forked from OSchip/llvm-project
846 lines
26 KiB
C++
846 lines
26 KiB
C++
//==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a generic engine for intraprocedural, path-sensitive,
|
|
// dataflow analysis via graph reachability engine.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/PathSensitive/AnalysisManager.h"
|
|
#include "clang/StaticAnalyzer/PathSensitive/CoreEngine.h"
|
|
#include "clang/StaticAnalyzer/PathSensitive/ExprEngine.h"
|
|
#include "clang/Index/TranslationUnit.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include <vector>
|
|
#include <queue>
|
|
|
|
using llvm::cast;
|
|
using llvm::isa;
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
// This should be removed in the future.
|
|
namespace clang {
|
|
namespace ento {
|
|
TransferFuncs* MakeCFRefCountTF(ASTContext& Ctx, bool GCEnabled,
|
|
const LangOptions& lopts);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Worklist classes for exploration of reachable states.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
WorkList::Visitor::~Visitor() {}
|
|
|
|
namespace {
|
|
class DFS : public WorkList {
|
|
llvm::SmallVector<WorkListUnit,20> Stack;
|
|
public:
|
|
virtual bool hasWork() const {
|
|
return !Stack.empty();
|
|
}
|
|
|
|
virtual void enqueue(const WorkListUnit& U) {
|
|
Stack.push_back(U);
|
|
}
|
|
|
|
virtual WorkListUnit dequeue() {
|
|
assert (!Stack.empty());
|
|
const WorkListUnit& U = Stack.back();
|
|
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
|
|
return U;
|
|
}
|
|
|
|
virtual bool visitItemsInWorkList(Visitor &V) {
|
|
for (llvm::SmallVectorImpl<WorkListUnit>::iterator
|
|
I = Stack.begin(), E = Stack.end(); I != E; ++I) {
|
|
if (V.visit(*I))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class BFS : public WorkList {
|
|
std::deque<WorkListUnit> Queue;
|
|
public:
|
|
virtual bool hasWork() const {
|
|
return !Queue.empty();
|
|
}
|
|
|
|
virtual void enqueue(const WorkListUnit& U) {
|
|
Queue.push_front(U);
|
|
}
|
|
|
|
virtual WorkListUnit dequeue() {
|
|
WorkListUnit U = Queue.front();
|
|
Queue.pop_front();
|
|
return U;
|
|
}
|
|
|
|
virtual bool visitItemsInWorkList(Visitor &V) {
|
|
for (std::deque<WorkListUnit>::iterator
|
|
I = Queue.begin(), E = Queue.end(); I != E; ++I) {
|
|
if (V.visit(*I))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Place the dstor for WorkList here because it contains virtual member
|
|
// functions, and we the code for the dstor generated in one compilation unit.
|
|
WorkList::~WorkList() {}
|
|
|
|
WorkList *WorkList::makeDFS() { return new DFS(); }
|
|
WorkList *WorkList::makeBFS() { return new BFS(); }
|
|
|
|
namespace {
|
|
class BFSBlockDFSContents : public WorkList {
|
|
std::deque<WorkListUnit> Queue;
|
|
llvm::SmallVector<WorkListUnit,20> Stack;
|
|
public:
|
|
virtual bool hasWork() const {
|
|
return !Queue.empty() || !Stack.empty();
|
|
}
|
|
|
|
virtual void enqueue(const WorkListUnit& U) {
|
|
if (isa<BlockEntrance>(U.getNode()->getLocation()))
|
|
Queue.push_front(U);
|
|
else
|
|
Stack.push_back(U);
|
|
}
|
|
|
|
virtual WorkListUnit dequeue() {
|
|
// Process all basic blocks to completion.
|
|
if (!Stack.empty()) {
|
|
const WorkListUnit& U = Stack.back();
|
|
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
|
|
return U;
|
|
}
|
|
|
|
assert(!Queue.empty());
|
|
// Don't use const reference. The subsequent pop_back() might make it
|
|
// unsafe.
