forked from OSchip/llvm-project
3311 lines
129 KiB
C++
3311 lines
129 KiB
C++
//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/IR/Block.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/FunctionInterfaces.h"
|
|
#include "mlir/Rewrite/PatternApplicator.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include "llvm/Support/ScopedPrinter.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
|
|
#define DEBUG_TYPE "dialect-conversion"
|
|
|
|
/// Recursively collect all of the operations to convert from within 'region'.
|
|
/// If 'target' is nonnull, operations that are recursively legal have their
|
|
/// regions pre-filtered to avoid considering them for legalization.
|
|
static LogicalResult
|
|
computeConversionSet(iterator_range<Region::iterator> region,
|
|
Location regionLoc,
|
|
SmallVectorImpl<Operation *> &toConvert,
|
|
ConversionTarget *target = nullptr) {
|
|
if (llvm::empty(region))
|
|
return success();
|
|
|
|
// Traverse starting from the entry block.
|
|
SmallVector<Block *, 16> worklist(1, &*region.begin());
|
|
DenseSet<Block *> visitedBlocks;
|
|
visitedBlocks.insert(worklist.front());
|
|
while (!worklist.empty()) {
|
|
Block *block = worklist.pop_back_val();
|
|
|
|
// Compute the conversion set of each of the nested operations.
|
|
for (Operation &op : *block) {
|
|
toConvert.emplace_back(&op);
|
|
|
|
// Don't check this operation's children for conversion if the operation
|
|
// is recursively legal.
|
|
auto legalityInfo = target ? target->isLegal(&op)
|
|
: Optional<ConversionTarget::LegalOpDetails>();
|
|
if (legalityInfo && legalityInfo->isRecursivelyLegal)
|
|
continue;
|
|
for (auto ®ion : op.getRegions()) {
|
|
if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
|
|
toConvert, target)))
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// Recurse to children that haven't been visited.
|
|
for (Block *succ : block->getSuccessors())
|
|
if (visitedBlocks.insert(succ).second)
|
|
worklist.push_back(succ);
|
|
}
|
|
|
|
// Check that all blocks in the region were visited.
|
|
if (llvm::any_of(llvm::drop_begin(region, 1),
|
|
[&](Block &block) { return !visitedBlocks.count(&block); }))
|
|
return emitError(regionLoc, "unreachable blocks were not converted");
|
|
return success();
|
|
}
|
|
|
|
/// A utility function to log a successful result for the given reason.
|
|
template <typename... Args>
|
|
static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
|
|
LLVM_DEBUG({
|
|
os.unindent();
|
|
os.startLine() << "} -> SUCCESS";
|
|
if (!fmt.empty())
|
|
os.getOStream() << " : "
|
|
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...);
|
|
os.getOStream() << "\n";
|
|
});
|
|
}
|
|
|
|
/// A utility function to log a failure result for the given reason.
|
|
template <typename... Args>
|
|
static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
|
|
LLVM_DEBUG({
|
|
os.unindent();
|
|
os.startLine() << "} -> FAILURE : "
|
|
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...)
|
|
<< "\n";
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionValueMapping
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class wraps a BlockAndValueMapping to provide recursive lookup
|
|
/// functionality, i.e. we will traverse if the mapped value also has a mapping.
|
|
struct ConversionValueMapping {
|
|
/// Lookup a mapped value within the map. If a mapping for the provided value
|
|
/// does not exist then return the provided value. If `desiredType` is
|
|
/// non-null, returns the most recently mapped value with that type. If an
|
|
/// operand of that type does not exist, defaults to normal behavior.
|
|
Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
|
|
|
|
/// Lookup a mapped value within the map, or return null if a mapping does not
|
|
/// exist. If a mapping exists, this follows the same behavior of
|
|
/// `lookupOrDefault`.
|
|
Value lookupOrNull(Value from, Type desiredType = nullptr) const;
|
|
|
|
/// Map a value to the one provided.
|
|
void map(Value oldVal, Value newVal) {
|
|
LLVM_DEBUG({
|
|
for (Value it = newVal; it; it = mapping.lookupOrNull(it))
|
|
assert(it != oldVal && "inserting cyclic mapping");
|
|
});
|
|
mapping.map(oldVal, newVal);
|
|
}
|
|
|
|
/// Try to map a value to the one provided. Returns false if a transitive
|
|
/// mapping from the new value to the old value already exists, true if the
|
|
/// map was updated.
|
|
bool tryMap(Value oldVal, Value newVal);
|
|
|
|
/// Drop the last mapping for the given value.
|
|
void erase(Value value) { mapping.erase(value); }
|
|
|
|
/// Returns the inverse raw value mapping (without recursive query support).
|
|
DenseMap<Value, SmallVector<Value>> getInverse() const {
|
|
DenseMap<Value, SmallVector<Value>> inverse;
|
|
for (auto &it : mapping.getValueMap())
|
|
inverse[it.second].push_back(it.first);
|
|
return inverse;
|
|
}
|
|
|
|
private:
|
|
/// Current value mappings.
|
|
BlockAndValueMapping mapping;
|
|
};
|
|
} // namespace
|
|
|
|
Value ConversionValueMapping::lookupOrDefault(Value from,
|
|
Type desiredType) const {
|
|
// If there was no desired type, simply find the leaf value.
|
|
if (!desiredType) {
|
|
// If this value had a valid mapping, unmap that value as well in the case
|
|
// that it was also replaced.
|
|
while (auto mappedValue = mapping.lookupOrNull(from))
|
|
from = mappedValue;
|
|
return from;
|
|
}
|
|
|
|
// Otherwise, try to find the deepest value that has the desired type.
|
|
Value desiredValue;
|
|
do {
|
|
if (from.getType() == desiredType)
|
|
desiredValue = from;
|
|
|
|
Value mappedValue = mapping.lookupOrNull(from);
|
|
if (!mappedValue)
|
|
break;
|
|
from = mappedValue;
|
|
} while (true);
|
|
|
|
// If the desired value was found use it, otherwise default to the leaf value.
|
|
return desiredValue ? desiredValue : from;
|
|
}
|
|
|
|
Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const {
|
|
Value result = lookupOrDefault(from, desiredType);
|
|
if (result == from || (desiredType && result.getType() != desiredType))
|
|
return nullptr;
|
|
return result;
|
|
}
|
|
|
|
bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) {
|
|
for (Value it = newVal; it; it = mapping.lookupOrNull(it))
|
|
if (it == oldVal)
|
|
return false;
|
|
map(oldVal, newVal);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rewriter and Translation State
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
/// This class contains a snapshot of the current conversion rewriter state.
|
|
/// This is useful when saving and undoing a set of rewrites.
