llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoVPseudos.td

4608 lines
191 KiB
TableGen

//===-- RISCVInstrInfoVPseudos.td - RISC-V 'V' Pseudos -----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file contains the required infrastructure to support code generation
/// for the standard 'V' (Vector) extension, version 0.10. This version is still
/// experimental as the 'V' extension hasn't been ratified yet.
///
/// This file is included from RISCVInstrInfoV.td
///
//===----------------------------------------------------------------------===//
def riscv_vmv_x_s : SDNode<"RISCVISD::VMV_X_S",
SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVec<1>,
SDTCisInt<1>]>>;
def riscv_read_vlenb : SDNode<"RISCVISD::READ_VLENB",
SDTypeProfile<1, 0, [SDTCisVT<0, XLenVT>]>>;
// Operand that is allowed to be a register or a 5 bit immediate.
// This allows us to pick between VSETIVLI and VSETVLI opcodes using the same
// pseudo instructions.
def AVL : RegisterOperand<GPR> {
let OperandNamespace = "RISCVOp";
let OperandType = "OPERAND_AVL";
}
// X0 has special meaning for vsetvl/vsetvli.
// rd | rs1 | AVL value | Effect on vl
//--------------------------------------------------------------
// !X0 | X0 | VLMAX | Set vl to VLMAX
// X0 | X0 | Value in vl | Keep current vl, just change vtype.
def VLOp : ComplexPattern<XLenVT, 1, "selectVLOp">;
def DecImm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() - 1, SDLoc(N),
N->getValueType(0));
}]>;
//===----------------------------------------------------------------------===//
// Utilities.
//===----------------------------------------------------------------------===//
// This class describes information associated to the LMUL.
class LMULInfo<int lmul, int oct, VReg regclass, VReg wregclass,
VReg f2regclass, VReg f4regclass, VReg f8regclass, string mx> {
bits<3> value = lmul; // This is encoded as the vlmul field of vtype.
VReg vrclass = regclass;
VReg wvrclass = wregclass;
VReg f8vrclass = f8regclass;
VReg f4vrclass = f4regclass;
VReg f2vrclass = f2regclass;
string MX = mx;
int octuple = oct;
}
// Associate LMUL with tablegen records of register classes.
def V_M1 : LMULInfo<0b000, 8, VR, VRM2, VR, VR, VR, "M1">;
def V_M2 : LMULInfo<0b001, 16, VRM2, VRM4, VR, VR, VR, "M2">;
def V_M4 : LMULInfo<0b010, 32, VRM4, VRM8, VRM2, VR, VR, "M4">;
def V_M8 : LMULInfo<0b011, 64, VRM8,/*NoVReg*/VR, VRM4, VRM2, VR, "M8">;
def V_MF8 : LMULInfo<0b101, 1, VR, VR,/*NoVReg*/VR,/*NoVReg*/VR,/*NoVReg*/VR, "MF8">;
def V_MF4 : LMULInfo<0b110, 2, VR, VR, VR,/*NoVReg*/VR,/*NoVReg*/VR, "MF4">;
def V_MF2 : LMULInfo<0b111, 4, VR, VR, VR, VR,/*NoVReg*/VR, "MF2">;
// Used to iterate over all possible LMULs.
def MxList {
list<LMULInfo> m = [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8];
}
// Used for widening and narrowing instructions as it doesn't contain M8.
def MxListW {
list<LMULInfo> m = [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4];
}
// Use for zext/sext.vf2
def MxListVF2 {
list<LMULInfo> m = [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8];
}
// Use for zext/sext.vf4
def MxListVF4 {
list<LMULInfo> m = [V_MF2, V_M1, V_M2, V_M4, V_M8];
}
// Use for zext/sext.vf8
def MxListVF8 {
list<LMULInfo> m = [V_M1, V_M2, V_M4, V_M8];
}
class FPR_Info<RegisterClass regclass, string fx> {
RegisterClass fprclass = regclass;
string FX = fx;
}
def SCALAR_F16 : FPR_Info<FPR16, "F16">;
def SCALAR_F32 : FPR_Info<FPR32, "F32">;
def SCALAR_F64 : FPR_Info<FPR64, "F64">;
def FPList {
list<FPR_Info> fpinfo = [SCALAR_F16, SCALAR_F32, SCALAR_F64];
}
// Used for widening instructions. It excludes F64.
def FPListW {
list<FPR_Info> fpinfo = [SCALAR_F16, SCALAR_F32];
}
class MxSet<int eew> {
list<LMULInfo> m = !cond(!eq(eew, 8) : [V_MF8, V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8],
!eq(eew, 16) : [V_MF4, V_MF2, V_M1, V_M2, V_M4, V_M8],
!eq(eew, 32) : [V_MF2, V_M1, V_M2, V_M4, V_M8],
!eq(eew, 64) : [V_M1, V_M2, V_M4, V_M8]);
}
class NFSet<LMULInfo m> {
list<int> L = !cond(!eq(m.value, V_M8.value): [],
!eq(m.value, V_M4.value): [2],
!eq(m.value, V_M2.value): [2, 3, 4],
true: [2, 3, 4, 5, 6, 7, 8]);
}
class log2<int num> {
int val = !if(!eq(num, 1), 0, !add(1, log2<!srl(num, 1)>.val));
}
class octuple_to_str<int octuple> {
string ret = !if(!eq(octuple, 1), "MF8",
!if(!eq(octuple, 2), "MF4",
!if(!eq(octuple, 4), "MF2",
!if(!eq(octuple, 8), "M1",
!if(!eq(octuple, 16), "M2",
!if(!eq(octuple, 32), "M4",
!if(!eq(octuple, 64), "M8",
"NoDef")))))));
}
def VLOpFrag : PatFrag<(ops), (XLenVT (VLOp (XLenVT AVL:$vl)))>;
// Output pattern for X0 used to represent VLMAX in the pseudo instructions.
def VLMax : OutPatFrag<(ops), (XLenVT X0)>;
// List of EEW.
defvar EEWList = [8, 16, 32, 64];
class SegRegClass<LMULInfo m, int nf> {
VReg RC = !cast<VReg>("VRN" # nf # !cond(!eq(m.value, V_MF8.value): V_M1.MX,
!eq(m.value, V_MF4.value): V_M1.MX,
!eq(m.value, V_MF2.value): V_M1.MX,
true: m.MX));
}
//===----------------------------------------------------------------------===//
// Vector register and vector group type information.
//===----------------------------------------------------------------------===//
class VTypeInfo<ValueType Vec, ValueType Mas, int Sew, VReg Reg, LMULInfo M,
ValueType Scal = XLenVT, RegisterClass ScalarReg = GPR>
{
ValueType Vector = Vec;
ValueType Mask = Mas;
int SEW = Sew;
int Log2SEW = log2<Sew>.val;
VReg RegClass = Reg;
LMULInfo LMul = M;
ValueType Scalar = Scal;
RegisterClass ScalarRegClass = ScalarReg;
// The pattern fragment which produces the AVL operand, representing the
// "natural" vector length for this type. For scalable vectors this is VLMax.
OutPatFrag AVL = VLMax;
string ScalarSuffix = !cond(!eq(Scal, XLenVT) : "X",
!eq(Scal, f16) : "F16",
!eq(Scal, f32) : "F32",
!eq(Scal, f64) : "F64");
}
class GroupVTypeInfo<ValueType Vec, ValueType VecM1, ValueType Mas, int Sew,
VReg Reg, LMULInfo M, ValueType Scal = XLenVT,
RegisterClass ScalarReg = GPR>
: VTypeInfo<Vec, Mas, Sew, Reg, M, Scal, ScalarReg>
{
ValueType VectorM1 = VecM1;
}
defset list<VTypeInfo> AllVectors = {
defset list<VTypeInfo> AllIntegerVectors = {
defset list<VTypeInfo> NoGroupIntegerVectors = {
defset list<VTypeInfo> FractionalGroupIntegerVectors = {
def VI8MF8: VTypeInfo<vint8mf8_t, vbool64_t, 8, VR, V_MF8>;
def VI8MF4: VTypeInfo<vint8mf4_t, vbool32_t, 8, VR, V_MF4>;
def VI8MF2: VTypeInfo<vint8mf2_t, vbool16_t, 8, VR, V_MF2>;
def VI16MF4: VTypeInfo<vint16mf4_t, vbool64_t, 16, VR, V_MF4>;
def VI16MF2: VTypeInfo<vint16mf2_t, vbool32_t, 16, VR, V_MF2>;
def VI32MF2: VTypeInfo<vint32mf2_t, vbool64_t, 32, VR, V_MF2>;
}
def VI8M1: VTypeInfo<vint8m1_t, vbool8_t, 8, VR, V_M1>;
def VI16M1: VTypeInfo<vint16m1_t, vbool16_t, 16, VR, V_M1>;
def VI32M1: VTypeInfo<vint32m1_t, vbool32_t, 32, VR, V_M1>;
def VI64M1: VTypeInfo<vint64m1_t, vbool64_t, 64, VR, V_M1>;
}
defset list<GroupVTypeInfo> GroupIntegerVectors = {
def VI8M2: GroupVTypeInfo<vint8m2_t, vint8m1_t, vbool4_t, 8, VRM2, V_M2>;
def VI8M4: GroupVTypeInfo<vint8m4_t, vint8m1_t, vbool2_t, 8, VRM4, V_M4>;
def VI8M8: GroupVTypeInfo<vint8m8_t, vint8m1_t, vbool1_t, 8, VRM8, V_M8>;
def VI16M2: GroupVTypeInfo<vint16m2_t,vint16m1_t,vbool8_t, 16,VRM2, V_M2>;
def VI16M4: GroupVTypeInfo<vint16m4_t,vint16m1_t,vbool4_t, 16,VRM4, V_M4>;
def VI16M8: GroupVTypeInfo<vint16m8_t,vint16m1_t,vbool2_t, 16,VRM8, V_M8>;
def VI32M2: GroupVTypeInfo<vint32m2_t,vint32m1_t,vbool16_t,32,VRM2, V_M2>;
def VI32M4: GroupVTypeInfo<vint32m4_t,vint32m1_t,vbool8_t, 32,VRM4, V_M4>;
def VI32M8: GroupVTypeInfo<vint32m8_t,vint32m1_t,vbool4_t, 32,VRM8, V_M8>;
def VI64M2: GroupVTypeInfo<vint64m2_t,vint64m1_t,vbool32_t,64,VRM2, V_M2>;
def VI64M4: GroupVTypeInfo<vint64m4_t,vint64m1_t,vbool16_t,64,VRM4, V_M4>;
def VI64M8: GroupVTypeInfo<vint64m8_t,vint64m1_t,vbool8_t, 64,VRM8, V_M8>;
}
}
defset list<VTypeInfo> AllFloatVectors = {
defset list<VTypeInfo> NoGroupFloatVectors = {
defset list<VTypeInfo> FractionalGroupFloatVectors = {
def VF16MF4: VTypeInfo<vfloat16mf4_t, vbool64_t, 16, VR, V_MF4, f16, FPR16>;
def VF16MF2: VTypeInfo<vfloat16mf2_t, vbool32_t, 16, VR, V_MF2, f16, FPR16>;
def VF32MF2: VTypeInfo<vfloat32mf2_t,vbool64_t, 32, VR, V_MF2, f32, FPR32>;
}
def VF16M1: VTypeInfo<vfloat16m1_t, vbool16_t, 16, VR, V_M1, f16, FPR16>;
def VF32M1: VTypeInfo<vfloat32m1_t, vbool32_t, 32, VR, V_M1, f32, FPR32>;
def VF64M1: VTypeInfo<vfloat64m1_t, vbool64_t, 64, VR, V_M1, f64, FPR64>;
}
defset list<GroupVTypeInfo> GroupFloatVectors = {
def VF16M2: GroupVTypeInfo<vfloat16m2_t, vfloat16m1_t, vbool8_t, 16,
VRM2, V_M2, f16, FPR16>;
def VF16M4: GroupVTypeInfo<vfloat16m4_t, vfloat16m1_t, vbool4_t, 16,
VRM4, V_M4, f16, FPR16>;
def VF16M8: GroupVTypeInfo<vfloat16m8_t, vfloat16m1_t, vbool2_t, 16,
VRM8, V_M8, f16, FPR16>;
def VF32M2: GroupVTypeInfo<vfloat32m2_t, vfloat32m1_t, vbool16_t, 32,
VRM2, V_M2, f32, FPR32>;
def VF32M4: GroupVTypeInfo<vfloat32m4_t, vfloat32m1_t, vbool8_t, 32,
VRM4, V_M4, f32, FPR32>;
def VF32M8: GroupVTypeInfo<vfloat32m8_t, vfloat32m1_t, vbool4_t, 32,
VRM8, V_M8, f32, FPR32>;
def VF64M2: GroupVTypeInfo<vfloat64m2_t, vfloat64m1_t, vbool32_t, 64,
VRM2, V_M2, f64, FPR64>;
def VF64M4: GroupVTypeInfo<vfloat64m4_t, vfloat64m1_t, vbool16_t, 64,
VRM4, V_M4, f64, FPR64>;
def VF64M8: GroupVTypeInfo<vfloat64m8_t, vfloat64m1_t, vbool8_t, 64,
VRM8, V_M8, f64, FPR64>;
}
}
}
// This functor is used to obtain the int vector type that has the same SEW and
// multiplier as the input parameter type
class GetIntVTypeInfo<VTypeInfo vti>
{
// Equivalent integer vector type. Eg.
// VI8M1 → VI8M1 (identity)
// VF64M4 → VI64M4
VTypeInfo Vti = !cast<VTypeInfo>(!subst("VF", "VI", !cast<string>(vti)));
}
class MTypeInfo<ValueType Mas, LMULInfo M, string Bx> {
ValueType Mask = Mas;
// {SEW, VLMul} values set a valid VType to deal with this mask type.
// we assume SEW=1 and set corresponding LMUL. vsetvli insertion will
// look for SEW=1 to optimize based on surrounding instructions.
int SEW = 1;
int Log2SEW = 0;
LMULInfo LMul = M;
string BX = Bx; // Appendix of mask operations.
// The pattern fragment which produces the AVL operand, representing the
// "natural" vector length for this mask type. For scalable masks this is
// VLMax.
OutPatFrag AVL = VLMax;
}
defset list<MTypeInfo> AllMasks = {
// vbool<n>_t, <n> = SEW/LMUL, we assume SEW=8 and corresponding LMUL.
def : MTypeInfo<vbool64_t, V_MF8, "B1">;
def : MTypeInfo<vbool32_t, V_MF4, "B2">;
def : MTypeInfo<vbool16_t, V_MF2, "B4">;
def : MTypeInfo<vbool8_t, V_M1, "B8">;
def : MTypeInfo<vbool4_t, V_M2, "B16">;
def : MTypeInfo<vbool2_t, V_M4, "B32">;
def : MTypeInfo<vbool1_t, V_M8, "B64">;
}
class VTypeInfoToWide<VTypeInfo vti, VTypeInfo wti>
{
VTypeInfo Vti = vti;
VTypeInfo Wti = wti;
}
class VTypeInfoToFraction<VTypeInfo vti, VTypeInfo fti>
{
VTypeInfo Vti = vti;
VTypeInfo Fti = fti;
}
defset list<VTypeInfoToWide> AllWidenableIntVectors = {
def : VTypeInfoToWide<VI8MF8, VI16MF4>;
def : VTypeInfoToWide<VI8MF4, VI16MF2>;
def : VTypeInfoToWide<VI8MF2, VI16M1>;
def : VTypeInfoToWide<VI8M1, VI16M2>;
def : VTypeInfoToWide<VI8M2, VI16M4>;
def : VTypeInfoToWide<VI8M4, VI16M8>;
def : VTypeInfoToWide<VI16MF4, VI32MF2>;
def : VTypeInfoToWide<VI16MF2, VI32M1>;
def : VTypeInfoToWide<VI16M1, VI32M2>;
def : VTypeInfoToWide<VI16M2, VI32M4>;
def : VTypeInfoToWide<VI16M4, VI32M8>;
def : VTypeInfoToWide<VI32MF2, VI64M1>;
def : VTypeInfoToWide<VI32M1, VI64M2>;
def : VTypeInfoToWide<VI32M2, VI64M4>;
def : VTypeInfoToWide<VI32M4, VI64M8>;
}
defset list<VTypeInfoToWide> AllWidenableFloatVectors = {
def : VTypeInfoToWide<VF16MF4, VF32MF2>;
def : VTypeInfoToWide<VF16MF2, VF32M1>;
def : VTypeInfoToWide<VF16M1, VF32M2>;
def : VTypeInfoToWide<VF16M2, VF32M4>;
def : VTypeInfoToWide<VF16M4, VF32M8>;
def : VTypeInfoToWide<VF32MF2, VF64M1>;
def : VTypeInfoToWide<VF32M1, VF64M2>;
def : VTypeInfoToWide<VF32M2, VF64M4>;
def : VTypeInfoToWide<VF32M4, VF64M8>;
}
defset list<VTypeInfoToFraction> AllFractionableVF2IntVectors = {
def : VTypeInfoToFraction<VI16MF4, VI8MF8>;
def : VTypeInfoToFraction<VI16MF2, VI8MF4>;
def : VTypeInfoToFraction<VI16M1, VI8MF2>;
def : VTypeInfoToFraction<VI16M2, VI8M1>;
def : VTypeInfoToFraction<VI16M4, VI8M2>;
def : VTypeInfoToFraction<VI16M8, VI8M4>;
def : VTypeInfoToFraction<VI32MF2, VI16MF4>;
def : VTypeInfoToFraction<VI32M1, VI16MF2>;
def : VTypeInfoToFraction<VI32M2, VI16M1>;
def : VTypeInfoToFraction<VI32M4, VI16M2>;
def : VTypeInfoToFraction<VI32M8, VI16M4>;
def : VTypeInfoToFraction<VI64M1, VI32MF2>;
def : VTypeInfoToFraction<VI64M2, VI32M1>;
def : VTypeInfoToFraction<VI64M4, VI32M2>;
def : VTypeInfoToFraction<VI64M8, VI32M4>;
}
defset list<VTypeInfoToFraction> AllFractionableVF4IntVectors = {
def : VTypeInfoToFraction<VI32MF2, VI8MF8>;
def : VTypeInfoToFraction<VI32M1, VI8MF4>;
def : VTypeInfoToFraction<VI32M2, VI8MF2>;
def : VTypeInfoToFraction<VI32M4, VI8M1>;
def : VTypeInfoToFraction<VI32M8, VI8M2>;
def : VTypeInfoToFraction<VI64M1, VI16MF4>;
def : VTypeInfoToFraction<VI64M2, VI16MF2>;
def : VTypeInfoToFraction<VI64M4, VI16M1>;
def : VTypeInfoToFraction<VI64M8, VI16M2>;
}
defset list<VTypeInfoToFraction> AllFractionableVF8IntVectors = {
def : VTypeInfoToFraction<VI64M1, VI8MF8>;
def : VTypeInfoToFraction<VI64M2, VI8MF4>;
def : VTypeInfoToFraction<VI64M4, VI8MF2>;
def : VTypeInfoToFraction<VI64M8, VI8M1>;
}
defset list<VTypeInfoToWide> AllWidenableIntToFloatVectors = {
def : VTypeInfoToWide<VI8MF8, VF16MF4>;
def : VTypeInfoToWide<VI8MF4, VF16MF2>;
def : VTypeInfoToWide<VI8MF2, VF16M1>;
def : VTypeInfoToWide<VI8M1, VF16M2>;
def : VTypeInfoToWide<VI8M2, VF16M4>;
def : VTypeInfoToWide<VI8M4, VF16M8>;
def : VTypeInfoToWide<VI16MF4, VF32MF2>;
def : VTypeInfoToWide<VI16MF2, VF32M1>;
def : VTypeInfoToWide<VI16M1, VF32M2>;
def : VTypeInfoToWide<VI16M2, VF32M4>;
def : VTypeInfoToWide<VI16M4, VF32M8>;
def : VTypeInfoToWide<VI32MF2, VF64M1>;
def : VTypeInfoToWide<VI32M1, VF64M2>;
def : VTypeInfoToWide<VI32M2, VF64M4>;
def : VTypeInfoToWide<VI32M4, VF64M8>;
}
// This class holds the record of the RISCVVPseudoTable below.
// This represents the information we need in codegen for each pseudo.
// The definition should be consistent with `struct PseudoInfo` in
// RISCVBaseInfo.h.
class CONST8b<bits<8> val> {
bits<8> V = val;
}
def InvalidIndex : CONST8b<0x80>;
class RISCVVPseudo {
Pseudo Pseudo = !cast<Pseudo>(NAME); // Used as a key.
