llvm-project/llvm/lib/Target/M68k/M68kInstrInfo.cpp

870 lines
28 KiB
C++

//===-- M68kInstrInfo.cpp - M68k Instruction Information ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains the M68k declaration of the TargetInstrInfo class.
///
//===----------------------------------------------------------------------===//
#include "M68kInstrInfo.h"
#include "M68kInstrBuilder.h"
#include "M68kMachineFunction.h"
#include "M68kTargetMachine.h"
#include "MCTargetDesc/M68kMCCodeEmitter.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include <functional>
using namespace llvm;
#define DEBUG_TYPE "M68k-instr-info"
#define GET_INSTRINFO_CTOR_DTOR
#include "M68kGenInstrInfo.inc"
// Pin the vtable to this file.
void M68kInstrInfo::anchor() {}
M68kInstrInfo::M68kInstrInfo(const M68kSubtarget &STI)
: M68kGenInstrInfo(M68k::ADJCALLSTACKDOWN, M68k::ADJCALLSTACKUP, 0,
M68k::RET),
Subtarget(STI), RI(STI) {}
static M68k::CondCode getCondFromBranchOpc(unsigned BrOpc) {
switch (BrOpc) {
default:
return M68k::COND_INVALID;
case M68k::Beq8:
return M68k::COND_EQ;
case M68k::Bne8:
return M68k::COND_NE;
case M68k::Blt8:
return M68k::COND_LT;
case M68k::Ble8:
return M68k::COND_LE;
case M68k::Bgt8:
return M68k::COND_GT;
case M68k::Bge8:
return M68k::COND_GE;
case M68k::Bcs8:
return M68k::COND_CS;
case M68k::Bls8:
return M68k::COND_LS;
case M68k::Bhi8:
return M68k::COND_HI;
case M68k::Bcc8:
return M68k::COND_CC;
case M68k::Bmi8:
return M68k::COND_MI;
case M68k::Bpl8:
return M68k::COND_PL;
case M68k::Bvs8:
return M68k::COND_VS;
case M68k::Bvc8:
return M68k::COND_VC;
}
}
bool M68kInstrInfo::AnalyzeBranchImpl(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
auto UncondBranch =
std::pair<MachineBasicBlock::reverse_iterator, MachineBasicBlock *>{
MBB.rend(), nullptr};
// Erase any instructions if allowed at the end of the scope.
std::vector<std::reference_wrapper<llvm::MachineInstr>> EraseList;
auto FinalizeOnReturn = llvm::make_scope_exit([&EraseList] {
std::for_each(EraseList.begin(), EraseList.end(),
[](auto &ref) { ref.get().eraseFromParent(); });
});
// Start from the bottom of the block and work up, examining the
// terminator instructions.
for (auto iter = MBB.rbegin(); iter != MBB.rend(); iter = std::next(iter)) {
unsigned Opcode = iter->getOpcode();
if (iter->isDebugInstr())
continue;
// Working from the bottom, when we see a non-terminator instruction, we're
// done.
if (!isUnpredicatedTerminator(*iter))
break;
// A terminator that isn't a branch can't easily be handled by this
// analysis.
if (!iter->isBranch())
return true;
// Handle unconditional branches.
if (Opcode == M68k::BRA8 || Opcode == M68k::BRA16) {
if (!iter->getOperand(0).isMBB())
return true;
UncondBranch = {iter, iter->getOperand(0).getMBB()};
// TBB is used to indicate the unconditional destination.
TBB = UncondBranch.second;
if (!AllowModify)
continue;
// If the block has any instructions after a JMP, erase them.
EraseList.insert(EraseList.begin(), MBB.rbegin(), iter);
Cond.clear();
FBB = nullptr;
// Erase the JMP if it's equivalent to a fall-through.
if (MBB.isLayoutSuccessor(UncondBranch.second)) {
TBB = nullptr;
EraseList.push_back(*iter);
UncondBranch = {MBB.rend(), nullptr};
}
continue;
}
// Handle conditional branches.
auto BranchCode = M68k::GetCondFromBranchOpc(Opcode);
// Can't handle indirect branch.
if (BranchCode == M68k::COND_INVALID)
return true;
// In practice we should never have an undef CCR operand, if we do
// abort here as we are not prepared to preserve the flag.