|
|
WorkListUnit U = Queue.front();
|
|
Queue.pop_front();
|
|
return U;
|
|
}
|
|
virtual bool visitItemsInWorkList(Visitor &V) {
|
|
for (llvm::SmallVectorImpl<WorkListUnit>::iterator
|
|
I = Stack.begin(), E = Stack.end(); I != E; ++I) {
|
|
if (V.visit(*I))
|
|
return true;
|
|
}
|
|
for (std::deque<WorkListUnit>::iterator
|
|
I = Queue.begin(), E = Queue.end(); I != E; ++I) {
|
|
if (V.visit(*I))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
WorkList* WorkList::makeBFSBlockDFSContents() {
|
|
return new BFSBlockDFSContents();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Core analysis engine.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
|
|
bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
|
|
const GRState *InitState) {
|
|
|
|
if (G->num_roots() == 0) { // Initialize the analysis by constructing
|
|
// the root if none exists.
|
|
|
|
const CFGBlock* Entry = &(L->getCFG()->getEntry());
|
|
|
|
assert (Entry->empty() &&
|
|
"Entry block must be empty.");
|
|
|
|
assert (Entry->succ_size() == 1 &&
|
|
"Entry block must have 1 successor.");
|
|
|
|
// Get the solitary successor.
|
|
const CFGBlock* Succ = *(Entry->succ_begin());
|
|
|
|
// Construct an edge representing the
|
|
// starting location in the function.
|
|
BlockEdge StartLoc(Entry, Succ, L);
|
|
|
|
// Set the current block counter to being empty.
|
|
WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
|
|
|
|
if (!InitState)
|
|
// Generate the root.
|
|
generateNode(StartLoc, SubEng.getInitialState(L), 0);
|
|
else
|
|
generateNode(StartLoc, InitState, 0);
|
|
}
|
|
|
|
// Check if we have a steps limit
|
|
bool UnlimitedSteps = Steps == 0;
|
|
|
|
while (WList->hasWork()) {
|
|
if (!UnlimitedSteps) {
|
|
if (Steps == 0)
|
|
break;
|
|
--Steps;
|
|
}
|
|
|
|
const WorkListUnit& WU = WList->dequeue();
|
|
|
|
// Set the current block counter.
|
|
WList->setBlockCounter(WU.getBlockCounter());
|
|
|
|
// Retrieve the node.
|
|
ExplodedNode* Node = WU.getNode();
|
|
|
|
// Dispatch on the location type.
|
|
switch (Node->getLocation().getKind()) {
|
|
case ProgramPoint::BlockEdgeKind:
|
|
HandleBlockEdge(cast<BlockEdge>(Node->getLocation()), Node);
|
|
break;
|
|
|
|
case ProgramPoint::BlockEntranceKind:
|
|
HandleBlockEntrance(cast<BlockEntrance>(Node->getLocation()), Node);
|
|
break;
|
|
|
|
case ProgramPoint::BlockExitKind:
|
|
assert (false && "BlockExit location never occur in forward analysis.");
|
|
break;
|
|
|
|
case ProgramPoint::CallEnterKind:
|
|
HandleCallEnter(cast<CallEnter>(Node->getLocation()), WU.getBlock(),
|
|
WU.getIndex(), Node);
|
|
break;
|
|
|
|
case ProgramPoint::CallExitKind:
|
|
HandleCallExit(cast<CallExit>(Node->getLocation()), Node);
|
|
break;
|
|
|
|
default:
|
|
assert(isa<PostStmt>(Node->getLocation()) ||
|
|