Instruction BaseInstr;
}
// The actual table.
def RISCVVPseudosTable : GenericTable {
let FilterClass = "RISCVVPseudo";
let CppTypeName = "PseudoInfo";
let Fields = [ "Pseudo", "BaseInstr" ];
let PrimaryKey = [ "Pseudo" ];
let PrimaryKeyName = "getPseudoInfo";
let PrimaryKeyEarlyOut = true;
}
def RISCVVIntrinsicsTable : GenericTable {
let FilterClass = "RISCVVIntrinsic";
let CppTypeName = "RISCVVIntrinsicInfo";
let Fields = ["IntrinsicID", "SplatOperand"];
let PrimaryKey = ["IntrinsicID"];
let PrimaryKeyName = "getRISCVVIntrinsicInfo";
}
class RISCVVLE<bit M, bit Str, bit F, bits<3> S, bits<3> L> {
bits<1> Masked = M;
bits<1> Strided = Str;
bits<1> FF = F;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
def RISCVVLETable : GenericTable {
let FilterClass = "RISCVVLE";
let CppTypeName = "VLEPseudo";
let Fields = ["Masked", "Strided", "FF", "Log2SEW", "LMUL", "Pseudo"];
let PrimaryKey = ["Masked", "Strided", "FF", "Log2SEW", "LMUL"];
let PrimaryKeyName = "getVLEPseudo";
}
class RISCVVSE<bit M, bit Str, bits<3> S, bits<3> L> {
bits<1> Masked = M;
bits<1> Strided = Str;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
def RISCVVSETable : GenericTable {
let FilterClass = "RISCVVSE";
let CppTypeName = "VSEPseudo";
let Fields = ["Masked", "Strided", "Log2SEW", "LMUL", "Pseudo"];
let PrimaryKey = ["Masked", "Strided", "Log2SEW", "LMUL"];
let PrimaryKeyName = "getVSEPseudo";
}
class RISCVVLX_VSX<bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> {
bits<1> Masked = M;
bits<1> Ordered = O;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
bits<3> IndexLMUL = IL;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
class RISCVVLX<bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> :
RISCVVLX_VSX<M, O, S, L, IL>;
class RISCVVSX<bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> :
RISCVVLX_VSX<M, O, S, L, IL>;
class RISCVVLX_VSXTable : GenericTable {
let CppTypeName = "VLX_VSXPseudo";
let Fields = ["Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"];
let PrimaryKey = ["Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"];
}
def RISCVVLXTable : RISCVVLX_VSXTable {
let FilterClass = "RISCVVLX";
let PrimaryKeyName = "getVLXPseudo";
}
def RISCVVSXTable : RISCVVLX_VSXTable {
let FilterClass = "RISCVVSX";
let PrimaryKeyName = "getVSXPseudo";
}
class RISCVVLSEG<bits<4> N, bit M, bit Str, bit F, bits<3> S, bits<3> L> {
bits<4> NF = N;
bits<1> Masked = M;
bits<1> Strided = Str;
bits<1> FF = F;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
def RISCVVLSEGTable : GenericTable {
let FilterClass = "RISCVVLSEG";
let CppTypeName = "VLSEGPseudo";
let Fields = ["NF", "Masked", "Strided", "FF", "Log2SEW", "LMUL", "Pseudo"];
let PrimaryKey = ["NF", "Masked", "Strided", "FF", "Log2SEW", "LMUL"];
let PrimaryKeyName = "getVLSEGPseudo";
}
class RISCVVLXSEG<bits<4> N, bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> {
bits<4> NF = N;
bits<1> Masked = M;
bits<1> Ordered = O;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
bits<3> IndexLMUL = IL;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
def RISCVVLXSEGTable : GenericTable {
let FilterClass = "RISCVVLXSEG";
let CppTypeName = "VLXSEGPseudo";
let Fields = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"];
let PrimaryKey = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"];
let PrimaryKeyName = "getVLXSEGPseudo";
}
class RISCVVSSEG<bits<4> N, bit M, bit Str, bits<3> S, bits<3> L> {
bits<4> NF = N;
bits<1> Masked = M;
bits<1> Strided = Str;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
def RISCVVSSEGTable : GenericTable {
let FilterClass = "RISCVVSSEG";
let CppTypeName = "VSSEGPseudo";
let Fields = ["NF", "Masked", "Strided", "Log2SEW", "LMUL", "Pseudo"];
let PrimaryKey = ["NF", "Masked", "Strided", "Log2SEW", "LMUL"];
let PrimaryKeyName = "getVSSEGPseudo";
}
class RISCVVSXSEG<bits<4> N, bit M, bit O, bits<3> S, bits<3> L, bits<3> IL> {
bits<4> NF = N;
bits<1> Masked = M;
bits<1> Ordered = O;
bits<3> Log2SEW = S;
bits<3> LMUL = L;
bits<3> IndexLMUL = IL;
Pseudo Pseudo = !cast<Pseudo>(NAME);
}
def RISCVVSXSEGTable : GenericTable {
let FilterClass = "RISCVVSXSEG";
let CppTypeName = "VSXSEGPseudo";
let Fields = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL", "Pseudo"];
let PrimaryKey = ["NF", "Masked", "Ordered", "Log2SEW", "LMUL", "IndexLMUL"];
let PrimaryKeyName = "getVSXSEGPseudo";
}
//===----------------------------------------------------------------------===//
// Helpers to define the different pseudo instructions.
//===----------------------------------------------------------------------===//
class PseudoToVInst<string PseudoInst> {
string VInst = !subst("_M8", "",
!subst("_M4", "",
!subst("_M2", "",
!subst("_M1", "",
!subst("_MF2", "",
!subst("_MF4", "",
!subst("_MF8", "",
!subst("_B1", "",
!subst("_B2", "",
!subst("_B4", "",
!subst("_B8", "",
!subst("_B16", "",
!subst("_B32", "",
!subst("_B64", "",
!subst("_MASK", "",
!subst("_COMMUTABLE", "",
!subst("_TA", "",
!subst("_TIED", "",
!subst("F16", "F",
!subst("F32", "F",
!subst("F64", "F",
!subst("Pseudo", "", PseudoInst))))))))))))))))))))));
}
// The destination vector register group for a masked vector instruction cannot
// overlap the source mask register (v0), unless the destination vector register
// is being written with a mask value (e.g., comparisons) or the scalar result
// of a reduction.
class GetVRegNoV0<VReg VRegClass> {
VReg R = !cond(!eq(VRegClass, VR) : VRNoV0,
!eq(VRegClass, VRM2) : VRM2NoV0,
!eq(VRegClass, VRM4) : VRM4NoV0,
!eq(VRegClass, VRM8) : VRM8NoV0,
!eq(VRegClass, VRN2M1) : VRN2M1NoV0,
!eq(VRegClass, VRN2M2) : VRN2M2NoV0,
!eq(VRegClass, VRN2M4) : VRN2M4NoV0,
!eq(VRegClass, VRN3M1) : VRN3M1NoV0,
!eq(VRegClass, VRN3M2) : VRN3M2NoV0,
!eq(VRegClass, VRN4M1) : VRN4M1NoV0,
!eq(VRegClass, VRN4M2) : VRN4M2NoV0,
!eq(VRegClass, VRN5M1) : VRN5M1NoV0,
!eq(VRegClass, VRN6M1) : VRN6M1NoV0,
!eq(VRegClass, VRN7M1) : VRN7M1NoV0,
!eq(VRegClass, VRN8M1) : VRN8M1NoV0,
true : VRegClass);
}
// Join strings in list using separator and ignoring empty elements
class Join<list<string> strings, string separator> {
string ret = !foldl(!head(strings), !tail(strings), a, b,
!cond(
!and(!empty(a), !empty(b)) : "",
!empty(a) : b,
!empty(b) : a,
1 : a#separator#b));
}
class VPseudo<Instruction instr, LMULInfo m, dag outs, dag ins> :
Pseudo<outs, ins, []>, RISCVVPseudo {
let BaseInstr = instr;
let VLMul = m.value;
}
class VPseudoUSLoadNoMask<VReg RetClass, int EEW, bit isFF> :
Pseudo<(outs RetClass:$rd),
(ins GPR:$rs1, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVLE</*Masked*/0, /*Strided*/0, /*FF*/isFF, log2<EEW>.val, VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoUSLoadMask<VReg RetClass, int EEW, bit isFF> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$merge,
GPR:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVLE</*Masked*/1, /*Strided*/0, /*FF*/isFF, log2<EEW>.val, VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $merge";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoSLoadNoMask<VReg RetClass, int EEW>:
Pseudo<(outs RetClass:$rd),
(ins GPR:$rs1, GPR:$rs2, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVLE</*Masked*/0, /*Strided*/1, /*FF*/0, log2<EEW>.val, VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoSLoadMask<VReg RetClass, int EEW>:
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$merge,
GPR:$rs1, GPR:$rs2,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVLE</*Masked*/1, /*Strided*/1, /*FF*/0, log2<EEW>.val, VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $merge";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoILoadNoMask<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL,
bit Ordered, bit EarlyClobber>:
Pseudo<(outs RetClass:$rd),
(ins GPR:$rs1, IdxClass:$rs2, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVLX</*Masked*/0, Ordered, log2<EEW>.val, VLMul, LMUL> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let Constraints = !if(!eq(EarlyClobber, 1), "@earlyclobber $rd", "");
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoILoadMask<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL,
bit Ordered, bit EarlyClobber>:
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$merge,
GPR:$rs1, IdxClass:$rs2,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVLX</*Masked*/1, Ordered, log2<EEW>.val, VLMul, LMUL> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = !if(!eq(EarlyClobber, 1), "@earlyclobber $rd, $rd = $merge", "$rd = $merge");
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoUSStoreNoMask<VReg StClass, int EEW>:
Pseudo<(outs),
(ins StClass:$rd, GPR:$rs1, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSE</*Masked*/0, /*Strided*/0, log2<EEW>.val, VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoUSStoreMask<VReg StClass, int EEW>:
Pseudo<(outs),
(ins StClass:$rd, GPR:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSE</*Masked*/1, /*Strided*/0, log2<EEW>.val, VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoSStoreNoMask<VReg StClass, int EEW>:
Pseudo<(outs),
(ins StClass:$rd, GPR:$rs1, GPR:$rs2, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSE</*Masked*/0, /*Strided*/1, log2<EEW>.val, VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoSStoreMask<VReg StClass, int EEW>:
Pseudo<(outs),
(ins StClass:$rd, GPR:$rs1, GPR:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSE</*Masked*/1, /*Strided*/1, log2<EEW>.val, VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
// Unary instruction that is never masked so HasDummyMask=0.
class VPseudoUnaryNoDummyMask<VReg RetClass,
DAGOperand Op2Class> :
Pseudo<(outs RetClass:$rd),
(ins Op2Class:$rs1, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoNullaryNoMask<VReg RegClass>:
Pseudo<(outs RegClass:$rd),
(ins AVL:$vl, ixlenimm:$sew),
[]>, RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoNullaryMask<VReg RegClass>:
Pseudo<(outs GetVRegNoV0<RegClass>.R:$rd),
(ins GetVRegNoV0<RegClass>.R:$merge, VMaskOp:$vm, AVL:$vl,
ixlenimm:$sew), []>, RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints ="$rd = $merge";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
// Nullary for pseudo instructions. They are expanded in
// RISCVExpandPseudoInsts pass.
class VPseudoNullaryPseudoM<string BaseInst>
: Pseudo<(outs VR:$rd), (ins AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
// BaseInstr is not used in RISCVExpandPseudoInsts pass.
// Just fill a corresponding real v-inst to pass tablegen check.
let BaseInstr = !cast<Instruction>(BaseInst);
}
// RetClass could be GPR or VReg.
class VPseudoUnaryNoMask<DAGOperand RetClass, VReg OpClass, string Constraint = ""> :
Pseudo<(outs RetClass:$rd),
(ins OpClass:$rs2, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = Constraint;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoUnaryMask<VReg RetClass, VReg OpClass, string Constraint = ""> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$merge, OpClass:$rs2,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
// mask unary operation without maskedoff
class VPseudoMaskUnarySOutMask:
Pseudo<(outs GPR:$rd),
(ins VR:$rs1, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
// Mask can be V0~V31
class VPseudoUnaryAnyMask<VReg RetClass,
VReg Op1Class> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$merge,
Op1Class:$rs2,
VR:$vm, AVL:$vl, ixlenimm:$sew),
[]>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "@earlyclobber $rd, $rd = $merge";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoBinaryNoMask<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
string Constraint> :
Pseudo<(outs RetClass:$rd),
(ins Op1Class:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = Constraint;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoTiedBinaryNoMask<VReg RetClass,
DAGOperand Op2Class,
string Constraint> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = Join<[Constraint, "$rd = $rs2"], ",">.ret;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let ForceTailAgnostic = 1;
let isConvertibleToThreeAddress = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoIStoreNoMask<VReg StClass, VReg IdxClass, int EEW, bits<3> LMUL,
bit Ordered>:
Pseudo<(outs),
(ins StClass:$rd, GPR:$rs1, IdxClass:$rs2, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSX</*Masked*/0, Ordered, log2<EEW>.val, VLMul, LMUL> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoIStoreMask<VReg StClass, VReg IdxClass, int EEW, bits<3> LMUL,
bit Ordered>:
Pseudo<(outs),
(ins StClass:$rd, GPR:$rs1, IdxClass:$rs2, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSX</*Masked*/1, Ordered, log2<EEW>.val, VLMul, LMUL> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoBinaryMask<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
string Constraint> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$merge,
Op1Class:$rs2, Op2Class:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
// Like VPseudoBinaryMask, but output can be V0.
class VPseudoBinaryMOutMask<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
string Constraint> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$merge,
Op1Class:$rs2, Op2Class:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
// Special version of VPseudoBinaryMask where we pretend the first source is
// tied to the destination so we can workaround the earlyclobber constraint.
// This allows maskedoff and rs2 to be the same register.
class VPseudoTiedBinaryMask<VReg RetClass,
DAGOperand Op2Class,
string Constraint> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$merge,
Op2Class:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = Join<[Constraint, "$rd = $merge"], ",">.ret;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 0; // Merge is also rs2.
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoBinaryCarryIn<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
bit CarryIn,
string Constraint> :
Pseudo<(outs RetClass:$rd),
!if(CarryIn,
(ins Op1Class:$rs2, Op2Class:$rs1, VMV0:$carry, AVL:$vl,
ixlenimm:$sew),
(ins Op1Class:$rs2, Op2Class:$rs1, AVL:$vl, ixlenimm:$sew)), []>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = Constraint;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 0;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
let VLMul = MInfo.value;
}
class VPseudoTernaryNoMask<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
string Constraint> :
Pseudo<(outs RetClass:$rd),
(ins RetClass:$rs3, Op1Class:$rs1, Op2Class:$rs2,
AVL:$vl, ixlenimm:$sew),
[]>,
RISCVVPseudo {
let mayLoad = 0;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = Join<[Constraint, "$rd = $rs3"], ",">.ret;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoAMOWDNoMask<VReg RetClass,
VReg Op1Class> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$vd_wd),
(ins GPR:$rs1,
Op1Class:$vs2,
GetVRegNoV0<RetClass>.R:$vd,
AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 1;
let mayStore = 1;
let hasSideEffects = 1;
let Constraints = "$vd_wd = $vd";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoAMOWDMask<VReg RetClass,
VReg Op1Class> :
Pseudo<(outs GetVRegNoV0<RetClass>.R:$vd_wd),
(ins GPR:$rs1,
Op1Class:$vs2,
GetVRegNoV0<RetClass>.R:$vd,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew), []>,
RISCVVPseudo {
let mayLoad = 1;
let mayStore = 1;
let hasSideEffects = 1;
let Constraints = "$vd_wd = $vd";
let HasVLOp = 1;
let HasSEWOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
multiclass VPseudoAMOEI<int eew> {
// Standard scalar AMO supports 32, 64, and 128 Mem data bits,
// and in the base vector "V" extension, only SEW up to ELEN = max(XLEN, FLEN)
// are required to be supported.
// therefore only [32, 64] is allowed here.
foreach sew = [32, 64] in {
foreach lmul = MxSet<sew>.m in {
defvar octuple_lmul = lmul.octuple;
// Calculate emul = eew * lmul / sew
defvar octuple_emul = !srl(!mul(eew, octuple_lmul), log2<sew>.val);
if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
defvar emulMX = octuple_to_str<octuple_emul>.ret;
defvar emul= !cast<LMULInfo>("V_" # emulMX);
let VLMul = lmul.value in {
def "_WD_" # lmul.MX # "_" # emulMX : VPseudoAMOWDNoMask<lmul.vrclass, emul.vrclass>;
def "_WD_" # lmul.MX # "_" # emulMX # "_MASK" : VPseudoAMOWDMask<lmul.vrclass, emul.vrclass>;
}
}
}
}
}
multiclass VPseudoAMO {
foreach eew = EEWList in
defm "EI" # eew : VPseudoAMOEI<eew>;
}
class VPseudoUSSegLoadNoMask<VReg RetClass, int EEW, bits<4> NF, bit isFF>:
Pseudo<(outs RetClass:$rd),
(ins GPR:$rs1, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVLSEG<NF, /*Masked*/0, /*Strided*/0, /*FF*/isFF, log2<EEW>.val, VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoUSSegLoadMask<VReg RetClass, int EEW, bits<4> NF, bit isFF>:
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$merge, GPR:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVLSEG<NF, /*Masked*/1, /*Strided*/0, /*FF*/isFF, log2<EEW>.val, VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $merge";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoSSegLoadNoMask<VReg RetClass, int EEW, bits<4> NF>:
Pseudo<(outs RetClass:$rd),
(ins GPR:$rs1, GPR:$offset, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVLSEG<NF, /*Masked*/0, /*Strided*/1, /*FF*/0, log2<EEW>.val, VLMul> {
let mayLoad = 1;
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoSSegLoadMask<VReg RetClass, int EEW, bits<4> NF>:
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$merge, GPR:$rs1,
GPR:$offset, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVLSEG<NF, /*Masked*/1, /*Strided*/1, /*FF*/0, log2<EEW>.val, VLMul> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
let Constraints = "$rd = $merge";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoISegLoadNoMask<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL,
bits<4> NF, bit Ordered>:
Pseudo<(outs RetClass:$rd),
(ins GPR:$rs1, IdxClass:$offset, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVLXSEG<NF, /*Masked*/0, Ordered, log2<EEW>.val, VLMul, LMUL> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
// For vector indexed segment loads, the destination vector register groups
// cannot overlap the source vector register group
let Constraints = "@earlyclobber $rd";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoISegLoadMask<VReg RetClass, VReg IdxClass, int EEW, bits<3> LMUL,
bits<4> NF, bit Ordered>:
Pseudo<(outs GetVRegNoV0<RetClass>.R:$rd),
(ins GetVRegNoV0<RetClass>.R:$merge, GPR:$rs1,
IdxClass:$offset, VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVLXSEG<NF, /*Masked*/1, Ordered, log2<EEW>.val, VLMul, LMUL> {
let mayLoad = 1;
let mayStore = 0;
let hasSideEffects = 0;
// For vector indexed segment loads, the destination vector register groups
// cannot overlap the source vector register group
let Constraints = "@earlyclobber $rd, $rd = $merge";
let HasVLOp = 1;
let HasSEWOp = 1;
let HasMergeOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoUSSegStoreNoMask<VReg ValClass, int EEW, bits<4> NF>:
Pseudo<(outs),
(ins ValClass:$rd, GPR:$rs1, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSSEG<NF, /*Masked*/0, /*Strided*/0, log2<EEW>.val, VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoUSSegStoreMask<VReg ValClass, int EEW, bits<4> NF>:
