DontExpandCondPseudos16)
|
|
return BB;
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
unsigned CC = MI.getOperand(0).getReg();
|
|
unsigned regX = MI.getOperand(1).getReg();
|
|
int64_t Imm = MI.getOperand(2).getImm();
|
|
unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
|
|
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SltOpc)).addReg(regX).addImm(Imm);
|
|
BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Mips::MoveR3216), CC)
|
|
.addReg(Mips::T8);
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
|
|
}
|