llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp

514 lines
17 KiB
C++

//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Collect the sequence of machine instructions for a basic block.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/BasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrDesc.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Assembly/Writer.h"
#include <algorithm>
using namespace llvm;
MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
: BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
AddressTaken(false) {
Insts.Parent = this;
}
MachineBasicBlock::~MachineBasicBlock() {
LeakDetector::removeGarbageObject(this);
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
MBB.print(OS);
return OS;
}
/// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
/// parent pointer of the MBB, the MBB numbering, and any instructions in the
/// MBB to be on the right operand list for registers.
///
/// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
/// gets the next available unique MBB number. If it is removed from a
/// MachineFunction, it goes back to being #-1.
void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
MachineFunction &MF = *N->getParent();
N->Number = MF.addToMBBNumbering(N);
// Make sure the instructions have their operands in the reginfo lists.
MachineRegisterInfo &RegInfo = MF.getRegInfo();
for (MachineBasicBlock::iterator I = N->begin(), E = N->end(); I != E; ++I)
I->AddRegOperandsToUseLists(RegInfo);
LeakDetector::removeGarbageObject(N);
}
void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
N->getParent()->removeFromMBBNumbering(N->Number);
N->Number = -1;
LeakDetector::addGarbageObject(N);
}
/// addNodeToList (MI) - When we add an instruction to a basic block
/// list, we update its parent pointer and add its operands from reg use/def
/// lists if appropriate.
void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
assert(N->getParent() == 0 && "machine instruction already in a basic block");
N->setParent(Parent);
// Add the instruction's register operands to their corresponding
// use/def lists.
MachineFunction *MF = Parent->getParent();
N->AddRegOperandsToUseLists(MF->getRegInfo());
LeakDetector::removeGarbageObject(N);
}
/// removeNodeFromList (MI) - When we remove an instruction from a basic block
/// list, we update its parent pointer and remove its operands from reg use/def
/// lists if appropriate.
void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
assert(N->getParent() != 0 && "machine instruction not in a basic block");
// Remove from the use/def lists.
N->RemoveRegOperandsFromUseLists();
N->setParent(0);
LeakDetector::addGarbageObject(N);
}
/// transferNodesFromList (MI) - When moving a range of instructions from one
/// MBB list to another, we need to update the parent pointers and the use/def
/// lists.
void ilist_traits<MachineInstr>::
transferNodesFromList(ilist_traits<MachineInstr> &fromList,
MachineBasicBlock::iterator first,
MachineBasicBlock::iterator last) {
assert(Parent->getParent() == fromList.Parent->getParent() &&
"MachineInstr parent mismatch!");
// Splice within the same MBB -> no change.
if (Parent == fromList.Parent) return;
// If splicing between two blocks within the same function, just update the
// parent pointers.
for (; first != last; ++first)
first->setParent(Parent);
}
void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
assert(!MI->getParent() && "MI is still in a block!");
Parent->getParent()->DeleteMachineInstr(MI);
}
MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
iterator I = end();
while (I != begin() && (--I)->getDesc().isTerminator())
; /*noop */
if (I != end() && !I->getDesc().isTerminator()) ++I;
return I;
}
/// isOnlyReachableViaFallthough - Return true if this basic block has
/// exactly one predecessor and the control transfer mechanism between
/// the predecessor and this block is a fall-through.
bool MachineBasicBlock::isOnlyReachableByFallthrough() const {
// If this is a landing pad, it isn't a fall through. If it has no preds,
// then nothing falls through to it.
if (isLandingPad() || pred_empty())
return false;
// If there isn't exactly one predecessor, it can't be a fall through.
const_pred_iterator PI = pred_begin(), PI2 = PI;
++PI2;
if (PI2 != pred_end())
return false;
// The predecessor has to be immediately before this block.
const MachineBasicBlock *Pred = *PI;
if (!Pred->isLayoutSuccessor(this))
return false;
// If the block is completely empty, then it definitely does fall through.
if (Pred->empty())
return true;
// Otherwise, check the last instruction.