Pseudo<(outs),
(ins ValClass:$rd, GPR:$rs1,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSSEG<NF, /*Masked*/1, /*Strided*/0, log2<EEW>.val, VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoSSegStoreNoMask<VReg ValClass, int EEW, bits<4> NF>:
Pseudo<(outs),
(ins ValClass:$rd, GPR:$rs1, GPR: $offset, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSSEG<NF, /*Masked*/0, /*Strided*/1, log2<EEW>.val, VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoSSegStoreMask<VReg ValClass, int EEW, bits<4> NF>:
Pseudo<(outs),
(ins ValClass:$rd, GPR:$rs1, GPR: $offset,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSSEG<NF, /*Masked*/1, /*Strided*/1, log2<EEW>.val, VLMul> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoISegStoreNoMask<VReg ValClass, VReg IdxClass, int EEW, bits<3> LMUL,
bits<4> NF, bit Ordered>:
Pseudo<(outs),
(ins ValClass:$rd, GPR:$rs1, IdxClass: $index,
AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSXSEG<NF, /*Masked*/0, Ordered, log2<EEW>.val, VLMul, LMUL> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let HasDummyMask = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
class VPseudoISegStoreMask<VReg ValClass, VReg IdxClass, int EEW, bits<3> LMUL,
bits<4> NF, bit Ordered>:
Pseudo<(outs),
(ins ValClass:$rd, GPR:$rs1, IdxClass: $index,
VMaskOp:$vm, AVL:$vl, ixlenimm:$sew),[]>,
RISCVVPseudo,
RISCVVSXSEG<NF, /*Masked*/1, Ordered, log2<EEW>.val, VLMul, LMUL> {
let mayLoad = 0;
let mayStore = 1;
let hasSideEffects = 0;
let HasVLOp = 1;
let HasSEWOp = 1;
let BaseInstr = !cast<Instruction>(PseudoToVInst<NAME>.VInst);
}
multiclass VPseudoUSLoad<bit isFF> {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
defvar vreg = lmul.vrclass;
defvar FFStr = !if(isFF, "FF", "");
let VLMul = lmul.value in {
def "E" # eew # FFStr # "_V_" # LInfo :
VPseudoUSLoadNoMask<vreg, eew, isFF>;
def "E" # eew # FFStr # "_V_" # LInfo # "_MASK" :
VPseudoUSLoadMask<vreg, eew, isFF>;
}
}
}
}
multiclass VPseudoLoadMask {
foreach mti = AllMasks in {
let VLMul = mti.LMul.value in {
def "_V_" # mti.BX : VPseudoUSLoadNoMask<VR, /*EEW*/1, /*isFF*/0>;
}
}
}
multiclass VPseudoSLoad {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
defvar vreg = lmul.vrclass;
let VLMul = lmul.value in {
def "E" # eew # "_V_" # LInfo : VPseudoSLoadNoMask<vreg, eew>;
def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSLoadMask<vreg, eew>;
}
}
}
}
multiclass VPseudoILoad<bit Ordered> {
foreach eew = EEWList in {
foreach sew = EEWList in {
foreach lmul = MxSet<sew>.m in {
defvar octuple_lmul = lmul.octuple;
// Calculate emul = eew * lmul / sew
defvar octuple_emul = !srl(!mul(eew, octuple_lmul), log2<sew>.val);
if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
defvar LInfo = lmul.MX;
defvar IdxLInfo = octuple_to_str<octuple_emul>.ret;
defvar idx_lmul = !cast<LMULInfo>("V_" # IdxLInfo);
defvar Vreg = lmul.vrclass;
defvar IdxVreg = idx_lmul.vrclass;
defvar HasConstraint = !ne(sew, eew);
let VLMul = lmul.value in {
def "EI" # eew # "_V_" # IdxLInfo # "_" # LInfo :
VPseudoILoadNoMask<Vreg, IdxVreg, eew, idx_lmul.value, Ordered, HasConstraint>;
def "EI" # eew # "_V_" # IdxLInfo # "_" # LInfo # "_MASK" :
VPseudoILoadMask<Vreg, IdxVreg, eew, idx_lmul.value, Ordered, HasConstraint>;
}
}
}
}
}
}
multiclass VPseudoUSStore {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
defvar vreg = lmul.vrclass;
let VLMul = lmul.value in {
def "E" # eew # "_V_" # LInfo : VPseudoUSStoreNoMask<vreg, eew>;
def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSStoreMask<vreg, eew>;
}
}
}
}
multiclass VPseudoStoreMask {
foreach mti = AllMasks in {
let VLMul = mti.LMul.value in {
def "_V_" # mti.BX : VPseudoUSStoreNoMask<VR, /*EEW*/1>;
}
}
}
multiclass VPseudoSStore {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
defvar vreg = lmul.vrclass;
let VLMul = lmul.value in {
def "E" # eew # "_V_" # LInfo : VPseudoSStoreNoMask<vreg, eew>;
def "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSStoreMask<vreg, eew>;
}
}
}
}
multiclass VPseudoIStore<bit Ordered> {
foreach eew = EEWList in {
foreach sew = EEWList in {
foreach lmul = MxSet<sew>.m in {
defvar octuple_lmul = lmul.octuple;
// Calculate emul = eew * lmul / sew
defvar octuple_emul = !srl(!mul(eew, octuple_lmul), log2<sew>.val);
if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
defvar LInfo = lmul.MX;
defvar IdxLInfo = octuple_to_str<octuple_emul>.ret;
defvar idx_lmul = !cast<LMULInfo>("V_" # IdxLInfo);
defvar Vreg = lmul.vrclass;
defvar IdxVreg = idx_lmul.vrclass;
let VLMul = lmul.value in {
def "EI" # eew # "_V_" # IdxLInfo # "_" # LInfo :
VPseudoIStoreNoMask<Vreg, IdxVreg, eew, idx_lmul.value, Ordered>;
def "EI" # eew # "_V_" # IdxLInfo # "_" # LInfo # "_MASK" :
VPseudoIStoreMask<Vreg, IdxVreg, eew, idx_lmul.value, Ordered>;
}
}
}
}
}
}
multiclass VPseudoUnaryS_M {
foreach mti = AllMasks in
{
let VLMul = mti.LMul.value in {
def "_M_" # mti.BX : VPseudoUnaryNoMask<GPR, VR>;
def "_M_" # mti.BX # "_MASK" : VPseudoMaskUnarySOutMask;
}
}
}
multiclass VPseudoUnaryM_M {
defvar constraint = "@earlyclobber $rd";
foreach mti = AllMasks in
{
let VLMul = mti.LMul.value in {
def "_M_" # mti.BX : VPseudoUnaryNoMask<VR, VR, constraint>;
def "_M_" # mti.BX # "_MASK" : VPseudoUnaryMask<VR, VR, constraint>;
}
}
}
multiclass VPseudoMaskNullaryV {
foreach m = MxList.m in {
let VLMul = m.value in {
def "_V_" # m.MX : VPseudoNullaryNoMask<m.vrclass>;
def "_V_" # m.MX # "_MASK" : VPseudoNullaryMask<m.vrclass>;
}
}
}
multiclass VPseudoNullaryPseudoM <string BaseInst> {
foreach mti = AllMasks in {
let VLMul = mti.LMul.value in {
def "_M_" # mti.BX : VPseudoNullaryPseudoM<BaseInst # "_MM">;
}
}
}
multiclass VPseudoUnaryV_M {
defvar constraint = "@earlyclobber $rd";
foreach m = MxList.m in {
let VLMul = m.value in {
def "_" # m.MX : VPseudoUnaryNoMask<m.vrclass, VR, constraint>;
def "_" # m.MX # "_MASK" : VPseudoUnaryMask<m.vrclass, VR, constraint>;
}
}
}
multiclass VPseudoUnaryV_V_AnyMask {
foreach m = MxList.m in {
let VLMul = m.value in
def _VM # "_" # m.MX : VPseudoUnaryAnyMask<m.vrclass, m.vrclass>;
}
}
multiclass VPseudoBinary<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
string Constraint = ""> {
let VLMul = MInfo.value in {
def "_" # MInfo.MX : VPseudoBinaryNoMask<RetClass, Op1Class, Op2Class,
Constraint>;
def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMask<RetClass, Op1Class, Op2Class,
Constraint>;
}
}
multiclass VPseudoBinaryM<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
string Constraint = ""> {
let VLMul = MInfo.value in {
def "_" # MInfo.MX : VPseudoBinaryNoMask<RetClass, Op1Class, Op2Class,
Constraint>;
let ForceTailAgnostic = true in
def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMOutMask<RetClass, Op1Class,
Op2Class, Constraint>;
}
}
multiclass VPseudoBinaryEmul<VReg RetClass,
VReg Op1Class,
DAGOperand Op2Class,
LMULInfo lmul,
LMULInfo emul,
string Constraint = ""> {
let VLMul = lmul.value in {
def "_" # lmul.MX # "_" # emul.MX : VPseudoBinaryNoMask<RetClass, Op1Class, Op2Class,
Constraint>;
def "_" # lmul.MX # "_" # emul.MX # "_MASK" : VPseudoBinaryMask<RetClass, Op1Class, Op2Class,
Constraint>;
}
}
multiclass VPseudoTiedBinary<VReg RetClass,
DAGOperand Op2Class,
LMULInfo MInfo,
string Constraint = ""> {
let VLMul = MInfo.value in {
def "_" # MInfo.MX # "_TIED": VPseudoTiedBinaryNoMask<RetClass, Op2Class,
Constraint>;
def "_" # MInfo.MX # "_MASK_TIED" : VPseudoTiedBinaryMask<RetClass, Op2Class,
Constraint>;
}
}
multiclass VPseudoBinaryV_VV<string Constraint = ""> {
foreach m = MxList.m in
defm _VV : VPseudoBinary<m.vrclass, m.vrclass, m.vrclass, m, Constraint>;
}
multiclass VPseudoBinaryV_VV_EEW<int eew, string Constraint = ""> {
foreach m = MxList.m in {
foreach sew = EEWList in {
defvar octuple_lmul = m.octuple;
// emul = lmul * eew / sew
defvar octuple_emul = !srl(!mul(octuple_lmul, eew), log2<sew>.val);
if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
defvar emulMX = octuple_to_str<octuple_emul>.ret;
defvar emul = !cast<LMULInfo>("V_" # emulMX);
defm _VV : VPseudoBinaryEmul<m.vrclass, m.vrclass, emul.vrclass, m, emul, Constraint>;
}
}
}
}
multiclass VPseudoBinaryV_VX<string Constraint = ""> {
foreach m = MxList.m in
defm "_VX" : VPseudoBinary<m.vrclass, m.vrclass, GPR, m, Constraint>;
}
multiclass VPseudoBinaryV_VF<string Constraint = ""> {
foreach m = MxList.m in
foreach f = FPList.fpinfo in
defm "_V" # f.FX : VPseudoBinary<m.vrclass, m.vrclass,
f.fprclass, m, Constraint>;
}
multiclass VPseudoBinaryV_VI<Operand ImmType = simm5, string Constraint = ""> {
foreach m = MxList.m in
defm _VI : VPseudoBinary<m.vrclass, m.vrclass, ImmType, m, Constraint>;
}
multiclass VPseudoBinaryM_MM {
foreach m = MxList.m in
let VLMul = m.value in {
def "_MM_" # m.MX : VPseudoBinaryNoMask<VR, VR, VR, "">;
}
}
// We use earlyclobber here due to
// * The destination EEW is smaller than the source EEW and the overlap is
// in the lowest-numbered part of the source register group is legal.
// Otherwise, it is illegal.
// * The destination EEW is greater than the source EEW, the source EMUL is
// at least 1, and the overlap is in the highest-numbered part of the
// destination register group is legal. Otherwise, it is illegal.
multiclass VPseudoBinaryW_VV {
foreach m = MxListW.m in
defm _VV : VPseudoBinary<m.wvrclass, m.vrclass, m.vrclass, m,
"@earlyclobber $rd">;
}
multiclass VPseudoBinaryW_VX {
foreach m = MxListW.m in
defm "_VX" : VPseudoBinary<m.wvrclass, m.vrclass, GPR, m,
"@earlyclobber $rd">;
}
multiclass VPseudoBinaryW_VF {
foreach m = MxListW.m in
foreach f = FPListW.fpinfo in
defm "_V" # f.FX : VPseudoBinary<m.wvrclass, m.vrclass,
f.fprclass, m,
"@earlyclobber $rd">;
}
multiclass VPseudoBinaryW_WV {
foreach m = MxListW.m in {
defm _WV : VPseudoBinary<m.wvrclass, m.wvrclass, m.vrclass, m,
"@earlyclobber $rd">;
defm _WV : VPseudoTiedBinary<m.wvrclass, m.vrclass, m,
"@earlyclobber $rd">;
}
}
multiclass VPseudoBinaryW_WX {
foreach m = MxListW.m in
defm "_WX" : VPseudoBinary<m.wvrclass, m.wvrclass, GPR, m>;
}
multiclass VPseudoBinaryW_WF {
foreach m = MxListW.m in
foreach f = FPListW.fpinfo in
defm "_W" # f.FX : VPseudoBinary<m.wvrclass, m.wvrclass,
f.fprclass, m>;
}
// Narrowing instructions like vnsrl/vnsra/vnclip(u) don't need @earlyclobber
// if the source and destination have an LMUL<=1. This matches this overlap
// exception from the spec.
// "The destination EEW is smaller than the source EEW and the overlap is in the
// lowest-numbered part of the source register group."
multiclass VPseudoBinaryV_WV {
foreach m = MxListW.m in
defm _WV : VPseudoBinary<m.vrclass, m.wvrclass, m.vrclass, m,
!if(!ge(m.octuple, 8), "@earlyclobber $rd", "")>;
}
multiclass VPseudoBinaryV_WX {
foreach m = MxListW.m in
defm _WX : VPseudoBinary<m.vrclass, m.wvrclass, GPR, m,
!if(!ge(m.octuple, 8), "@earlyclobber $rd", "")>;
}
multiclass VPseudoBinaryV_WI {
foreach m = MxListW.m in
defm _WI : VPseudoBinary<m.vrclass, m.wvrclass, uimm5, m,
!if(!ge(m.octuple, 8), "@earlyclobber $rd", "")>;
}
// For vadc and vsbc, the instruction encoding is reserved if the destination
// vector register is v0.
// For vadc and vsbc, CarryIn == 1 and CarryOut == 0
multiclass VPseudoBinaryV_VM<bit CarryOut = 0, bit CarryIn = 1,
string Constraint = ""> {
foreach m = MxList.m in
def "_VV" # !if(CarryIn, "M", "") # "_" # m.MX :
VPseudoBinaryCarryIn<!if(CarryOut, VR,
!if(!and(CarryIn, !not(CarryOut)),
GetVRegNoV0<m.vrclass>.R, m.vrclass)),
m.vrclass, m.vrclass, m, CarryIn, Constraint>;
}
multiclass VPseudoBinaryV_XM<bit CarryOut = 0, bit CarryIn = 1,
string Constraint = ""> {
foreach m = MxList.m in
def "_VX" # !if(CarryIn, "M", "") # "_" # m.MX :
VPseudoBinaryCarryIn<!if(CarryOut, VR,
!if(!and(CarryIn, !not(CarryOut)),
GetVRegNoV0<m.vrclass>.R, m.vrclass)),
m.vrclass, GPR, m, CarryIn, Constraint>;
}
multiclass VPseudoBinaryV_FM {
foreach m = MxList.m in
foreach f = FPList.fpinfo in
def "_V" # f.FX # "M_" # m.MX :
VPseudoBinaryCarryIn<GetVRegNoV0<m.vrclass>.R,
m.vrclass, f.fprclass, m, /*CarryIn=*/1, "">;
}
multiclass VPseudoBinaryV_IM<bit CarryOut = 0, bit CarryIn = 1,
string Constraint = ""> {
foreach m = MxList.m in
def "_VI" # !if(CarryIn, "M", "") # "_" # m.MX :
VPseudoBinaryCarryIn<!if(CarryOut, VR,
!if(!and(CarryIn, !not(CarryOut)),
GetVRegNoV0<m.vrclass>.R, m.vrclass)),
m.vrclass, simm5, m, CarryIn, Constraint>;
}
multiclass VPseudoUnaryV_V_X_I_NoDummyMask {
foreach m = MxList.m in {
let VLMul = m.value in {
def "_V_" # m.MX : VPseudoUnaryNoDummyMask<m.vrclass, m.vrclass>;
def "_X_" # m.MX : VPseudoUnaryNoDummyMask<m.vrclass, GPR>;
def "_I_" # m.MX : VPseudoUnaryNoDummyMask<m.vrclass, simm5>;
}
}
}
multiclass VPseudoUnaryV_F_NoDummyMask {
foreach m = MxList.m in {
foreach f = FPList.fpinfo in {
let VLMul = m.value in {
def "_" # f.FX # "_" # m.MX : VPseudoUnaryNoDummyMask<m.vrclass, f.fprclass>;
}
}
}
}
multiclass VPseudoUnaryV_V {
foreach m = MxList.m in {
let VLMul = m.value in {
def "_V_" # m.MX : VPseudoUnaryNoMask<m.vrclass, m.vrclass>;
def "_V_" # m.MX # "_MASK" : VPseudoUnaryMask<m.vrclass, m.vrclass>;
}
}
}
multiclass PseudoUnaryV_VF2 {
defvar constraints = "@earlyclobber $rd";
foreach m = MxListVF2.m in
{
let VLMul = m.value in {
def "_" # m.MX : VPseudoUnaryNoMask<m.vrclass, m.f2vrclass, constraints>;
def "_" # m.MX # "_MASK" : VPseudoUnaryMask<m.vrclass, m.f2vrclass,
constraints>;
}
}
}
multiclass PseudoUnaryV_VF4 {
defvar constraints = "@earlyclobber $rd";
foreach m = MxListVF4.m in
{
let VLMul = m.value in {
def "_" # m.MX : VPseudoUnaryNoMask<m.vrclass, m.f4vrclass, constraints>;
def "_" # m.MX # "_MASK" : VPseudoUnaryMask<m.vrclass, m.f4vrclass,
constraints>;
}
}
}
multiclass PseudoUnaryV_VF8 {
defvar constraints = "@earlyclobber $rd";
foreach m = MxListVF8.m in
{
let VLMul = m.value in {
def "_" # m.MX : VPseudoUnaryNoMask<m.vrclass, m.f8vrclass, constraints>;
def "_" # m.MX # "_MASK" : VPseudoUnaryMask<m.vrclass, m.f8vrclass,
constraints>;
}
}
}
// The destination EEW is 1 since "For the purposes of register group overlap
// constraints, mask elements have EEW=1."
// The source EEW is 8, 16, 32, or 64.
// When the destination EEW is different from source EEW, we need to use
// @earlyclobber to avoid the overlap between destination and source registers.
// We don't need @earlyclobber for LMUL<=1 since that matches this overlap
// exception from the spec
// "The destination EEW is smaller than the source EEW and the overlap is in the
// lowest-numbered part of the source register group".
// With LMUL<=1 the source and dest occupy a single register so any overlap
// is in the lowest-numbered part.
multiclass VPseudoBinaryM_VV {
foreach m = MxList.m in
defm _VV : VPseudoBinaryM<VR, m.vrclass, m.vrclass, m,
!if(!ge(m.octuple, 16), "@earlyclobber $rd", "")>;
}
multiclass VPseudoBinaryM_VX {
foreach m = MxList.m in
defm "_VX" :
VPseudoBinaryM<VR, m.vrclass, GPR, m,
!if(!ge(m.octuple, 16), "@earlyclobber $rd", "")>;
}
multiclass VPseudoBinaryM_VF {
foreach m = MxList.m in
foreach f = FPList.fpinfo in
defm "_V" # f.FX :
VPseudoBinaryM<VR, m.vrclass, f.fprclass, m,
!if(!ge(m.octuple, 16), "@earlyclobber $rd", "")>;
}
multiclass VPseudoBinaryM_VI {
foreach m = MxList.m in
defm _VI : VPseudoBinaryM<VR, m.vrclass, simm5, m,
!if(!ge(m.octuple, 16), "@earlyclobber $rd", "")>;
}
multiclass VPseudoBinaryV_VV_VX_VI<Operand ImmType = simm5, string Constraint = ""> {
defm "" : VPseudoBinaryV_VV<Constraint>;
defm "" : VPseudoBinaryV_VX<Constraint>;
defm "" : VPseudoBinaryV_VI<ImmType, Constraint>;
}
multiclass VPseudoBinaryV_VV_VX {
defm "" : VPseudoBinaryV_VV;
defm "" : VPseudoBinaryV_VX;
}
multiclass VPseudoBinaryV_VV_VF {
defm "" : VPseudoBinaryV_VV;
defm "" : VPseudoBinaryV_VF;
}
multiclass VPseudoBinaryV_VX_VI<Operand ImmType = simm5> {
defm "" : VPseudoBinaryV_VX;
defm "" : VPseudoBinaryV_VI<ImmType>;
}
multiclass VPseudoBinaryW_VV_VX {
defm "" : VPseudoBinaryW_VV;
defm "" : VPseudoBinaryW_VX;
}
multiclass VPseudoBinaryW_VV_VF {
defm "" : VPseudoBinaryW_VV;
defm "" : VPseudoBinaryW_VF;
}
multiclass VPseudoBinaryW_WV_WX {
defm "" : VPseudoBinaryW_WV;
defm "" : VPseudoBinaryW_WX;
}
multiclass VPseudoBinaryW_WV_WF {
defm "" : VPseudoBinaryW_WV;
defm "" : VPseudoBinaryW_WF;
}
multiclass VPseudoBinaryV_VM_XM_IM {
defm "" : VPseudoBinaryV_VM;
defm "" : VPseudoBinaryV_XM;
defm "" : VPseudoBinaryV_IM;
}
multiclass VPseudoBinaryV_VM_XM {
defm "" : VPseudoBinaryV_VM;
defm "" : VPseudoBinaryV_XM;
}
multiclass VPseudoBinaryM_VM_XM_IM<string Constraint> {
defm "" : VPseudoBinaryV_VM</*CarryOut=*/1, /*CarryIn=*/1, Constraint>;
defm "" : VPseudoBinaryV_XM</*CarryOut=*/1, /*CarryIn=*/1, Constraint>;
defm "" : VPseudoBinaryV_IM</*CarryOut=*/1, /*CarryIn=*/1, Constraint>;
}
multiclass VPseudoBinaryM_VM_XM<string Constraint> {
defm "" : VPseudoBinaryV_VM</*CarryOut=*/1, /*CarryIn=*/1, Constraint>;
defm "" : VPseudoBinaryV_XM</*CarryOut=*/1, /*CarryIn=*/1, Constraint>;
}
multiclass VPseudoBinaryM_V_X_I<string Constraint> {
defm "" : VPseudoBinaryV_VM</*CarryOut=*/1, /*CarryIn=*/0, Constraint>;
defm "" : VPseudoBinaryV_XM</*CarryOut=*/1, /*CarryIn=*/0, Constraint>;
defm "" : VPseudoBinaryV_IM</*CarryOut=*/1, /*CarryIn=*/0, Constraint>;
}
multiclass VPseudoBinaryM_V_X<string Constraint> {
defm "" : VPseudoBinaryV_VM</*CarryOut=*/1, /*CarryIn=*/0, Constraint>;
defm "" : VPseudoBinaryV_XM</*CarryOut=*/1, /*CarryIn=*/0, Constraint>;
}
multiclass VPseudoBinaryV_WV_WX_WI {
defm "" : VPseudoBinaryV_WV;
defm "" : VPseudoBinaryV_WX;
defm "" : VPseudoBinaryV_WI;
}
multiclass VPseudoTernary<VReg RetClass,
RegisterClass Op1Class,
DAGOperand Op2Class,
LMULInfo MInfo,
string Constraint = ""> {
let VLMul = MInfo.value in {
def "_" # MInfo.MX : VPseudoTernaryNoMask<RetClass, Op1Class, Op2Class, Constraint>;
def "_" # MInfo.MX # "_MASK" : VPseudoBinaryMask<RetClass, Op1Class, Op2Class, Constraint>;
}
}
multiclass VPseudoTernaryV_VV<string Constraint = ""> {
foreach m = MxList.m in {
defm _VV : VPseudoTernary<m.vrclass, m.vrclass, m.vrclass, m, Constraint>;
// Add a commutable version for use by IR mul+add.
let isCommutable = 1, ForceTailAgnostic = true, VLMul = m.value in
def "_VV_" # m.MX # "_COMMUTABLE" : VPseudoTernaryNoMask<m.vrclass,
m.vrclass,
m.vrclass,
Constraint>;
}
}
multiclass VPseudoTernaryV_VX<string Constraint = ""> {
foreach m = MxList.m in
defm _VX : VPseudoTernary<m.vrclass, m.vrclass, GPR, m, Constraint>;
}
multiclass VPseudoTernaryV_VX_AAXA<string Constraint = ""> {
foreach m = MxList.m in {
defm "_VX" : VPseudoTernary<m.vrclass, GPR, m.vrclass, m, Constraint>;
// Add a commutable version for use by IR mul+add.
let isCommutable = 1, ForceTailAgnostic = true, VLMul = m.value in
def "_VX_" # m.MX # "_COMMUTABLE" :
VPseudoTernaryNoMask<m.vrclass, GPR, m.vrclass, Constraint>;
}
}
multiclass VPseudoTernaryV_VF_AAXA<string Constraint = ""> {
foreach m = MxList.m in {
foreach f = FPList.fpinfo in {
defm "_V" # f.FX : VPseudoTernary<m.vrclass, f.fprclass, m.vrclass,
m, Constraint>;
// Add a commutable version for use by IR mul+add.