isa<PostInitializer>(Node->getLocation()));
|
|
HandlePostStmt(WU.getBlock(), WU.getIndex(), Node);
|
|
break;
|
|
}
|
|
}
|
|
|
|
SubEng.processEndWorklist(hasWorkRemaining());
|
|
return WList->hasWork();
|
|
}
|
|
|
|
void CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
|
|
unsigned Steps,
|
|
const GRState *InitState,
|
|
ExplodedNodeSet &Dst) {
|
|
ExecuteWorkList(L, Steps, InitState);
|
|
for (llvm::SmallVectorImpl<ExplodedNode*>::iterator I = G->EndNodes.begin(),
|
|
E = G->EndNodes.end(); I != E; ++I) {
|
|
Dst.Add(*I);
|
|
}
|
|
}
|
|
|
|
void CoreEngine::HandleCallEnter(const CallEnter &L, const CFGBlock *Block,
|
|
unsigned Index, ExplodedNode *Pred) {
|
|
CallEnterNodeBuilder Builder(*this, Pred, L.getCallExpr(),
|
|
L.getCalleeContext(), Block, Index);
|
|
SubEng.processCallEnter(Builder);
|
|
}
|
|
|
|
void CoreEngine::HandleCallExit(const CallExit &L, ExplodedNode *Pred) {
|
|
CallExitNodeBuilder Builder(*this, Pred);
|
|
SubEng.processCallExit(Builder);
|
|
}
|
|
|
|
void CoreEngine::HandleBlockEdge(const BlockEdge& L, ExplodedNode* Pred) {
|
|
|
|
const CFGBlock* Blk = L.getDst();
|
|
|
|
// Check if we are entering the EXIT block.
|
|
if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
|
|
|
|
assert (L.getLocationContext()->getCFG()->getExit().size() == 0
|
|
&& "EXIT block cannot contain Stmts.");
|
|
|
|
// Process the final state transition.
|
|
EndOfFunctionNodeBuilder Builder(Blk, Pred, this);
|
|
SubEng.processEndOfFunction(Builder);
|
|
|
|
// This path is done. Don't enqueue any more nodes.
|
|
return;
|
|
}
|
|
|
|
// Call into the subengine to process entering the CFGBlock.
|
|
ExplodedNodeSet dstNodes;
|
|
BlockEntrance BE(Blk, Pred->getLocationContext());
|
|
GenericNodeBuilder<BlockEntrance> nodeBuilder(*this, Pred, BE);
|
|
SubEng.processCFGBlockEntrance(dstNodes, nodeBuilder);
|
|
|
|
if (dstNodes.empty()) {
|
|
if (!nodeBuilder.hasGeneratedNode) {
|
|
// Auto-generate a node and enqueue it to the worklist.
|
|
generateNode(BE, Pred->State, Pred);
|
|
}
|
|
}
|
|
else {
|
|
for (ExplodedNodeSet::iterator I = dstNodes.begin(), E = dstNodes.end();
|
|
I != E; ++I) {
|
|
WList->enqueue(*I);
|
|
}
|
|
}
|
|
|
|
for (llvm::SmallVectorImpl<ExplodedNode*>::const_iterator
|
|
I = nodeBuilder.sinks().begin(), E = nodeBuilder.sinks().end();
|
|
I != E; ++I) {
|
|
blocksAborted.push_back(std::make_pair(L, *I));
|
|
}
|
|
}
|
|
|
|
void CoreEngine::HandleBlockEntrance(const BlockEntrance& L,
|
|
ExplodedNode* Pred) {
|
|
|
|
// Increment the block counter.
|
|
BlockCounter Counter = WList->getBlockCounter();
|
|
Counter = BCounterFactory.IncrementCount(Counter,
|
|
Pred->getLocationContext()->getCurrentStackFrame(),
|
|
L.getBlock()->getBlockID());
|
|
WList->setBlockCounter(Counter);
|
|
|
|
// Process the entrance of the block.
