llvm-project/llvm/lib/Target/AMDGPU/SIMachineFunctionInfo.h

665 lines
18 KiB
C++

//==- SIMachineFunctionInfo.h - SIMachineFunctionInfo interface --*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H
#define LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H
#include "AMDGPUArgumentUsageInfo.h"
#include "AMDGPUMachineFunction.h"
#include "SIRegisterInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include <array>
#include <cassert>
#include <utility>
#include <vector>
namespace llvm {
class MachineFrameInfo;
class MachineFunction;
class SIInstrInfo;
class TargetRegisterClass;
class AMDGPUImagePseudoSourceValue : public PseudoSourceValue {
public:
// TODO: Is the img rsrc useful?
explicit AMDGPUImagePseudoSourceValue(const TargetInstrInfo &TII) :
PseudoSourceValue(PseudoSourceValue::TargetCustom, TII) {}
bool isConstant(const MachineFrameInfo *) const override {
// This should probably be true for most images, but we will start by being
// conservative.
return false;
}
bool isAliased(const MachineFrameInfo *) const override {
return true;
}
bool mayAlias(const MachineFrameInfo *) const override {
return true;
}
};
class AMDGPUBufferPseudoSourceValue : public PseudoSourceValue {
public:
explicit AMDGPUBufferPseudoSourceValue(const TargetInstrInfo &TII) :
PseudoSourceValue(PseudoSourceValue::TargetCustom, TII) { }
bool isConstant(const MachineFrameInfo *) const override {
// This should probably be true for most images, but we will start by being
// conservative.
return false;
}
bool isAliased(const MachineFrameInfo *) const override {
return true;
}
bool mayAlias(const MachineFrameInfo *) const override {
return true;
}
};
/// This class keeps track of the SPI_SP_INPUT_ADDR config register, which
/// tells the hardware which interpolation parameters to load.
class SIMachineFunctionInfo final : public AMDGPUMachineFunction {
unsigned TIDReg = AMDGPU::NoRegister;
// Registers that may be reserved for spilling purposes. These may be the same
// as the input registers.
unsigned ScratchRSrcReg = AMDGPU::PRIVATE_RSRC_REG;
unsigned ScratchWaveOffsetReg = AMDGPU::SCRATCH_WAVE_OFFSET_REG;
// This is the current function's incremented size from the kernel's scratch
// wave offset register. For an entry function, this is exactly the same as
// the ScratchWaveOffsetReg.
unsigned FrameOffsetReg = AMDGPU::FP_REG;
// Top of the stack SGPR offset derived from the ScratchWaveOffsetReg.
unsigned StackPtrOffsetReg = AMDGPU::SP_REG;
AMDGPUFunctionArgInfo ArgInfo;
// Graphics info.
unsigned PSInputAddr = 0;
unsigned PSInputEnable = 0;
/// Number of bytes of arguments this function has on the stack. If the callee
/// is expected to restore the argument stack this should be a multiple of 16,
/// all usable during a tail call.
///
/// The alternative would forbid tail call optimisation in some cases: if we
/// want to transfer control from a function with 8-bytes of stack-argument
/// space to a function with 16-bytes then misalignment of this value would
/// make a stack adjustment necessary, which could not be undone by the
/// callee.
unsigned BytesInStackArgArea = 0;
bool ReturnsVoid = true;
// A pair of default/requested minimum/maximum flat work group sizes.
// Minimum - first, maximum - second.
std::pair<unsigned, unsigned> FlatWorkGroupSizes = {0, 0};
// A pair of default/requested minimum/maximum number of waves per execution
// unit. Minimum - first, maximum - second.
std::pair<unsigned, unsigned> WavesPerEU = {0, 0};
// Stack object indices for work group IDs.
std::array<int, 3> DebuggerWorkGroupIDStackObjectIndices = {{0, 0, 0}};
// Stack object indices for work item IDs.