|
|
struct RewriterState {
|
|
RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations,
|
|
unsigned numReplacements, unsigned numArgReplacements,
|
|
unsigned numBlockActions, unsigned numIgnoredOperations,
|
|
unsigned numRootUpdates)
|
|
: numCreatedOps(numCreatedOps),
|
|
numUnresolvedMaterializations(numUnresolvedMaterializations),
|
|
numReplacements(numReplacements),
|
|
numArgReplacements(numArgReplacements),
|
|
numBlockActions(numBlockActions),
|
|
numIgnoredOperations(numIgnoredOperations),
|
|
numRootUpdates(numRootUpdates) {}
|
|
|
|
/// The current number of created operations.
|
|
unsigned numCreatedOps;
|
|
|
|
/// The current number of unresolved materializations.
|
|
unsigned numUnresolvedMaterializations;
|
|
|
|
/// The current number of replacements queued.
|
|
unsigned numReplacements;
|
|
|
|
/// The current number of argument replacements queued.
|
|
unsigned numArgReplacements;
|
|
|
|
/// The current number of block actions performed.
|
|
unsigned numBlockActions;
|
|
|
|
/// The current number of ignored operations.
|
|
unsigned numIgnoredOperations;
|
|
|
|
/// The current number of operations that were updated in place.
|
|
unsigned numRootUpdates;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationTransactionState
|
|
|
|
/// The state of an operation that was updated by a pattern in-place. This
|
|
/// contains all of the necessary information to reconstruct an operation that
|
|
/// was updated in place.
|
|
class OperationTransactionState {
|
|
public:
|
|
OperationTransactionState() = default;
|
|
OperationTransactionState(Operation *op)
|
|
: op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
|
|
operands(op->operand_begin(), op->operand_end()),
|
|
successors(op->successor_begin(), op->successor_end()) {}
|
|
|
|
/// Discard the transaction state and reset the state of the original
|
|
/// operation.
|
|
void resetOperation() const {
|
|
op->setLoc(loc);
|
|
op->setAttrs(attrs);
|
|
op->setOperands(operands);
|
|
for (const auto &it : llvm::enumerate(successors))
|
|
op->setSuccessor(it.value(), it.index());
|
|
}
|
|
|
|
/// Return the original operation of this state.
|
|
Operation *getOperation() const { return op; }
|
|
|
|
private:
|
|
Operation *op;
|
|
LocationAttr loc;
|
|
DictionaryAttr attrs;
|
|
SmallVector<Value, 8> operands;
|
|
SmallVector<Block *, 2> successors;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OpReplacement
|
|
|
|
/// This class represents one requested operation replacement via 'replaceOp' or
|
|
/// 'eraseOp`.
|
|
struct OpReplacement {
|
|
OpReplacement(TypeConverter *converter = nullptr) : converter(converter) {}
|
|
|
|
/// An optional type converter that can be used to materialize conversions
|
|
/// between the new and old values if necessary.
|
|
TypeConverter *converter;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BlockAction
|
|
|
|
/// The kind of the block action performed during the rewrite. Actions can be
|
|
/// undone if the conversion fails.
|
|
enum class BlockActionKind {
|
|
Create,
|
|
Erase,
|
|
Merge,
|
|
Move,
|
|
Split,
|
|
TypeConversion
|
|
};
|
|
|
|
/// Original position of the given block in its parent region. During undo
|
|
/// actions, the block needs to be placed after `insertAfterBlock`.
|
|
struct BlockPosition {
|
|
Region *region;
|
|
Block *insertAfterBlock;
|
|
};
|
|
|
|
/// Information needed to undo the merge actions.
|
|
/// - the source block, and
|
|
/// - the Operation that was the last operation in the dest block before the
|
|
/// merge (could be null if the dest block was empty).
|
|
struct MergeInfo {
|
|
Block *sourceBlock;
|
|
Operation *destBlockLastInst;
|
|
};
|
|
|
|
/// The storage class for an undoable block action (one of BlockActionKind),
|
|
/// contains the information necessary to undo this action.
|
|
struct BlockAction {
|
|
static BlockAction getCreate(Block *block) {
|
|
return {BlockActionKind::Create, block, {}};
|
|
}
|
|
static BlockAction getErase(Block *block, BlockPosition originalPosition) {
|
|
return {BlockActionKind::Erase, block, {originalPosition}};
|
|
}
|
|
static BlockAction getMerge(Block *block, Block *sourceBlock) {
|
|
BlockAction action{BlockActionKind::Merge, block, {}};
|
|
action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
|
|
return action;
|
|
}
|
|
static BlockAction getMove(Block *block, BlockPosition originalPosition) {
|
|
return {BlockActionKind::Move, block, {originalPosition}};
|
|
}
|
|
static BlockAction getSplit(Block *block, Block *originalBlock) {
|
|
BlockAction action{BlockActionKind::Split, block, {}};
|
|
action.originalBlock = originalBlock;
|
|
return action;
|
|
}
|
|
static BlockAction getTypeConversion(Block *block) {
|
|
return BlockAction{BlockActionKind::TypeConversion, block, {}};
|
|
}
|
|
|
|
// The action kind.
|
|
BlockActionKind kind;
|
|
|
|
// A pointer to the block that was created by the action.
|
|
Block *block;
|
|
|
|
union {
|
|
// In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
|
|
// contains a pointer to the region that originally contained the block as
|
|
// well as the position of the block in that region.
|
|
BlockPosition originalPosition;
|
|
// In use if kind == BlockActionKind::Split and contains a pointer to the
|
|
// block that was split into two parts.
|
|
Block *originalBlock;
|
|
// In use if kind == BlockActionKind::Merge, and contains the information
|
|
// needed to undo the merge.
|
|
MergeInfo mergeInfo;
|
|
};
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// UnresolvedMaterialization
|
|
|
|
/// This class represents an unresolved materialization, i.e. a materialization
|
|
/// that was inserted during conversion that needs to be legalized at the end of
|
|
/// the conversion process.
|
|
class UnresolvedMaterialization {
|
|
public:
|
|
/// The type of materialization.
|
|
enum Kind {
|
|
/// This materialization materializes a conversion for an illegal block
|
|
/// argument type, to a legal one.
|
|
Argument,
|
|
|
|
/// This materialization materializes a conversion from an illegal type to a
|
|
/// legal one.
|
|
Target
|
|
};
|
|
|
|
UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr,
|
|
TypeConverter *converter = nullptr,
|
|
Kind kind = Target, Type origOutputType = nullptr)
|
|
: op(op), converterAndKind(converter, kind),
|
|
origOutputType(origOutputType) {}
|
|
|
|
/// Return the temporary conversion operation inserted for this
|
|
/// materialization.
|
|
UnrealizedConversionCastOp getOp() const { return op; }
|
|
|
|
/// Return the type converter of this materialization (which may be null).
|
|
TypeConverter *getConverter() const { return converterAndKind.getPointer(); }
|
|
|
|
/// Return the kind of this materialization.
