forked from OSchip/llvm-project
275 lines
10 KiB
C++
275 lines
10 KiB
C++
//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements straight-line strength reduction (SLSR). Unlike loop
|
|
// strength reduction, this algorithm is designed to reduce arithmetic
|
|
// redundancy in straight-line code instead of loops. It has proven to be
|
|
// effective in simplifying arithmetic statements derived from an unrolled loop.
|
|
// It can also simplify the logic of SeparateConstOffsetFromGEP.
|
|
//
|
|
// There are many optimizations we can perform in the domain of SLSR. This file
|
|
// for now contains only an initial step. Specifically, we look for strength
|
|
// reduction candidate in the form of
|
|
//
|
|
// (B + i) * S
|
|
//
|
|
// where B and S are integer constants or variables, and i is a constant
|
|
// integer. If we found two such candidates
|
|
//
|
|
// S1: X = (B + i) * S S2: Y = (B + i') * S
|
|
//
|
|
// and S1 dominates S2, we call S1 a basis of S2, and can replace S2 with
|
|
//
|
|
// Y = X + (i' - i) * S
|
|
//
|
|
// where (i' - i) * S is folded to the extent possible. When S2 has multiple
|
|
// bases, we pick the one that is closest to S2, or S2's "immediate" basis.
|
|
//
|
|
// TODO:
|
|
//
|
|
// - Handle candidates in the form of B + i * S
|
|
//
|
|
// - Handle candidates in the form of pointer arithmetics. e.g., B[i * S]
|
|
//
|
|
// - Floating point arithmetics when fast math is enabled.
|
|
//
|
|
// - SLSR may decrease ILP at the architecture level. Targets that are very
|
|
// sensitive to ILP may want to disable it. Having SLSR to consider ILP is
|
|
// left as future work.
|
|
#include <vector>
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
namespace {
|
|
|
|
class StraightLineStrengthReduce : public FunctionPass {
|
|
public:
|
|
// SLSR candidate. Such a candidate must be in the form of
|
|
// (Base + Index) * Stride
|
|
struct Candidate : public ilist_node<Candidate> {
|
|
Candidate(Value *B = nullptr, ConstantInt *Idx = nullptr,
|
|
Value *S = nullptr, Instruction *I = nullptr)
|
|
: Base(B), Index(Idx), Stride(S), Ins(I), Basis(nullptr) {}
|
|
Value *Base;
|
|
ConstantInt *Index;
|
|
Value *Stride;
|
|
// The instruction this candidate corresponds to. It helps us to rewrite a
|
|
// candidate with respect to its immediate basis. Note that one instruction
|
|
// can corresponds to multiple candidates depending on how you associate the
|
|
// expression. For instance,
|
|
//
|
|
// (a + 1) * (b + 2)
|
|
//
|
|
// can be treated as
|
|
//
|
|
// <Base: a, Index: 1, Stride: b + 2>
|
|
//
|
|
// or
|
|
//
|
|
// <Base: b, Index: 2, Stride: a + 1>
|
|
Instruction *Ins;
|
|
// Points to the immediate basis of this candidate, or nullptr if we cannot
|
|
// find any basis for this candidate.
|
|
Candidate *Basis;
|
|
};
|
|
|
|
static char ID;
|
|
|
|
StraightLineStrengthReduce() : FunctionPass(ID), DT(nullptr) {
|
|
initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
// We do not modify the shape of the CFG.
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
private:
|
|
// Returns true if Basis is a basis for C, i.e., Basis dominates C and they
|
|
// share the same base and stride.
|
|
bool isBasisFor(const Candidate &Basis, const Candidate &C);
|
|
// Checks whether I is in a candidate form. If so, adds all the matching forms
|
|
// to Candidates, and tries to find the immediate basis for each of them.
|
|
void allocateCandidateAndFindBasis(Instruction *I);
|
|
// Given that I is in the form of "(B + Idx) * S", adds this form to
|
|
// Candidates, and finds its immediate basis.
|
|
void allocateCandidateAndFindBasis(Value *B, ConstantInt *Idx, Value *S,
|
|
Instruction *I);
|
|
// Rewrites candidate C with respect to Basis.
|
|
void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
|
|
|
|
DominatorTree *DT;
|
|
ilist<Candidate> Candidates;
|
|
// Temporarily holds all instructions that are unlinked (but not deleted) by
|
|
// rewriteCandidateWithBasis. These instructions will be actually removed
|
|
// after all rewriting finishes.
|
|
DenseSet<Instruction *> UnlinkedInstructions;
|
|
};
|
|
} // anonymous namespace
|
|
|
|
char StraightLineStrengthReduce::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
|
|
"Straight line strength reduction", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
|
|
"Straight line strength reduction", false, false)
|
|
|
|
FunctionPass *llvm::createStraightLineStrengthReducePass() {
|
|
return new StraightLineStrengthReduce();
|
|
}
|
|
|
|
bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
|
|
const Candidate &C) {
|
|
return (Basis.Ins != C.Ins && // skip the same instruction
|
|
// Basis must dominate C in order to rewrite C with respect to Basis.
|
|
DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
|
|
// They share the same base and stride.
|
|
Basis.Base == C.Base &&
|
|
Basis.Stride == C.Stride);
|
|
}
|
|
|
|
// TODO: We currently implement an algorithm whose time complexity is linear to
|
|
// the number of existing candidates. However, a better algorithm exists. We
|
|
// could depth-first search the dominator tree, and maintain a hash table that
|
|
// contains all candidates that dominate the node being traversed. This hash
|
|
// table is indexed by the base and the stride of a candidate. Therefore,
|
|
// finding the immediate basis of a candidate boils down to one hash-table look
|
|
// up.