std::array<int, 3> DebuggerWorkItemIDStackObjectIndices = {{0, 0, 0}};
DenseMap<const Value *,
std::unique_ptr<const AMDGPUBufferPseudoSourceValue>> BufferPSVs;
DenseMap<const Value *,
std::unique_ptr<const AMDGPUImagePseudoSourceValue>> ImagePSVs;
private:
unsigned LDSWaveSpillSize = 0;
unsigned NumUserSGPRs = 0;
unsigned NumSystemSGPRs = 0;
bool HasSpilledSGPRs = false;
bool HasSpilledVGPRs = false;
bool HasNonSpillStackObjects = false;
bool IsStackRealigned = false;
unsigned NumSpilledSGPRs = 0;
unsigned NumSpilledVGPRs = 0;
// Feature bits required for inputs passed in user SGPRs.
bool PrivateSegmentBuffer : 1;
bool DispatchPtr : 1;
bool QueuePtr : 1;
bool KernargSegmentPtr : 1;
bool DispatchID : 1;
bool FlatScratchInit : 1;
bool GridWorkgroupCountX : 1;
bool GridWorkgroupCountY : 1;
bool GridWorkgroupCountZ : 1;
// Feature bits required for inputs passed in system SGPRs.
bool WorkGroupIDX : 1; // Always initialized.
bool WorkGroupIDY : 1;
bool WorkGroupIDZ : 1;
bool WorkGroupInfo : 1;
bool PrivateSegmentWaveByteOffset : 1;
bool WorkItemIDX : 1; // Always initialized.
bool WorkItemIDY : 1;
bool WorkItemIDZ : 1;
// Private memory buffer
// Compute directly in sgpr[0:1]
// Other shaders indirect 64-bits at sgpr[0:1]
bool ImplicitBufferPtr : 1;
// Pointer to where the ABI inserts special kernel arguments separate from the
// user arguments. This is an offset from the KernargSegmentPtr.
bool ImplicitArgPtr : 1;
// The hard-wired high half of the address of the global information table
// for AMDPAL OS type. 0xffffffff represents no hard-wired high half, since
// current hardware only allows a 16 bit value.
unsigned GITPtrHigh;
unsigned HighBitsOf32BitAddress;
MCPhysReg getNextUserSGPR() const {
assert(NumSystemSGPRs == 0 && "System SGPRs must be added after user SGPRs");
return AMDGPU::SGPR0 + NumUserSGPRs;
}
MCPhysReg getNextSystemSGPR() const {
return AMDGPU::SGPR0 + NumUserSGPRs + NumSystemSGPRs;
}
public:
struct SpilledReg {
unsigned VGPR = AMDGPU::NoRegister;
int Lane = -1;
SpilledReg() = default;
SpilledReg(unsigned R, int L) : VGPR (R), Lane (L) {}
bool hasLane() { return Lane != -1;}
bool hasReg() { return VGPR != AMDGPU::NoRegister;}
};
struct SGPRSpillVGPRCSR {
// VGPR used for SGPR spills
unsigned VGPR;
// If the VGPR is a CSR, the stack slot used to save/restore it in the
// prolog/epilog.
Optional<int> FI;
SGPRSpillVGPRCSR(unsigned V, Optional<int> F) : VGPR(V), FI(F) {}
};
private:
// SGPR->VGPR spilling support.
using SpillRegMask = std::pair<unsigned, unsigned>;
// Track VGPR + wave index for each subregister of the SGPR spilled to
// frameindex key.
DenseMap<int, std::vector<SpilledReg>> SGPRToVGPRSpills;
unsigned NumVGPRSpillLanes = 0;
SmallVector<SGPRSpillVGPRCSR, 2> SpillVGPRs;
public:
SIMachineFunctionInfo(const MachineFunction &MF);
ArrayRef<SpilledReg> getSGPRToVGPRSpills(int FrameIndex) const {
auto I = SGPRToVGPRSpills.find(FrameIndex);
return (I == SGPRToVGPRSpills.end()) ?