|
|
Kind getKind() const { return converterAndKind.getInt(); }
|
|
|
|
/// Set the kind of this materialization.
|
|
void setKind(Kind kind) { converterAndKind.setInt(kind); }
|
|
|
|
/// Return the original illegal output type of the input values.
|
|
Type getOrigOutputType() const { return origOutputType; }
|
|
|
|
private:
|
|
/// The unresolved materialization operation created during conversion.
|
|
UnrealizedConversionCastOp op;
|
|
|
|
/// The corresponding type converter to use when resolving this
|
|
/// materialization, and the kind of this materialization.
|
|
llvm::PointerIntPair<TypeConverter *, 1, Kind> converterAndKind;
|
|
|
|
/// The original output type. This is only used for argument conversions.
|
|
Type origOutputType;
|
|
};
|
|
} // namespace
|
|
|
|
/// Build an unresolved materialization operation given an output type and set
|
|
/// of input operands.
|
|
static Value buildUnresolvedMaterialization(
|
|
UnresolvedMaterialization::Kind kind, Block *insertBlock,
|
|
Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType,
|
|
Type origOutputType, TypeConverter *converter,
|
|
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
|
|
// Avoid materializing an unnecessary cast.
|
|
if (inputs.size() == 1 && inputs.front().getType() == outputType)
|
|
return inputs.front();
|
|
|
|
// Create an unresolved materialization. We use a new OpBuilder to avoid
|
|
// tracking the materialization like we do for other operations.
|
|
OpBuilder builder(insertBlock, insertPt);
|
|
auto convertOp =
|
|
builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs);
|
|
unresolvedMaterializations.emplace_back(convertOp, converter, kind,
|
|
origOutputType);
|
|
return convertOp.getResult(0);
|
|
}
|
|
static Value buildUnresolvedArgumentMaterialization(
|
|
PatternRewriter &rewriter, Location loc, ValueRange inputs,
|
|
Type origOutputType, Type outputType, TypeConverter *converter,
|
|
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
|
|
return buildUnresolvedMaterialization(
|
|
UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(),
|
|
rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType,
|
|
converter, unresolvedMaterializations);
|
|
}
|
|
static Value buildUnresolvedTargetMaterialization(
|
|
Location loc, Value input, Type outputType, TypeConverter *converter,
|
|
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
|
|
Block *insertBlock = input.getParentBlock();
|
|
Block::iterator insertPt = insertBlock->begin();
|
|
if (OpResult inputRes = input.dyn_cast<OpResult>())
|
|
insertPt = ++inputRes.getOwner()->getIterator();
|
|
|
|
return buildUnresolvedMaterialization(
|
|
UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input,
|
|
outputType, outputType, converter, unresolvedMaterializations);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ArgConverter
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
/// This class provides a simple interface for converting the types of block
|
|
/// arguments. This is done by creating a new block that contains the new legal
|
|
/// types and extracting the block that contains the old illegal types to allow
|
|
/// for undoing pending rewrites in the case of failure.
|
|
struct ArgConverter {
|
|
ArgConverter(
|
|
PatternRewriter &rewriter,
|
|
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations)
|
|
: rewriter(rewriter),
|
|
unresolvedMaterializations(unresolvedMaterializations) {}
|
|
|
|
/// This structure contains the information pertaining to an argument that has
|
|
/// been converted.
|
|
struct ConvertedArgInfo {
|
|
ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
|
|
Value castValue = nullptr)
|
|
: newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
|
|
|
|
/// The start index of in the new argument list that contains arguments that
|
|
/// replace the original.
|
|
unsigned newArgIdx;
|
|
|
|
/// The number of arguments that replaced the original argument.
|
|
unsigned newArgSize;
|
|
|
|
/// The cast value that was created to cast from the new arguments to the
|
|
/// old. This only used if 'newArgSize' > 1.
|
|
Value castValue;
|
|
};
|
|
|
|
/// This structure contains information pertaining to a block that has had its
|
|
/// signature converted.
|
|
struct ConvertedBlockInfo {
|
|
ConvertedBlockInfo(Block *origBlock, TypeConverter *converter)
|
|
: origBlock(origBlock), converter(converter) {}
|
|
|
|
/// The original block that was requested to have its signature converted.
|
|
Block *origBlock;
|
|
|
|
/// The conversion information for each of the arguments. The information is
|
|
/// None if the argument was dropped during conversion.
|
|
SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
|
|
|
|
/// The type converter used to convert the arguments.
|
|
TypeConverter *converter;
|
|
};
|
|
|
|
/// Return if the signature of the given block has already been converted.
|
|
bool hasBeenConverted(Block *block) const {
|
|
return conversionInfo.count(block) || convertedBlocks.count(block);
|
|
}
|
|
|
|
/// Set the type converter to use for the given region.
|
|
void setConverter(Region *region, TypeConverter *typeConverter) {
|
|
assert(typeConverter && "expected valid type converter");
|
|
regionToConverter[region] = typeConverter;
|
|
}
|
|
|
|
/// Return the type converter to use for the given region, or null if there
|
|
/// isn't one.
|
|
TypeConverter *getConverter(Region *region) {
|
|
return regionToConverter.lookup(region);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Rewrite Application
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Erase any rewrites registered for the blocks within the given operation
|
|
/// which is about to be removed. This merely drops the rewrites without
|
|
/// undoing them.
|
|
void notifyOpRemoved(Operation *op);
|
|
|
|
/// Cleanup and undo any generated conversions for the arguments of block.
|
|
/// This method replaces the new block with the original, reverting the IR to
|
|
/// its original state.
|
|
void discardRewrites(Block *block);
|
|
|
|
/// Fully replace uses of the old arguments with the new.
|
|
void applyRewrites(ConversionValueMapping &mapping);
|
|
|
|
/// Materialize any necessary conversions for converted arguments that have
|
|
/// live users, using the provided `findLiveUser` to search for a user that
|
|
/// survives the conversion process.
|
|
LogicalResult
|
|
materializeLiveConversions(ConversionValueMapping &mapping,
|
|
OpBuilder &builder,
|
|
function_ref<Operation *(Value)> findLiveUser);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Conversion
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Attempt to convert the signature of the given block, if successful a new
|
|
/// block is returned containing the new arguments. Returns `block` if it did
|
|
/// not require conversion.
|
|
FailureOr<Block *>
|
|
convertSignature(Block *block, TypeConverter *converter,
|
|
ConversionValueMapping &mapping,
|
|
SmallVectorImpl<BlockArgument> &argReplacements);
|
|
|
|
/// Apply the given signature conversion on the given block. The new block
|
|
/// containing the updated signature is returned. If no conversions were
|
|
/// necessary, e.g. if the block has no arguments, `block` is returned.
|
|
/// `converter` is used to generate any necessary cast operations that
|
|
/// translate between the origin argument types and those specified in the
|
|
/// signature conversion.