const MachineInstr &LastInst = Pred->back();
return !LastInst.getDesc().isBarrier();
}
void MachineBasicBlock::dump() const {
print(errs());
}
static inline void OutputReg(raw_ostream &os, unsigned RegNo,
const TargetRegisterInfo *TRI = 0) {
if (RegNo != 0 && TargetRegisterInfo::isPhysicalRegister(RegNo)) {
if (TRI)
os << " %" << TRI->get(RegNo).Name;
else
os << " %physreg" << RegNo;
} else
os << " %reg" << RegNo;
}
StringRef MachineBasicBlock::getName() const {
if (const BasicBlock *LBB = getBasicBlock())
return LBB->getName();
else
return "(null)";
}
void MachineBasicBlock::print(raw_ostream &OS) const {
const MachineFunction *MF = getParent();
if (!MF) {
OS << "Can't print out MachineBasicBlock because parent MachineFunction"
<< " is null\n";
return;
}
if (Alignment) { OS << "Alignment " << Alignment << "\n"; }
OS << "BB#" << getNumber() << ": ";
const char *Comma = "";
if (const BasicBlock *LBB = getBasicBlock()) {
OS << Comma << "derived from LLVM BB ";
WriteAsOperand(OS, LBB, /*PrintType=*/false);
Comma = ", ";
}
if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
OS << '\n';
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
if (!livein_empty()) {
OS << " Live Ins:";
for (const_livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
OutputReg(OS, *I, TRI);
OS << '\n';
}
// Print the preds of this block according to the CFG.
if (!pred_empty()) {
OS << " Predecessors according to CFG:";
for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
OS << " BB#" << (*PI)->getNumber();
OS << '\n';
}
for (const_iterator I = begin(); I != end(); ++I) {
OS << '\t';
I->print(OS, &getParent()->getTarget());
}
// Print the successors of this block according to the CFG.
if (!succ_empty()) {
OS << " Successors according to CFG:";
for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI)
OS << " BB#" << (*SI)->getNumber();
OS << '\n';
}
}
void MachineBasicBlock::removeLiveIn(unsigned Reg) {
livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
assert(I != livein_end() && "Not a live in!");
LiveIns.erase(I);
}
bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
const_livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
return I != livein_end();
}
void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
getParent()->splice(NewAfter, this);
}
void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
MachineFunction::iterator BBI = NewBefore;
getParent()->splice(++BBI, this);
}
void MachineBasicBlock::updateTerminator() {
const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
// A block with no successors has no concerns with fall-through edges.
if (this->succ_empty()) return;
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
(void) B;
assert(!B && "UpdateTerminators requires analyzable predecessors!");
if (Cond.empty()) {
if (TBB) {
// The block has an unconditional branch. If its successor is now
// its layout successor, delete the branch.
if (isLayoutSuccessor(TBB))
TII->RemoveBranch(*this);
} else {
// The block has an unconditional fallthrough. If its successor is not
// its layout successor, insert a branch.
TBB = *succ_begin();
if (!isLayoutSuccessor(TBB))
TII->InsertBranch(*this, TBB, 0, Cond);
}
} else {
if (FBB) {
// The block has a non-fallthrough conditional branch. If one of its
// successors is its layout successor, rewrite it to a fallthrough
// conditional branch.
if (isLayoutSuccessor(TBB)) {
if (TII->ReverseBranchCondition(Cond))
return;
TII->RemoveBranch(*this);
TII->InsertBranch(*this, FBB, 0, Cond);
} else if (isLayoutSuccessor(FBB)) {
TII->RemoveBranch(*this);
TII->InsertBranch(*this, TBB, 0, Cond);
}
} else {
// The block has a fallthrough conditional branch.
MachineBasicBlock *MBBA = *succ_begin();
MachineBasicBlock *MBBB = *llvm::next(succ_begin());
if (MBBA == TBB) std::swap(MBBB, MBBA);
if (isLayoutSuccessor(TBB)) {
if (TII->ReverseBranchCondition(Cond)) {
// We can't reverse the condition, add an unconditional branch.
Cond.clear();
TII->InsertBranch(*this, MBBA, 0, Cond);
return;
}
TII->RemoveBranch(*this);
TII->InsertBranch(*this, MBBA, 0, Cond);
} else if (!isLayoutSuccessor(MBBA)) {
TII->RemoveBranch(*this);
TII->InsertBranch(*this, TBB, MBBA, Cond);
}
}
}
}
void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ) {
Successors.push_back(succ);
succ->addPredecessor(this);
}
void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
succ->removePredecessor(this);
succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
assert(I != Successors.end() && "Not a current successor!");
Successors.erase(I);
}
MachineBasicBlock::succ_iterator
MachineBasicBlock::removeSuccessor(succ_iterator I) {
assert(I != Successors.end() && "Not a current successor!");
(*I)->removePredecessor(this);
return Successors.erase(I);
}
void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
Predecessors.push_back(pred);
}
void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
std::vector<MachineBasicBlock *>::iterator I =
std::find(Predecessors.begin(), Predecessors.end(), pred);
assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
Predecessors.erase(I);
}
void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
if (this == fromMBB)
return;
for (MachineBasicBlock::succ_iterator I = fromMBB->succ_begin(),
E = fromMBB->succ_end(); I != E; ++I)
addSuccessor(*I);
while (!fromMBB->succ_empty())
fromMBB->removeSuccessor(fromMBB->succ_begin());
}
bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
std::vector<MachineBasicBlock *>::const_iterator I =
std::find(Successors.begin(), Successors.end(), MBB);
return I != Successors.end();
}
bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
MachineFunction::const_iterator I(this);
return llvm::next(I) == MachineFunction::const_iterator(MBB);
}
bool MachineBasicBlock::canFallThrough() {
MachineFunction::iterator Fallthrough = this;
++Fallthrough;
// If FallthroughBlock is off the end of the function, it can't fall through.
if (Fallthrough == getParent()->end())
return false;
// If FallthroughBlock isn't a successor, no fallthrough is possible.
if (!isSuccessor(Fallthrough))
return false;
// Analyze the branches, if any, at the end of the block.