let isCommutable = 1, ForceTailAgnostic = true, VLMul = m.value in
def "_V" # f.FX # "_" # m.MX # "_COMMUTABLE" :
VPseudoTernaryNoMask<m.vrclass, f.fprclass, m.vrclass, Constraint>;
}
}
}
multiclass VPseudoTernaryW_VV {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListW.m in {
defm _VV : VPseudoTernary<m.wvrclass, m.vrclass, m.vrclass, m, constraint>;
// Add a tail agnostic version for us by IR mul+add.
let ForceTailAgnostic = true, VLMul = m.value in
def "_VV_" # m.MX # "_TA" : VPseudoTernaryNoMask<m.wvrclass,
m.vrclass,
m.vrclass,
constraint>;
}
}
multiclass VPseudoTernaryW_VX {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListW.m in {
defm "_VX" : VPseudoTernary<m.wvrclass, GPR, m.vrclass, m, constraint>;
// Add a tail agnostic version for use by IR mul+add.
let ForceTailAgnostic = true, VLMul = m.value in
def "_VX_" # m.MX # "_TA" :
VPseudoTernaryNoMask<m.wvrclass, GPR, m.vrclass, constraint>;
}
}
multiclass VPseudoTernaryW_VF {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListW.m in
foreach f = FPListW.fpinfo in {
defm "_V" # f.FX : VPseudoTernary<m.wvrclass, f.fprclass, m.vrclass, m,
constraint>;
// Add a tail agnostic version for use by IR mul+add.
let ForceTailAgnostic = true, VLMul = m.value in
def "_V" # f.FX # "_" # m.MX # "_TA" :
VPseudoTernaryNoMask<m.vrclass, f.fprclass, m.vrclass, constraint>;
}
}
multiclass VPseudoTernaryV_VI<Operand ImmType = simm5, string Constraint = ""> {
foreach m = MxList.m in
defm _VI : VPseudoTernary<m.vrclass, m.vrclass, ImmType, m, Constraint>;
}
multiclass VPseudoTernaryV_VV_VX_AAXA<string Constraint = ""> {
defm "" : VPseudoTernaryV_VV<Constraint>;
defm "" : VPseudoTernaryV_VX_AAXA<Constraint>;
}
multiclass VPseudoTernaryV_VV_VF_AAXA<string Constraint = ""> {
defm "" : VPseudoTernaryV_VV<Constraint>;
defm "" : VPseudoTernaryV_VF_AAXA<Constraint>;
}
multiclass VPseudoTernaryV_VX_VI<Operand ImmType = simm5, string Constraint = ""> {
defm "" : VPseudoTernaryV_VX<Constraint>;
defm "" : VPseudoTernaryV_VI<ImmType, Constraint>;
}
multiclass VPseudoTernaryW_VV_VX {
defm "" : VPseudoTernaryW_VV;
defm "" : VPseudoTernaryW_VX;
}
multiclass VPseudoTernaryW_VV_VF {
defm "" : VPseudoTernaryW_VV;
defm "" : VPseudoTernaryW_VF;
}
multiclass VPseudoBinaryM_VV_VX_VI {
defm "" : VPseudoBinaryM_VV;
defm "" : VPseudoBinaryM_VX;
defm "" : VPseudoBinaryM_VI;
}
multiclass VPseudoBinaryM_VV_VX {
defm "" : VPseudoBinaryM_VV;
defm "" : VPseudoBinaryM_VX;
}
multiclass VPseudoBinaryM_VV_VF {
defm "" : VPseudoBinaryM_VV;
defm "" : VPseudoBinaryM_VF;
}
multiclass VPseudoBinaryM_VX_VI {
defm "" : VPseudoBinaryM_VX;
defm "" : VPseudoBinaryM_VI;
}
multiclass VPseudoReductionV_VS {
foreach m = MxList.m in {
defm _VS : VPseudoTernary<V_M1.vrclass, m.vrclass, V_M1.vrclass, m>;
}
}
multiclass VPseudoConversion<VReg RetClass,
VReg Op1Class,
LMULInfo MInfo,
string Constraint = ""> {
let VLMul = MInfo.value in {
def "_" # MInfo.MX : VPseudoUnaryNoMask<RetClass, Op1Class, Constraint>;
def "_" # MInfo.MX # "_MASK" : VPseudoUnaryMask<RetClass, Op1Class,
Constraint>;
}
}
multiclass VPseudoConversionV_V {
foreach m = MxList.m in
defm _V : VPseudoConversion<m.vrclass, m.vrclass, m>;
}
multiclass VPseudoConversionW_V {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListW.m in
defm _V : VPseudoConversion<m.wvrclass, m.vrclass, m, constraint>;
}
multiclass VPseudoConversionV_W {
defvar constraint = "@earlyclobber $rd";
foreach m = MxListW.m in
defm _W : VPseudoConversion<m.vrclass, m.wvrclass, m, constraint>;
}
multiclass VPseudoUSSegLoad<bit isFF> {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
let VLMul = lmul.value in {
foreach nf = NFSet<lmul>.L in {
defvar vreg = SegRegClass<lmul, nf>.RC;
defvar FFStr = !if(isFF, "FF", "");
def nf # "E" # eew # FFStr # "_V_" # LInfo :
VPseudoUSSegLoadNoMask<vreg, eew, nf, isFF>;
def nf # "E" # eew # FFStr # "_V_" # LInfo # "_MASK" :
VPseudoUSSegLoadMask<vreg, eew, nf, isFF>;
}
}
}
}
}
multiclass VPseudoSSegLoad {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
let VLMul = lmul.value in {
foreach nf = NFSet<lmul>.L in {
defvar vreg = SegRegClass<lmul, nf>.RC;
def nf # "E" # eew # "_V_" # LInfo : VPseudoSSegLoadNoMask<vreg, eew, nf>;
def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSSegLoadMask<vreg, eew, nf>;
}
}
}
}
}
multiclass VPseudoISegLoad<bit Ordered> {
foreach idx_eew = EEWList in {
foreach sew = EEWList in {
foreach val_lmul = MxSet<sew>.m in {
defvar octuple_lmul = val_lmul.octuple;
// Calculate emul = eew * lmul / sew
defvar octuple_emul = !srl(!mul(idx_eew, octuple_lmul), log2<sew>.val);
if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
defvar ValLInfo = val_lmul.MX;
defvar IdxLInfo = octuple_to_str<octuple_emul>.ret;
defvar idx_lmul = !cast<LMULInfo>("V_" # IdxLInfo);
defvar Vreg = val_lmul.vrclass;
defvar IdxVreg = idx_lmul.vrclass;
let VLMul = val_lmul.value in {
foreach nf = NFSet<val_lmul>.L in {
defvar ValVreg = SegRegClass<val_lmul, nf>.RC;
def nf # "EI" # idx_eew # "_V_" # IdxLInfo # "_" # ValLInfo :
VPseudoISegLoadNoMask<ValVreg, IdxVreg, idx_eew, idx_lmul.value,
nf, Ordered>;
def nf # "EI" # idx_eew # "_V_" # IdxLInfo # "_" # ValLInfo # "_MASK" :
VPseudoISegLoadMask<ValVreg, IdxVreg, idx_eew, idx_lmul.value,
nf, Ordered>;
}
}
}
}
}
}
}
multiclass VPseudoUSSegStore {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
let VLMul = lmul.value in {
foreach nf = NFSet<lmul>.L in {
defvar vreg = SegRegClass<lmul, nf>.RC;
def nf # "E" # eew # "_V_" # LInfo : VPseudoUSSegStoreNoMask<vreg, eew, nf>;
def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoUSSegStoreMask<vreg, eew, nf>;
}
}
}
}
}
multiclass VPseudoSSegStore {
foreach eew = EEWList in {
foreach lmul = MxSet<eew>.m in {
defvar LInfo = lmul.MX;
let VLMul = lmul.value in {
foreach nf = NFSet<lmul>.L in {
defvar vreg = SegRegClass<lmul, nf>.RC;
def nf # "E" # eew # "_V_" # LInfo : VPseudoSSegStoreNoMask<vreg, eew, nf>;
def nf # "E" # eew # "_V_" # LInfo # "_MASK" : VPseudoSSegStoreMask<vreg, eew, nf>;
}
}
}
}
}
multiclass VPseudoISegStore<bit Ordered> {
foreach idx_eew = EEWList in {
foreach sew = EEWList in {
foreach val_lmul = MxSet<sew>.m in {
defvar octuple_lmul = val_lmul.octuple;
// Calculate emul = eew * lmul / sew
defvar octuple_emul = !srl(!mul(idx_eew, octuple_lmul), log2<sew>.val);
if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
defvar ValLInfo = val_lmul.MX;
defvar IdxLInfo = octuple_to_str<octuple_emul>.ret;
defvar idx_lmul = !cast<LMULInfo>("V_" # IdxLInfo);
defvar Vreg = val_lmul.vrclass;
defvar IdxVreg = idx_lmul.vrclass;
let VLMul = val_lmul.value in {
foreach nf = NFSet<val_lmul>.L in {
defvar ValVreg = SegRegClass<val_lmul, nf>.RC;
def nf # "EI" # idx_eew # "_V_" # IdxLInfo # "_" # ValLInfo :
VPseudoISegStoreNoMask<ValVreg, IdxVreg, idx_eew, idx_lmul.value,
nf, Ordered>;
def nf # "EI" # idx_eew # "_V_" # IdxLInfo # "_" # ValLInfo # "_MASK" :
VPseudoISegStoreMask<ValVreg, IdxVreg, idx_eew, idx_lmul.value,
nf, Ordered>;
}
}
}
}
}
}
}
//===----------------------------------------------------------------------===//
// Helpers to define the intrinsic patterns.
//===----------------------------------------------------------------------===//
class VPatUnaryNoMask<string intrinsic_name,
string inst,
string kind,
ValueType result_type,
ValueType op2_type,
int sew,
LMULInfo vlmul,
VReg op2_reg_class> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(op2_type op2_reg_class:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
(op2_type op2_reg_class:$rs2),
GPR:$vl, sew)>;
class VPatUnaryMask<string intrinsic_name,
string inst,
string kind,
ValueType result_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op2_reg_class> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$merge),
(op2_type op2_reg_class:$rs2),
(mask_type V0),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX#"_MASK")
(result_type result_reg_class:$merge),
(op2_type op2_reg_class:$rs2),
(mask_type V0), GPR:$vl, sew)>;
class VPatMaskUnaryNoMask<string intrinsic_name,
string inst,
MTypeInfo mti> :
Pat<(mti.Mask (!cast<Intrinsic>(intrinsic_name)
(mti.Mask VR:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst#"_M_"#mti.BX)
(mti.Mask VR:$rs2),
GPR:$vl, mti.Log2SEW)>;
class VPatMaskUnaryMask<string intrinsic_name,
string inst,
MTypeInfo mti> :
Pat<(mti.Mask (!cast<Intrinsic>(intrinsic_name#"_mask")
(mti.Mask VR:$merge),
(mti.Mask VR:$rs2),
(mti.Mask V0),
VLOpFrag)),
(!cast<Instruction>(inst#"_M_"#mti.BX#"_MASK")
(mti.Mask VR:$merge),
(mti.Mask VR:$rs2),
(mti.Mask V0), GPR:$vl, mti.Log2SEW)>;
class VPatUnaryAnyMask<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op1_reg_class> :
Pat<(result_type (!cast<Intrinsic>(intrinsic)
(result_type result_reg_class:$merge),
(op1_type op1_reg_class:$rs1),
(mask_type VR:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
(result_type result_reg_class:$merge),
(op1_type op1_reg_class:$rs1),
(mask_type VR:$rs2),
GPR:$vl, sew)>;
class VPatBinaryNoMask<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int sew,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
GPR:$vl, sew)>;
// Same as above but source operands are swapped.
class VPatBinaryNoMaskSwapped<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int sew,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(op2_type op2_kind:$rs2),
(op1_type op1_reg_class:$rs1),
VLOpFrag)),
(!cast<Instruction>(inst)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
GPR:$vl, sew)>;
class VPatBinaryMask<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$merge),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
VLOpFrag)),
(!cast<Instruction>(inst#"_MASK")
(result_type result_reg_class:$merge),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0), GPR:$vl, sew)>;
// Same as above but source operands are swapped.
class VPatBinaryMaskSwapped<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$merge),
(op2_type op2_kind:$rs2),
(op1_type op1_reg_class:$rs1),
(mask_type V0),
VLOpFrag)),
(!cast<Instruction>(inst#"_MASK")
(result_type result_reg_class:$merge),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0), GPR:$vl, sew)>;
class VPatTiedBinaryNoMask<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op2_type,
int sew,
VReg result_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
(result_type result_reg_class:$rs1),
(op2_type op2_kind:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst#"_TIED")
(result_type result_reg_class:$rs1),
(op2_type op2_kind:$rs2),
GPR:$vl, sew)>;
class VPatTiedBinaryMask<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name#"_mask")
(result_type result_reg_class:$merge),
(result_type result_reg_class:$merge),
(op2_type op2_kind:$rs2),
(mask_type V0),
VLOpFrag)),
(!cast<Instruction>(inst#"_MASK_TIED")
(result_type result_reg_class:$merge),
(op2_type op2_kind:$rs2),
(mask_type V0), GPR:$vl, sew)>;
class VPatTernaryNoMask<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic)
(result_type result_reg_class:$rs3),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
result_reg_class:$rs3,
(op1_type op1_reg_class:$rs1),
op2_kind:$rs2,
GPR:$vl, sew)>;
class VPatTernaryMask<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind> :
Pat<(result_type (!cast<Intrinsic>(intrinsic#"_mask")
(result_type result_reg_class:$rs3),
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX # "_MASK")
result_reg_class:$rs3,
(op1_type op1_reg_class:$rs1),
op2_kind:$rs2,
(mask_type V0),
GPR:$vl, sew)>;
class VPatAMOWDNoMask<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
int sew,
LMULInfo vlmul,
LMULInfo emul,
VReg op1_reg_class> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name)
GPR:$rs1,
(op1_type op1_reg_class:$vs2),
(result_type vlmul.vrclass:$vd),
VLOpFrag)),
(!cast<Instruction>(inst # "_WD_" # vlmul.MX # "_" # emul.MX)
$rs1, $vs2, $vd,
GPR:$vl, sew)>;
class VPatAMOWDMask<string intrinsic_name,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
LMULInfo emul,
VReg op1_reg_class> :
Pat<(result_type (!cast<Intrinsic>(intrinsic_name # "_mask")
GPR:$rs1,
(op1_type op1_reg_class:$vs2),
(result_type vlmul.vrclass:$vd),
(mask_type V0),
VLOpFrag)),
(!cast<Instruction>(inst # "_WD_" # vlmul.MX # "_" # emul.MX # "_MASK")
$rs1, $vs2, $vd,
(mask_type V0), GPR:$vl, sew)>;
multiclass VPatUnaryS_M<string intrinsic_name,
string inst>
{
foreach mti = AllMasks in {
def : Pat<(XLenVT (!cast<Intrinsic>(intrinsic_name)
(mti.Mask VR:$rs1), VLOpFrag)),
(!cast<Instruction>(inst#"_M_"#mti.BX) $rs1,
GPR:$vl, mti.Log2SEW)>;
def : Pat<(XLenVT (!cast<Intrinsic>(intrinsic_name # "_mask")
(mti.Mask VR:$rs1), (mti.Mask V0), VLOpFrag)),
(!cast<Instruction>(inst#"_M_"#mti.BX#"_MASK") $rs1,
(mti.Mask V0), GPR:$vl, mti.Log2SEW)>;
}
}
multiclass VPatUnaryV_V_AnyMask<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in {
def : VPatUnaryAnyMask<intrinsic, instruction, "VM",
vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.RegClass>;
}
}
multiclass VPatUnaryM_M<string intrinsic,
string inst>
{
foreach mti = AllMasks in {
def : VPatMaskUnaryNoMask<intrinsic, inst, mti>;
def : VPatMaskUnaryMask<intrinsic, inst, mti>;
}
}
multiclass VPatUnaryV_M<string intrinsic, string instruction>
{
foreach vti = AllIntegerVectors in {
def : VPatUnaryNoMask<intrinsic, instruction, "M", vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, VR>;
def : VPatUnaryMask<intrinsic, instruction, "M", vti.Vector, vti.Mask,
vti.Mask, vti.Log2SEW, vti.LMul, vti.RegClass, VR>;
}
}
multiclass VPatUnaryV_VF<string intrinsic, string instruction, string suffix,
list<VTypeInfoToFraction> fractionList>
{
foreach vtiTofti = fractionList in
{
defvar vti = vtiTofti.Vti;
defvar fti = vtiTofti.Fti;
def : VPatUnaryNoMask<intrinsic, instruction, suffix,
vti.Vector, fti.Vector,
vti.Log2SEW, vti.LMul, fti.RegClass>;
def : VPatUnaryMask<intrinsic, instruction, suffix,
vti.Vector, fti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass, fti.RegClass>;
}
}
multiclass VPatUnaryV_V<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in {
def : VPatUnaryNoMask<intrinsic, instruction, "V",
vti.Vector, vti.Vector,
vti.Log2SEW, vti.LMul, vti.RegClass>;
def : VPatUnaryMask<intrinsic, instruction, "V",
vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass, vti.RegClass>;
}
}
multiclass VPatNullaryV<string intrinsic, string instruction>
{
foreach vti = AllIntegerVectors in {
def : Pat<(vti.Vector (!cast<Intrinsic>(intrinsic)
VLOpFrag)),
(!cast<Instruction>(instruction#"_V_" # vti.LMul.MX)
GPR:$vl, vti.Log2SEW)>;
def : Pat<(vti.Vector (!cast<Intrinsic>(intrinsic # "_mask")
(vti.Vector vti.RegClass:$merge),
(vti.Mask V0), VLOpFrag)),
(!cast<Instruction>(instruction#"_V_" # vti.LMul.MX # "_MASK")
vti.RegClass:$merge, (vti.Mask V0),
GPR:$vl, vti.Log2SEW)>;
}
}
multiclass VPatNullaryM<string intrinsic, string inst> {
foreach mti = AllMasks in
def : Pat<(mti.Mask (!cast<Intrinsic>(intrinsic)
(XLenVT (VLOp (XLenVT (XLenVT GPR:$vl)))))),
(!cast<Instruction>(inst#"_M_"#mti.BX)
GPR:$vl, mti.Log2SEW)>;
}
multiclass VPatBinary<string intrinsic,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind>
{
def : VPatBinaryNoMask<intrinsic, inst, result_type, op1_type, op2_type,
sew, op1_reg_class, op2_kind>;
def : VPatBinaryMask<intrinsic, inst, result_type, op1_type, op2_type,
mask_type, sew, result_reg_class, op1_reg_class,
op2_kind>;
}
multiclass VPatBinarySwapped<string intrinsic,
string inst,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
VReg result_reg_class,
VReg op1_reg_class,
DAGOperand op2_kind>
{
def : VPatBinaryNoMaskSwapped<intrinsic, inst, result_type, op1_type, op2_type,
sew, op1_reg_class, op2_kind>;
def : VPatBinaryMaskSwapped<intrinsic, inst, result_type, op1_type, op2_type,
mask_type, sew, result_reg_class, op1_reg_class,
op2_kind>;
}
multiclass VPatBinaryCarryIn<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg op1_reg_class,
DAGOperand op2_kind>
{
def : Pat<(result_type (!cast<Intrinsic>(intrinsic)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
(mask_type V0), GPR:$vl, sew)>;
}
multiclass VPatBinaryMaskOut<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
int sew,
LMULInfo vlmul,
VReg op1_reg_class,
DAGOperand op2_kind>
{
def : Pat<(result_type (!cast<Intrinsic>(intrinsic)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
VLOpFrag)),
(!cast<Instruction>(inst#"_"#kind#"_"#vlmul.MX)
(op1_type op1_reg_class:$rs1),
(op2_type op2_kind:$rs2),
GPR:$vl, sew)>;
}
multiclass VPatConversion<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
VReg op1_reg_class>
{
def : VPatUnaryNoMask<intrinsic, inst, kind, result_type, op1_type,
sew, vlmul, op1_reg_class>;
def : VPatUnaryMask<intrinsic, inst, kind, result_type, op1_type,
mask_type, sew, vlmul, result_reg_class, op1_reg_class>;
}
multiclass VPatBinaryV_VV<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
defm : VPatBinary<intrinsic, instruction # "_VV_" # vti.LMul.MX,
vti.Vector, vti.Vector, vti.Vector,vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinaryV_VV_INT<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in {
defvar ivti = GetIntVTypeInfo<vti>.Vti;
defm : VPatBinary<intrinsic, instruction # "_VV_" # vti.LMul.MX,
vti.Vector, vti.Vector, ivti.Vector, vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, vti.RegClass>;
}
}
multiclass VPatBinaryV_VV_INT_EEW<string intrinsic, string instruction,
int eew, list<VTypeInfo> vtilist> {
foreach vti = vtilist in {
// emul = lmul * eew / sew
defvar vlmul = vti.LMul;
defvar octuple_lmul = vlmul.octuple;
defvar octuple_emul = !srl(!mul(octuple_lmul, eew), vti.Log2SEW);
if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
defvar emul_str = octuple_to_str<octuple_emul>.ret;
defvar ivti = !cast<VTypeInfo>("VI" # eew # emul_str);
defvar inst = instruction # "_VV_" # vti.LMul.MX # "_" # emul_str;
defm : VPatBinary<intrinsic, inst,
vti.Vector, vti.Vector, ivti.Vector, vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, ivti.RegClass>;
}
}
}
multiclass VPatBinaryV_VX<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in {
defvar kind = "V"#vti.ScalarSuffix;
defm : VPatBinary<intrinsic, instruction#"_"#kind#"_"#vti.LMul.MX,
vti.Vector, vti.Vector, vti.Scalar, vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, vti.ScalarRegClass>;
}
}
multiclass VPatBinaryV_VX_INT<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
defm : VPatBinary<intrinsic, instruction # "_VX_" # vti.LMul.MX,
vti.Vector, vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, GPR>;
}
multiclass VPatBinaryV_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist, Operand imm_type> {
foreach vti = vtilist in
defm : VPatBinary<intrinsic, instruction # "_VI_" # vti.LMul.MX,