|
|
Block *applySignatureConversion(
|
|
Block *block, TypeConverter *converter,
|
|
TypeConverter::SignatureConversion &signatureConversion,
|
|
ConversionValueMapping &mapping,
|
|
SmallVectorImpl<BlockArgument> &argReplacements);
|
|
|
|
/// Insert a new conversion into the cache.
|
|
void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
|
|
|
|
/// A collection of blocks that have had their arguments converted. This is a
|
|
/// map from the new replacement block, back to the original block.
|
|
llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
|
|
|
|
/// The set of original blocks that were converted.
|
|
DenseSet<Block *> convertedBlocks;
|
|
|
|
/// A mapping from valid regions, to those containing the original blocks of a
|
|
/// conversion.
|
|
DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
|
|
|
|
/// A mapping of regions to type converters that should be used when
|
|
/// converting the arguments of blocks within that region.
|
|
DenseMap<Region *, TypeConverter *> regionToConverter;
|
|
|
|
/// The pattern rewriter to use when materializing conversions.
|
|
PatternRewriter &rewriter;
|
|
|
|
/// An ordered set of unresolved materializations during conversion.
|
|
SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations;
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rewrite Application
|
|
|
|
void ArgConverter::notifyOpRemoved(Operation *op) {
|
|
if (conversionInfo.empty())
|
|
return;
|
|
|
|
for (Region ®ion : op->getRegions()) {
|
|
for (Block &block : region) {
|
|
// Drop any rewrites from within.
|
|
for (Operation &nestedOp : block)
|
|
if (nestedOp.getNumRegions())
|
|
notifyOpRemoved(&nestedOp);
|
|
|
|
// Check if this block was converted.
|
|
auto it = conversionInfo.find(&block);
|
|
if (it == conversionInfo.end())
|
|
continue;
|
|
|
|
// Drop all uses of the original arguments and delete the original block.
|
|
Block *origBlock = it->second.origBlock;
|
|
for (BlockArgument arg : origBlock->getArguments())
|
|
arg.dropAllUses();
|
|
conversionInfo.erase(it);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ArgConverter::discardRewrites(Block *block) {
|
|
auto it = conversionInfo.find(block);
|
|
if (it == conversionInfo.end())
|
|
return;
|
|
Block *origBlock = it->second.origBlock;
|
|
|
|
// Drop all uses of the new block arguments and replace uses of the new block.
|
|
for (int i = block->getNumArguments() - 1; i >= 0; --i)
|
|
block->getArgument(i).dropAllUses();
|
|
block->replaceAllUsesWith(origBlock);
|
|
|
|
// Move the operations back the original block and the delete the new block.
|
|
origBlock->getOperations().splice(origBlock->end(), block->getOperations());
|
|
origBlock->moveBefore(block);
|
|
block->erase();
|
|
|
|
convertedBlocks.erase(origBlock);
|
|
conversionInfo.erase(it);
|
|
}
|
|
|
|
void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
|
|
for (auto &info : conversionInfo) {
|
|
ConvertedBlockInfo &blockInfo = info.second;
|
|
Block *origBlock = blockInfo.origBlock;
|
|
|
|
// Process the remapping for each of the original arguments.
|
|
for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
|
|
Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
|
|
BlockArgument origArg = origBlock->getArgument(i);
|
|
|
|
// Handle the case of a 1->0 value mapping.
|
|
if (!argInfo) {
|
|
if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType()))
|
|
origArg.replaceAllUsesWith(newArg);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise this is a 1->1+ value mapping.
|
|
Value castValue = argInfo->castValue;
|
|
assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
|
|
|
|
// If the argument is still used, replace it with the generated cast.
|
|
if (!origArg.use_empty()) {
|
|
origArg.replaceAllUsesWith(
|
|
mapping.lookupOrDefault(castValue, origArg.getType()));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
LogicalResult ArgConverter::materializeLiveConversions(
|
|
ConversionValueMapping &mapping, OpBuilder &builder,
|
|
function_ref<Operation *(Value)> findLiveUser) {
|
|
for (auto &info : conversionInfo) {
|
|
Block *newBlock = info.first;
|
|
ConvertedBlockInfo &blockInfo = info.second;
|
|
Block *origBlock = blockInfo.origBlock;
|
|
|
|
// Process the remapping for each of the original arguments.
|
|
for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
|
|
// If the type of this argument changed and the argument is still live, we
|
|
// need to materialize a conversion.
|
|
BlockArgument origArg = origBlock->getArgument(i);
|
|
if (mapping.lookupOrNull(origArg, origArg.getType()))
|
|
continue;
|
|
Operation *liveUser = findLiveUser(origArg);
|
|
if (!liveUser)
|
|
continue;
|
|
|
|
Value replacementValue = mapping.lookupOrDefault(origArg);
|
|
bool isDroppedArg = replacementValue == origArg;
|
|
if (isDroppedArg)
|
|
rewriter.setInsertionPointToStart(newBlock);
|
|
else
|
|
rewriter.setInsertionPointAfterValue(replacementValue);
|
|
Value newArg;
|
|
if (blockInfo.converter) {
|
|
newArg = blockInfo.converter->materializeSourceConversion(
|
|
rewriter, origArg.getLoc(), origArg.getType(),
|
|
isDroppedArg ? ValueRange() : ValueRange(replacementValue));
|
|
assert((!newArg || newArg.getType() == origArg.getType()) &&
|
|
"materialization hook did not provide a value of the expected "
|
|
"type");
|
|
}
|
|
if (!newArg) {
|
|
InFlightDiagnostic diag =
|
|
emitError(origArg.getLoc())
|
|
<< "failed to materialize conversion for block argument #" << i
|
|
<< " that remained live after conversion, type was "
|
|
<< origArg.getType();
|
|
if (!isDroppedArg)
|
|
diag << ", with target type " << replacementValue.getType();
|
|
diag.attachNote(liveUser->getLoc())
|
|
<< "see existing live user here: " << *liveUser;
|
|
return failure();
|
|
}
|
|
mapping.map(origArg, newArg);
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conversion
|
|
|
|
FailureOr<Block *> ArgConverter::convertSignature(
|
|
Block *block, TypeConverter *converter, ConversionValueMapping &mapping,
|
|
SmallVectorImpl<BlockArgument> &argReplacements) {
|
|
// Check if the block was already converted. If the block is detached,
|
|
// conservatively assume it is going to be deleted.
|
|
if (hasBeenConverted(block) || !block->getParent())
|
|
return block;
|
|
// If a converter wasn't provided, and the block wasn't already converted,
|
|
// there is nothing we can do.
|
|
if (!converter)
|
|
return failure();
|
|
|
|
// Try to convert the signature for the block with the provided converter.
