llvm-project/clang/lib/StaticAnalyzer/Core/CoreEngine.cpp

846 lines
26 KiB
C++

//==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a generic engine for intraprocedural, path-sensitive,
// dataflow analysis via graph reachability engine.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/PathSensitive/CoreEngine.h"
#include "clang/StaticAnalyzer/PathSensitive/ExprEngine.h"
#include "clang/Index/TranslationUnit.h"
#include "clang/AST/Expr.h"
#include "llvm/Support/Casting.h"
#include "llvm/ADT/DenseMap.h"
#include <vector>
#include <queue>
using llvm::cast;
using llvm::isa;
using namespace clang;
using namespace ento;
// This should be removed in the future.
namespace clang {
namespace ento {
TransferFuncs* MakeCFRefCountTF(ASTContext& Ctx, bool GCEnabled,
const LangOptions& lopts);
}
}
//===----------------------------------------------------------------------===//
// Worklist classes for exploration of reachable states.
//===----------------------------------------------------------------------===//
WorkList::Visitor::~Visitor() {}
namespace {
class DFS : public WorkList {
llvm::SmallVector<WorkListUnit,20> Stack;
public:
virtual bool hasWork() const {
return !Stack.empty();
}
virtual void enqueue(const WorkListUnit& U) {
Stack.push_back(U);
}
virtual WorkListUnit dequeue() {
assert (!Stack.empty());
const WorkListUnit& U = Stack.back();
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
return U;
}
virtual bool visitItemsInWorkList(Visitor &V) {
for (llvm::SmallVectorImpl<WorkListUnit>::iterator
I = Stack.begin(), E = Stack.end(); I != E; ++I) {
if (V.visit(*I))
return true;
}
return false;
}
};
class BFS : public WorkList {
std::deque<WorkListUnit> Queue;
public:
virtual bool hasWork() const {
return !Queue.empty();
}
virtual void enqueue(const WorkListUnit& U) {
Queue.push_front(U);
}
virtual WorkListUnit dequeue() {
WorkListUnit U = Queue.front();
Queue.pop_front();
return U;
}
virtual bool visitItemsInWorkList(Visitor &V) {
for (std::deque<WorkListUnit>::iterator
I = Queue.begin(), E = Queue.end(); I != E; ++I) {
if (V.visit(*I))
return true;
}
return false;
}
};
} // end anonymous namespace
// Place the dstor for WorkList here because it contains virtual member
// functions, and we the code for the dstor generated in one compilation unit.
WorkList::~WorkList() {}
WorkList *WorkList::makeDFS() { return new DFS(); }
WorkList *WorkList::makeBFS() { return new BFS(); }
namespace {
class BFSBlockDFSContents : public WorkList {
std::deque<WorkListUnit> Queue;
llvm::SmallVector<WorkListUnit,20> Stack;
public:
virtual bool hasWork() const {
return !Queue.empty() || !Stack.empty();
}
virtual void enqueue(const WorkListUnit& U) {
if (isa<BlockEntrance>(U.getNode()->getLocation()))
Queue.push_front(U);
else
Stack.push_back(U);
}
virtual WorkListUnit dequeue() {
// Process all basic blocks to completion.
if (!Stack.empty()) {
const WorkListUnit& U = Stack.back();
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
return U;
}
assert(!Queue.empty());
// Don't use const reference. The subsequent pop_back() might make it
// unsafe.
WorkListUnit U = Queue.front();
Queue.pop_front();
return U;
}
virtual bool visitItemsInWorkList(Visitor &V) {
for (llvm::SmallVectorImpl<WorkListUnit>::iterator
I = Stack.begin(), E = Stack.end(); I != E; ++I) {
if (V.visit(*I))
return true;
}
for (std::deque<WorkListUnit>::iterator
I = Queue.begin(), E = Queue.end(); I != E; ++I) {
if (V.visit(*I))
return true;
}
return false;
}
};
} // end anonymous namespace
WorkList* WorkList::makeBFSBlockDFSContents() {
return new BFSBlockDFSContents();
}
//===----------------------------------------------------------------------===//
// Core analysis engine.