|
|
if (CFGElement E = L.getFirstElement()) {
|
|
StmtNodeBuilder Builder(L.getBlock(), 0, Pred, this,
|
|
SubEng.getStateManager());
|
|
SubEng.processCFGElement(E, Builder);
|
|
}
|
|
else
|
|
HandleBlockExit(L.getBlock(), Pred);
|
|
}
|
|
|
|
void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode* Pred) {
|
|
|
|
if (const Stmt* Term = B->getTerminator()) {
|
|
switch (Term->getStmtClass()) {
|
|
default:
|
|
assert(false && "Analysis for this terminator not implemented.");
|
|
break;
|
|
|
|
case Stmt::BinaryOperatorClass: // '&&' and '||'
|
|
HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
|
|
return;
|
|
|
|
case Stmt::ConditionalOperatorClass:
|
|
HandleBranch(cast<ConditionalOperator>(Term)->getCond(), Term, B, Pred);
|
|
return;
|
|
|
|
// FIXME: Use constant-folding in CFG construction to simplify this
|
|
// case.
|
|
|
|
case Stmt::ChooseExprClass:
|
|
HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
|
|
return;
|
|
|
|
case Stmt::DoStmtClass:
|
|
HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
|
|
return;
|
|
|
|
case Stmt::ForStmtClass:
|
|
HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
|
|
return;
|
|
|
|
case Stmt::ContinueStmtClass:
|
|
case Stmt::BreakStmtClass:
|
|
case Stmt::GotoStmtClass:
|
|
break;
|
|
|
|
case Stmt::IfStmtClass:
|
|
HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
|
|
return;
|
|
|
|
case Stmt::IndirectGotoStmtClass: {
|
|
// Only 1 successor: the indirect goto dispatch block.
|
|
assert (B->succ_size() == 1);
|
|
|
|
IndirectGotoNodeBuilder
|
|
builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
|
|
*(B->succ_begin()), this);
|
|
|
|
SubEng.processIndirectGoto(builder);
|
|
return;
|
|
}
|
|
|
|
case Stmt::ObjCForCollectionStmtClass: {
|
|
// In the case of ObjCForCollectionStmt, it appears twice in a CFG:
|
|
//
|
|
// (1) inside a basic block, which represents the binding of the
|
|
// 'element' variable to a value.
|
|
// (2) in a terminator, which represents the branch.
|
|
//
|
|
// For (1), subengines will bind a value (i.e., 0 or 1) indicating
|
|
// whether or not collection contains any more elements. We cannot
|
|
// just test to see if the element is nil because a container can
|
|
// contain nil elements.
|
|
HandleBranch(Term, Term, B, Pred);
|
|
return;
|
|
}
|
|
|
|
case Stmt::SwitchStmtClass: {
|
|
SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
|
|
this);
|
|
|
|
SubEng.processSwitch(builder);
|
|
return;
|
|
}
|
|
|
|
case Stmt::WhileStmtClass:
|
|
HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
|
|
return;
|
|
}
|
|
}
|
|
|
|
assert (B->succ_size() == 1 &&
|
|
"Blocks with no terminator should have at most 1 successor.");
|
|
|
|
generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
|
|
Pred->State, Pred);
|
|
}
|
|
|
|
void CoreEngine::HandleBranch(const Stmt* Cond, const Stmt* Term,
|
|
const CFGBlock * B, ExplodedNode* Pred) {
|
|
assert(B->succ_size() == 2);
|
|
BranchNodeBuilder Builder(B, *(B->succ_begin()), *(B->succ_begin()+1),
|
|
Pred, this);
|
|
SubEng.processBranch(Cond, Term, Builder);
|
|
}
|
|
|
|
void CoreEngine::HandlePostStmt(const CFGBlock* B, unsigned StmtIdx,
|
|
ExplodedNode* Pred) {
|
|
assert (!B->empty());
|
|
|
|
if (StmtIdx == B->size())
|
|
HandleBlockExit(B, Pred);
|
|
else {
|
|
StmtNodeBuilder Builder(B, StmtIdx, Pred, this,
|
|
SubEng.getStateManager());
|
|
SubEng.processCFGElement((*B)[StmtIdx], Builder);
|
|
}
|
|
}
|
|
|
|
/// generateNode - Utility method to generate nodes, hook up successors,
|
|
/// and add nodes to the worklist.