|
|
if (auto conversion = converter->convertBlockSignature(block))
|
|
return applySignatureConversion(block, converter, *conversion, mapping,
|
|
argReplacements);
|
|
return failure();
|
|
}
|
|
|
|
Block *ArgConverter::applySignatureConversion(
|
|
Block *block, TypeConverter *converter,
|
|
TypeConverter::SignatureConversion &signatureConversion,
|
|
ConversionValueMapping &mapping,
|
|
SmallVectorImpl<BlockArgument> &argReplacements) {
|
|
// If no arguments are being changed or added, there is nothing to do.
|
|
unsigned origArgCount = block->getNumArguments();
|
|
auto convertedTypes = signatureConversion.getConvertedTypes();
|
|
if (origArgCount == 0 && convertedTypes.empty())
|
|
return block;
|
|
|
|
// Split the block at the beginning to get a new block to use for the updated
|
|
// signature.
|
|
Block *newBlock = block->splitBlock(block->begin());
|
|
block->replaceAllUsesWith(newBlock);
|
|
|
|
// FIXME: We should map the new arguments to proper locations.
|
|
SmallVector<Location> newLocs(convertedTypes.size(),
|
|
rewriter.getUnknownLoc());
|
|
SmallVector<Value, 4> newArgRange(
|
|
newBlock->addArguments(convertedTypes, newLocs));
|
|
ArrayRef<Value> newArgs(newArgRange);
|
|
|
|
// Remap each of the original arguments as determined by the signature
|
|
// conversion.
|
|
ConvertedBlockInfo info(block, converter);
|
|
info.argInfo.resize(origArgCount);
|
|
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(newBlock);
|
|
for (unsigned i = 0; i != origArgCount; ++i) {
|
|
auto inputMap = signatureConversion.getInputMapping(i);
|
|
if (!inputMap)
|
|
continue;
|
|
BlockArgument origArg = block->getArgument(i);
|
|
|
|
// If inputMap->replacementValue is not nullptr, then the argument is
|
|
// dropped and a replacement value is provided to be the remappedValue.
|
|
if (inputMap->replacementValue) {
|
|
assert(inputMap->size == 0 &&
|
|
"invalid to provide a replacement value when the argument isn't "
|
|
"dropped");
|
|
mapping.map(origArg, inputMap->replacementValue);
|
|
argReplacements.push_back(origArg);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, this is a 1->1+ mapping.
|
|
auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
|
|
Value newArg;
|
|
|
|
// If this is a 1->1 mapping and the types of new and replacement arguments
|
|
// match (i.e. it's an identity map), then the argument is mapped to its
|
|
// original type.
|
|
// FIXME: We simply pass through the replacement argument if there wasn't a
|
|
// converter, which isn't great as it allows implicit type conversions to
|
|
// appear. We should properly restructure this code to handle cases where a
|
|
// converter isn't provided and also to properly handle the case where an
|
|
// argument materialization is actually a temporary source materialization
|
|
// (e.g. in the case of 1->N).
|
|
if (replArgs.size() == 1 &&
|
|
(!converter || replArgs[0].getType() == origArg.getType())) {
|
|
newArg = replArgs.front();
|
|
} else {
|
|
Type origOutputType = origArg.getType();
|
|
|
|
// Legalize the argument output type.
|
|
Type outputType = origOutputType;
|
|
if (Type legalOutputType = converter->convertType(outputType))
|
|
outputType = legalOutputType;
|
|
|
|
newArg = buildUnresolvedArgumentMaterialization(
|
|
rewriter, origArg.getLoc(), replArgs, origOutputType, outputType,
|
|
converter, unresolvedMaterializations);
|
|
}
|
|
|
|
mapping.map(origArg, newArg);
|
|
argReplacements.push_back(origArg);
|
|
info.argInfo[i] =
|
|
ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
|
|
}
|
|
|
|
// Remove the original block from the region and return the new one.
|
|
insertConversion(newBlock, std::move(info));
|
|
return newBlock;
|
|
}
|
|
|
|
void ArgConverter::insertConversion(Block *newBlock,
|
|
ConvertedBlockInfo &&info) {
|
|
// Get a region to insert the old block.
|
|
Region *region = newBlock->getParent();
|
|
std::unique_ptr<Region> &mappedRegion = regionMapping[region];
|
|
if (!mappedRegion)
|
|
mappedRegion = std::make_unique<Region>(region->getParentOp());
|
|
|
|
// Move the original block to the mapped region and emplace the conversion.
|
|
mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
|
|
info.origBlock->getIterator());
|
|
convertedBlocks.insert(info.origBlock);
|
|
conversionInfo.insert({newBlock, std::move(info)});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPatternRewriterImpl
|
|
//===----------------------------------------------------------------------===//
|
|
namespace mlir {
|
|
namespace detail {
|
|
struct ConversionPatternRewriterImpl {
|
|
explicit ConversionPatternRewriterImpl(PatternRewriter &rewriter)
|
|
: argConverter(rewriter, unresolvedMaterializations),
|
|
notifyCallback(nullptr) {}
|
|
|
|
/// Cleanup and destroy any generated rewrite operations. This method is
|
|
/// invoked when the conversion process fails.
|
|
void discardRewrites();
|
|
|
|
/// Apply all requested operation rewrites. This method is invoked when the
|
|
/// conversion process succeeds.
|
|
void applyRewrites();
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// State Management
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Return the current state of the rewriter.
|
|
RewriterState getCurrentState();
|
|
|
|
/// Reset the state of the rewriter to a previously saved point.
|
|
void resetState(RewriterState state);
|
|
|
|
/// Erase any blocks that were unlinked from their regions and stored in block
|
|
/// actions.
|
|
void eraseDanglingBlocks();
|
|
|
|
/// Undo the block actions (motions, splits) one by one in reverse order until
|
|
/// "numActionsToKeep" actions remains.
|
|
void undoBlockActions(unsigned numActionsToKeep = 0);
|
|
|
|
/// Remap the given values to those with potentially different types. Returns
|
|
/// success if the values could be remapped, failure otherwise. `valueDiagTag`
|
|
/// is the tag used when describing a value within a diagnostic, e.g.
|
|
/// "operand".
|
|
LogicalResult remapValues(StringRef valueDiagTag, Optional<Location> inputLoc,
|
|
PatternRewriter &rewriter, ValueRange values,
|
|
SmallVectorImpl<Value> &remapped);
|
|
|
|
/// Returns true if the given operation is ignored, and does not need to be
|
|
/// converted.
|
|
bool isOpIgnored(Operation *op) const;
|
|
|
|
/// Recursively marks the nested operations under 'op' as ignored. This
|
|
/// removes them from being considered for legalization.
|
|
void markNestedOpsIgnored(Operation *op);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Conversion
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Convert the signature of the given block.