vti.Vector, vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, vti.RegClass,
vti.RegClass, imm_type>;
}
multiclass VPatBinaryM_MM<string intrinsic, string instruction> {
foreach mti = AllMasks in
def : VPatBinaryNoMask<intrinsic, instruction # "_MM_" # mti.LMul.MX,
mti.Mask, mti.Mask, mti.Mask,
mti.Log2SEW, VR, VR>;
}
multiclass VPatBinaryW_VV<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defm : VPatBinary<intrinsic, instruction # "_VV_" # Vti.LMul.MX,
Wti.Vector, Vti.Vector, Vti.Vector, Vti.Mask,
Vti.Log2SEW, Wti.RegClass,
Vti.RegClass, Vti.RegClass>;
}
}
multiclass VPatBinaryW_VX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defvar kind = "V"#Vti.ScalarSuffix;
defm : VPatBinary<intrinsic, instruction#"_"#kind#"_"#Vti.LMul.MX,
Wti.Vector, Vti.Vector, Vti.Scalar, Vti.Mask,
Vti.Log2SEW, Wti.RegClass,
Vti.RegClass, Vti.ScalarRegClass>;
}
}
multiclass VPatBinaryW_WV<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
def : VPatTiedBinaryNoMask<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
Wti.Vector, Vti.Vector,
Vti.Log2SEW, Wti.RegClass, Vti.RegClass>;
let AddedComplexity = 1 in
def : VPatTiedBinaryMask<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
Wti.Vector, Vti.Vector, Vti.Mask,
Vti.Log2SEW, Wti.RegClass, Vti.RegClass>;
def : VPatBinaryMask<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
Wti.Vector, Wti.Vector, Vti.Vector, Vti.Mask,
Vti.Log2SEW, Wti.RegClass,
Wti.RegClass, Vti.RegClass>;
}
}
multiclass VPatBinaryW_WX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defvar kind = "W"#Vti.ScalarSuffix;
defm : VPatBinary<intrinsic, instruction#"_"#kind#"_"#Vti.LMul.MX,
Wti.Vector, Wti.Vector, Vti.Scalar, Vti.Mask,
Vti.Log2SEW, Wti.RegClass,
Wti.RegClass, Vti.ScalarRegClass>;
}
}
multiclass VPatBinaryV_WV<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defm : VPatBinary<intrinsic, instruction # "_WV_" # Vti.LMul.MX,
Vti.Vector, Wti.Vector, Vti.Vector, Vti.Mask,
Vti.Log2SEW, Vti.RegClass,
Wti.RegClass, Vti.RegClass>;
}
}
multiclass VPatBinaryV_WX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defvar kind = "W"#Vti.ScalarSuffix;
defm : VPatBinary<intrinsic, instruction#"_"#kind#"_"#Vti.LMul.MX,
Vti.Vector, Wti.Vector, Vti.Scalar, Vti.Mask,
Vti.Log2SEW, Vti.RegClass,
Wti.RegClass, Vti.ScalarRegClass>;
}
}
multiclass VPatBinaryV_WI<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach VtiToWti = vtilist in {
defvar Vti = VtiToWti.Vti;
defvar Wti = VtiToWti.Wti;
defm : VPatBinary<intrinsic, instruction # "_WI_" # Vti.LMul.MX,
Vti.Vector, Wti.Vector, XLenVT, Vti.Mask,
Vti.Log2SEW, Vti.RegClass,
Wti.RegClass, uimm5>;
}
}
multiclass VPatBinaryV_VM<string intrinsic, string instruction,
bit CarryOut = 0,
list<VTypeInfo> vtilist = AllIntegerVectors> {
foreach vti = vtilist in
defm : VPatBinaryCarryIn<intrinsic, instruction, "VVM",
!if(CarryOut, vti.Mask, vti.Vector),
vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinaryV_XM<string intrinsic, string instruction,
bit CarryOut = 0,
list<VTypeInfo> vtilist = AllIntegerVectors> {
foreach vti = vtilist in
defm : VPatBinaryCarryIn<intrinsic, instruction,
"V"#vti.ScalarSuffix#"M",
!if(CarryOut, vti.Mask, vti.Vector),
vti.Vector, vti.Scalar, vti.Mask,
vti.Log2SEW, vti.LMul,
vti.RegClass, vti.ScalarRegClass>;
}
multiclass VPatBinaryV_IM<string intrinsic, string instruction,
bit CarryOut = 0> {
foreach vti = AllIntegerVectors in
defm : VPatBinaryCarryIn<intrinsic, instruction, "VIM",
!if(CarryOut, vti.Mask, vti.Vector),
vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, vti.LMul,
vti.RegClass, simm5>;
}
multiclass VPatBinaryV_V<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in
defm : VPatBinaryMaskOut<intrinsic, instruction, "VV",
vti.Mask, vti.Vector, vti.Vector,
vti.Log2SEW, vti.LMul,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinaryV_X<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in
defm : VPatBinaryMaskOut<intrinsic, instruction, "VX",
vti.Mask, vti.Vector, XLenVT,
vti.Log2SEW, vti.LMul,
vti.RegClass, GPR>;
}
multiclass VPatBinaryV_I<string intrinsic, string instruction> {
foreach vti = AllIntegerVectors in
defm : VPatBinaryMaskOut<intrinsic, instruction, "VI",
vti.Mask, vti.Vector, XLenVT,
vti.Log2SEW, vti.LMul,
vti.RegClass, simm5>;
}
multiclass VPatBinaryM_VV<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
defm : VPatBinary<intrinsic, instruction # "_VV_" # vti.LMul.MX,
vti.Mask, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, VR,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinarySwappedM_VV<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
defm : VPatBinarySwapped<intrinsic, instruction # "_VV_" # vti.LMul.MX,
vti.Mask, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, VR,
vti.RegClass, vti.RegClass>;
}
multiclass VPatBinaryM_VX<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in {
defvar kind = "V"#vti.ScalarSuffix;
defm : VPatBinary<intrinsic, instruction#"_"#kind#"_"#vti.LMul.MX,
vti.Mask, vti.Vector, vti.Scalar, vti.Mask,
vti.Log2SEW, VR,
vti.RegClass, vti.ScalarRegClass>;
}
}
multiclass VPatBinaryM_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
defm : VPatBinary<intrinsic, instruction # "_VI_" # vti.LMul.MX,
vti.Mask, vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, VR,
vti.RegClass, simm5>;
}
multiclass VPatBinaryV_VV_VX_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist, Operand ImmType = simm5>
: VPatBinaryV_VV<intrinsic, instruction, vtilist>,
VPatBinaryV_VX<intrinsic, instruction, vtilist>,
VPatBinaryV_VI<intrinsic, instruction, vtilist, ImmType>;
multiclass VPatBinaryV_VV_VX<string intrinsic, string instruction,
list<VTypeInfo> vtilist>
: VPatBinaryV_VV<intrinsic, instruction, vtilist>,
VPatBinaryV_VX<intrinsic, instruction, vtilist>;
multiclass VPatBinaryV_VX_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist>
: VPatBinaryV_VX<intrinsic, instruction, vtilist>,
VPatBinaryV_VI<intrinsic, instruction, vtilist, simm5>;
multiclass VPatBinaryW_VV_VX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist>
: VPatBinaryW_VV<intrinsic, instruction, vtilist>,
VPatBinaryW_VX<intrinsic, instruction, vtilist>;
multiclass VPatBinaryW_WV_WX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist>
: VPatBinaryW_WV<intrinsic, instruction, vtilist>,
VPatBinaryW_WX<intrinsic, instruction, vtilist>;
multiclass VPatBinaryV_WV_WX_WI<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist>
: VPatBinaryV_WV<intrinsic, instruction, vtilist>,
VPatBinaryV_WX<intrinsic, instruction, vtilist>,
VPatBinaryV_WI<intrinsic, instruction, vtilist>;
multiclass VPatBinaryV_VM_XM_IM<string intrinsic, string instruction>
: VPatBinaryV_VM<intrinsic, instruction>,
VPatBinaryV_XM<intrinsic, instruction>,
VPatBinaryV_IM<intrinsic, instruction>;
multiclass VPatBinaryM_VM_XM_IM<string intrinsic, string instruction>
: VPatBinaryV_VM<intrinsic, instruction, /*CarryOut=*/1>,
VPatBinaryV_XM<intrinsic, instruction, /*CarryOut=*/1>,
VPatBinaryV_IM<intrinsic, instruction, /*CarryOut=*/1>;
multiclass VPatBinaryM_V_X_I<string intrinsic, string instruction>
: VPatBinaryV_V<intrinsic, instruction>,
VPatBinaryV_X<intrinsic, instruction>,
VPatBinaryV_I<intrinsic, instruction>;
multiclass VPatBinaryV_VM_XM<string intrinsic, string instruction>
: VPatBinaryV_VM<intrinsic, instruction>,
VPatBinaryV_XM<intrinsic, instruction>;
multiclass VPatBinaryM_VM_XM<string intrinsic, string instruction>
: VPatBinaryV_VM<intrinsic, instruction, /*CarryOut=*/1>,
VPatBinaryV_XM<intrinsic, instruction, /*CarryOut=*/1>;
multiclass VPatBinaryM_V_X<string intrinsic, string instruction>
: VPatBinaryV_V<intrinsic, instruction>,
VPatBinaryV_X<intrinsic, instruction>;
multiclass VPatTernary<string intrinsic,
string inst,
string kind,
ValueType result_type,
ValueType op1_type,
ValueType op2_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
VReg result_reg_class,
RegisterClass op1_reg_class,
DAGOperand op2_kind> {
def : VPatTernaryNoMask<intrinsic, inst, kind, result_type, op1_type, op2_type,
mask_type, sew, vlmul, result_reg_class, op1_reg_class,
op2_kind>;
def : VPatTernaryMask<intrinsic, inst, kind, result_type, op1_type, op2_type,
mask_type, sew, vlmul, result_reg_class, op1_reg_class,
op2_kind>;
}
multiclass VPatTernaryV_VV<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
defm : VPatTernary<intrinsic, instruction, "VV",
vti.Vector, vti.Vector, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.RegClass, vti.RegClass>;
}
multiclass VPatTernaryV_VX<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
defm : VPatTernary<intrinsic, instruction, "VX",
vti.Vector, vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.RegClass, GPR>;
}
multiclass VPatTernaryV_VX_AAXA<string intrinsic, string instruction,
list<VTypeInfo> vtilist> {
foreach vti = vtilist in
defm : VPatTernary<intrinsic, instruction,
"V"#vti.ScalarSuffix,
vti.Vector, vti.Scalar, vti.Vector, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.ScalarRegClass, vti.RegClass>;
}
multiclass VPatTernaryV_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist, Operand Imm_type> {
foreach vti = vtilist in
defm : VPatTernary<intrinsic, instruction, "VI",
vti.Vector, vti.Vector, XLenVT, vti.Mask,
vti.Log2SEW, vti.LMul, vti.RegClass,
vti.RegClass, Imm_type>;
}
multiclass VPatTernaryW_VV<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach vtiToWti = vtilist in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
defm : VPatTernary<intrinsic, instruction, "VV",
wti.Vector, vti.Vector, vti.Vector,
vti.Mask, vti.Log2SEW, vti.LMul,
wti.RegClass, vti.RegClass, vti.RegClass>;
}
}
multiclass VPatTernaryW_VX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist> {
foreach vtiToWti = vtilist in {
defvar vti = vtiToWti.Vti;
defvar wti = vtiToWti.Wti;
defm : VPatTernary<intrinsic, instruction,
"V"#vti.ScalarSuffix,
wti.Vector, vti.Scalar, vti.Vector,
vti.Mask, vti.Log2SEW, vti.LMul,
wti.RegClass, vti.ScalarRegClass, vti.RegClass>;
}
}
multiclass VPatTernaryV_VV_VX_AAXA<string intrinsic, string instruction,
list<VTypeInfo> vtilist>
: VPatTernaryV_VV<intrinsic, instruction, vtilist>,
VPatTernaryV_VX_AAXA<intrinsic, instruction, vtilist>;
multiclass VPatTernaryV_VX_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist, Operand Imm_type = simm5>
: VPatTernaryV_VX<intrinsic, instruction, vtilist>,
VPatTernaryV_VI<intrinsic, instruction, vtilist, Imm_type>;
multiclass VPatBinaryM_VV_VX_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist>
: VPatBinaryM_VV<intrinsic, instruction, vtilist>,
VPatBinaryM_VX<intrinsic, instruction, vtilist>,
VPatBinaryM_VI<intrinsic, instruction, vtilist>;
multiclass VPatTernaryW_VV_VX<string intrinsic, string instruction,
list<VTypeInfoToWide> vtilist>
: VPatTernaryW_VV<intrinsic, instruction, vtilist>,
VPatTernaryW_VX<intrinsic, instruction, vtilist>;
multiclass VPatBinaryM_VV_VX<string intrinsic, string instruction,
list<VTypeInfo> vtilist>
: VPatBinaryM_VV<intrinsic, instruction, vtilist>,
VPatBinaryM_VX<intrinsic, instruction, vtilist>;
multiclass VPatBinaryM_VX_VI<string intrinsic, string instruction,
list<VTypeInfo> vtilist>
: VPatBinaryM_VX<intrinsic, instruction, vtilist>,
VPatBinaryM_VI<intrinsic, instruction, vtilist>;
multiclass VPatBinaryV_VV_VX_VI_INT<string intrinsic, string instruction,
list<VTypeInfo> vtilist, Operand ImmType = simm5>
: VPatBinaryV_VV_INT<intrinsic#"_vv", instruction, vtilist>,
VPatBinaryV_VX_INT<intrinsic#"_vx", instruction, vtilist>,
VPatBinaryV_VI<intrinsic#"_vx", instruction, vtilist, ImmType>;
multiclass VPatReductionV_VS<string intrinsic, string instruction, bit IsFloat = 0> {
foreach vti = !if(IsFloat, NoGroupFloatVectors, NoGroupIntegerVectors) in
{
defvar vectorM1 = !cast<VTypeInfo>(!if(IsFloat, "VF", "VI") # vti.SEW # "M1");
defm : VPatTernary<intrinsic, instruction, "VS",
vectorM1.Vector, vti.Vector,
vectorM1.Vector, vti.Mask,
vti.Log2SEW, vti.LMul,
VR, vti.RegClass, VR>;
}
foreach gvti = !if(IsFloat, GroupFloatVectors, GroupIntegerVectors) in
{
defm : VPatTernary<intrinsic, instruction, "VS",
gvti.VectorM1, gvti.Vector,
gvti.VectorM1, gvti.Mask,
gvti.Log2SEW, gvti.LMul,
VR, gvti.RegClass, VR>;
}
}
multiclass VPatReductionW_VS<string intrinsic, string instruction, bit IsFloat = 0> {
foreach vti = !if(IsFloat, AllFloatVectors, AllIntegerVectors) in
{
defvar wtiSEW = !mul(vti.SEW, 2);
if !le(wtiSEW, 64) then {
defvar wtiM1 = !cast<VTypeInfo>(!if(IsFloat, "VF", "VI") # wtiSEW # "M1");
defm : VPatTernary<intrinsic, instruction, "VS",
wtiM1.Vector, vti.Vector,
wtiM1.Vector, vti.Mask,
vti.Log2SEW, vti.LMul,
wtiM1.RegClass, vti.RegClass,
wtiM1.RegClass>;
}
}
}
multiclass VPatConversionVI_VF<string intrinsic,
string instruction>
{
foreach fvti = AllFloatVectors in
{
defvar ivti = GetIntVTypeInfo<fvti>.Vti;
defm : VPatConversion<intrinsic, instruction, "V",
ivti.Vector, fvti.Vector, ivti.Mask, fvti.Log2SEW,
fvti.LMul, ivti.RegClass, fvti.RegClass>;
}
}
multiclass VPatConversionVF_VI<string intrinsic,
string instruction>
{
foreach fvti = AllFloatVectors in
{
defvar ivti = GetIntVTypeInfo<fvti>.Vti;
defm : VPatConversion<intrinsic, instruction, "V",
fvti.Vector, ivti.Vector, fvti.Mask, ivti.Log2SEW,
ivti.LMul, fvti.RegClass, ivti.RegClass>;
}
}
multiclass VPatConversionWI_VF<string intrinsic, string instruction> {
foreach fvtiToFWti = AllWidenableFloatVectors in
{
defvar fvti = fvtiToFWti.Vti;
defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti;
defm : VPatConversion<intrinsic, instruction, "V",
iwti.Vector, fvti.Vector, iwti.Mask, fvti.Log2SEW,
fvti.LMul, iwti.RegClass, fvti.RegClass>;
}
}
multiclass VPatConversionWF_VI<string intrinsic, string instruction> {
foreach vtiToWti = AllWidenableIntToFloatVectors in
{
defvar vti = vtiToWti.Vti;
defvar fwti = vtiToWti.Wti;
defm : VPatConversion<intrinsic, instruction, "V",
fwti.Vector, vti.Vector, fwti.Mask, vti.Log2SEW,
vti.LMul, fwti.RegClass, vti.RegClass>;
}
}
multiclass VPatConversionWF_VF <string intrinsic, string instruction> {
foreach fvtiToFWti = AllWidenableFloatVectors in
{
defvar fvti = fvtiToFWti.Vti;
defvar fwti = fvtiToFWti.Wti;
defm : VPatConversion<intrinsic, instruction, "V",
fwti.Vector, fvti.Vector, fwti.Mask, fvti.Log2SEW,
fvti.LMul, fwti.RegClass, fvti.RegClass>;
}
}
multiclass VPatConversionVI_WF <string intrinsic, string instruction> {
foreach vtiToWti = AllWidenableIntToFloatVectors in
{
defvar vti = vtiToWti.Vti;
defvar fwti = vtiToWti.Wti;
defm : VPatConversion<intrinsic, instruction, "W",
vti.Vector, fwti.Vector, vti.Mask, vti.Log2SEW,
vti.LMul, vti.RegClass, fwti.RegClass>;
}
}
multiclass VPatConversionVF_WI <string intrinsic, string instruction> {
foreach fvtiToFWti = AllWidenableFloatVectors in
{
defvar fvti = fvtiToFWti.Vti;
defvar iwti = GetIntVTypeInfo<fvtiToFWti.Wti>.Vti;
defm : VPatConversion<intrinsic, instruction, "W",
fvti.Vector, iwti.Vector, fvti.Mask, fvti.Log2SEW,
fvti.LMul, fvti.RegClass, iwti.RegClass>;
}
}
multiclass VPatConversionVF_WF <string intrinsic, string instruction> {
foreach fvtiToFWti = AllWidenableFloatVectors in
{
defvar fvti = fvtiToFWti.Vti;
defvar fwti = fvtiToFWti.Wti;
defm : VPatConversion<intrinsic, instruction, "W",
fvti.Vector, fwti.Vector, fvti.Mask, fvti.Log2SEW,
fvti.LMul, fvti.RegClass, fwti.RegClass>;
}
}
multiclass VPatAMOWD<string intrinsic,
string inst,
ValueType result_type,
ValueType offset_type,
ValueType mask_type,
int sew,
LMULInfo vlmul,
LMULInfo emul,
VReg op1_reg_class>
{
def : VPatAMOWDNoMask<intrinsic, inst, result_type, offset_type,
sew, vlmul, emul, op1_reg_class>;
def : VPatAMOWDMask<intrinsic, inst, result_type, offset_type,
mask_type, sew, vlmul, emul, op1_reg_class>;
}
multiclass VPatAMOV_WD<string intrinsic,
string inst,
list<VTypeInfo> vtilist> {
foreach eew = EEWList in {
foreach vti = vtilist in {
if !or(!eq(vti.SEW, 32), !eq(vti.SEW, 64)) then {
defvar octuple_lmul = vti.LMul.octuple;
// Calculate emul = eew * lmul / sew
defvar octuple_emul = !srl(!mul(eew, octuple_lmul), vti.Log2SEW);
if !and(!ge(octuple_emul, 1), !le(octuple_emul, 64)) then {
defvar emulMX = octuple_to_str<octuple_emul>.ret;
defvar offsetVti = !cast<VTypeInfo>("VI" # eew # emulMX);
defvar inst_ei = inst # "EI" # eew;
defm : VPatAMOWD<intrinsic, inst_ei,
vti.Vector, offsetVti.Vector,
vti.Mask, vti.Log2SEW, vti.LMul, offsetVti.LMul, offsetVti.RegClass>;
}
}
}
}
}
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV] in {
//===----------------------------------------------------------------------===//
// Pseudo Instructions for CodeGen
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
def PseudoVMV1R_V : VPseudo<VMV1R_V, V_M1, (outs VR:$vd), (ins VR:$vs2)>;
def PseudoVMV2R_V : VPseudo<VMV2R_V, V_M2, (outs VRM2:$vd), (ins VRM2:$vs2)>;
def PseudoVMV4R_V : VPseudo<VMV4R_V, V_M4, (outs VRM4:$vd), (ins VRM4:$vs2)>;
def PseudoVMV8R_V : VPseudo<VMV8R_V, V_M8, (outs VRM8:$vd), (ins VRM8:$vs2)>;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 1 in {
def PseudoReadVLENB : Pseudo<(outs GPR:$rd), (ins),
[(set GPR:$rd, (riscv_read_vlenb))]>;
}
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 1,
Uses = [VL] in
def PseudoReadVL : Pseudo<(outs GPR:$rd), (ins), []>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 1, isCodeGenOnly = 1 in {
def PseudoVSPILL_M1 : VPseudo<VS1R_V, V_M1, (outs), (ins VR:$rs1, GPR:$rs2)>;
def PseudoVSPILL_M2 : VPseudo<VS2R_V, V_M2, (outs), (ins VRM2:$rs1, GPR:$rs2)>;
def PseudoVSPILL_M4 : VPseudo<VS4R_V, V_M4, (outs), (ins VRM4:$rs1, GPR:$rs2)>;
def PseudoVSPILL_M8 : VPseudo<VS8R_V, V_M8, (outs), (ins VRM8:$rs1, GPR:$rs2)>;
}
let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 1 in {
def PseudoVRELOAD_M1 : VPseudo<VL1RE8_V, V_M1, (outs VR:$rs1), (ins GPR:$rs2)>;
def PseudoVRELOAD_M2 : VPseudo<VL2RE8_V, V_M2, (outs VRM2:$rs1), (ins GPR:$rs2)>;
def PseudoVRELOAD_M4 : VPseudo<VL4RE8_V, V_M4, (outs VRM4:$rs1), (ins GPR:$rs2)>;
def PseudoVRELOAD_M8 : VPseudo<VL8RE8_V, V_M8, (outs VRM8:$rs1), (ins GPR:$rs2)>;
}
foreach lmul = MxList.m in {
foreach nf = NFSet<lmul>.L in {
defvar vreg = SegRegClass<lmul, nf>.RC;
let hasSideEffects = 0, mayLoad = 0, mayStore = 1, isCodeGenOnly = 1 in {
def "PseudoVSPILL" # nf # "_" # lmul.MX :
Pseudo<(outs), (ins vreg:$rs1, GPR:$rs2, GPR:$vlenb), []>;
}
let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 1 in {
def "PseudoVRELOAD" # nf # "_" # lmul.MX :
Pseudo<(outs vreg:$rs1), (ins GPR:$rs2, GPR:$vlenb), []>;
}
}
}
//===----------------------------------------------------------------------===//
// 6. Configuration-Setting Instructions
//===----------------------------------------------------------------------===//
// Pseudos.