|
|
void CoreEngine::generateNode(const ProgramPoint& Loc,
|
|
const GRState* State, ExplodedNode* Pred) {
|
|
|
|
bool IsNew;
|
|
ExplodedNode* Node = G->getNode(Loc, State, &IsNew);
|
|
|
|
if (Pred)
|
|
Node->addPredecessor(Pred, *G); // Link 'Node' with its predecessor.
|
|
else {
|
|
assert (IsNew);
|
|
G->addRoot(Node); // 'Node' has no predecessor. Make it a root.
|
|
}
|
|
|
|
// Only add 'Node' to the worklist if it was freshly generated.
|
|
if (IsNew) WList->enqueue(Node);
|
|
}
|
|
|
|
ExplodedNode *
|
|
GenericNodeBuilderImpl::generateNodeImpl(const GRState *state,
|
|
ExplodedNode *pred,
|
|
ProgramPoint programPoint,
|
|
bool asSink) {
|
|
|
|
hasGeneratedNode = true;
|
|
bool isNew;
|
|
ExplodedNode *node = engine.getGraph().getNode(programPoint, state, &isNew);
|
|
if (pred)
|
|
node->addPredecessor(pred, engine.getGraph());
|
|
if (isNew) {
|
|
if (asSink) {
|
|
node->markAsSink();
|
|
sinksGenerated.push_back(node);
|
|
}
|
|
return node;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
StmtNodeBuilder::StmtNodeBuilder(const CFGBlock* b, unsigned idx,
|
|
ExplodedNode* N, CoreEngine* e,
|
|
GRStateManager &mgr)
|
|
: Eng(*e), B(*b), Idx(idx), Pred(N), Mgr(mgr),
|
|
PurgingDeadSymbols(false), BuildSinks(false), hasGeneratedNode(false),
|
|
PointKind(ProgramPoint::PostStmtKind), Tag(0) {
|
|
Deferred.insert(N);
|
|
CleanedState = Pred->getState();
|
|
}
|
|
|
|
StmtNodeBuilder::~StmtNodeBuilder() {
|
|
for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
|
|
if (!(*I)->isSink())
|
|
GenerateAutoTransition(*I);
|
|
}
|
|
|
|
void StmtNodeBuilder::GenerateAutoTransition(ExplodedNode* N) {
|
|
assert (!N->isSink());
|
|
|
|
// Check if this node entered a callee.
|
|
if (isa<CallEnter>(N->getLocation())) {
|
|
// Still use the index of the CallExpr. It's needed to create the callee
|
|
// StackFrameContext.
|
|
Eng.WList->enqueue(N, &B, Idx);
|
|
return;
|
|
}
|
|
|
|
// Do not create extra nodes. Move to the next CFG element.
|
|
if (isa<PostInitializer>(N->getLocation())) {
|
|
Eng.WList->enqueue(N, &B, Idx+1);
|
|
return;
|
|
}
|
|
|
|
PostStmt Loc(getStmt(), N->getLocationContext());
|
|
|
|
if (Loc == N->getLocation()) {
|
|
// Note: 'N' should be a fresh node because otherwise it shouldn't be
|
|
// a member of Deferred.