|
|
FailureOr<Block *> convertBlockSignature(
|
|
Block *block, TypeConverter *converter,
|
|
TypeConverter::SignatureConversion *conversion = nullptr);
|
|
|
|
/// Apply a signature conversion on the given region, using `converter` for
|
|
/// materializations if not null.
|
|
Block *
|
|
applySignatureConversion(Region *region,
|
|
TypeConverter::SignatureConversion &conversion,
|
|
TypeConverter *converter);
|
|
|
|
/// Convert the types of block arguments within the given region.
|
|
FailureOr<Block *>
|
|
convertRegionTypes(Region *region, TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *entryConversion);
|
|
|
|
/// Convert the types of non-entry block arguments within the given region.
|
|
LogicalResult convertNonEntryRegionTypes(
|
|
Region *region, TypeConverter &converter,
|
|
ArrayRef<TypeConverter::SignatureConversion> blockConversions = {});
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Rewriter Notification Hooks
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// PatternRewriter hook for replacing the results of an operation.
|
|
void notifyOpReplaced(Operation *op, ValueRange newValues);
|
|
|
|
/// Notifies that a block is about to be erased.
|
|
void notifyBlockIsBeingErased(Block *block);
|
|
|
|
/// Notifies that a block was created.
|
|
void notifyCreatedBlock(Block *block);
|
|
|
|
/// Notifies that a block was split.
|
|
void notifySplitBlock(Block *block, Block *continuation);
|
|
|
|
/// Notifies that `block` is being merged with `srcBlock`.
|
|
void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
|
|
|
|
/// Notifies that the blocks of a region are about to be moved.
|
|
void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent,
|
|
Region::iterator before);
|
|
|
|
/// Notifies that the blocks of a region were cloned into another.
|
|
void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
|
|
Location origRegionLoc);
|
|
|
|
/// Notifies that a pattern match failed for the given reason.
|
|
LogicalResult
|
|
notifyMatchFailure(Location loc,
|
|
function_ref<void(Diagnostic &)> reasonCallback);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// State
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Mapping between replaced values that differ in type. This happens when
|
|
// replacing a value with one of a different type.
|
|
ConversionValueMapping mapping;
|
|
|
|
/// Utility used to convert block arguments.
|
|
ArgConverter argConverter;
|
|
|
|
/// Ordered vector of all of the newly created operations during conversion.
|
|
SmallVector<Operation *> createdOps;
|
|
|
|
/// Ordered vector of all unresolved type conversion materializations during
|
|
/// conversion.
|
|
SmallVector<UnresolvedMaterialization> unresolvedMaterializations;
|
|
|
|
/// Ordered map of requested operation replacements.
|
|
llvm::MapVector<Operation *, OpReplacement> replacements;
|
|
|
|
/// Ordered vector of any requested block argument replacements.
|
|
SmallVector<BlockArgument, 4> argReplacements;
|
|
|
|
/// Ordered list of block operations (creations, splits, motions).
|
|
SmallVector<BlockAction, 4> blockActions;
|
|
|
|
/// A set of operations that should no longer be considered for legalization,
|
|
/// but were not directly replace/erased/etc. by a pattern. These are
|
|
/// generally child operations of other operations who were
|
|
/// replaced/erased/etc. This is not meant to be an exhaustive list of all
|
|
/// operations, but the minimal set that can be used to detect if a given
|
|
/// operation should be `ignored`. For example, we may add the operations that
|
|
/// define non-empty regions to the set, but not any of the others. This
|
|
/// simplifies the amount of memory needed as we can query if the parent
|
|
/// operation was ignored.
|
|
SetVector<Operation *> ignoredOps;
|
|
|
|
/// A transaction state for each of operations that were updated in-place.
|
|
SmallVector<OperationTransactionState, 4> rootUpdates;
|
|
|
|
/// A vector of indices into `replacements` of operations that were replaced
|
|
/// with values with different result types than the original operation, e.g.
|
|
/// 1->N conversion of some kind.
|
|
SmallVector<unsigned, 4> operationsWithChangedResults;
|
|
|
|
/// The current type converter, or nullptr if no type converter is currently
|
|
/// active.
|
|
TypeConverter *currentTypeConverter = nullptr;
|
|
|
|
/// This allows the user to collect the match failure message.
|
|
function_ref<void(Diagnostic &)> notifyCallback;
|
|
|
|
#ifndef NDEBUG
|
|
/// A set of operations that have pending updates. This tracking isn't
|
|
/// strictly necessary, and is thus only active during debug builds for extra
|
|
/// verification.
|
|
SmallPtrSet<Operation *, 1> pendingRootUpdates;
|
|
|
|
/// A logger used to emit diagnostics during the conversion process.
|
|
llvm::ScopedPrinter logger{llvm::dbgs()};
|
|
#endif
|
|
};
|
|
} // namespace detail
|
|
} // namespace mlir
|
|
|
|
/// Detach any operations nested in the given operation from their parent
|
|
/// blocks, and erase the given operation. This can be used when the nested
|
|
/// operations are scheduled for erasure themselves, so deleting the regions of
|
|
/// the given operation together with their content would result in double-free.
|
|
/// This happens, for example, when rolling back op creation in the reverse
|
|
/// order and if the nested ops were created before the parent op. This function
|
|
/// does not need to collect nested ops recursively because it is expected to
|
|
/// also be called for each nested op when it is about to be deleted.
|
|
static void detachNestedAndErase(Operation *op) {
|
|
for (Region ®ion : op->getRegions()) {
|
|
for (Block &block : region.getBlocks()) {
|
|
while (!block.getOperations().empty())
|
|
block.getOperations().remove(block.getOperations().begin());
|
|
block.dropAllDefinedValueUses();
|
|
}
|
|
}
|
|
op->dropAllUses();
|
|
op->erase();
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::discardRewrites() {
|
|
// Reset any operations that were updated in place.
|
|
for (auto &state : rootUpdates)
|
|
state.resetOperation();
|
|
|
|
undoBlockActions();
|
|
|
|
// Remove any newly created ops.
|
|
for (UnresolvedMaterialization &materialization : unresolvedMaterializations)
|
|
detachNestedAndErase(materialization.getOp());
|
|
for (auto *op : llvm::reverse(createdOps))
|
|
detachNestedAndErase(op);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::applyRewrites() {
|
|
// Apply all of the rewrites replacements requested during conversion.
|
|
for (auto &repl : replacements) {
|
|
for (OpResult result : repl.first->getResults())
|
|
if (Value newValue = mapping.lookupOrNull(result, result.getType()))
|
|
result.replaceAllUsesWith(newValue);
|
|
|
|
// If this operation defines any regions, drop any pending argument
|
|
// rewrites.
|
|
if (repl.first->getNumRegions())
|
|
argConverter.notifyOpRemoved(repl.first);
|
|
}
|
|
|
|
// Apply all of the requested argument replacements.