|
|
void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Value *B,
|
|
ConstantInt *Idx,
|
|
Value *S,
|
|
Instruction *I) {
|
|
Candidate C(B, Idx, S, I);
|
|
// Try to compute the immediate basis of C.
|
|
unsigned NumIterations = 0;
|
|
// Limit the scan radius to avoid running forever.
|
|
static const unsigned MaxNumIterations = 50;
|
|
for (auto Basis = Candidates.rbegin();
|
|
Basis != Candidates.rend() && NumIterations < MaxNumIterations;
|
|
++Basis, ++NumIterations) {
|
|
if (isBasisFor(*Basis, C)) {
|
|
C.Basis = &(*Basis);
|
|
break;
|
|
}
|
|
}
|
|
// Regardless of whether we find a basis for C, we need to push C to the
|
|
// candidate list.
|
|
Candidates.push_back(C);
|
|
}
|
|
|
|
void StraightLineStrengthReduce::allocateCandidateAndFindBasis(Instruction *I) {
|
|
Value *B = nullptr;
|
|
ConstantInt *Idx = nullptr;
|
|
// "(Base + Index) * Stride" must be a Mul instruction at the first hand.
|
|
if (I->getOpcode() == Instruction::Mul) {
|
|
if (IntegerType *ITy = dyn_cast<IntegerType>(I->getType())) {
|
|
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
|
|
for (unsigned Swapped = 0; Swapped < 2; ++Swapped) {
|
|
// Only handle the canonical operand ordering.
|
|
if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) {
|
|
// If LHS is in the form of "Base + Index", then I is in the form of
|
|
// "(Base + Index) * RHS".
|
|
allocateCandidateAndFindBasis(B, Idx, RHS, I);
|
|
} else {
|
|
// Otherwise, at least try the form (LHS + 0) * RHS.
|
|
allocateCandidateAndFindBasis(LHS, ConstantInt::get(ITy, 0), RHS, I);
|
|
}
|
|
// Swap LHS and RHS so that we also cover the cases where LHS is the
|
|
// stride.
|
|
if (LHS == RHS)
|
|
break;
|
|
std::swap(LHS, RHS);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void StraightLineStrengthReduce::rewriteCandidateWithBasis(
|
|
const Candidate &C, const Candidate &Basis) {
|
|
// An instruction can correspond to multiple candidates. Therefore, instead of
|
|
// simply deleting an instruction when we rewrite it, we mark its parent as
|
|
// nullptr (i.e. unlink it) so that we can skip the candidates whose
|
|
// instruction is already rewritten.
|
|
if (!C.Ins->getParent())
|
|
return;
|
|
assert(C.Base == Basis.Base && C.Stride == Basis.Stride);
|
|
// Basis = (B + i) * S
|
|
// C = (B + i') * S
|
|
// ==>
|
|
// C = Basis + (i' - i) * S
|
|
IRBuilder<> Builder(C.Ins);
|
|
ConstantInt *IndexOffset = ConstantInt::get(
|
|
C.Ins->getContext(), C.Index->getValue() - Basis.Index->getValue());
|
|
Value *Reduced;
|
|
// TODO: preserve nsw/nuw in some cases.
|
|
if (IndexOffset->isOne()) {
|
|
// If (i' - i) is 1, fold C into Basis + S.
|
|
Reduced = Builder.CreateAdd(Basis.Ins, C.Stride);
|
|
} else if (IndexOffset->isMinusOne()) {
|
|
// If (i' - i) is -1, fold C into Basis - S.
|
|
Reduced = Builder.CreateSub(Basis.Ins, C.Stride);
|
|
} else {
|
|
Value *Bump = Builder.CreateMul(C.Stride, IndexOffset);
|
|
Reduced = Builder.CreateAdd(Basis.Ins, Bump);
|
|
}
|
|
Reduced->takeName(C.Ins);
|
|
C.Ins->replaceAllUsesWith(Reduced);
|
|
C.Ins->dropAllReferences();
|
|
// Unlink C.Ins so that we can skip other candidates also corresponding to
|
|
// C.Ins. The actual deletion is postponed to the end of runOnFunction.
|
|
C.Ins->removeFromParent();
|
|
UnlinkedInstructions.insert(C.Ins);
|
|
}
|
|
|
|
bool StraightLineStrengthReduce::runOnFunction(Function &F) {
|
|
if (skipOptnoneFunction(F))
|
|
return false;
|
|
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
// Traverse the dominator tree in the depth-first order. This order makes sure
|
|
// all bases of a candidate are in Candidates when we process it.
|
|
for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
|
|
node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
|
|
BasicBlock *B = node->getBlock();
|
|
for (auto I = B->begin(); I != B->end(); ++I) {
|
|
allocateCandidateAndFindBasis(I);
|
|
}
|
|
}
|
|
|
|
// Rewrite candidates in the reverse depth-first order. This order makes sure
|
|
// a candidate being rewritten is not a basis for any other candidate.
|
|
while (!Candidates.empty()) {
|
|
const Candidate &C = Candidates.back();
|
|
if (C.Basis != nullptr) {
|
|
rewriteCandidateWithBasis(C, *C.Basis);
|
|
}
|
|
Candidates.pop_back();
|
|
}
|
|
|
|
// Delete all unlink instructions.
|
|
for (auto I : UnlinkedInstructions) {
|
|
delete I;
|
|
}
|
|
bool Ret = !UnlinkedInstructions.empty();
|
|
UnlinkedInstructions.clear();
|
|
return Ret;
|
|
}
|