// ??? Is this required?
// if (iter->getOperand(1).isUndef())
// return true;
// Working from the bottom, handle the first conditional branch.
if (Cond.empty()) {
if (!iter->getOperand(0).isMBB())
return true;
MachineBasicBlock *CondBranchTarget = iter->getOperand(0).getMBB();
// If we see something like this:
//
// bcc l1
// bra l2
// ...
// l1:
// ...
// l2:
if (UncondBranch.first != MBB.rend()) {
assert(std::next(UncondBranch.first) == iter && "Wrong block layout.");
// And we are allowed to modify the block and the target block of the
// conditional branch is the direct successor of this block:
//
// bcc l1
// bra l2
// l1:
// ...
// l2:
//
// we change it to this if allowed:
//
// bncc l2
// l1:
// ...
// l2:
//
// Which is a bit more efficient.
if (AllowModify && MBB.isLayoutSuccessor(CondBranchTarget)) {
BranchCode = GetOppositeBranchCondition(BranchCode);
unsigned BNCC = GetCondBranchFromCond(BranchCode);
BuildMI(MBB, *UncondBranch.first, MBB.rfindDebugLoc(iter), get(BNCC))
.addMBB(UncondBranch.second);
EraseList.push_back(*iter);
EraseList.push_back(*UncondBranch.first);
TBB = UncondBranch.second;
FBB = nullptr;
Cond.push_back(MachineOperand::CreateImm(BranchCode));
// Otherwise preserve TBB, FBB and Cond as requested
} else {
TBB = CondBranchTarget;
FBB = UncondBranch.second;
Cond.push_back(MachineOperand::CreateImm(BranchCode));
}
UncondBranch = {MBB.rend(), nullptr};
continue;
}
TBB = CondBranchTarget;
FBB = nullptr;
Cond.push_back(MachineOperand::CreateImm(BranchCode));
continue;
}
// Handle subsequent conditional branches. Only handle the case where all
// conditional branches branch to the same destination and their condition
// opcodes fit one of the special multi-branch idioms.
assert(Cond.size() == 1);
assert(TBB);
// If the conditions are the same, we can leave them alone.
auto OldBranchCode = static_cast<M68k::CondCode>(Cond[0].getImm());
if (!iter->getOperand(0).isMBB())
return true;
auto NewTBB = iter->getOperand(0).getMBB();
if (OldBranchCode == BranchCode && TBB == NewTBB)
continue;
// If they differ we cannot do much here.
return true;
}
return false;
}
bool M68kInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, AllowModify);
}
unsigned M68kInstrInfo::removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved) const {
assert(!BytesRemoved && "code size not handled");
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
if (I->getOpcode() != M68k::BRA8 &&
getCondFromBranchOpc(I->getOpcode()) == M68k::COND_INVALID)
break;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
++Count;
}
return Count;
}
unsigned M68kInstrInfo::insertBranch(
MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 1 || Cond.size() == 0) &&
"M68k branch conditions have one component!");
assert(!BytesAdded && "code size not handled");
if (Cond.empty()) {
// Unconditional branch?
assert(!FBB && "Unconditional branch with multiple successors!");
BuildMI(&MBB, DL, get(M68k::BRA8)).addMBB(TBB);
return 1;
}
// If FBB is null, it is implied to be a fall-through block.
bool FallThru = FBB == nullptr;
// Conditional branch.
unsigned Count = 0;
M68k::CondCode CC = (M68k::CondCode)Cond[0].getImm();
unsigned Opc = GetCondBranchFromCond(CC);
BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
++Count;
if (!FallThru) {
// Two-way Conditional branch. Insert the second branch.