let hasSideEffects = 1, mayLoad = 0, mayStore = 0, Defs = [VL, VTYPE] in {
def PseudoVSETVLI : Pseudo<(outs GPR:$rd), (ins GPR:$rs1, VTypeIOp:$vtypei), []>;
def PseudoVSETIVLI : Pseudo<(outs GPR:$rd), (ins uimm5:$rs1, VTypeIOp:$vtypei), []>;
}
//===----------------------------------------------------------------------===//
// 7. Vector Loads and Stores
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 7.4 Vector Unit-Stride Instructions
//===----------------------------------------------------------------------===//
// Pseudos Unit-Stride Loads and Stores
defm PseudoVL : VPseudoUSLoad</*isFF=*/false>;
defm PseudoVS : VPseudoUSStore;
defm PseudoVLE1 : VPseudoLoadMask;
defm PseudoVSE1 : VPseudoStoreMask;
//===----------------------------------------------------------------------===//
// 7.5 Vector Strided Instructions
//===----------------------------------------------------------------------===//
// Vector Strided Loads and Stores
defm PseudoVLS : VPseudoSLoad;
defm PseudoVSS : VPseudoSStore;
//===----------------------------------------------------------------------===//
// 7.6 Vector Indexed Instructions
//===----------------------------------------------------------------------===//
// Vector Indexed Loads and Stores
defm PseudoVLUX : VPseudoILoad</*Ordered=*/false>;
defm PseudoVLOX : VPseudoILoad</*Ordered=*/true>;
defm PseudoVSOX : VPseudoIStore</*Ordered=*/true>;
defm PseudoVSUX : VPseudoIStore</*Ordered=*/false>;
//===----------------------------------------------------------------------===//
// 7.7. Unit-stride Fault-Only-First Loads
//===----------------------------------------------------------------------===//
// vleff may update VL register
let hasSideEffects = 1, Defs = [VL] in
defm PseudoVL : VPseudoUSLoad</*isFF=*/true>;
//===----------------------------------------------------------------------===//
// 7.8. Vector Load/Store Segment Instructions
//===----------------------------------------------------------------------===//
defm PseudoVLSEG : VPseudoUSSegLoad</*isFF=*/false>;
defm PseudoVLSSEG : VPseudoSSegLoad;
defm PseudoVLOXSEG : VPseudoISegLoad</*Ordered=*/true>;
defm PseudoVLUXSEG : VPseudoISegLoad</*Ordered=*/false>;
defm PseudoVSSEG : VPseudoUSSegStore;
defm PseudoVSSSEG : VPseudoSSegStore;
defm PseudoVSOXSEG : VPseudoISegStore</*Ordered=*/true>;
defm PseudoVSUXSEG : VPseudoISegStore</*Ordered=*/false>;
// vlseg<nf>e<eew>ff.v may update VL register
let hasSideEffects = 1, Defs = [VL] in
defm PseudoVLSEG : VPseudoUSSegLoad</*isFF=*/true>;
//===----------------------------------------------------------------------===//
// 8. Vector AMO Operations
//===----------------------------------------------------------------------===//
defm PseudoVAMOSWAP : VPseudoAMO;
defm PseudoVAMOADD : VPseudoAMO;
defm PseudoVAMOXOR : VPseudoAMO;
defm PseudoVAMOAND : VPseudoAMO;
defm PseudoVAMOOR : VPseudoAMO;
defm PseudoVAMOMIN : VPseudoAMO;
defm PseudoVAMOMAX : VPseudoAMO;
defm PseudoVAMOMINU : VPseudoAMO;
defm PseudoVAMOMAXU : VPseudoAMO;
//===----------------------------------------------------------------------===//
// 12. Vector Integer Arithmetic Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 12.1. Vector Single-Width Integer Add and Subtract
//===----------------------------------------------------------------------===//
defm PseudoVADD : VPseudoBinaryV_VV_VX_VI;
defm PseudoVSUB : VPseudoBinaryV_VV_VX;
defm PseudoVRSUB : VPseudoBinaryV_VX_VI;
foreach vti = AllIntegerVectors in {
// Match vrsub with 2 vector operands to vsub.vv by swapping operands. This
// Occurs when legalizing vrsub.vx intrinsics for i64 on RV32 since we need
// to use a more complex splat sequence. Add the pattern for all VTs for
// consistency.
def : Pat<(vti.Vector (int_riscv_vrsub (vti.Vector vti.RegClass:$rs2),
(vti.Vector vti.RegClass:$rs1),
VLOpFrag)),
(!cast<Instruction>("PseudoVSUB_VV_"#vti.LMul.MX) vti.RegClass:$rs1,
vti.RegClass:$rs2,
GPR:$vl,
vti.Log2SEW)>;
def : Pat<(vti.Vector (int_riscv_vrsub_mask (vti.Vector vti.RegClass:$merge),
(vti.Vector vti.RegClass:$rs2),
(vti.Vector vti.RegClass:$rs1),
(vti.Mask V0),
VLOpFrag)),
(!cast<Instruction>("PseudoVSUB_VV_"#vti.LMul.MX#"_MASK")
vti.RegClass:$merge,
vti.RegClass:$rs1,
vti.RegClass:$rs2,
(vti.Mask V0),
GPR:$vl,
vti.Log2SEW)>;
// Match VSUB with a small immediate to vadd.vi by negating the immediate.
def : Pat<(vti.Vector (int_riscv_vsub (vti.Vector vti.RegClass:$rs1),
(vti.Scalar simm5_plus1:$rs2),
VLOpFrag)),
(!cast<Instruction>("PseudoVADD_VI_"#vti.LMul.MX) vti.RegClass:$rs1,
(NegImm simm5_plus1:$rs2),
GPR:$vl,
vti.Log2SEW)>;
def : Pat<(vti.Vector (int_riscv_vsub_mask (vti.Vector vti.RegClass:$merge),
(vti.Vector vti.RegClass:$rs1),
(vti.Scalar simm5_plus1:$rs2),
(vti.Mask V0),
VLOpFrag)),
(!cast<Instruction>("PseudoVADD_VI_"#vti.LMul.MX#"_MASK")
vti.RegClass:$merge,
vti.RegClass:$rs1,
(NegImm simm5_plus1:$rs2),
(vti.Mask V0),
GPR:$vl,
vti.Log2SEW)>;
}
//===----------------------------------------------------------------------===//
// 12.2. Vector Widening Integer Add/Subtract
//===----------------------------------------------------------------------===//
defm PseudoVWADDU : VPseudoBinaryW_VV_VX;
defm PseudoVWSUBU : VPseudoBinaryW_VV_VX;
defm PseudoVWADD : VPseudoBinaryW_VV_VX;
defm PseudoVWSUB : VPseudoBinaryW_VV_VX;
defm PseudoVWADDU : VPseudoBinaryW_WV_WX;
defm PseudoVWSUBU : VPseudoBinaryW_WV_WX;
defm PseudoVWADD : VPseudoBinaryW_WV_WX;
defm PseudoVWSUB : VPseudoBinaryW_WV_WX;
//===----------------------------------------------------------------------===//
// 12.3. Vector Integer Extension
//===----------------------------------------------------------------------===//
defm PseudoVZEXT_VF2 : PseudoUnaryV_VF2;
defm PseudoVZEXT_VF4 : PseudoUnaryV_VF4;
defm PseudoVZEXT_VF8 : PseudoUnaryV_VF8;
defm PseudoVSEXT_VF2 : PseudoUnaryV_VF2;
defm PseudoVSEXT_VF4 : PseudoUnaryV_VF4;
defm PseudoVSEXT_VF8 : PseudoUnaryV_VF8;
//===----------------------------------------------------------------------===//
// 12.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
//===----------------------------------------------------------------------===//
defm PseudoVADC : VPseudoBinaryV_VM_XM_IM;
defm PseudoVMADC : VPseudoBinaryM_VM_XM_IM<"@earlyclobber $rd">;
defm PseudoVMADC : VPseudoBinaryM_V_X_I<"@earlyclobber $rd">;
defm PseudoVSBC : VPseudoBinaryV_VM_XM;
defm PseudoVMSBC : VPseudoBinaryM_VM_XM<"@earlyclobber $rd">;
defm PseudoVMSBC : VPseudoBinaryM_V_X<"@earlyclobber $rd">;
//===----------------------------------------------------------------------===//
// 12.5. Vector Bitwise Logical Instructions
//===----------------------------------------------------------------------===//
defm PseudoVAND : VPseudoBinaryV_VV_VX_VI;
defm PseudoVOR : VPseudoBinaryV_VV_VX_VI;
defm PseudoVXOR : VPseudoBinaryV_VV_VX_VI;
//===----------------------------------------------------------------------===//
// 12.6. Vector Single-Width Bit Shift Instructions
//===----------------------------------------------------------------------===//
defm PseudoVSLL : VPseudoBinaryV_VV_VX_VI<uimm5>;
defm PseudoVSRL : VPseudoBinaryV_VV_VX_VI<uimm5>;
defm PseudoVSRA : VPseudoBinaryV_VV_VX_VI<uimm5>;
//===----------------------------------------------------------------------===//
// 12.7. Vector Narrowing Integer Right Shift Instructions
//===----------------------------------------------------------------------===//
defm PseudoVNSRL : VPseudoBinaryV_WV_WX_WI;
defm PseudoVNSRA : VPseudoBinaryV_WV_WX_WI;
//===----------------------------------------------------------------------===//
// 12.8. Vector Integer Comparison Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMSEQ : VPseudoBinaryM_VV_VX_VI;
defm PseudoVMSNE : VPseudoBinaryM_VV_VX_VI;
defm PseudoVMSLTU : VPseudoBinaryM_VV_VX;
defm PseudoVMSLT : VPseudoBinaryM_VV_VX;
defm PseudoVMSLEU : VPseudoBinaryM_VV_VX_VI;
defm PseudoVMSLE : VPseudoBinaryM_VV_VX_VI;
defm PseudoVMSGTU : VPseudoBinaryM_VX_VI;
defm PseudoVMSGT : VPseudoBinaryM_VX_VI;
//===----------------------------------------------------------------------===//
// 12.9. Vector Integer Min/Max Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMINU : VPseudoBinaryV_VV_VX;
defm PseudoVMIN : VPseudoBinaryV_VV_VX;
defm PseudoVMAXU : VPseudoBinaryV_VV_VX;
defm PseudoVMAX : VPseudoBinaryV_VV_VX;
//===----------------------------------------------------------------------===//
// 12.10. Vector Single-Width Integer Multiply Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMUL : VPseudoBinaryV_VV_VX;
defm PseudoVMULH : VPseudoBinaryV_VV_VX;
defm PseudoVMULHU : VPseudoBinaryV_VV_VX;
defm PseudoVMULHSU : VPseudoBinaryV_VV_VX;
//===----------------------------------------------------------------------===//
// 12.11. Vector Integer Divide Instructions
//===----------------------------------------------------------------------===//
defm PseudoVDIVU : VPseudoBinaryV_VV_VX;
defm PseudoVDIV : VPseudoBinaryV_VV_VX;
defm PseudoVREMU : VPseudoBinaryV_VV_VX;
defm PseudoVREM : VPseudoBinaryV_VV_VX;
//===----------------------------------------------------------------------===//
// 12.12. Vector Widening Integer Multiply Instructions
//===----------------------------------------------------------------------===//
defm PseudoVWMUL : VPseudoBinaryW_VV_VX;
defm PseudoVWMULU : VPseudoBinaryW_VV_VX;
defm PseudoVWMULSU : VPseudoBinaryW_VV_VX;
//===----------------------------------------------------------------------===//
// 12.13. Vector Single-Width Integer Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMACC : VPseudoTernaryV_VV_VX_AAXA;
defm PseudoVNMSAC : VPseudoTernaryV_VV_VX_AAXA;
defm PseudoVMADD : VPseudoTernaryV_VV_VX_AAXA;
defm PseudoVNMSUB : VPseudoTernaryV_VV_VX_AAXA;
//===----------------------------------------------------------------------===//
// 12.14. Vector Widening Integer Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm PseudoVWMACCU : VPseudoTernaryW_VV_VX;
defm PseudoVWMACC : VPseudoTernaryW_VV_VX;
defm PseudoVWMACCSU : VPseudoTernaryW_VV_VX;
defm PseudoVWMACCUS : VPseudoTernaryW_VX;
//===----------------------------------------------------------------------===//
// 12.15. Vector Integer Merge Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMERGE : VPseudoBinaryV_VM_XM_IM;
//===----------------------------------------------------------------------===//
// 12.16. Vector Integer Move Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMV_V : VPseudoUnaryV_V_X_I_NoDummyMask;
//===----------------------------------------------------------------------===//
// 13.1. Vector Single-Width Saturating Add and Subtract
//===----------------------------------------------------------------------===//
let Defs = [VXSAT], hasSideEffects = 1 in {
defm PseudoVSADDU : VPseudoBinaryV_VV_VX_VI;
defm PseudoVSADD : VPseudoBinaryV_VV_VX_VI;
defm PseudoVSSUBU : VPseudoBinaryV_VV_VX;
defm PseudoVSSUB : VPseudoBinaryV_VV_VX;
}
//===----------------------------------------------------------------------===//
// 13.2. Vector Single-Width Averaging Add and Subtract
//===----------------------------------------------------------------------===//
let Uses = [VXRM], hasSideEffects = 1 in {
defm PseudoVAADDU : VPseudoBinaryV_VV_VX;
defm PseudoVAADD : VPseudoBinaryV_VV_VX;
defm PseudoVASUBU : VPseudoBinaryV_VV_VX;
defm PseudoVASUB : VPseudoBinaryV_VV_VX;
}
//===----------------------------------------------------------------------===//
// 13.3. Vector Single-Width Fractional Multiply with Rounding and Saturation
//===----------------------------------------------------------------------===//
let Uses = [VXRM], Defs = [VXSAT], hasSideEffects = 1 in {
defm PseudoVSMUL : VPseudoBinaryV_VV_VX;
}
//===----------------------------------------------------------------------===//
// 13.4. Vector Single-Width Scaling Shift Instructions
//===----------------------------------------------------------------------===//
let Uses = [VXRM], hasSideEffects = 1 in {
defm PseudoVSSRL : VPseudoBinaryV_VV_VX_VI<uimm5>;
defm PseudoVSSRA : VPseudoBinaryV_VV_VX_VI<uimm5>;
}
//===----------------------------------------------------------------------===//
// 13.5. Vector Narrowing Fixed-Point Clip Instructions
//===----------------------------------------------------------------------===//
let Uses = [VXRM], Defs = [VXSAT], hasSideEffects = 1 in {
defm PseudoVNCLIP : VPseudoBinaryV_WV_WX_WI;
defm PseudoVNCLIPU : VPseudoBinaryV_WV_WX_WI;
}
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
//===----------------------------------------------------------------------===//
// 14.2. Vector Single-Width Floating-Point Add/Subtract Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFADD : VPseudoBinaryV_VV_VF;
defm PseudoVFSUB : VPseudoBinaryV_VV_VF;
defm PseudoVFRSUB : VPseudoBinaryV_VF;
//===----------------------------------------------------------------------===//
// 14.3. Vector Widening Floating-Point Add/Subtract Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFWADD : VPseudoBinaryW_VV_VF;
defm PseudoVFWSUB : VPseudoBinaryW_VV_VF;
defm PseudoVFWADD : VPseudoBinaryW_WV_WF;
defm PseudoVFWSUB : VPseudoBinaryW_WV_WF;
//===----------------------------------------------------------------------===//
// 14.4. Vector Single-Width Floating-Point Multiply/Divide Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFMUL : VPseudoBinaryV_VV_VF;
defm PseudoVFDIV : VPseudoBinaryV_VV_VF;
defm PseudoVFRDIV : VPseudoBinaryV_VF;
//===----------------------------------------------------------------------===//
// 14.5. Vector Widening Floating-Point Multiply
//===----------------------------------------------------------------------===//
defm PseudoVFWMUL : VPseudoBinaryW_VV_VF;
//===----------------------------------------------------------------------===//
// 14.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFMACC : VPseudoTernaryV_VV_VF_AAXA;
defm PseudoVFNMACC : VPseudoTernaryV_VV_VF_AAXA;
defm PseudoVFMSAC : VPseudoTernaryV_VV_VF_AAXA;
defm PseudoVFNMSAC : VPseudoTernaryV_VV_VF_AAXA;
defm PseudoVFMADD : VPseudoTernaryV_VV_VF_AAXA;
defm PseudoVFNMADD : VPseudoTernaryV_VV_VF_AAXA;
defm PseudoVFMSUB : VPseudoTernaryV_VV_VF_AAXA;
defm PseudoVFNMSUB : VPseudoTernaryV_VV_VF_AAXA;
//===----------------------------------------------------------------------===//
// 14.7. Vector Widening Floating-Point Fused Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFWMACC : VPseudoTernaryW_VV_VF;
defm PseudoVFWNMACC : VPseudoTernaryW_VV_VF;
defm PseudoVFWMSAC : VPseudoTernaryW_VV_VF;
defm PseudoVFWNMSAC : VPseudoTernaryW_VV_VF;
//===----------------------------------------------------------------------===//
// 14.8. Vector Floating-Point Square-Root Instruction
//===----------------------------------------------------------------------===//
defm PseudoVFSQRT : VPseudoUnaryV_V;
//===----------------------------------------------------------------------===//
// 14.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction
//===----------------------------------------------------------------------===//
defm PseudoVFRSQRT7 : VPseudoUnaryV_V;
//===----------------------------------------------------------------------===//
// 14.10. Vector Floating-Point Reciprocal Estimate Instruction
//===----------------------------------------------------------------------===//
defm PseudoVFREC7 : VPseudoUnaryV_V;
//===----------------------------------------------------------------------===//
// 14.11. Vector Floating-Point Min/Max Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFMIN : VPseudoBinaryV_VV_VF;
defm PseudoVFMAX : VPseudoBinaryV_VV_VF;
//===----------------------------------------------------------------------===//
// 14.12. Vector Floating-Point Sign-Injection Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFSGNJ : VPseudoBinaryV_VV_VF;
defm PseudoVFSGNJN : VPseudoBinaryV_VV_VF;
defm PseudoVFSGNJX : VPseudoBinaryV_VV_VF;
//===----------------------------------------------------------------------===//
// 14.13. Vector Floating-Point Compare Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMFEQ : VPseudoBinaryM_VV_VF;
defm PseudoVMFNE : VPseudoBinaryM_VV_VF;
defm PseudoVMFLT : VPseudoBinaryM_VV_VF;
defm PseudoVMFLE : VPseudoBinaryM_VV_VF;
defm PseudoVMFGT : VPseudoBinaryM_VF;
defm PseudoVMFGE : VPseudoBinaryM_VF;
//===----------------------------------------------------------------------===//
// 14.14. Vector Floating-Point Classify Instruction
//===----------------------------------------------------------------------===//
defm PseudoVFCLASS : VPseudoUnaryV_V;
//===----------------------------------------------------------------------===//
// 14.15. Vector Floating-Point Merge Instruction
//===----------------------------------------------------------------------===//
defm PseudoVFMERGE : VPseudoBinaryV_FM;
//===----------------------------------------------------------------------===//
// 14.16. Vector Floating-Point Move Instruction
//===----------------------------------------------------------------------===//
defm PseudoVFMV_V : VPseudoUnaryV_F_NoDummyMask;
//===----------------------------------------------------------------------===//
// 14.17. Single-Width Floating-Point/Integer Type-Convert Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFCVT_XU_F : VPseudoConversionV_V;
defm PseudoVFCVT_X_F : VPseudoConversionV_V;
defm PseudoVFCVT_RTZ_XU_F : VPseudoConversionV_V;