//===----------------------------------------------------------------------===//
/// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
const GRState *InitState) {
if (G->num_roots() == 0) { // Initialize the analysis by constructing
// the root if none exists.
const CFGBlock* Entry = &(L->getCFG()->getEntry());
assert (Entry->empty() &&
"Entry block must be empty.");
assert (Entry->succ_size() == 1 &&
"Entry block must have 1 successor.");
// Get the solitary successor.
const CFGBlock* Succ = *(Entry->succ_begin());
// Construct an edge representing the
// starting location in the function.
BlockEdge StartLoc(Entry, Succ, L);
// Set the current block counter to being empty.
WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
if (!InitState)
// Generate the root.
generateNode(StartLoc, SubEng.getInitialState(L), 0);
else
generateNode(StartLoc, InitState, 0);
}
// Check if we have a steps limit
bool UnlimitedSteps = Steps == 0;
while (WList->hasWork()) {
if (!UnlimitedSteps) {
if (Steps == 0)
break;
--Steps;
}
const WorkListUnit& WU = WList->dequeue();
// Set the current block counter.
WList->setBlockCounter(WU.getBlockCounter());
// Retrieve the node.
ExplodedNode* Node = WU.getNode();
// Dispatch on the location type.
switch (Node->getLocation().getKind()) {
case ProgramPoint::BlockEdgeKind:
HandleBlockEdge(cast<BlockEdge>(Node->getLocation()), Node);
break;
case ProgramPoint::BlockEntranceKind:
HandleBlockEntrance(cast<BlockEntrance>(Node->getLocation()), Node);
break;
case ProgramPoint::BlockExitKind:
assert (false && "BlockExit location never occur in forward analysis.");
break;
case ProgramPoint::CallEnterKind:
HandleCallEnter(cast<CallEnter>(Node->getLocation()), WU.getBlock(),
WU.getIndex(), Node);
break;
case ProgramPoint::CallExitKind:
HandleCallExit(cast<CallExit>(Node->getLocation()), Node);
break;
default:
assert(isa<PostStmt>(Node->getLocation()) ||
isa<PostInitializer>(Node->getLocation()));
HandlePostStmt(WU.getBlock(), WU.getIndex(), Node);
break;
}
}
SubEng.processEndWorklist(hasWorkRemaining());
return WList->hasWork();
}
void CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
unsigned Steps,
const GRState *InitState,
ExplodedNodeSet &Dst) {
ExecuteWorkList(L, Steps, InitState);
for (llvm::SmallVectorImpl<ExplodedNode*>::iterator I = G->EndNodes.begin(),
E = G->EndNodes.end(); I != E; ++I) {
Dst.Add(*I);
}
}
void CoreEngine::HandleCallEnter(const CallEnter &L, const CFGBlock *Block,
unsigned Index, ExplodedNode *Pred) {
CallEnterNodeBuilder Builder(*this, Pred, L.getCallExpr(),
L.getCalleeContext(), Block, Index);
SubEng.processCallEnter(Builder);
}
void CoreEngine::HandleCallExit(const CallExit &L, ExplodedNode *Pred) {
CallExitNodeBuilder Builder(*this, Pred);
SubEng.processCallExit(Builder);
}
void CoreEngine::HandleBlockEdge(const BlockEdge& L, ExplodedNode* Pred) {
const CFGBlock* Blk = L.getDst();
// Check if we are entering the EXIT block.
if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
assert (L.getLocationContext()->getCFG()->getExit().size() == 0
&& "EXIT block cannot contain Stmts.");
// Process the final state transition.
EndOfFunctionNodeBuilder Builder(Blk, Pred, this);
SubEng.processEndOfFunction(Builder);
// This path is done. Don't enqueue any more nodes.
return;
}
// Call into the subengine to process entering the CFGBlock.