BuildMI(&MBB, DL, get(M68k::BRA8)).addMBB(FBB);
++Count;
}
return Count;
}
void M68kInstrInfo::AddSExt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned Reg, MVT From, MVT To) const {
if (From == MVT::i8) {
unsigned R = Reg;
// EXT16 requires i16 register
if (To == MVT::i32) {
R = RI.getSubReg(Reg, M68k::MxSubRegIndex16Lo);
assert(R && "No viable SUB register available");
}
BuildMI(MBB, I, DL, get(M68k::EXT16), R).addReg(R);
}
if (To == MVT::i32)
BuildMI(MBB, I, DL, get(M68k::EXT32), Reg).addReg(Reg);
}
void M68kInstrInfo::AddZExt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned Reg, MVT From, MVT To) const {
unsigned Mask, And;
if (From == MVT::i8)
Mask = 0xFF;
else
Mask = 0xFFFF;
if (To == MVT::i16)
And = M68k::AND16di;
else // i32
And = M68k::AND32di;
// TODO use xor r,r to decrease size
BuildMI(MBB, I, DL, get(And), Reg).addReg(Reg).addImm(Mask);
}
bool M68kInstrInfo::ExpandMOVX_RR(MachineInstrBuilder &MIB, MVT MVTDst,
MVT MVTSrc) const {
unsigned Move = MVTDst == MVT::i16 ? M68k::MOV16rr : M68k::MOV32rr;
unsigned Dst = MIB->getOperand(0).getReg();
unsigned Src = MIB->getOperand(1).getReg();
assert(Dst != Src && "You cannot use the same Regs with MOVX_RR");
const auto &TRI = getRegisterInfo();
const auto *RCDst = TRI.getMaximalPhysRegClass(Dst, MVTDst);
const auto *RCSrc = TRI.getMaximalPhysRegClass(Src, MVTSrc);
assert(RCDst && RCSrc && "Wrong use of MOVX_RR");
assert(RCDst != RCSrc && "You cannot use the same Reg Classes with MOVX_RR");
// We need to find the super source register that matches the size of Dst
unsigned SSrc = RI.getMatchingMegaReg(Src, RCDst);
assert(SSrc && "No viable MEGA register available");
DebugLoc DL = MIB->getDebugLoc();
// If it happens to that super source register is the destination register
// we do nothing
if (Dst == SSrc) {
LLVM_DEBUG(dbgs() << "Remove " << *MIB.getInstr() << '\n');
MIB->eraseFromParent();
} else { // otherwise we need to MOV
LLVM_DEBUG(dbgs() << "Expand " << *MIB.getInstr() << " to MOV\n");
MIB->setDesc(get(Move));
MIB->getOperand(1).setReg(SSrc);
}
return true;
}
/// Expand SExt MOVE pseudos into a MOV and a EXT if the operands are two
/// different registers or just EXT if it is the same register
bool M68kInstrInfo::ExpandMOVSZX_RR(MachineInstrBuilder &MIB, bool IsSigned,
MVT MVTDst, MVT MVTSrc) const {
LLVM_DEBUG(dbgs() << "Expand " << *MIB.getInstr() << " to ");
unsigned Move;
if (MVTDst == MVT::i16)
Move = M68k::MOV16rr;
else // i32
Move = M68k::MOV32rr;
unsigned Dst = MIB->getOperand(0).getReg();
unsigned Src = MIB->getOperand(1).getReg();
assert(Dst != Src && "You cannot use the same Regs with MOVSX_RR");
const auto &TRI = getRegisterInfo();
const auto *RCDst = TRI.getMaximalPhysRegClass(Dst, MVTDst);
const auto *RCSrc = TRI.getMaximalPhysRegClass(Src, MVTSrc);
assert(RCDst && RCSrc && "Wrong use of MOVSX_RR");
assert(RCDst != RCSrc && "You cannot use the same Reg Classes with MOVSX_RR");
// We need to find the super source register that matches the size of Dst