ArrayRef<SpilledReg>() : makeArrayRef(I->second);
}
ArrayRef<SGPRSpillVGPRCSR> getSGPRSpillVGPRs() const {
return SpillVGPRs;
}
bool allocateSGPRSpillToVGPR(MachineFunction &MF, int FI);
void removeSGPRToVGPRFrameIndices(MachineFrameInfo &MFI);
bool hasCalculatedTID() const { return TIDReg != AMDGPU::NoRegister; }
unsigned getTIDReg() const { return TIDReg; }
void setTIDReg(unsigned Reg) { TIDReg = Reg; }
unsigned getBytesInStackArgArea() const {
return BytesInStackArgArea;
}
void setBytesInStackArgArea(unsigned Bytes) {
BytesInStackArgArea = Bytes;
}
// Add user SGPRs.
unsigned addPrivateSegmentBuffer(const SIRegisterInfo &TRI);
unsigned addDispatchPtr(const SIRegisterInfo &TRI);
unsigned addQueuePtr(const SIRegisterInfo &TRI);
unsigned addKernargSegmentPtr(const SIRegisterInfo &TRI);
unsigned addDispatchID(const SIRegisterInfo &TRI);
unsigned addFlatScratchInit(const SIRegisterInfo &TRI);
unsigned addImplicitBufferPtr(const SIRegisterInfo &TRI);
// Add system SGPRs.
unsigned addWorkGroupIDX() {
ArgInfo.WorkGroupIDX = ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.WorkGroupIDX.getRegister();
}
unsigned addWorkGroupIDY() {
ArgInfo.WorkGroupIDY = ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.WorkGroupIDY.getRegister();
}
unsigned addWorkGroupIDZ() {
ArgInfo.WorkGroupIDZ = ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.WorkGroupIDZ.getRegister();
}
unsigned addWorkGroupInfo() {
ArgInfo.WorkGroupInfo = ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.WorkGroupInfo.getRegister();
}
// Add special VGPR inputs
void setWorkItemIDX(ArgDescriptor Arg) {
ArgInfo.WorkItemIDX = Arg;
}
void setWorkItemIDY(ArgDescriptor Arg) {
ArgInfo.WorkItemIDY = Arg;
}
void setWorkItemIDZ(ArgDescriptor Arg) {
ArgInfo.WorkItemIDZ = Arg;
}
unsigned addPrivateSegmentWaveByteOffset() {
ArgInfo.PrivateSegmentWaveByteOffset
= ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.PrivateSegmentWaveByteOffset.getRegister();
}
void setPrivateSegmentWaveByteOffset(unsigned Reg) {
ArgInfo.PrivateSegmentWaveByteOffset = ArgDescriptor::createRegister(Reg);
}
bool hasPrivateSegmentBuffer() const {
return PrivateSegmentBuffer;
}
bool hasDispatchPtr() const {
return DispatchPtr;
}
bool hasQueuePtr() const {
return QueuePtr;
}
bool hasKernargSegmentPtr() const {
return KernargSegmentPtr;
}
bool hasDispatchID() const {
return DispatchID;
}
bool hasFlatScratchInit() const {
return FlatScratchInit;
}
bool hasGridWorkgroupCountX() const {
return GridWorkgroupCountX;
}
bool hasGridWorkgroupCountY() const {
return GridWorkgroupCountY;
}
bool hasGridWorkgroupCountZ() const {
return GridWorkgroupCountZ;
}
bool hasWorkGroupIDX() const {
return WorkGroupIDX;
}
bool hasWorkGroupIDY() const {
return WorkGroupIDY;
}
bool hasWorkGroupIDZ() const {
return WorkGroupIDZ;
}
bool hasWorkGroupInfo() const {
return WorkGroupInfo;
}
bool hasPrivateSegmentWaveByteOffset() const {
return PrivateSegmentWaveByteOffset;
}
bool hasWorkItemIDX() const {
return WorkItemIDX;
}
bool hasWorkItemIDY() const {
return WorkItemIDY;
}
bool hasWorkItemIDZ() const {
return WorkItemIDZ;
}
bool hasImplicitArgPtr() const {
return ImplicitArgPtr;
}
bool hasImplicitBufferPtr() const {
return ImplicitBufferPtr;
}
AMDGPUFunctionArgInfo &getArgInfo() {
return ArgInfo;
}
const AMDGPUFunctionArgInfo &getArgInfo() const {
return ArgInfo;
}
std::pair<const ArgDescriptor *, const TargetRegisterClass *>
getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const {
return ArgInfo.getPreloadedValue(Value);
}
unsigned getPreloadedReg(AMDGPUFunctionArgInfo::PreloadedValue Value) const {
return ArgInfo.getPreloadedValue(Value).first->getRegister();
}
unsigned getGITPtrHigh() const {
return GITPtrHigh;
}
unsigned get32BitAddressHighBits() const {
return HighBitsOf32BitAddress;
}
unsigned getNumUserSGPRs() const {
return NumUserSGPRs;
}
unsigned getNumPreloadedSGPRs() const {
return NumUserSGPRs + NumSystemSGPRs;
}
unsigned getPrivateSegmentWaveByteOffsetSystemSGPR() const {
return ArgInfo.PrivateSegmentWaveByteOffset.getRegister();
}
/// Returns the physical register reserved for use as the resource
/// descriptor for scratch accesses.