ExplodedNodeSet dstNodes;
BlockEntrance BE(Blk, Pred->getLocationContext());
GenericNodeBuilder<BlockEntrance> nodeBuilder(*this, Pred, BE);
SubEng.processCFGBlockEntrance(dstNodes, nodeBuilder);
if (dstNodes.empty()) {
if (!nodeBuilder.hasGeneratedNode) {
// Auto-generate a node and enqueue it to the worklist.
generateNode(BE, Pred->State, Pred);
}
}
else {
for (ExplodedNodeSet::iterator I = dstNodes.begin(), E = dstNodes.end();
I != E; ++I) {
WList->enqueue(*I);
}
}
for (llvm::SmallVectorImpl<ExplodedNode*>::const_iterator
I = nodeBuilder.sinks().begin(), E = nodeBuilder.sinks().end();
I != E; ++I) {
blocksAborted.push_back(std::make_pair(L, *I));
}
}
void CoreEngine::HandleBlockEntrance(const BlockEntrance& L,
ExplodedNode* Pred) {
// Increment the block counter.
BlockCounter Counter = WList->getBlockCounter();
Counter = BCounterFactory.IncrementCount(Counter,
Pred->getLocationContext()->getCurrentStackFrame(),
L.getBlock()->getBlockID());
WList->setBlockCounter(Counter);
// Process the entrance of the block.
if (CFGElement E = L.getFirstElement()) {
StmtNodeBuilder Builder(L.getBlock(), 0, Pred, this,
SubEng.getStateManager());
SubEng.processCFGElement(E, Builder);
}
else
HandleBlockExit(L.getBlock(), Pred);
}
void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode* Pred) {
if (const Stmt* Term = B->getTerminator()) {
switch (Term->getStmtClass()) {
default:
assert(false && "Analysis for this terminator not implemented.");
break;
case Stmt::BinaryOperatorClass: // '&&' and '||'
HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
return;
case Stmt::ConditionalOperatorClass:
HandleBranch(cast<ConditionalOperator>(Term)->getCond(), Term, B, Pred);
return;
// FIXME: Use constant-folding in CFG construction to simplify this
// case.
case Stmt::ChooseExprClass:
HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
return;
case Stmt::DoStmtClass:
HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
return;
case Stmt::ForStmtClass:
HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
return;
case Stmt::ContinueStmtClass:
case Stmt::BreakStmtClass:
case Stmt::GotoStmtClass:
break;
case Stmt::IfStmtClass:
HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
return;
case Stmt::IndirectGotoStmtClass: {
// Only 1 successor: the indirect goto dispatch block.
assert (B->succ_size() == 1);
IndirectGotoNodeBuilder
builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
*(B->succ_begin()), this);
SubEng.processIndirectGoto(builder);
return;
}
case Stmt::ObjCForCollectionStmtClass: {
// In the case of ObjCForCollectionStmt, it appears twice in a CFG:
//
// (1) inside a basic block, which represents the binding of the
// 'element' variable to a value.
// (2) in a terminator, which represents the branch.
//
// For (1), subengines will bind a value (i.e., 0 or 1) indicating
// whether or not collection contains any more elements. We cannot
// just test to see if the element is nil because a container can
// contain nil elements.
HandleBranch(Term, Term, B, Pred);
return;
}
case Stmt::SwitchStmtClass: {
SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
this);
SubEng.processSwitch(builder);
return;
}
case Stmt::WhileStmtClass:
HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
return;
}
}
assert (B->succ_size() == 1 &&
"Blocks with no terminator should have at most 1 successor.");
generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
Pred->State, Pred);
}
void CoreEngine::HandleBranch(const Stmt* Cond, const Stmt* Term,
const CFGBlock * B, ExplodedNode* Pred) {
assert(B->succ_size() == 2);
BranchNodeBuilder Builder(B, *(B->succ_begin()), *(B->succ_begin()+1),
Pred, this);
SubEng.processBranch(Cond, Term, Builder);
}
void CoreEngine::HandlePostStmt(const CFGBlock* B, unsigned StmtIdx,
ExplodedNode* Pred) {
assert (!B->empty());
if (StmtIdx == B->size())
HandleBlockExit(B, Pred);
else {
StmtNodeBuilder Builder(B, StmtIdx, Pred, this,
SubEng.getStateManager());
SubEng.processCFGElement((*B)[StmtIdx], Builder);
}
}
/// generateNode - Utility method to generate nodes, hook up successors,
/// and add nodes to the worklist.
void CoreEngine::generateNode(const ProgramPoint& Loc,
const GRState* State, ExplodedNode* Pred) {
bool IsNew;
ExplodedNode* Node = G->getNode(Loc, State, &IsNew);
if (Pred)
Node->addPredecessor(Pred, *G); // Link 'Node' with its predecessor.
else {
assert (IsNew);
G->addRoot(Node); // 'Node' has no predecessor. Make it a root.