unsigned SSrc = RI.getMatchingMegaReg(Src, RCDst);
assert(SSrc && "No viable MEGA register available");
MachineBasicBlock &MBB = *MIB->getParent();
DebugLoc DL = MIB->getDebugLoc();
if (Dst != SSrc) {
LLVM_DEBUG(dbgs() << "Move and " << '\n');
BuildMI(MBB, MIB.getInstr(), DL, get(Move), Dst).addReg(SSrc);
}
if (IsSigned) {
LLVM_DEBUG(dbgs() << "Sign Extend" << '\n');
AddSExt(MBB, MIB.getInstr(), DL, Dst, MVTSrc, MVTDst);
} else {
LLVM_DEBUG(dbgs() << "Zero Extend" << '\n');
AddZExt(MBB, MIB.getInstr(), DL, Dst, MVTSrc, MVTDst);
}
MIB->eraseFromParent();
return true;
}
bool M68kInstrInfo::ExpandMOVSZX_RM(MachineInstrBuilder &MIB, bool IsSigned,
const MCInstrDesc &Desc, MVT MVTDst,
MVT MVTSrc) const {
LLVM_DEBUG(dbgs() << "Expand " << *MIB.getInstr() << " to LOAD and ");
unsigned Dst = MIB->getOperand(0).getReg();
// We need the subreg of Dst to make instruction verifier happy because the
// real machine instruction consumes and produces values of the same size and
// the registers the will be used here fall into different classes and this
// makes IV cry. We could use a bigger operation, but this will put some
// pressure on cache and memory, so no.
unsigned SubDst =
RI.getSubReg(Dst, MVTSrc == MVT::i8 ? M68k::MxSubRegIndex8Lo
: M68k::MxSubRegIndex16Lo);
assert(SubDst && "No viable SUB register available");
// Make this a plain move
MIB->setDesc(Desc);
MIB->getOperand(0).setReg(SubDst);
MachineBasicBlock::iterator I = MIB.getInstr();
I++;
MachineBasicBlock &MBB = *MIB->getParent();
DebugLoc DL = MIB->getDebugLoc();
if (IsSigned) {
LLVM_DEBUG(dbgs() << "Sign Extend" << '\n');
AddSExt(MBB, I, DL, Dst, MVTSrc, MVTDst);
} else {
LLVM_DEBUG(dbgs() << "Zero Extend" << '\n');
AddZExt(MBB, I, DL, Dst, MVTSrc, MVTDst);
}
return true;
}
bool M68kInstrInfo::ExpandPUSH_POP(MachineInstrBuilder &MIB,
const MCInstrDesc &Desc, bool IsPush) const {
MachineBasicBlock::iterator I = MIB.getInstr();
I++;
MachineBasicBlock &MBB = *MIB->getParent();
MachineOperand MO = MIB->getOperand(0);
DebugLoc DL = MIB->getDebugLoc();
if (IsPush)
BuildMI(MBB, I, DL, Desc).addReg(RI.getStackRegister()).add(MO);
else
BuildMI(MBB, I, DL, Desc, MO.getReg()).addReg(RI.getStackRegister());
MIB->eraseFromParent();
return true;
}
bool M68kInstrInfo::ExpandCCR(MachineInstrBuilder &MIB, bool IsToCCR) const {
// Replace the pseudo instruction with the real one
if (IsToCCR)
MIB->setDesc(get(M68k::MOV16cd));
else
// FIXME M68010 or later is required
MIB->setDesc(get(M68k::MOV16dc));
// Promote used register to the next class
auto &Opd = MIB->getOperand(1);
Opd.setReg(getRegisterInfo().getMatchingSuperReg(
Opd.getReg(), M68k::MxSubRegIndex8Lo, &M68k::DR16RegClass));
return true;
}
bool M68kInstrInfo::ExpandMOVEM(MachineInstrBuilder &MIB,
const MCInstrDesc &Desc, bool IsRM) const {
int Reg = 0, Offset = 0, Base = 0;
auto XR32 = RI.getRegClass(M68k::XR32RegClassID);
auto DL = MIB->getDebugLoc();
auto MI = MIB.getInstr();
auto &MBB = *MIB->getParent();
if (IsRM) {
Reg = MIB->getOperand(0).getReg();