|
|
Eng.WList->enqueue(N, &B, Idx+1);
|
|
return;
|
|
}
|
|
|
|
bool IsNew;
|
|
ExplodedNode* Succ = Eng.G->getNode(Loc, N->State, &IsNew);
|
|
Succ->addPredecessor(N, *Eng.G);
|
|
|
|
if (IsNew)
|
|
Eng.WList->enqueue(Succ, &B, Idx+1);
|
|
}
|
|
|
|
ExplodedNode* StmtNodeBuilder::MakeNode(ExplodedNodeSet& Dst, const Stmt* S,
|
|
ExplodedNode* Pred, const GRState* St,
|
|
ProgramPoint::Kind K) {
|
|
|
|
ExplodedNode* N = generateNode(S, St, Pred, K);
|
|
|
|
if (N) {
|
|
if (BuildSinks)
|
|
N->markAsSink();
|
|
else
|
|
Dst.Add(N);
|
|
}
|
|
|
|
return N;
|
|
}
|
|
|
|
static ProgramPoint GetProgramPoint(const Stmt *S, ProgramPoint::Kind K,
|
|
const LocationContext *LC, const void *tag){
|
|
switch (K) {
|
|
default:
|
|
assert(false && "Unhandled ProgramPoint kind");
|
|
case ProgramPoint::PreStmtKind:
|
|
return PreStmt(S, LC, tag);
|
|
case ProgramPoint::PostStmtKind:
|
|
return PostStmt(S, LC, tag);
|
|
case ProgramPoint::PreLoadKind:
|
|
return PreLoad(S, LC, tag);
|
|
case ProgramPoint::PostLoadKind:
|
|
return PostLoad(S, LC, tag);
|
|
case ProgramPoint::PreStoreKind:
|
|
return PreStore(S, LC, tag);
|
|
case ProgramPoint::PostStoreKind:
|
|
return PostStore(S, LC, tag);
|
|
case ProgramPoint::PostLValueKind:
|
|
return PostLValue(S, LC, tag);
|
|
case ProgramPoint::PostPurgeDeadSymbolsKind:
|
|
return PostPurgeDeadSymbols(S, LC, tag);
|
|
}
|
|
}
|
|
|
|
ExplodedNode*
|
|
StmtNodeBuilder::generateNodeInternal(const Stmt* S, const GRState* state,
|
|
ExplodedNode* Pred,
|
|
ProgramPoint::Kind K,
|
|
const void *tag) {
|
|
|
|
const ProgramPoint &L = GetProgramPoint(S, K, Pred->getLocationContext(),tag);
|
|
return generateNodeInternal(L, state, Pred);
|
|
}
|
|
|
|
ExplodedNode*
|
|
StmtNodeBuilder::generateNodeInternal(const ProgramPoint &Loc,
|
|
const GRState* State,
|
|
ExplodedNode* Pred) {
|
|
bool IsNew;
|
|
ExplodedNode* N = Eng.G->getNode(Loc, State, &IsNew);
|
|
N->addPredecessor(Pred, *Eng.G);
|
|
Deferred.erase(Pred);
|
|
|
|
if (IsNew) {
|
|
Deferred.insert(N);
|
|
return N;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
ExplodedNode* BranchNodeBuilder::generateNode(const GRState* State,
|
|
bool branch) {
|
|
|
|
// If the branch has been marked infeasible we should not generate a node.
|
|
if (!isFeasible(branch))
|
|
return NULL;
|
|
|
|
bool IsNew;
|
|
|
|
ExplodedNode* Succ =
|
|
Eng.G->getNode(BlockEdge(Src,branch ? DstT:DstF,Pred->getLocationContext()),
|
|
State, &IsNew);
|
|
|
|
Succ->addPredecessor(Pred, *Eng.G);
|
|
|
|
if (branch)
|
|
GeneratedTrue = true;
|
|
else
|
|
GeneratedFalse = true;
|
|
|
|
if (IsNew) {
|
|
Deferred.push_back(Succ);
|
|
return Succ;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
BranchNodeBuilder::~BranchNodeBuilder() {
|
|
if (!GeneratedTrue) generateNode(Pred->State, true);
|
|
if (!GeneratedFalse) generateNode(Pred->State, false);
|
|
|
|
for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
|
|
if (!(*I)->isSink()) Eng.WList->enqueue(*I);
|
|
}
|
|
|
|
|
|
ExplodedNode*
|
|
IndirectGotoNodeBuilder::generateNode(const iterator& I, const GRState* St,
|
|
bool isSink) {
|
|
bool IsNew;
|
|
|
|
ExplodedNode* Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
|
|
Pred->getLocationContext()), St, &IsNew);
|
|
|
|
Succ->addPredecessor(Pred, *Eng.G);
|
|
|
|
if (IsNew) {
|
|
|
|
if (isSink)
|
|
Succ->markAsSink();
|
|
else
|
|
Eng.WList->enqueue(Succ);
|
|
|
|
return Succ;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ExplodedNode*
|
|
SwitchNodeBuilder::generateCaseStmtNode(const iterator& I, const GRState* St){
|
|
|
|
bool IsNew;
|
|
|
|
ExplodedNode* Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
|
|
Pred->getLocationContext()), St, &IsNew);
|
|
Succ->addPredecessor(Pred, *Eng.G);
|
|
|
|
if (IsNew) {
|
|
Eng.WList->enqueue(Succ);
|
|
return Succ;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ExplodedNode*
|
|
SwitchNodeBuilder::generateDefaultCaseNode(const GRState* St, bool isSink) {
|
|
|
|
// Get the block for the default case.