}
// Only add 'Node' to the worklist if it was freshly generated.
if (IsNew) WList->enqueue(Node);
}
ExplodedNode *
GenericNodeBuilderImpl::generateNodeImpl(const GRState *state,
ExplodedNode *pred,
ProgramPoint programPoint,
bool asSink) {
hasGeneratedNode = true;
bool isNew;
ExplodedNode *node = engine.getGraph().getNode(programPoint, state, &isNew);
if (pred)
node->addPredecessor(pred, engine.getGraph());
if (isNew) {
if (asSink) {
node->markAsSink();
sinksGenerated.push_back(node);
}
return node;
}
return 0;
}
StmtNodeBuilder::StmtNodeBuilder(const CFGBlock* b, unsigned idx,
ExplodedNode* N, CoreEngine* e,
GRStateManager &mgr)
: Eng(*e), B(*b), Idx(idx), Pred(N), Mgr(mgr),
PurgingDeadSymbols(false), BuildSinks(false), hasGeneratedNode(false),
PointKind(ProgramPoint::PostStmtKind), Tag(0) {
Deferred.insert(N);
CleanedState = Pred->getState();
}
StmtNodeBuilder::~StmtNodeBuilder() {
for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
if (!(*I)->isSink())
GenerateAutoTransition(*I);
}
void StmtNodeBuilder::GenerateAutoTransition(ExplodedNode* N) {
assert (!N->isSink());
// Check if this node entered a callee.
if (isa<CallEnter>(N->getLocation())) {
// Still use the index of the CallExpr. It's needed to create the callee
// StackFrameContext.
Eng.WList->enqueue(N, &B, Idx);
return;
}
// Do not create extra nodes. Move to the next CFG element.
if (isa<PostInitializer>(N->getLocation())) {
Eng.WList->enqueue(N, &B, Idx+1);
return;
}
PostStmt Loc(getStmt(), N->getLocationContext());
if (Loc == N->getLocation()) {
// Note: 'N' should be a fresh node because otherwise it shouldn't be
// a member of Deferred.
Eng.WList->enqueue(N, &B, Idx+1);
return;
}
bool IsNew;
ExplodedNode* Succ = Eng.G->getNode(Loc, N->State, &IsNew);
Succ->addPredecessor(N, *Eng.G);
if (IsNew)
Eng.WList->enqueue(Succ, &B, Idx+1);
}
ExplodedNode* StmtNodeBuilder::MakeNode(ExplodedNodeSet& Dst, const Stmt* S,
ExplodedNode* Pred, const GRState* St,
ProgramPoint::Kind K) {
ExplodedNode* N = generateNode(S, St, Pred, K);
if (N) {
if (BuildSinks)
N->markAsSink();
else
Dst.Add(N);
}
return N;
}
static ProgramPoint GetProgramPoint(const Stmt *S, ProgramPoint::Kind K,
const LocationContext *LC, const void *tag){
switch (K) {
default:
assert(false && "Unhandled ProgramPoint kind");
case ProgramPoint::PreStmtKind:
return PreStmt(S, LC, tag);
case ProgramPoint::PostStmtKind:
return PostStmt(S, LC, tag);
case ProgramPoint::PreLoadKind:
return PreLoad(S, LC, tag);
case ProgramPoint::PostLoadKind:
return PostLoad(S, LC, tag);
case ProgramPoint::PreStoreKind:
return PreStore(S, LC, tag);
case ProgramPoint::PostStoreKind:
return PostStore(S, LC, tag);
case ProgramPoint::PostLValueKind:
return PostLValue(S, LC, tag);
case ProgramPoint::PostPurgeDeadSymbolsKind:
return PostPurgeDeadSymbols(S, LC, tag);
}
}
ExplodedNode*
StmtNodeBuilder::generateNodeInternal(const Stmt* S, const GRState* state,
ExplodedNode* Pred,
ProgramPoint::Kind K,
const void *tag) {
const ProgramPoint &L = GetProgramPoint(S, K, Pred->getLocationContext(),tag);
return generateNodeInternal(L, state, Pred);
}
ExplodedNode*
StmtNodeBuilder::generateNodeInternal(const ProgramPoint &Loc,
const GRState* State,
ExplodedNode* Pred) {
bool IsNew;
ExplodedNode* N = Eng.G->getNode(Loc, State, &IsNew);
N->addPredecessor(Pred, *Eng.G);
Deferred.erase(Pred);
if (IsNew) {
Deferred.insert(N);
return N;
}
return NULL;
}
ExplodedNode* BranchNodeBuilder::generateNode(const GRState* State,
bool branch) {
// If the branch has been marked infeasible we should not generate a node.