Offset = MIB->getOperand(1).getImm();
Base = MIB->getOperand(2).getReg();
} else {
Offset = MIB->getOperand(0).getImm();
Base = MIB->getOperand(1).getReg();
Reg = MIB->getOperand(2).getReg();
}
// If the register is not in XR32 then it is smaller than 32 bit, we
// implicitly promote it to 32
if (!XR32->contains(Reg)) {
Reg = RI.getMatchingMegaReg(Reg, XR32);
assert(Reg && "Has not meaningful MEGA register");
}
unsigned Mask = 1 << RI.getSpillRegisterOrder(Reg);
if (IsRM) {
BuildMI(MBB, MI, DL, Desc)
.addImm(Mask)
.addImm(Offset)
.addReg(Base)
.addReg(Reg, RegState::ImplicitDefine)
.copyImplicitOps(*MIB);
} else {
BuildMI(MBB, MI, DL, Desc)
.addImm(Offset)
.addReg(Base)
.addImm(Mask)
.addReg(Reg, RegState::Implicit)
.copyImplicitOps(*MIB);
}
MIB->eraseFromParent();
return true;
}
/// Expand a single-def pseudo instruction to a two-addr
/// instruction with two undef reads of the register being defined.
/// This is used for mapping:
/// %d0 = SETCS_C32d
/// to:
/// %d0 = SUBX32dd %d0<undef>, %d0<undef>
///
static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
const MCInstrDesc &Desc) {
assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
unsigned Reg = MIB->getOperand(0).getReg();
MIB->setDesc(Desc);
// MachineInstr::addOperand() will insert explicit operands before any
// implicit operands.
MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
// But we don't trust that.
assert(MIB->getOperand(1).getReg() == Reg &&
MIB->getOperand(2).getReg() == Reg && "Misplaced operand");
return true;
}
bool M68kInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
switch (MI.getOpcode()) {
case M68k::PUSH8d:
return ExpandPUSH_POP(MIB, get(M68k::MOV8ed), true);
case M68k::PUSH16d:
return ExpandPUSH_POP(MIB, get(M68k::MOV16er), true);
case M68k::PUSH32r:
return ExpandPUSH_POP(MIB, get(M68k::MOV32er), true);
case M68k::POP8d:
return ExpandPUSH_POP(MIB, get(M68k::MOV8do), false);
case M68k::POP16d:
return ExpandPUSH_POP(MIB, get(M68k::MOV16ro), false);
case M68k::POP32r:
return ExpandPUSH_POP(MIB, get(M68k::MOV32ro), false);
case M68k::SETCS_C8d:
return Expand2AddrUndef(MIB, get(M68k::SUBX8dd));
case M68k::SETCS_C16d:
return Expand2AddrUndef(MIB, get(M68k::SUBX16dd));
case M68k::SETCS_C32d:
return Expand2AddrUndef(MIB, get(M68k::SUBX32dd));
}
return false;
}
bool M68kInstrInfo::isPCRelRegisterOperandLegal(
const MachineOperand &MO) const {
assert(MO.isReg());
const auto *MI = MO.getParent();
const uint8_t *Beads = M68k::getMCInstrBeads(MI->getOpcode());
assert(*Beads);
// Only addressing mode k has (non-pc) register with PCRel
// So we're looking for EA Beads equal to
// `3Bits<011>_1Bit<1>_2Bits<11>`
// FIXME: There is an important caveat and two assumptions
// here: The caveat is that EA encoding always sit on the LSB.
// Where the assumptions are that if there are more than one
// operands, the EA encoding for the source operand always sit
// on the LSB. At the same time, k addressing mode can not be used
// on destination operand.