|
|
assert (Src->succ_rbegin() != Src->succ_rend());
|
|
CFGBlock* DefaultBlock = *Src->succ_rbegin();
|
|
|
|
bool IsNew;
|
|
|
|
ExplodedNode* Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock,
|
|
Pred->getLocationContext()), St, &IsNew);
|
|
Succ->addPredecessor(Pred, *Eng.G);
|
|
|
|
if (IsNew) {
|
|
if (isSink)
|
|
Succ->markAsSink();
|
|
else
|
|
Eng.WList->enqueue(Succ);
|
|
|
|
return Succ;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
EndOfFunctionNodeBuilder::~EndOfFunctionNodeBuilder() {
|
|
// Auto-generate an EOP node if one has not been generated.
|
|
if (!hasGeneratedNode) {
|
|
// If we are in an inlined call, generate CallExit node.
|
|
if (Pred->getLocationContext()->getParent())
|
|
GenerateCallExitNode(Pred->State);
|
|
else
|
|
generateNode(Pred->State);
|
|
}
|
|
}
|
|
|
|
ExplodedNode*
|
|
EndOfFunctionNodeBuilder::generateNode(const GRState* State, const void *tag,
|
|
ExplodedNode* P) {
|
|
hasGeneratedNode = true;
|
|
bool IsNew;
|
|
|
|
ExplodedNode* Node = Eng.G->getNode(BlockEntrance(&B,
|
|
Pred->getLocationContext(), tag), State, &IsNew);
|
|
|
|
Node->addPredecessor(P ? P : Pred, *Eng.G);
|
|
|
|
if (IsNew) {
|
|
Eng.G->addEndOfPath(Node);
|
|
return Node;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void EndOfFunctionNodeBuilder::GenerateCallExitNode(const GRState *state) {
|
|
hasGeneratedNode = true;
|
|
// Create a CallExit node and enqueue it.
|
|
const StackFrameContext *LocCtx
|
|
= cast<StackFrameContext>(Pred->getLocationContext());
|
|
const Stmt *CE = LocCtx->getCallSite();
|
|
|
|
// Use the the callee location context.
|
|
CallExit Loc(CE, LocCtx);
|
|
|
|
bool isNew;
|
|
ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew);
|
|
Node->addPredecessor(Pred, *Eng.G);
|
|
|
|
if (isNew)
|
|
Eng.WList->enqueue(Node);
|
|
}
|
|
|
|
|
|
void CallEnterNodeBuilder::generateNode(const GRState *state) {
|
|
// Check if the callee is in the same translation unit.
|
|
if (CalleeCtx->getTranslationUnit() !=
|
|
Pred->getLocationContext()->getTranslationUnit()) {
|
|
// Create a new engine. We must be careful that the new engine should not
|
|
// reference data structures owned by the old engine.
|
|
|
|
AnalysisManager &OldMgr = Eng.SubEng.getAnalysisManager();
|
|
|
|
// Get the callee's translation unit.
|
|
idx::TranslationUnit *TU = CalleeCtx->getTranslationUnit();
|
|
|
|
// Create a new AnalysisManager with components of the callee's
|
|
// TranslationUnit.
|
|
// The Diagnostic is actually shared when we create ASTUnits from AST files.