if (!isFeasible(branch))
return NULL;
bool IsNew;
ExplodedNode* Succ =
Eng.G->getNode(BlockEdge(Src,branch ? DstT:DstF,Pred->getLocationContext()),
State, &IsNew);
Succ->addPredecessor(Pred, *Eng.G);
if (branch)
GeneratedTrue = true;
else
GeneratedFalse = true;
if (IsNew) {
Deferred.push_back(Succ);
return Succ;
}
return NULL;
}
BranchNodeBuilder::~BranchNodeBuilder() {
if (!GeneratedTrue) generateNode(Pred->State, true);
if (!GeneratedFalse) generateNode(Pred->State, false);
for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
if (!(*I)->isSink()) Eng.WList->enqueue(*I);
}
ExplodedNode*
IndirectGotoNodeBuilder::generateNode(const iterator& I, const GRState* St,
bool isSink) {
bool IsNew;
ExplodedNode* Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
Pred->getLocationContext()), St, &IsNew);
Succ->addPredecessor(Pred, *Eng.G);
if (IsNew) {
if (isSink)
Succ->markAsSink();
else
Eng.WList->enqueue(Succ);
return Succ;
}
return NULL;
}
ExplodedNode*
SwitchNodeBuilder::generateCaseStmtNode(const iterator& I, const GRState* St){
bool IsNew;
ExplodedNode* Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
Pred->getLocationContext()), St, &IsNew);
Succ->addPredecessor(Pred, *Eng.G);
if (IsNew) {
Eng.WList->enqueue(Succ);
return Succ;
}
return NULL;
}
ExplodedNode*
SwitchNodeBuilder::generateDefaultCaseNode(const GRState* St, bool isSink) {
// Get the block for the default case.
assert (Src->succ_rbegin() != Src->succ_rend());
CFGBlock* DefaultBlock = *Src->succ_rbegin();
bool IsNew;
ExplodedNode* Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock,
Pred->getLocationContext()), St, &IsNew);
Succ->addPredecessor(Pred, *Eng.G);
if (IsNew) {
if (isSink)
Succ->markAsSink();
else
Eng.WList->enqueue(Succ);
return Succ;
}
return NULL;
}
EndOfFunctionNodeBuilder::~EndOfFunctionNodeBuilder() {
// Auto-generate an EOP node if one has not been generated.
if (!hasGeneratedNode) {
// If we are in an inlined call, generate CallExit node.
if (Pred->getLocationContext()->getParent())
GenerateCallExitNode(Pred->State);
else
generateNode(Pred->State);
}
}
ExplodedNode*
EndOfFunctionNodeBuilder::generateNode(const GRState* State, const void *tag,
ExplodedNode* P) {
hasGeneratedNode = true;
bool IsNew;
ExplodedNode* Node = Eng.G->getNode(BlockEntrance(&B,
Pred->getLocationContext(), tag), State, &IsNew);
Node->addPredecessor(P ? P : Pred, *Eng.G);
if (IsNew) {
Eng.G->addEndOfPath(Node);
return Node;
}
return NULL;
}
void EndOfFunctionNodeBuilder::GenerateCallExitNode(const GRState *state) {
hasGeneratedNode = true;
// Create a CallExit node and enqueue it.
const StackFrameContext *LocCtx
= cast<StackFrameContext>(Pred->getLocationContext());
const Stmt *CE = LocCtx->getCallSite();
// Use the the callee location context.