// The last assumption is kinda dirty so we need to find a way around
// it
const uint8_t EncEAk[3] = {0b011, 0b1, 0b11};
for (const uint8_t Pat : EncEAk) {
uint8_t Bead = *(Beads++);
if (!Bead)
return false;
switch (Bead & 0xF) {
default:
return false;
case M68kBeads::Bits1:
case M68kBeads::Bits2:
case M68kBeads::Bits3: {
uint8_t Val = (Bead & 0xF0) >> 4;
if (Val != Pat)
return false;
}
}
}
return true;
}
void M68kInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL, MCRegister DstReg,
MCRegister SrcReg, bool KillSrc) const {
unsigned Opc = 0;
// First deal with the normal symmetric copies.
if (M68k::XR32RegClass.contains(DstReg, SrcReg))
Opc = M68k::MOV32rr;
else if (M68k::XR16RegClass.contains(DstReg, SrcReg))
Opc = M68k::MOV16rr;
else if (M68k::DR8RegClass.contains(DstReg, SrcReg))
Opc = M68k::MOV8dd;
if (Opc) {
BuildMI(MBB, MI, DL, get(Opc), DstReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
// Now deal with asymmetrically sized copies. The cases that follow are upcast
// moves.
//
// NOTE
// These moves are not aware of type nature of these values and thus
// won't do any SExt or ZExt and upper bits will basically contain garbage.
MachineInstrBuilder MIB(*MBB.getParent(), MI);
if (M68k::DR8RegClass.contains(SrcReg)) {
if (M68k::XR16RegClass.contains(DstReg))
Opc = M68k::MOVXd16d8;
else if (M68k::XR32RegClass.contains(DstReg))
Opc = M68k::MOVXd32d8;
} else if (M68k::XR16RegClass.contains(SrcReg) &&
M68k::XR32RegClass.contains(DstReg))
Opc = M68k::MOVXd32d16;
if (Opc) {
BuildMI(MBB, MI, DL, get(Opc), DstReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
bool FromCCR = SrcReg == M68k::CCR;
bool FromSR = SrcReg == M68k::SR;
bool ToCCR = DstReg == M68k::CCR;
bool ToSR = DstReg == M68k::SR;
if (FromCCR) {
assert(M68k::DR8RegClass.contains(DstReg) &&
"Need DR8 register to copy CCR");
Opc = M68k::MOV8dc;
} else if (ToCCR) {
assert(M68k::DR8RegClass.contains(SrcReg) &&
"Need DR8 register to copy CCR");
Opc = M68k::MOV8cd;
} else if (FromSR || ToSR)
llvm_unreachable("Cannot emit SR copy instruction");
if (Opc) {
BuildMI(MBB, MI, DL, get(Opc), DstReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
<< RI.getName(DstReg) << '\n');
llvm_unreachable("Cannot emit physreg copy instruction");
}
namespace {
unsigned getLoadStoreRegOpcode(unsigned Reg, const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI,
const M68kSubtarget &STI, bool load) {
switch (TRI->getRegSizeInBits(*RC)) {
default:
llvm_unreachable("Unknown spill size");
case 8:
if (M68k::DR8RegClass.hasSubClassEq(RC))
return load ? M68k::MOVM8mp_P : M68k::MOVM8pm_P;
if (M68k::CCRCRegClass.hasSubClassEq(RC))
return load ? M68k::MOV16cp : M68k::MOV16pc;
llvm_unreachable("Unknown 1-byte regclass");
case 16:
assert(M68k::XR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
return load ? M68k::MOVM16mp_P : M68k::MOVM16pm_P;
case 32:
assert(M68k::XR32RegClass.hasSubClassEq(RC) && "Unknown 4-byte regclass");
return load ? M68k::MOVM32mp_P : M68k::MOVM32pm_P;
}
}
unsigned getStoreRegOpcode(unsigned SrcReg, const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI,
const M68kSubtarget &STI) {
return getLoadStoreRegOpcode(SrcReg, RC, TRI, STI, false);
}
unsigned getLoadRegOpcode(unsigned DstReg, const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI,
const M68kSubtarget &STI) {
return getLoadStoreRegOpcode(DstReg, RC, TRI, STI, true);
}
} // end anonymous namespace
bool M68kInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
unsigned SubIdx, unsigned &Size,
unsigned &Offset,
const MachineFunction &MF) const {
// The slot size must be the maximum size so we can easily use MOVEM.L
Size = 4;
Offset = 0;
return true;
}
void M68kInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
Register SrcReg, bool IsKill,
int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
const MachineFunction &MF = *MBB.getParent();
assert(MF.getFrameInfo().getObjectSize(FrameIndex) == 4 &&
"Stack slot too small for store");
unsigned Opc = getStoreRegOpcode(SrcReg, RC, TRI, Subtarget);
DebugLoc DL = MBB.findDebugLoc(MI);
// (0,FrameIndex) <- $reg
M68k::addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIndex)
.addReg(SrcReg, getKillRegState(IsKill));
}
void M68kInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
Register DstReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
const MachineFunction &MF = *MBB.getParent();
assert(MF.getFrameInfo().getObjectSize(FrameIndex) == 4 &&
"Stack slot too small for store");
unsigned Opc = getLoadRegOpcode(DstReg, RC, TRI, Subtarget);
DebugLoc DL = MBB.findDebugLoc(MI);
M68k::addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DstReg), FrameIndex);
}
/// Return a virtual register initialized with the the global base register
/// value. Output instructions required to initialize the register in the
/// function entry block, if necessary.