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
if (TII->AnalyzeBranch(*this, TBB, FBB, Cond, true)) {
// If we couldn't analyze the branch, examine the last instruction.
// If the block doesn't end in a known control barrier, assume fallthrough
// is possible. The isPredicable check is needed because this code can be
// called during IfConversion, where an instruction which is normally a
// Barrier is predicated and thus no longer an actual control barrier. This
// is over-conservative though, because if an instruction isn't actually
// predicated we could still treat it like a barrier.
return empty() || !back().getDesc().isBarrier() ||
back().getDesc().isPredicable();
}
// If there is no branch, control always falls through.
if (TBB == 0) return true;
// If there is some explicit branch to the fallthrough block, it can obviously
// reach, even though the branch should get folded to fall through implicitly.
if (MachineFunction::iterator(TBB) == Fallthrough ||
MachineFunction::iterator(FBB) == Fallthrough)
return true;
// If it's an unconditional branch to some block not the fall through, it
// doesn't fall through.
if (Cond.empty()) return false;
// Otherwise, if it is conditional and has no explicit false block, it falls
// through.
return FBB == 0;
}
/// removeFromParent - This method unlinks 'this' from the containing function,
/// and returns it, but does not delete it.
MachineBasicBlock *MachineBasicBlock::removeFromParent() {
assert(getParent() && "Not embedded in a function!");
getParent()->remove(this);
return this;
}
/// eraseFromParent - This method unlinks 'this' from the containing function,
/// and deletes it.
void MachineBasicBlock::eraseFromParent() {
assert(getParent() && "Not embedded in a function!");
getParent()->erase(this);
}
/// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
/// 'Old', change the code and CFG so that it branches to 'New' instead.
void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
MachineBasicBlock *New) {
assert(Old != New && "Cannot replace self with self!");
MachineBasicBlock::iterator I = end();
while (I != begin()) {
--I;
if (!I->getDesc().isTerminator()) break;
// Scan the operands of this machine instruction, replacing any uses of Old
// with New.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (I->getOperand(i).isMBB() &&
I->getOperand(i).getMBB() == Old)
I->getOperand(i).setMBB(New);
}
// Update the successor information.
removeSuccessor(Old);
addSuccessor(New);
}
/// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
/// CFG to be inserted. If we have proven that MBB can only branch to DestA and
/// DestB, remove any other MBB successors from the CFG. DestA and DestB can
/// be null.
/// Besides DestA and DestB, retain other edges leading to LandingPads
/// (currently there can be only one; we don't check or require that here).
/// Note it is possible that DestA and/or DestB are LandingPads.
bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
MachineBasicBlock *DestB,
bool isCond) {
bool MadeChange = false;
bool AddedFallThrough = false;
MachineFunction::iterator FallThru =
llvm::next(MachineFunction::iterator(this));
// If this block ends with a conditional branch that falls through to its
// successor, set DestB as the successor.
if (isCond) {
if (DestB == 0 && FallThru != getParent()->end()) {
DestB = FallThru;
AddedFallThrough = true;
}
} else {
// If this is an unconditional branch with no explicit dest, it must just be
// a fallthrough into DestB.
if (DestA == 0 && FallThru != getParent()->end()) {
DestA = FallThru;
AddedFallThrough = true;
}
}
MachineBasicBlock::succ_iterator SI = succ_begin();
MachineBasicBlock *OrigDestA = DestA, *OrigDestB = DestB;
while (SI != succ_end()) {
if (*SI == DestA) {
DestA = 0;
++SI;
} else if (*SI == DestB) {
DestB = 0;
++SI;
} else if ((*SI)->isLandingPad() &&
*SI!=OrigDestA && *SI!=OrigDestB) {
++SI;
} else {
// Otherwise, this is a superfluous edge, remove it.
SI = removeSuccessor(SI);
MadeChange = true;
}
}
if (!AddedFallThrough) {
assert(DestA == 0 && DestB == 0 &&
"MachineCFG is missing edges!");
} else if (isCond) {
assert(DestA == 0 && "MachineCFG is missing edges!");
}
return MadeChange;
}
void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB,
bool t) {
OS << "BB#" << MBB->getNumber();
}