CallExit Loc(CE, LocCtx);
bool isNew;
ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew);
Node->addPredecessor(Pred, *Eng.G);
if (isNew)
Eng.WList->enqueue(Node);
}
void CallEnterNodeBuilder::generateNode(const GRState *state) {
// Check if the callee is in the same translation unit.
if (CalleeCtx->getTranslationUnit() !=
Pred->getLocationContext()->getTranslationUnit()) {
// Create a new engine. We must be careful that the new engine should not
// reference data structures owned by the old engine.
AnalysisManager &OldMgr = Eng.SubEng.getAnalysisManager();
// Get the callee's translation unit.
idx::TranslationUnit *TU = CalleeCtx->getTranslationUnit();
// Create a new AnalysisManager with components of the callee's
// TranslationUnit.
// The Diagnostic is actually shared when we create ASTUnits from AST files.
AnalysisManager AMgr(TU->getASTContext(), TU->getDiagnostic(),
OldMgr.getLangOptions(),
OldMgr.getPathDiagnosticClient(),
OldMgr.getStoreManagerCreator(),
OldMgr.getConstraintManagerCreator(),
OldMgr.getIndexer(),
OldMgr.getMaxNodes(), OldMgr.getMaxVisit(),
OldMgr.shouldVisualizeGraphviz(),
OldMgr.shouldVisualizeUbigraph(),
OldMgr.shouldPurgeDead(),
OldMgr.shouldEagerlyAssume(),
OldMgr.shouldTrimGraph(),
OldMgr.shouldInlineCall(),
OldMgr.getAnalysisContextManager().getUseUnoptimizedCFG(),
OldMgr.getAnalysisContextManager().getAddImplicitDtors(),
OldMgr.getAnalysisContextManager().getAddInitializers(),
OldMgr.shouldEagerlyTrimExplodedGraph());
llvm::OwningPtr<TransferFuncs> TF(MakeCFRefCountTF(AMgr.getASTContext(),
/* GCEnabled */ false,
AMgr.getLangOptions()));
// Create the new engine.
ExprEngine NewEng(AMgr, TF.take());
// Create the new LocationContext.
AnalysisContext *NewAnaCtx = AMgr.getAnalysisContext(CalleeCtx->getDecl(),
CalleeCtx->getTranslationUnit());
const StackFrameContext *OldLocCtx = CalleeCtx;
const StackFrameContext *NewLocCtx = AMgr.getStackFrame(NewAnaCtx,
OldLocCtx->getParent(),
OldLocCtx->getCallSite(),
OldLocCtx->getCallSiteBlock(),
OldLocCtx->getIndex());
// Now create an initial state for the new engine.
const GRState *NewState = NewEng.getStateManager().MarshalState(state,
NewLocCtx);
ExplodedNodeSet ReturnNodes;
NewEng.ExecuteWorkListWithInitialState(NewLocCtx, AMgr.getMaxNodes(),
NewState, ReturnNodes);
return;
}
// Get the callee entry block.
const CFGBlock *Entry = &(CalleeCtx->getCFG()->getEntry());
assert(Entry->empty());
assert(Entry->succ_size() == 1);
// Get the solitary successor.
const CFGBlock *SuccB = *(Entry->succ_begin());
// Construct an edge representing the starting location in the callee.
BlockEdge Loc(Entry, SuccB, CalleeCtx);
bool isNew;
ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew);
Node->addPredecessor(const_cast<ExplodedNode*>(Pred), *Eng.G);
if (isNew)
Eng.WList->enqueue(Node);
}
void CallExitNodeBuilder::generateNode(const GRState *state) {
// Get the callee's location context.
const StackFrameContext *LocCtx
= cast<StackFrameContext>(Pred->getLocationContext());
// When exiting an implicit automatic obj dtor call, the callsite is the Stmt
// that triggers the dtor.
PostStmt Loc(LocCtx->getCallSite(), LocCtx->getParent());
bool isNew;
ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew);
Node->addPredecessor(const_cast<ExplodedNode*>(Pred), *Eng.G);
if (isNew)
Eng.WList->enqueue(Node, LocCtx->getCallSiteBlock(),
LocCtx->getIndex() + 1);
}