unsigned getScratchRSrcReg() const {
return ScratchRSrcReg;
}
void setScratchRSrcReg(unsigned Reg) {
assert(Reg != AMDGPU::NoRegister && "Should never be unset");
ScratchRSrcReg = Reg;
}
unsigned getScratchWaveOffsetReg() const {
return ScratchWaveOffsetReg;
}
unsigned getFrameOffsetReg() const {
return FrameOffsetReg;
}
void setStackPtrOffsetReg(unsigned Reg) {
StackPtrOffsetReg = Reg;
}
// Note the unset value for this is AMDGPU::SP_REG rather than
// NoRegister. This is mostly a workaround for MIR tests where state that
// can't be directly computed from the function is not preserved in serialized
// MIR.
unsigned getStackPtrOffsetReg() const {
return StackPtrOffsetReg;
}
void setScratchWaveOffsetReg(unsigned Reg) {
assert(Reg != AMDGPU::NoRegister && "Should never be unset");
ScratchWaveOffsetReg = Reg;
if (isEntryFunction())
FrameOffsetReg = ScratchWaveOffsetReg;
}
unsigned getQueuePtrUserSGPR() const {
return ArgInfo.QueuePtr.getRegister();
}
unsigned getImplicitBufferPtrUserSGPR() const {
return ArgInfo.ImplicitBufferPtr.getRegister();
}
bool hasSpilledSGPRs() const {
return HasSpilledSGPRs;
}
void setHasSpilledSGPRs(bool Spill = true) {
HasSpilledSGPRs = Spill;
}
bool hasSpilledVGPRs() const {
return HasSpilledVGPRs;
}
void setHasSpilledVGPRs(bool Spill = true) {
HasSpilledVGPRs = Spill;
}
bool hasNonSpillStackObjects() const {
return HasNonSpillStackObjects;
}
void setHasNonSpillStackObjects(bool StackObject = true) {
HasNonSpillStackObjects = StackObject;
}
bool isStackRealigned() const {
return IsStackRealigned;
}
void setIsStackRealigned(bool Realigned = true) {
IsStackRealigned = Realigned;
}
unsigned getNumSpilledSGPRs() const {
return NumSpilledSGPRs;
}
unsigned getNumSpilledVGPRs() const {
return NumSpilledVGPRs;
}
void addToSpilledSGPRs(unsigned num) {
NumSpilledSGPRs += num;
}
void addToSpilledVGPRs(unsigned num) {
NumSpilledVGPRs += num;
}
unsigned getPSInputAddr() const {
return PSInputAddr;
}
unsigned getPSInputEnable() const {
return PSInputEnable;
}
bool isPSInputAllocated(unsigned Index) const {
return PSInputAddr & (1 << Index);
}
void markPSInputAllocated(unsigned Index) {
PSInputAddr |= 1 << Index;
}
void markPSInputEnabled(unsigned Index) {
PSInputEnable |= 1 << Index;
}
bool returnsVoid() const {
return ReturnsVoid;
}
void setIfReturnsVoid(bool Value) {
ReturnsVoid = Value;
}
/// \returns A pair of default/requested minimum/maximum flat work group sizes
/// for this function.