|
|
for (BlockArgument arg : argReplacements) {
|
|
Value repl = mapping.lookupOrNull(arg, arg.getType());
|
|
if (!repl)
|
|
continue;
|
|
|
|
if (repl.isa<BlockArgument>()) {
|
|
arg.replaceAllUsesWith(repl);
|
|
continue;
|
|
}
|
|
|
|
// If the replacement value is an operation, we check to make sure that we
|
|
// don't replace uses that are within the parent operation of the
|
|
// replacement value.
|
|
Operation *replOp = repl.cast<OpResult>().getOwner();
|
|
Block *replBlock = replOp->getBlock();
|
|
arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
|
|
Operation *user = operand.getOwner();
|
|
return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
|
|
});
|
|
}
|
|
|
|
// Drop all of the unresolved materialization operations created during
|
|
// conversion.
|
|
for (auto &mat : unresolvedMaterializations) {
|
|
mat.getOp()->dropAllUses();
|
|
mat.getOp()->erase();
|
|
}
|
|
|
|
// In a second pass, erase all of the replaced operations in reverse. This
|
|
// allows processing nested operations before their parent region is
|
|
// destroyed. Because we process in reverse order, producers may be deleted
|
|
// before their users (a pattern deleting a producer and then the consumer)
|
|
// so we first drop all uses explicitly.
|
|
for (auto &repl : llvm::reverse(replacements)) {
|
|
repl.first->dropAllUses();
|
|
repl.first->erase();
|
|
}
|
|
|
|
argConverter.applyRewrites(mapping);
|
|
|
|
// Now that the ops have been erased, also erase dangling blocks.
|
|
eraseDanglingBlocks();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// State Management
|
|
|
|
RewriterState ConversionPatternRewriterImpl::getCurrentState() {
|
|
return RewriterState(createdOps.size(), unresolvedMaterializations.size(),
|
|
replacements.size(), argReplacements.size(),
|
|
blockActions.size(), ignoredOps.size(),
|
|
rootUpdates.size());
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::resetState(RewriterState state) {
|
|
// Reset any operations that were updated in place.
|
|
for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
|
|
rootUpdates[i].resetOperation();
|
|
rootUpdates.resize(state.numRootUpdates);
|
|
|
|
// Reset any replaced arguments.
|
|
for (BlockArgument replacedArg :
|
|
llvm::drop_begin(argReplacements, state.numArgReplacements))
|
|
mapping.erase(replacedArg);
|
|
argReplacements.resize(state.numArgReplacements);
|
|
|
|
// Undo any block actions.
|
|
undoBlockActions(state.numBlockActions);
|
|
|
|
// Reset any replaced operations and undo any saved mappings.
|
|
for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
|
|
for (auto result : repl.first->getResults())
|
|
mapping.erase(result);
|
|
while (replacements.size() != state.numReplacements)
|
|
replacements.pop_back();
|
|
|
|
// Pop all of the newly inserted materializations.
|
|
while (unresolvedMaterializations.size() !=
|
|
state.numUnresolvedMaterializations) {
|
|
UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val();
|
|
UnrealizedConversionCastOp op = mat.getOp();
|
|
|
|
// If this was a target materialization, drop the mapping that was inserted.
|
|
if (mat.getKind() == UnresolvedMaterialization::Target) {
|
|
for (Value input : op->getOperands())
|
|
mapping.erase(input);
|
|
}
|
|
detachNestedAndErase(op);
|
|
}
|
|
|
|
// Pop all of the newly created operations.
|
|
while (createdOps.size() != state.numCreatedOps) {
|
|
detachNestedAndErase(createdOps.back());
|
|
createdOps.pop_back();
|
|
}
|
|
|
|
// Pop all of the recorded ignored operations that are no longer valid.
|
|
while (ignoredOps.size() != state.numIgnoredOperations)
|
|
ignoredOps.pop_back();
|
|
|
|
// Reset operations with changed results.
|
|
while (!operationsWithChangedResults.empty() &&
|
|
operationsWithChangedResults.back() >= state.numReplacements)
|
|
operationsWithChangedResults.pop_back();
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
|
|
for (auto &action : blockActions)
|
|
if (action.kind == BlockActionKind::Erase)
|
|
delete action.block;
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::undoBlockActions(
|
|
unsigned numActionsToKeep) {
|
|
for (auto &action :
|
|
llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
|
|
switch (action.kind) {
|
|
// Delete the created block.
|
|
case BlockActionKind::Create: {
|
|
// Unlink all of the operations within this block, they will be deleted
|
|
// separately.
|
|
auto &blockOps = action.block->getOperations();
|
|
while (!blockOps.empty())
|
|
blockOps.remove(blockOps.begin());
|
|
action.block->dropAllDefinedValueUses();
|
|
action.block->erase();
|
|
break;
|
|
}
|
|
// Put the block (owned by action) back into its original position.
|
|
case BlockActionKind::Erase: {
|
|
auto &blockList = action.originalPosition.region->getBlocks();
|
|
Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
|
|
blockList.insert((insertAfterBlock
|
|
? std::next(Region::iterator(insertAfterBlock))
|
|
: blockList.begin()),
|
|
action.block);
|
|
break;
|
|
}
|
|
// Split the block at the position which was originally the end of the
|
|
// destination block (owned by action), and put the instructions back into
|
|
// the block used before the merge.
|
|
case BlockActionKind::Merge: {
|
|
Block *sourceBlock = action.mergeInfo.sourceBlock;
|
|
Block::iterator splitPoint =
|
|
(action.mergeInfo.destBlockLastInst
|
|
? ++Block::iterator(action.mergeInfo.destBlockLastInst)
|
|
: action.block->begin());
|
|
sourceBlock->getOperations().splice(sourceBlock->begin(),
|
|
action.block->getOperations(),
|
|
splitPoint, action.block->end());
|
|
break;
|
|
}
|
|
// Move the block back to its original position.
|
|
case BlockActionKind::Move: {
|
|
Region *originalRegion = action.originalPosition.region;
|
|
Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
|
|
originalRegion->getBlocks().splice(
|
|
(insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
|
|
: originalRegion->end()),
|
|
action.block->getParent()->getBlocks(), action.block);
|
|
break;
|
|
}
|
|
// Merge back the block that was split out.
|
|
case BlockActionKind::Split: {
|
|
action.originalBlock->getOperations().splice(
|
|
action.originalBlock->end(), action.block->getOperations());
|
|
action.block->dropAllDefinedValueUses();
|
|
action.block->erase();
|
|
break;
|
|
}
|
|
// Undo the type conversion.