///
/// TODO Move this function to M68kMachineFunctionInfo.
unsigned M68kInstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
M68kMachineFunctionInfo *MxFI = MF->getInfo<M68kMachineFunctionInfo>();
unsigned GlobalBaseReg = MxFI->getGlobalBaseReg();
if (GlobalBaseReg != 0)
return GlobalBaseReg;
// Create the register. The code to initialize it is inserted later,
// by the CGBR pass (below).
//
// NOTE
// Normally M68k uses A5 register as global base pointer but this will
// create unnecessary spill if we use less then 4 registers in code; since A5
// is callee-save anyway we could try to allocate caller-save first and if
// lucky get one, otherwise it does not really matter which callee-save to
// use.
MachineRegisterInfo &RegInfo = MF->getRegInfo();
GlobalBaseReg = RegInfo.createVirtualRegister(&M68k::AR32_NOSPRegClass);
MxFI->setGlobalBaseReg(GlobalBaseReg);
return GlobalBaseReg;
}
std::pair<unsigned, unsigned>
M68kInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
return std::make_pair(TF, 0u);
}
ArrayRef<std::pair<unsigned, const char *>>
M68kInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
using namespace M68kII;
static const std::pair<unsigned, const char *> TargetFlags[] = {
{MO_ABSOLUTE_ADDRESS, "m68k-absolute"},
{MO_PC_RELATIVE_ADDRESS, "m68k-pcrel"},
{MO_GOT, "m68k-got"},
{MO_GOTOFF, "m68k-gotoff"},
{MO_GOTPCREL, "m68k-gotpcrel"},
{MO_PLT, "m68k-plt"}};
return makeArrayRef(TargetFlags);
}
namespace {
/// Create Global Base Reg pass. This initializes the PIC global base register
struct CGBR : public MachineFunctionPass {
static char ID;
CGBR() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override {
const M68kSubtarget &STI = MF.getSubtarget<M68kSubtarget>();
M68kMachineFunctionInfo *MxFI = MF.getInfo<M68kMachineFunctionInfo>();
unsigned GlobalBaseReg = MxFI->getGlobalBaseReg();
// If we didn't need a GlobalBaseReg, don't insert code.
if (GlobalBaseReg == 0)
return false;
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = MF.front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
const M68kInstrInfo *TII = STI.getInstrInfo();
// Generate lea (__GLOBAL_OFFSET_TABLE_,%PC), %A5
BuildMI(FirstMBB, MBBI, DL, TII->get(M68k::LEA32q), GlobalBaseReg)
.addExternalSymbol("_GLOBAL_OFFSET_TABLE_", M68kII::MO_GOTPCREL);
return true;
}
StringRef getPassName() const override {
return "M68k PIC Global Base Reg Initialization";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // namespace
char CGBR::ID = 0;
FunctionPass *llvm::createM68kGlobalBaseRegPass() { return new CGBR(); }