|
|
AnalysisManager AMgr(TU->getASTContext(), TU->getDiagnostic(),
|
|
OldMgr.getLangOptions(),
|
|
OldMgr.getPathDiagnosticClient(),
|
|
OldMgr.getStoreManagerCreator(),
|
|
OldMgr.getConstraintManagerCreator(),
|
|
OldMgr.getIndexer(),
|
|
OldMgr.getMaxNodes(), OldMgr.getMaxVisit(),
|
|
OldMgr.shouldVisualizeGraphviz(),
|
|
OldMgr.shouldVisualizeUbigraph(),
|
|
OldMgr.shouldPurgeDead(),
|
|
OldMgr.shouldEagerlyAssume(),
|
|
OldMgr.shouldTrimGraph(),
|
|
OldMgr.shouldInlineCall(),
|
|
OldMgr.getAnalysisContextManager().getUseUnoptimizedCFG(),
|
|
OldMgr.getAnalysisContextManager().getAddImplicitDtors(),
|
|
OldMgr.getAnalysisContextManager().getAddInitializers(),
|
|
OldMgr.shouldEagerlyTrimExplodedGraph());
|
|
llvm::OwningPtr<TransferFuncs> TF(MakeCFRefCountTF(AMgr.getASTContext(),
|
|
/* GCEnabled */ false,
|
|
AMgr.getLangOptions()));
|
|
// Create the new engine.
|
|
ExprEngine NewEng(AMgr, TF.take());
|
|
|
|
// Create the new LocationContext.
|
|
AnalysisContext *NewAnaCtx = AMgr.getAnalysisContext(CalleeCtx->getDecl(),
|
|
CalleeCtx->getTranslationUnit());
|
|
const StackFrameContext *OldLocCtx = CalleeCtx;
|
|
const StackFrameContext *NewLocCtx = AMgr.getStackFrame(NewAnaCtx,
|
|
OldLocCtx->getParent(),
|
|
OldLocCtx->getCallSite(),
|
|
OldLocCtx->getCallSiteBlock(),
|
|
OldLocCtx->getIndex());
|
|
|
|
// Now create an initial state for the new engine.
|
|
const GRState *NewState = NewEng.getStateManager().MarshalState(state,
|
|
NewLocCtx);
|
|
ExplodedNodeSet ReturnNodes;
|
|
NewEng.ExecuteWorkListWithInitialState(NewLocCtx, AMgr.getMaxNodes(),
|
|
NewState, ReturnNodes);
|
|
return;
|
|
}
|
|
|
|
// Get the callee entry block.
|
|
const CFGBlock *Entry = &(CalleeCtx->getCFG()->getEntry());
|
|
assert(Entry->empty());
|
|
assert(Entry->succ_size() == 1);
|
|
|
|
// Get the solitary successor.
|
|
const CFGBlock *SuccB = *(Entry->succ_begin());
|
|
|
|
// Construct an edge representing the starting location in the callee.
|
|
BlockEdge Loc(Entry, SuccB, CalleeCtx);
|
|
|
|
bool isNew;
|
|
ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew);
|
|
Node->addPredecessor(const_cast<ExplodedNode*>(Pred), *Eng.G);
|
|
|
|
if (isNew)
|
|
Eng.WList->enqueue(Node);
|
|
}
|
|
|
|
void CallExitNodeBuilder::generateNode(const GRState *state) {
|
|
// Get the callee's location context.
|
|
const StackFrameContext *LocCtx
|
|
= cast<StackFrameContext>(Pred->getLocationContext());
|
|
// When exiting an implicit automatic obj dtor call, the callsite is the Stmt
|
|
// that triggers the dtor.
|
|
PostStmt Loc(LocCtx->getCallSite(), LocCtx->getParent());
|
|
bool isNew;
|
|
ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew);
|
|
Node->addPredecessor(const_cast<ExplodedNode*>(Pred), *Eng.G);
|
|
if (isNew)
|
|
Eng.WList->enqueue(Node, LocCtx->getCallSiteBlock(),
|
|
LocCtx->getIndex() + 1);
|
|
}
|