std::pair<unsigned, unsigned> getFlatWorkGroupSizes() const {
return FlatWorkGroupSizes;
}
/// \returns Default/requested minimum flat work group size for this function.
unsigned getMinFlatWorkGroupSize() const {
return FlatWorkGroupSizes.first;
}
/// \returns Default/requested maximum flat work group size for this function.
unsigned getMaxFlatWorkGroupSize() const {
return FlatWorkGroupSizes.second;
}
/// \returns A pair of default/requested minimum/maximum number of waves per
/// execution unit.
std::pair<unsigned, unsigned> getWavesPerEU() const {
return WavesPerEU;
}
/// \returns Default/requested minimum number of waves per execution unit.
unsigned getMinWavesPerEU() const {
return WavesPerEU.first;
}
/// \returns Default/requested maximum number of waves per execution unit.
unsigned getMaxWavesPerEU() const {
return WavesPerEU.second;
}
/// \returns Stack object index for \p Dim's work group ID.
int getDebuggerWorkGroupIDStackObjectIndex(unsigned Dim) const {
assert(Dim < 3);
return DebuggerWorkGroupIDStackObjectIndices[Dim];
}
/// Sets stack object index for \p Dim's work group ID to \p ObjectIdx.
void setDebuggerWorkGroupIDStackObjectIndex(unsigned Dim, int ObjectIdx) {
assert(Dim < 3);
DebuggerWorkGroupIDStackObjectIndices[Dim] = ObjectIdx;
}
/// \returns Stack object index for \p Dim's work item ID.
int getDebuggerWorkItemIDStackObjectIndex(unsigned Dim) const {
assert(Dim < 3);
return DebuggerWorkItemIDStackObjectIndices[Dim];
}
/// Sets stack object index for \p Dim's work item ID to \p ObjectIdx.
void setDebuggerWorkItemIDStackObjectIndex(unsigned Dim, int ObjectIdx) {
assert(Dim < 3);
DebuggerWorkItemIDStackObjectIndices[Dim] = ObjectIdx;
}
/// \returns SGPR used for \p Dim's work group ID.
unsigned getWorkGroupIDSGPR(unsigned Dim) const {
switch (Dim) {
case 0:
assert(hasWorkGroupIDX());
return ArgInfo.WorkGroupIDX.getRegister();
case 1:
assert(hasWorkGroupIDY());
return ArgInfo.WorkGroupIDY.getRegister();
case 2:
assert(hasWorkGroupIDZ());
return ArgInfo.WorkGroupIDZ.getRegister();
}
llvm_unreachable("unexpected dimension");
}
/// \returns VGPR used for \p Dim' work item ID.
unsigned getWorkItemIDVGPR(unsigned Dim) const {
switch (Dim) {
case 0:
assert(hasWorkItemIDX());
return AMDGPU::VGPR0;
case 1:
assert(hasWorkItemIDY());
return AMDGPU::VGPR1;
case 2:
assert(hasWorkItemIDZ());
return AMDGPU::VGPR2;
}
llvm_unreachable("unexpected dimension");
}
unsigned getLDSWaveSpillSize() const {
return LDSWaveSpillSize;
}
const AMDGPUBufferPseudoSourceValue *getBufferPSV(const SIInstrInfo &TII,
const Value *BufferRsrc) {
assert(BufferRsrc);
auto PSV = BufferPSVs.try_emplace(
BufferRsrc,
llvm::make_unique<AMDGPUBufferPseudoSourceValue>(TII));
return PSV.first->second.get();
}
const AMDGPUImagePseudoSourceValue *getImagePSV(const SIInstrInfo &TII,
const Value *ImgRsrc) {
assert(ImgRsrc);
auto PSV = ImagePSVs.try_emplace(
ImgRsrc,
llvm::make_unique<AMDGPUImagePseudoSourceValue>(TII));
return PSV.first->second.get();
}
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H