defm PseudoVFCVT_RTZ_X_F : VPseudoConversionV_V;
defm PseudoVFCVT_F_XU : VPseudoConversionV_V;
defm PseudoVFCVT_F_X : VPseudoConversionV_V;
//===----------------------------------------------------------------------===//
// 14.18. Widening Floating-Point/Integer Type-Convert Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFWCVT_XU_F : VPseudoConversionW_V;
defm PseudoVFWCVT_X_F : VPseudoConversionW_V;
defm PseudoVFWCVT_RTZ_XU_F : VPseudoConversionW_V;
defm PseudoVFWCVT_RTZ_X_F : VPseudoConversionW_V;
defm PseudoVFWCVT_F_XU : VPseudoConversionW_V;
defm PseudoVFWCVT_F_X : VPseudoConversionW_V;
defm PseudoVFWCVT_F_F : VPseudoConversionW_V;
//===----------------------------------------------------------------------===//
// 14.19. Narrowing Floating-Point/Integer Type-Convert Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFNCVT_XU_F : VPseudoConversionV_W;
defm PseudoVFNCVT_X_F : VPseudoConversionV_W;
defm PseudoVFNCVT_RTZ_XU_F : VPseudoConversionV_W;
defm PseudoVFNCVT_RTZ_X_F : VPseudoConversionV_W;
defm PseudoVFNCVT_F_XU : VPseudoConversionV_W;
defm PseudoVFNCVT_F_X : VPseudoConversionV_W;
defm PseudoVFNCVT_F_F : VPseudoConversionV_W;
defm PseudoVFNCVT_ROD_F_F : VPseudoConversionV_W;
} // Predicates = [HasStdExtV, HasStdExtF]
let Predicates = [HasStdExtV] in {
//===----------------------------------------------------------------------===//
// 15.1. Vector Single-Width Integer Reduction Instructions
//===----------------------------------------------------------------------===//
defm PseudoVREDSUM : VPseudoReductionV_VS;
defm PseudoVREDAND : VPseudoReductionV_VS;
defm PseudoVREDOR : VPseudoReductionV_VS;
defm PseudoVREDXOR : VPseudoReductionV_VS;
defm PseudoVREDMINU : VPseudoReductionV_VS;
defm PseudoVREDMIN : VPseudoReductionV_VS;
defm PseudoVREDMAXU : VPseudoReductionV_VS;
defm PseudoVREDMAX : VPseudoReductionV_VS;
//===----------------------------------------------------------------------===//
// 15.2. Vector Widening Integer Reduction Instructions
//===----------------------------------------------------------------------===//
defm PseudoVWREDSUMU : VPseudoReductionV_VS;
defm PseudoVWREDSUM : VPseudoReductionV_VS;
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
//===----------------------------------------------------------------------===//
// 15.3. Vector Single-Width Floating-Point Reduction Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFREDOSUM : VPseudoReductionV_VS;
defm PseudoVFREDSUM : VPseudoReductionV_VS;
defm PseudoVFREDMIN : VPseudoReductionV_VS;
defm PseudoVFREDMAX : VPseudoReductionV_VS;
//===----------------------------------------------------------------------===//
// 15.4. Vector Widening Floating-Point Reduction Instructions
//===----------------------------------------------------------------------===//
defm PseudoVFWREDSUM : VPseudoReductionV_VS;
defm PseudoVFWREDOSUM : VPseudoReductionV_VS;
} // Predicates = [HasStdExtV, HasStdExtF]
//===----------------------------------------------------------------------===//
// 16. Vector Mask Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 16.1 Vector Mask-Register Logical Instructions
//===----------------------------------------------------------------------===//
defm PseudoVMAND: VPseudoBinaryM_MM;
defm PseudoVMNAND: VPseudoBinaryM_MM;
defm PseudoVMANDNOT: VPseudoBinaryM_MM;
defm PseudoVMXOR: VPseudoBinaryM_MM;
defm PseudoVMOR: VPseudoBinaryM_MM;
defm PseudoVMNOR: VPseudoBinaryM_MM;
defm PseudoVMORNOT: VPseudoBinaryM_MM;
defm PseudoVMXNOR: VPseudoBinaryM_MM;
// Pseudo instructions
defm PseudoVMCLR : VPseudoNullaryPseudoM<"VMXOR">;
defm PseudoVMSET : VPseudoNullaryPseudoM<"VMXNOR">;
//===----------------------------------------------------------------------===//
// 16.2. Vector mask population count vpopc
//===----------------------------------------------------------------------===//
defm PseudoVPOPC: VPseudoUnaryS_M;
//===----------------------------------------------------------------------===//
// 16.3. vfirst find-first-set mask bit
//===----------------------------------------------------------------------===//
defm PseudoVFIRST: VPseudoUnaryS_M;
//===----------------------------------------------------------------------===//
// 16.4. vmsbf.m set-before-first mask bit
//===----------------------------------------------------------------------===//
defm PseudoVMSBF: VPseudoUnaryM_M;
//===----------------------------------------------------------------------===//
// 16.5. vmsif.m set-including-first mask bit
//===----------------------------------------------------------------------===//
defm PseudoVMSIF: VPseudoUnaryM_M;
//===----------------------------------------------------------------------===//
// 16.6. vmsof.m set-only-first mask bit
//===----------------------------------------------------------------------===//
defm PseudoVMSOF: VPseudoUnaryM_M;
//===----------------------------------------------------------------------===//
// 16.8. Vector Iota Instruction
//===----------------------------------------------------------------------===//
defm PseudoVIOTA_M: VPseudoUnaryV_M;
//===----------------------------------------------------------------------===//
// 16.9. Vector Element Index Instruction
//===----------------------------------------------------------------------===//
defm PseudoVID : VPseudoMaskNullaryV;
//===----------------------------------------------------------------------===//
// 17. Vector Permutation Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 17.1. Integer Scalar Move Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV] in {
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
foreach m = MxList.m in {
let VLMul = m.value in {
let HasSEWOp = 1, BaseInstr = VMV_X_S in
def PseudoVMV_X_S # "_" # m.MX: Pseudo<(outs GPR:$rd),
(ins m.vrclass:$rs2, ixlenimm:$sew),
[]>, RISCVVPseudo;
let HasVLOp = 1, HasSEWOp = 1, BaseInstr = VMV_S_X,
Constraints = "$rd = $rs1" in
def PseudoVMV_S_X # "_" # m.MX: Pseudo<(outs m.vrclass:$rd),
(ins m.vrclass:$rs1, GPR:$rs2,
AVL:$vl, ixlenimm:$sew),
[]>, RISCVVPseudo;
}
}
}
} // Predicates = [HasStdExtV]
//===----------------------------------------------------------------------===//
// 17.2. Floating-Point Scalar Move Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV, HasStdExtF] in {
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
foreach m = MxList.m in {
foreach f = FPList.fpinfo in {
let VLMul = m.value in {
let HasSEWOp = 1, BaseInstr = VFMV_F_S in
def "PseudoVFMV_" # f.FX # "_S_" # m.MX :
Pseudo<(outs f.fprclass:$rd),
(ins m.vrclass:$rs2,
ixlenimm:$sew),
[]>, RISCVVPseudo;
let HasVLOp = 1, HasSEWOp = 1, BaseInstr = VFMV_S_F,
Constraints = "$rd = $rs1" in
def "PseudoVFMV_S_" # f.FX # "_" # m.MX :
Pseudo<(outs m.vrclass:$rd),
(ins m.vrclass:$rs1, f.fprclass:$rs2,
AVL:$vl, ixlenimm:$sew),
[]>, RISCVVPseudo;
}
}
}
}
} // Predicates = [HasStdExtV, HasStdExtF]
//===----------------------------------------------------------------------===//
// 17.3. Vector Slide Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV] in {
defm PseudoVSLIDEUP : VPseudoTernaryV_VX_VI<uimm5, "@earlyclobber $rd">;
defm PseudoVSLIDEDOWN : VPseudoTernaryV_VX_VI<uimm5>;
defm PseudoVSLIDE1UP : VPseudoBinaryV_VX<"@earlyclobber $rd">;
defm PseudoVSLIDE1DOWN : VPseudoBinaryV_VX;
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
defm PseudoVFSLIDE1UP : VPseudoBinaryV_VF<"@earlyclobber $rd">;
defm PseudoVFSLIDE1DOWN : VPseudoBinaryV_VF;
} // Predicates = [HasStdExtV, HasStdExtF]
//===----------------------------------------------------------------------===//
// 17.4. Vector Register Gather Instructions
//===----------------------------------------------------------------------===//
defm PseudoVRGATHER : VPseudoBinaryV_VV_VX_VI<uimm5, "@earlyclobber $rd">;
defm PseudoVRGATHEREI16 : VPseudoBinaryV_VV_EEW</* eew */ 16, "@earlyclobber $rd">;
//===----------------------------------------------------------------------===//
// 17.5. Vector Compress Instruction
//===----------------------------------------------------------------------===//
defm PseudoVCOMPRESS : VPseudoUnaryV_V_AnyMask;
//===----------------------------------------------------------------------===//
// Patterns.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 8. Vector AMO Operations
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtZvamo] in {
defm : VPatAMOV_WD<"int_riscv_vamoswap", "PseudoVAMOSWAP", AllIntegerVectors>;
defm : VPatAMOV_WD<"int_riscv_vamoadd", "PseudoVAMOADD", AllIntegerVectors>;
defm : VPatAMOV_WD<"int_riscv_vamoxor", "PseudoVAMOXOR", AllIntegerVectors>;
defm : VPatAMOV_WD<"int_riscv_vamoand", "PseudoVAMOAND", AllIntegerVectors>;
defm : VPatAMOV_WD<"int_riscv_vamoor", "PseudoVAMOOR", AllIntegerVectors>;
defm : VPatAMOV_WD<"int_riscv_vamomin", "PseudoVAMOMIN", AllIntegerVectors>;
defm : VPatAMOV_WD<"int_riscv_vamomax", "PseudoVAMOMAX", AllIntegerVectors>;
defm : VPatAMOV_WD<"int_riscv_vamominu", "PseudoVAMOMINU", AllIntegerVectors>;
defm : VPatAMOV_WD<"int_riscv_vamomaxu", "PseudoVAMOMAXU", AllIntegerVectors>;
} // Predicates = [HasStdExtZvamo]
let Predicates = [HasStdExtZvamo, HasStdExtF] in {
defm : VPatAMOV_WD<"int_riscv_vamoswap", "PseudoVAMOSWAP", AllFloatVectors>;
} // Predicates = [HasStdExtZvamo, HasStdExtF]
//===----------------------------------------------------------------------===//
// 12. Vector Integer Arithmetic Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV] in {
//===----------------------------------------------------------------------===//
// 12.1. Vector Single-Width Integer Add and Subtract
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vadd", "PseudoVADD", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vsub", "PseudoVSUB", AllIntegerVectors>;
defm : VPatBinaryV_VX_VI<"int_riscv_vrsub", "PseudoVRSUB", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 12.2. Vector Widening Integer Add/Subtract
//===----------------------------------------------------------------------===//
defm : VPatBinaryW_VV_VX<"int_riscv_vwaddu", "PseudoVWADDU", AllWidenableIntVectors>;
defm : VPatBinaryW_VV_VX<"int_riscv_vwsubu", "PseudoVWSUBU", AllWidenableIntVectors>;
defm : VPatBinaryW_VV_VX<"int_riscv_vwadd", "PseudoVWADD", AllWidenableIntVectors>;
defm : VPatBinaryW_VV_VX<"int_riscv_vwsub", "PseudoVWSUB", AllWidenableIntVectors>;
defm : VPatBinaryW_WV_WX<"int_riscv_vwaddu_w", "PseudoVWADDU", AllWidenableIntVectors>;
defm : VPatBinaryW_WV_WX<"int_riscv_vwsubu_w", "PseudoVWSUBU", AllWidenableIntVectors>;
defm : VPatBinaryW_WV_WX<"int_riscv_vwadd_w", "PseudoVWADD", AllWidenableIntVectors>;
defm : VPatBinaryW_WV_WX<"int_riscv_vwsub_w", "PseudoVWSUB", AllWidenableIntVectors>;
//===----------------------------------------------------------------------===//
// 12.3. Vector Integer Extension
//===----------------------------------------------------------------------===//
defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF2",
AllFractionableVF2IntVectors>;
defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF4",
AllFractionableVF4IntVectors>;
defm : VPatUnaryV_VF<"int_riscv_vzext", "PseudoVZEXT", "VF8",
AllFractionableVF8IntVectors>;
defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF2",
AllFractionableVF2IntVectors>;
defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF4",
AllFractionableVF4IntVectors>;
defm : VPatUnaryV_VF<"int_riscv_vsext", "PseudoVSEXT", "VF8",
AllFractionableVF8IntVectors>;
//===----------------------------------------------------------------------===//
// 12.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VM_XM_IM<"int_riscv_vadc", "PseudoVADC">;
defm : VPatBinaryM_VM_XM_IM<"int_riscv_vmadc_carry_in", "PseudoVMADC">;
defm : VPatBinaryM_V_X_I<"int_riscv_vmadc", "PseudoVMADC">;
defm : VPatBinaryV_VM_XM<"int_riscv_vsbc", "PseudoVSBC">;
defm : VPatBinaryM_VM_XM<"int_riscv_vmsbc_borrow_in", "PseudoVMSBC">;
defm : VPatBinaryM_V_X<"int_riscv_vmsbc", "PseudoVMSBC">;
//===----------------------------------------------------------------------===//
// 12.5. Vector Bitwise Logical Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vand", "PseudoVAND", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vor", "PseudoVOR", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vxor", "PseudoVXOR", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 12.6. Vector Single-Width Bit Shift Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsll", "PseudoVSLL", AllIntegerVectors,
uimm5>;
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsrl", "PseudoVSRL", AllIntegerVectors,
uimm5>;
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsra", "PseudoVSRA", AllIntegerVectors,
uimm5>;
//===----------------------------------------------------------------------===//
// 12.7. Vector Narrowing Integer Right Shift Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnsrl", "PseudoVNSRL", AllWidenableIntVectors>;
defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnsra", "PseudoVNSRA", AllWidenableIntVectors>;
//===----------------------------------------------------------------------===//
// 12.8. Vector Integer Comparison Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmseq", "PseudoVMSEQ", AllIntegerVectors>;
defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsne", "PseudoVMSNE", AllIntegerVectors>;
defm : VPatBinaryM_VV_VX<"int_riscv_vmsltu", "PseudoVMSLTU", AllIntegerVectors>;
defm : VPatBinaryM_VV_VX<"int_riscv_vmslt", "PseudoVMSLT", AllIntegerVectors>;
defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsleu", "PseudoVMSLEU", AllIntegerVectors>;
defm : VPatBinaryM_VV_VX_VI<"int_riscv_vmsle", "PseudoVMSLE", AllIntegerVectors>;
defm : VPatBinaryM_VX_VI<"int_riscv_vmsgtu", "PseudoVMSGTU", AllIntegerVectors>;
defm : VPatBinaryM_VX_VI<"int_riscv_vmsgt", "PseudoVMSGT", AllIntegerVectors>;
// Match vmsgt with 2 vector operands to vmslt with the operands swapped.
defm : VPatBinarySwappedM_VV<"int_riscv_vmsgtu", "PseudoVMSLTU", AllIntegerVectors>;
defm : VPatBinarySwappedM_VV<"int_riscv_vmsgt", "PseudoVMSLT", AllIntegerVectors>;
defm : VPatBinarySwappedM_VV<"int_riscv_vmsgeu", "PseudoVMSLEU", AllIntegerVectors>;
defm : VPatBinarySwappedM_VV<"int_riscv_vmsge", "PseudoVMSLE", AllIntegerVectors>;
// Match vmslt(u).vx intrinsics to vmsle(u).vi if the scalar is -15 to 16. This
// avoids the user needing to know that there is no vmslt(u).vi instruction.
// Similar for vmsge(u).vx intrinsics using vmslt(u).vi.
foreach vti = AllIntegerVectors in {
def : Pat<(vti.Mask (int_riscv_vmslt (vti.Vector vti.RegClass:$rs1),
(vti.Scalar simm5_plus1:$rs2),
VLOpFrag)),
(!cast<Instruction>("PseudoVMSLE_VI_"#vti.LMul.MX) vti.RegClass:$rs1,
(DecImm simm5_plus1:$rs2),
GPR:$vl,
vti.Log2SEW)>;
def : Pat<(vti.Mask (int_riscv_vmslt_mask (vti.Mask VR:$merge),
(vti.Vector vti.RegClass:$rs1),
(vti.Scalar simm5_plus1:$rs2),
(vti.Mask V0),
VLOpFrag)),
(!cast<Instruction>("PseudoVMSLE_VI_"#vti.LMul.MX#"_MASK")
VR:$merge,
vti.RegClass:$rs1,
(DecImm simm5_plus1:$rs2),
(vti.Mask V0),
GPR:$vl,
vti.Log2SEW)>;
def : Pat<(vti.Mask (int_riscv_vmsltu (vti.Vector vti.RegClass:$rs1),
(vti.Scalar simm5_plus1:$rs2),
VLOpFrag)),
(!cast<Instruction>("PseudoVMSLEU_VI_"#vti.LMul.MX) vti.RegClass:$rs1,
(DecImm simm5_plus1:$rs2),
GPR:$vl,
vti.Log2SEW)>;
def : Pat<(vti.Mask (int_riscv_vmsltu_mask (vti.Mask VR:$merge),
(vti.Vector vti.RegClass:$rs1),
(vti.Scalar simm5_plus1:$rs2),
(vti.Mask V0),
VLOpFrag)),
(!cast<Instruction>("PseudoVMSLEU_VI_"#vti.LMul.MX#"_MASK")
VR:$merge,
vti.RegClass:$rs1,
(DecImm simm5_plus1:$rs2),
(vti.Mask V0),
GPR:$vl,
vti.Log2SEW)>;
// Special cases to avoid matching vmsltu.vi 0 (always false) to
// vmsleu.vi -1 (always true). Instead match to vmsne.vv.
def : Pat<(vti.Mask (int_riscv_vmsltu (vti.Vector vti.RegClass:$rs1),
(vti.Scalar 0), VLOpFrag)),
(!cast<Instruction>("PseudoVMSNE_VV_"#vti.LMul.MX) vti.RegClass:$rs1,
vti.RegClass:$rs1,
GPR:$vl,
vti.Log2SEW)>;
def : Pat<(vti.Mask (int_riscv_vmsltu_mask (vti.Mask VR:$merge),
(vti.Vector vti.RegClass:$rs1),
(vti.Scalar 0),
(vti.Mask V0),
VLOpFrag)),
(!cast<Instruction>("PseudoVMSNE_VV_"#vti.LMul.MX#"_MASK")
VR:$merge,
vti.RegClass:$rs1,
vti.RegClass:$rs1,
(vti.Mask V0),
GPR:$vl,
vti.Log2SEW)>;
def : Pat<(vti.Mask (int_riscv_vmsge (vti.Vector vti.RegClass:$rs1),
(vti.Scalar simm5_plus1:$rs2),
VLOpFrag)),
(!cast<Instruction>("PseudoVMSGT_VI_"#vti.LMul.MX) vti.RegClass:$rs1,
(DecImm simm5_plus1:$rs2),
GPR:$vl,
vti.Log2SEW)>;
def : Pat<(vti.Mask (int_riscv_vmsge_mask (vti.Mask VR:$merge),
(vti.Vector vti.RegClass:$rs1),
(vti.Scalar simm5_plus1:$rs2),
(vti.Mask V0),
VLOpFrag)),
(!cast<Instruction>("PseudoVMSGT_VI_"#vti.LMul.MX#"_MASK")
VR:$merge,
vti.RegClass:$rs1,
(DecImm simm5_plus1:$rs2),
(vti.Mask V0),
GPR:$vl,
vti.Log2SEW)>;
def : Pat<(vti.Mask (int_riscv_vmsgeu (vti.Vector vti.RegClass:$rs1),
(vti.Scalar simm5_plus1:$rs2),
VLOpFrag)),
(!cast<Instruction>("PseudoVMSGTU_VI_"#vti.LMul.MX) vti.RegClass:$rs1,
(DecImm simm5_plus1:$rs2),
GPR:$vl,
vti.Log2SEW)>;
def : Pat<(vti.Mask (int_riscv_vmsgeu_mask (vti.Mask VR:$merge),
(vti.Vector vti.RegClass:$rs1),
(vti.Scalar simm5_plus1:$rs2),
(vti.Mask V0),
VLOpFrag)),
(!cast<Instruction>("PseudoVMSGTU_VI_"#vti.LMul.MX#"_MASK")
VR:$merge,
vti.RegClass:$rs1,
(DecImm simm5_plus1:$rs2),
(vti.Mask V0),
GPR:$vl,
vti.Log2SEW)>;
// Special cases to avoid matching vmsgeu.vi 0 (always true) to
// vmsgtu.vi -1 (always false). Instead match to vmsne.vv.
def : Pat<(vti.Mask (int_riscv_vmsgeu (vti.Vector vti.RegClass:$rs1),
(vti.Scalar 0), VLOpFrag)),
(!cast<Instruction>("PseudoVMSEQ_VV_"#vti.LMul.MX) vti.RegClass:$rs1,
vti.RegClass:$rs1,
GPR:$vl,
vti.Log2SEW)>;
def : Pat<(vti.Mask (int_riscv_vmsgeu_mask (vti.Mask VR:$merge),
(vti.Vector vti.RegClass:$rs1),
(vti.Scalar 0),
(vti.Mask V0),
VLOpFrag)),
(!cast<Instruction>("PseudoVMSEQ_VV_"#vti.LMul.MX#"_MASK")
VR:$merge,
vti.RegClass:$rs1,
vti.RegClass:$rs1,
(vti.Mask V0),
GPR:$vl,
vti.Log2SEW)>;
}
//===----------------------------------------------------------------------===//
// 12.9. Vector Integer Min/Max Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vminu", "PseudoVMINU", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vmin", "PseudoVMIN", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vmaxu", "PseudoVMAXU", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vmax", "PseudoVMAX", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 12.10. Vector Single-Width Integer Multiply Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vmul", "PseudoVMUL", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vmulh", "PseudoVMULH", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vmulhu", "PseudoVMULHU", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vmulhsu", "PseudoVMULHSU", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 12.11. Vector Integer Divide Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vdivu", "PseudoVDIVU", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vdiv", "PseudoVDIV", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vremu", "PseudoVREMU", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vrem", "PseudoVREM", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 12.12. Vector Widening Integer Multiply Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryW_VV_VX<"int_riscv_vwmul", "PseudoVWMUL", AllWidenableIntVectors>;
defm : VPatBinaryW_VV_VX<"int_riscv_vwmulu", "PseudoVWMULU", AllWidenableIntVectors>;
defm : VPatBinaryW_VV_VX<"int_riscv_vwmulsu", "PseudoVWMULSU", AllWidenableIntVectors>;
//===----------------------------------------------------------------------===//
// 12.13. Vector Single-Width Integer Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmadd", "PseudoVMADD", AllIntegerVectors>;
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsub", "PseudoVNMSUB", AllIntegerVectors>;
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vmacc", "PseudoVMACC", AllIntegerVectors>;
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vnmsac", "PseudoVNMSAC", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 12.14. Vector Widening Integer Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm : VPatTernaryW_VV_VX<"int_riscv_vwmaccu", "PseudoVWMACCU", AllWidenableIntVectors>;
defm : VPatTernaryW_VV_VX<"int_riscv_vwmacc", "PseudoVWMACC", AllWidenableIntVectors>;
defm : VPatTernaryW_VV_VX<"int_riscv_vwmaccsu", "PseudoVWMACCSU", AllWidenableIntVectors>;
defm : VPatTernaryW_VX<"int_riscv_vwmaccus", "PseudoVWMACCUS", AllWidenableIntVectors>;
//===----------------------------------------------------------------------===//
// 12.15. Vector Integer Merge Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VM_XM_IM<"int_riscv_vmerge", "PseudoVMERGE">;
//===----------------------------------------------------------------------===//
// 12.16. Vector Integer Move Instructions
//===----------------------------------------------------------------------===//
foreach vti = AllVectors in {
def : Pat<(vti.Vector (int_riscv_vmv_v_v (vti.Vector vti.RegClass:$rs1),
VLOpFrag)),
(!cast<Instruction>("PseudoVMV_V_V_"#vti.LMul.MX)
$rs1, GPR:$vl, vti.Log2SEW)>;
// vmv.v.x/vmv.v.i are handled in RISCInstrVInstrInfoVVLPatterns.td
}
//===----------------------------------------------------------------------===//
// 13.1. Vector Single-Width Saturating Add and Subtract
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsaddu", "PseudoVSADDU", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vsadd", "PseudoVSADD", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vssubu", "PseudoVSSUBU", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vssub", "PseudoVSSUB", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 13.2. Vector Single-Width Averaging Add and Subtract
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vaaddu", "PseudoVAADDU", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vaadd", "PseudoVAADD", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vasubu", "PseudoVASUBU", AllIntegerVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vasub", "PseudoVASUB", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 13.3. Vector Single-Width Fractional Multiply with Rounding and Saturation
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vsmul", "PseudoVSMUL", AllIntegerVectors>;
//===----------------------------------------------------------------------===//
// 13.4. Vector Single-Width Scaling Shift Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vssrl", "PseudoVSSRL", AllIntegerVectors,
uimm5>;
defm : VPatBinaryV_VV_VX_VI<"int_riscv_vssra", "PseudoVSSRA", AllIntegerVectors,
uimm5>;
//===----------------------------------------------------------------------===//
// 13.5. Vector Narrowing Fixed-Point Clip Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnclipu", "PseudoVNCLIPU", AllWidenableIntVectors>;
defm : VPatBinaryV_WV_WX_WI<"int_riscv_vnclip", "PseudoVNCLIP", AllWidenableIntVectors>;
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
//===----------------------------------------------------------------------===//
// 14.2. Vector Single-Width Floating-Point Add/Subtract Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vfadd", "PseudoVFADD", AllFloatVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vfsub", "PseudoVFSUB", AllFloatVectors>;
defm : VPatBinaryV_VX<"int_riscv_vfrsub", "PseudoVFRSUB", AllFloatVectors>;
//===----------------------------------------------------------------------===//
// 14.3. Vector Widening Floating-Point Add/Subtract Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryW_VV_VX<"int_riscv_vfwadd", "PseudoVFWADD", AllWidenableFloatVectors>;
defm : VPatBinaryW_VV_VX<"int_riscv_vfwsub", "PseudoVFWSUB", AllWidenableFloatVectors>;
defm : VPatBinaryW_WV_WX<"int_riscv_vfwadd_w", "PseudoVFWADD", AllWidenableFloatVectors>;
defm : VPatBinaryW_WV_WX<"int_riscv_vfwsub_w", "PseudoVFWSUB", AllWidenableFloatVectors>;
//===----------------------------------------------------------------------===//
// 14.4. Vector Single-Width Floating-Point Multiply/Divide Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vfmul", "PseudoVFMUL", AllFloatVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vfdiv", "PseudoVFDIV", AllFloatVectors>;
defm : VPatBinaryV_VX<"int_riscv_vfrdiv", "PseudoVFRDIV", AllFloatVectors>;
//===----------------------------------------------------------------------===//
// 14.5. Vector Widening Floating-Point Multiply
//===----------------------------------------------------------------------===//
defm : VPatBinaryW_VV_VX<"int_riscv_vfwmul", "PseudoVFWMUL", AllWidenableFloatVectors>;
//===----------------------------------------------------------------------===//
// 14.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfmacc", "PseudoVFMACC", AllFloatVectors>;
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfnmacc", "PseudoVFNMACC", AllFloatVectors>;
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfmsac", "PseudoVFMSAC", AllFloatVectors>;
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfnmsac", "PseudoVFNMSAC", AllFloatVectors>;
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfmadd", "PseudoVFMADD", AllFloatVectors>;
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfnmadd", "PseudoVFNMADD", AllFloatVectors>;
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfmsub", "PseudoVFMSUB", AllFloatVectors>;
defm : VPatTernaryV_VV_VX_AAXA<"int_riscv_vfnmsub", "PseudoVFNMSUB", AllFloatVectors>;
//===----------------------------------------------------------------------===//
// 14.7. Vector Widening Floating-Point Fused Multiply-Add Instructions
//===----------------------------------------------------------------------===//
defm : VPatTernaryW_VV_VX<"int_riscv_vfwmacc", "PseudoVFWMACC", AllWidenableFloatVectors>;
defm : VPatTernaryW_VV_VX<"int_riscv_vfwnmacc", "PseudoVFWNMACC", AllWidenableFloatVectors>;
defm : VPatTernaryW_VV_VX<"int_riscv_vfwmsac", "PseudoVFWMSAC", AllWidenableFloatVectors>;
defm : VPatTernaryW_VV_VX<"int_riscv_vfwnmsac", "PseudoVFWNMSAC", AllWidenableFloatVectors>;
//===----------------------------------------------------------------------===//
// 14.8. Vector Floating-Point Square-Root Instruction
//===----------------------------------------------------------------------===//
defm : VPatUnaryV_V<"int_riscv_vfsqrt", "PseudoVFSQRT", AllFloatVectors>;
//===----------------------------------------------------------------------===//
// 14.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction
//===----------------------------------------------------------------------===//
defm : VPatUnaryV_V<"int_riscv_vfrsqrt7", "PseudoVFRSQRT7", AllFloatVectors>;
//===----------------------------------------------------------------------===//
// 14.10. Vector Floating-Point Reciprocal Estimate Instruction
//===----------------------------------------------------------------------===//
defm : VPatUnaryV_V<"int_riscv_vfrec7", "PseudoVFREC7", AllFloatVectors>;
//===----------------------------------------------------------------------===//
// 14.11. Vector Floating-Point Min/Max Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vfmin", "PseudoVFMIN", AllFloatVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vfmax", "PseudoVFMAX", AllFloatVectors>;
//===----------------------------------------------------------------------===//
// 14.12. Vector Floating-Point Sign-Injection Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnj", "PseudoVFSGNJ", AllFloatVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnjn", "PseudoVFSGNJN", AllFloatVectors>;
defm : VPatBinaryV_VV_VX<"int_riscv_vfsgnjx", "PseudoVFSGNJX", AllFloatVectors>;
//===----------------------------------------------------------------------===//
// 14.13. Vector Floating-Point Compare Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryM_VV_VX<"int_riscv_vmfeq", "PseudoVMFEQ", AllFloatVectors>;
defm : VPatBinaryM_VV_VX<"int_riscv_vmfle", "PseudoVMFLE", AllFloatVectors>;
defm : VPatBinaryM_VV_VX<"int_riscv_vmflt", "PseudoVMFLT", AllFloatVectors>;
defm : VPatBinaryM_VV_VX<"int_riscv_vmfne", "PseudoVMFNE", AllFloatVectors>;
defm : VPatBinaryM_VX<"int_riscv_vmfgt", "PseudoVMFGT", AllFloatVectors>;
defm : VPatBinaryM_VX<"int_riscv_vmfge", "PseudoVMFGE", AllFloatVectors>;
defm : VPatBinarySwappedM_VV<"int_riscv_vmfgt", "PseudoVMFLT", AllFloatVectors>;
defm : VPatBinarySwappedM_VV<"int_riscv_vmfge", "PseudoVMFLE", AllFloatVectors>;
//===----------------------------------------------------------------------===//
// 14.14. Vector Floating-Point Classify Instruction
//===----------------------------------------------------------------------===//
defm : VPatConversionVI_VF<"int_riscv_vfclass", "PseudoVFCLASS">;
//===----------------------------------------------------------------------===//
// 14.15. Vector Floating-Point Merge Instruction
//===----------------------------------------------------------------------===//
// We can use vmerge.vvm to support vector-vector vfmerge.
defm : VPatBinaryV_VM<"int_riscv_vfmerge", "PseudoVMERGE",
/*CarryOut = */0, /*vtilist=*/AllFloatVectors>;
defm : VPatBinaryV_XM<"int_riscv_vfmerge", "PseudoVFMERGE",
/*CarryOut = */0, /*vtilist=*/AllFloatVectors>;
foreach fvti = AllFloatVectors in {
defvar instr = !cast<Instruction>("PseudoVMERGE_VIM_"#fvti.LMul.MX);
def : Pat<(fvti.Vector (int_riscv_vfmerge (fvti.Vector fvti.RegClass:$rs2),
(fvti.Scalar (fpimm0)),
(fvti.Mask V0), VLOpFrag)),
(instr fvti.RegClass:$rs2, 0, (fvti.Mask V0), GPR:$vl, fvti.Log2SEW)>;
}
//===----------------------------------------------------------------------===//
// 14.17. Single-Width Floating-Point/Integer Type-Convert Instructions
//===----------------------------------------------------------------------===//
defm : VPatConversionVI_VF<"int_riscv_vfcvt_xu_f_v", "PseudoVFCVT_XU_F">;
defm : VPatConversionVI_VF<"int_riscv_vfcvt_rtz_xu_f_v", "PseudoVFCVT_RTZ_XU_F">;
defm : VPatConversionVI_VF<"int_riscv_vfcvt_x_f_v", "PseudoVFCVT_X_F">;
defm : VPatConversionVI_VF<"int_riscv_vfcvt_rtz_x_f_v", "PseudoVFCVT_RTZ_X_F">;
defm : VPatConversionVF_VI<"int_riscv_vfcvt_f_x_v", "PseudoVFCVT_F_X">;
defm : VPatConversionVF_VI<"int_riscv_vfcvt_f_xu_v", "PseudoVFCVT_F_XU">;
//===----------------------------------------------------------------------===//
// 14.18. Widening Floating-Point/Integer Type-Convert Instructions
//===----------------------------------------------------------------------===//
defm : VPatConversionWI_VF<"int_riscv_vfwcvt_xu_f_v", "PseudoVFWCVT_XU_F">;
defm : VPatConversionWI_VF<"int_riscv_vfwcvt_x_f_v", "PseudoVFWCVT_X_F">;
defm : VPatConversionWI_VF<"int_riscv_vfwcvt_rtz_xu_f_v", "PseudoVFWCVT_RTZ_XU_F">;
defm : VPatConversionWI_VF<"int_riscv_vfwcvt_rtz_x_f_v", "PseudoVFWCVT_RTZ_X_F">;
defm : VPatConversionWF_VI<"int_riscv_vfwcvt_f_xu_v", "PseudoVFWCVT_F_XU">;
defm : VPatConversionWF_VI<"int_riscv_vfwcvt_f_x_v", "PseudoVFWCVT_F_X">;
defm : VPatConversionWF_VF<"int_riscv_vfwcvt_f_f_v", "PseudoVFWCVT_F_F">;
//===----------------------------------------------------------------------===//
// 14.19. Narrowing Floating-Point/Integer Type-Convert Instructions
//===----------------------------------------------------------------------===//
defm : VPatConversionVI_WF<"int_riscv_vfncvt_xu_f_w", "PseudoVFNCVT_XU_F">;
defm : VPatConversionVI_WF<"int_riscv_vfncvt_x_f_w", "PseudoVFNCVT_X_F">;
defm : VPatConversionVI_WF<"int_riscv_vfncvt_rtz_xu_f_w", "PseudoVFNCVT_RTZ_XU_F">;
defm : VPatConversionVI_WF<"int_riscv_vfncvt_rtz_x_f_w", "PseudoVFNCVT_RTZ_X_F">;
defm : VPatConversionVF_WI <"int_riscv_vfncvt_f_xu_w", "PseudoVFNCVT_F_XU">;
defm : VPatConversionVF_WI <"int_riscv_vfncvt_f_x_w", "PseudoVFNCVT_F_X">;
defm : VPatConversionVF_WF<"int_riscv_vfncvt_f_f_w", "PseudoVFNCVT_F_F">;
defm : VPatConversionVF_WF<"int_riscv_vfncvt_rod_f_f_w", "PseudoVFNCVT_ROD_F_F">;
} // Predicates = [HasStdExtV, HasStdExtF]
let Predicates = [HasStdExtV] in {
//===----------------------------------------------------------------------===//
// 15.1. Vector Single-Width Integer Reduction Instructions
//===----------------------------------------------------------------------===//
defm : VPatReductionV_VS<"int_riscv_vredsum", "PseudoVREDSUM">;
defm : VPatReductionV_VS<"int_riscv_vredand", "PseudoVREDAND">;
defm : VPatReductionV_VS<"int_riscv_vredor", "PseudoVREDOR">;
defm : VPatReductionV_VS<"int_riscv_vredxor", "PseudoVREDXOR">;
defm : VPatReductionV_VS<"int_riscv_vredminu", "PseudoVREDMINU">;
defm : VPatReductionV_VS<"int_riscv_vredmin", "PseudoVREDMIN">;
defm : VPatReductionV_VS<"int_riscv_vredmaxu", "PseudoVREDMAXU">;
defm : VPatReductionV_VS<"int_riscv_vredmax", "PseudoVREDMAX">;
//===----------------------------------------------------------------------===//
// 15.2. Vector Widening Integer Reduction Instructions
//===----------------------------------------------------------------------===//
defm : VPatReductionW_VS<"int_riscv_vwredsumu", "PseudoVWREDSUMU">;
defm : VPatReductionW_VS<"int_riscv_vwredsum", "PseudoVWREDSUM">;
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
//===----------------------------------------------------------------------===//
// 15.3. Vector Single-Width Floating-Point Reduction Instructions
//===----------------------------------------------------------------------===//
defm : VPatReductionV_VS<"int_riscv_vfredosum", "PseudoVFREDOSUM", /*IsFloat=*/1>;
defm : VPatReductionV_VS<"int_riscv_vfredsum", "PseudoVFREDSUM", /*IsFloat=*/1>;
defm : VPatReductionV_VS<"int_riscv_vfredmin", "PseudoVFREDMIN", /*IsFloat=*/1>;
defm : VPatReductionV_VS<"int_riscv_vfredmax", "PseudoVFREDMAX", /*IsFloat=*/1>;
//===----------------------------------------------------------------------===//
// 15.4. Vector Widening Floating-Point Reduction Instructions
//===----------------------------------------------------------------------===//
defm : VPatReductionW_VS<"int_riscv_vfwredsum", "PseudoVFWREDSUM", /*IsFloat=*/1>;
defm : VPatReductionW_VS<"int_riscv_vfwredosum", "PseudoVFWREDOSUM", /*IsFloat=*/1>;
} // Predicates = [HasStdExtV, HasStdExtF]
//===----------------------------------------------------------------------===//
// 16. Vector Mask Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV] in {
//===----------------------------------------------------------------------===//
// 16.1 Vector Mask-Register Logical Instructions
//===----------------------------------------------------------------------===//
defm : VPatBinaryM_MM<"int_riscv_vmand", "PseudoVMAND">;
defm : VPatBinaryM_MM<"int_riscv_vmnand", "PseudoVMNAND">;
defm : VPatBinaryM_MM<"int_riscv_vmandnot", "PseudoVMANDNOT">;
defm : VPatBinaryM_MM<"int_riscv_vmxor", "PseudoVMXOR">;
defm : VPatBinaryM_MM<"int_riscv_vmor", "PseudoVMOR">;
defm : VPatBinaryM_MM<"int_riscv_vmnor", "PseudoVMNOR">;
defm : VPatBinaryM_MM<"int_riscv_vmornot", "PseudoVMORNOT">;
defm : VPatBinaryM_MM<"int_riscv_vmxnor", "PseudoVMXNOR">;
// pseudo instructions
defm : VPatNullaryM<"int_riscv_vmclr", "PseudoVMCLR">;
defm : VPatNullaryM<"int_riscv_vmset", "PseudoVMSET">;
//===----------------------------------------------------------------------===//
// 16.2. Vector mask population count vpopc
//===----------------------------------------------------------------------===//
defm : VPatUnaryS_M<"int_riscv_vpopc", "PseudoVPOPC">;
//===----------------------------------------------------------------------===//
// 16.3. vfirst find-first-set mask bit
//===----------------------------------------------------------------------===//
defm : VPatUnaryS_M<"int_riscv_vfirst", "PseudoVFIRST">;
//===----------------------------------------------------------------------===//
// 16.4. vmsbf.m set-before-first mask bit
//===----------------------------------------------------------------------===//
defm : VPatUnaryM_M<"int_riscv_vmsbf", "PseudoVMSBF">;
//===----------------------------------------------------------------------===//
// 16.5. vmsif.m set-including-first mask bit
//===----------------------------------------------------------------------===//
defm : VPatUnaryM_M<"int_riscv_vmsif", "PseudoVMSIF">;
//===----------------------------------------------------------------------===//
// 16.6. vmsof.m set-only-first mask bit
//===----------------------------------------------------------------------===//
defm : VPatUnaryM_M<"int_riscv_vmsof", "PseudoVMSOF">;
//===----------------------------------------------------------------------===//
// 16.8. Vector Iota Instruction
//===----------------------------------------------------------------------===//
defm : VPatUnaryV_M<"int_riscv_viota", "PseudoVIOTA">;
//===----------------------------------------------------------------------===//
// 16.9. Vector Element Index Instruction
//===----------------------------------------------------------------------===//
defm : VPatNullaryV<"int_riscv_vid", "PseudoVID">;
} // Predicates = [HasStdExtV]
//===----------------------------------------------------------------------===//
// 17. Vector Permutation Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// 17.1. Integer Scalar Move Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV] in {
foreach vti = AllIntegerVectors in {
def : Pat<(riscv_vmv_x_s (vti.Vector vti.RegClass:$rs2)),
(!cast<Instruction>("PseudoVMV_X_S_" # vti.LMul.MX) $rs2, vti.Log2SEW)>;
// vmv.s.x is handled with a custom node in RISCVInstrInfoVVLPatterns.td
}
} // Predicates = [HasStdExtV]
//===----------------------------------------------------------------------===//
// 17.2. Floating-Point Scalar Move Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV, HasStdExtF] in {
foreach fvti = AllFloatVectors in {
defvar instr = !cast<Instruction>("PseudoVFMV_"#fvti.ScalarSuffix#"_S_" #
fvti.LMul.MX);
def : Pat<(fvti.Scalar (int_riscv_vfmv_f_s (fvti.Vector fvti.RegClass:$rs2))),
(instr $rs2, fvti.Log2SEW)>;
def : Pat<(fvti.Vector (int_riscv_vfmv_s_f (fvti.Vector fvti.RegClass:$rs1),
(fvti.Scalar fvti.ScalarRegClass:$rs2), VLOpFrag)),
(!cast<Instruction>("PseudoVFMV_S_"#fvti.ScalarSuffix#"_" #
fvti.LMul.MX)
(fvti.Vector $rs1),
(fvti.Scalar fvti.ScalarRegClass:$rs2),
GPR:$vl, fvti.Log2SEW)>;
}
} // Predicates = [HasStdExtV, HasStdExtF]
//===----------------------------------------------------------------------===//
// 17.3. Vector Slide Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV] in {
defm : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllIntegerVectors, uimm5>;
defm : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllIntegerVectors, uimm5>;
defm : VPatBinaryV_VX<"int_riscv_vslide1up", "PseudoVSLIDE1UP", AllIntegerVectors>;
defm : VPatBinaryV_VX<"int_riscv_vslide1down", "PseudoVSLIDE1DOWN", AllIntegerVectors>;
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
defm : VPatTernaryV_VX_VI<"int_riscv_vslideup", "PseudoVSLIDEUP", AllFloatVectors, uimm5>;
defm : VPatTernaryV_VX_VI<"int_riscv_vslidedown", "PseudoVSLIDEDOWN", AllFloatVectors, uimm5>;
defm : VPatBinaryV_VX<"int_riscv_vfslide1up", "PseudoVFSLIDE1UP", AllFloatVectors>;
defm : VPatBinaryV_VX<"int_riscv_vfslide1down", "PseudoVFSLIDE1DOWN", AllFloatVectors>;
} // Predicates = [HasStdExtV, HasStdExtF]
//===----------------------------------------------------------------------===//
// 17.4. Vector Register Gather Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV] in {
defm : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER",
AllIntegerVectors, uimm5>;
defm : VPatBinaryV_VV_INT_EEW<"int_riscv_vrgatherei16_vv", "PseudoVRGATHEREI16",
/* eew */ 16, AllIntegerVectors>;
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
defm : VPatBinaryV_VV_VX_VI_INT<"int_riscv_vrgather", "PseudoVRGATHER",
AllFloatVectors, uimm5>;
defm : VPatBinaryV_VV_INT_EEW<"int_riscv_vrgatherei16_vv", "PseudoVRGATHEREI16",
/* eew */ 16, AllFloatVectors>;
} // Predicates = [HasStdExtV, HasStdExtF]
//===----------------------------------------------------------------------===//
// 17.5. Vector Compress Instruction
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtV] in {
defm : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllIntegerVectors>;
} // Predicates = [HasStdExtV]
let Predicates = [HasStdExtV, HasStdExtF] in {
defm : VPatUnaryV_V_AnyMask<"int_riscv_vcompress", "PseudoVCOMPRESS", AllFloatVectors>;
} // Predicates = [HasStdExtV, HasStdExtF]
// Include the non-intrinsic ISel patterns
include "RISCVInstrInfoVSDPatterns.td"
include "RISCVInstrInfoVVLPatterns.td"