|
|
case BlockActionKind::TypeConversion: {
|
|
argConverter.discardRewrites(action.block);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
blockActions.resize(numActionsToKeep);
|
|
}
|
|
|
|
LogicalResult ConversionPatternRewriterImpl::remapValues(
|
|
StringRef valueDiagTag, Optional<Location> inputLoc,
|
|
PatternRewriter &rewriter, ValueRange values,
|
|
SmallVectorImpl<Value> &remapped) {
|
|
remapped.reserve(llvm::size(values));
|
|
|
|
SmallVector<Type, 1> legalTypes;
|
|
for (const auto &it : llvm::enumerate(values)) {
|
|
Value operand = it.value();
|
|
Type origType = operand.getType();
|
|
|
|
// If a converter was provided, get the desired legal types for this
|
|
// operand.
|
|
Type desiredType;
|
|
if (currentTypeConverter) {
|
|
// If there is no legal conversion, fail to match this pattern.
|
|
legalTypes.clear();
|
|
if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
|
|
Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
|
|
return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
|
|
diag << "unable to convert type for " << valueDiagTag << " #"
|
|
<< it.index() << ", type was " << origType;
|
|
});
|
|
}
|
|
// TODO: There currently isn't any mechanism to do 1->N type conversion
|
|
// via the PatternRewriter replacement API, so for now we just ignore it.
|
|
if (legalTypes.size() == 1)
|
|
desiredType = legalTypes.front();
|
|
} else {
|
|
// TODO: What we should do here is just set `desiredType` to `origType`
|
|
// and then handle the necessary type conversions after the conversion
|
|
// process has finished. Unfortunately a lot of patterns currently rely on
|
|
// receiving the new operands even if the types change, so we keep the
|
|
// original behavior here for now until all of the patterns relying on
|
|
// this get updated.
|
|
}
|
|
Value newOperand = mapping.lookupOrDefault(operand, desiredType);
|
|
|
|
// Handle the case where the conversion was 1->1 and the new operand type
|
|
// isn't legal.
|
|
Type newOperandType = newOperand.getType();
|
|
if (currentTypeConverter && desiredType && newOperandType != desiredType) {
|
|
Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
|
|
Value castValue = buildUnresolvedTargetMaterialization(
|
|
operandLoc, newOperand, desiredType, currentTypeConverter,
|
|
unresolvedMaterializations);
|
|
mapping.map(mapping.lookupOrDefault(newOperand), castValue);
|
|
newOperand = castValue;
|
|
}
|
|
remapped.push_back(newOperand);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
|
|
// Check to see if this operation was replaced or its parent ignored.
|
|
return replacements.count(op) || ignoredOps.count(op->getParentOp());
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
|
|
// Walk this operation and collect nested operations that define non-empty
|
|
// regions. We mark such operations as 'ignored' so that we know we don't have
|
|
// to convert them, or their nested ops.
|
|
if (op->getNumRegions() == 0)
|
|
return;
|
|
op->walk([&](Operation *op) {
|
|
if (llvm::any_of(op->getRegions(),
|
|
[](Region ®ion) { return !region.empty(); }))
|
|
ignoredOps.insert(op);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Conversion
|
|
|
|
FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
|
|
Block *block, TypeConverter *converter,
|
|
TypeConverter::SignatureConversion *conversion) {
|
|
FailureOr<Block *> result =
|
|
conversion ? argConverter.applySignatureConversion(
|
|
block, converter, *conversion, mapping, argReplacements)
|
|
: argConverter.convertSignature(block, converter, mapping,
|
|
argReplacements);
|
|
if (failed(result))
|
|
return failure();
|
|
if (Block *newBlock = result.getValue()) {
|
|
if (newBlock != block)
|
|
blockActions.push_back(BlockAction::getTypeConversion(newBlock));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Block *ConversionPatternRewriterImpl::applySignatureConversion(
|
|
Region *region, TypeConverter::SignatureConversion &conversion,
|
|
TypeConverter *converter) {
|
|
if (!region->empty())
|
|
return *convertBlockSignature(®ion->front(), converter, &conversion);
|
|
return nullptr;
|
|
}
|
|
|
|
FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
|
|
Region *region, TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *entryConversion) {
|
|
argConverter.setConverter(region, &converter);
|
|
if (region->empty())
|
|
return nullptr;
|
|
|
|
if (failed(convertNonEntryRegionTypes(region, converter)))
|
|
return failure();
|
|
|
|
FailureOr<Block *> newEntry =
|
|
convertBlockSignature(®ion->front(), &converter, entryConversion);
|
|
return newEntry;
|
|
}
|
|
|
|
LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
|
|
Region *region, TypeConverter &converter,
|
|
ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
|
|
argConverter.setConverter(region, &converter);
|
|
if (region->empty())
|
|
return success();
|
|
|
|
// Convert the arguments of each block within the region.
|
|
int blockIdx = 0;
|
|
assert((blockConversions.empty() ||
|
|
blockConversions.size() == region->getBlocks().size() - 1) &&
|
|
"expected either to provide no SignatureConversions at all or to "
|
|
"provide a SignatureConversion for each non-entry block");
|
|
|
|
for (Block &block :
|
|
llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
|
|
TypeConverter::SignatureConversion *blockConversion =
|
|
blockConversions.empty()
|
|
? nullptr
|
|
: const_cast<TypeConverter::SignatureConversion *>(
|
|
&blockConversions[blockIdx++]);
|
|
|
|
if (failed(convertBlockSignature(&block, &converter, blockConversion)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rewriter Notification Hooks
|
|
|
|
void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
|
|
ValueRange newValues) {
|
|
assert(newValues.size() == op->getNumResults());
|
|
assert(!replacements.count(op) && "operation was already replaced");
|
|
|
|
// Track if any of the results changed, e.g. erased and replaced with null.
|
|
bool resultChanged = false;
|
|
|
|
// Create mappings for each of the new result values.
|
|
Value newValue, result;
|
|
for (auto it : llvm::zip(newValues, op->getResults())) {
|
|
std::tie(newValue, result) = it;
|
|
if (!newValue) {
|
|
resultChanged = true;
|
|
continue;
|
|
}
|
|
// Remap, and check for any result type changes.
|
|
mapping.map(result, newValue);
|
|
resultChanged |= (newValue.getType() != result.getType());
|
|
}
|
|
if (resultChanged)
|
|
operationsWithChangedResults.push_back(replacements.size());
|
|
|
|
// Record the requested operation replacement.
|
|
replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter)));
|
|
|
|
// Mark this operation as recursively ignored so that we don't need to
|
|
// convert any nested operations.
|
|
markNestedOpsIgnored(op);
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
|
|
Region *region = block->getParent();
|
|
Block *origPrevBlock = block->getPrevNode();
|
|
blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
|
|
blockActions.push_back(BlockAction::getCreate(block));
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
|
|
Block *continuation) {
|
|
blockActions.push_back(BlockAction::getSplit(continuation, block));
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
|
|
Block *srcBlock) {
|
|
blockActions.push_back(BlockAction::getMerge(block, srcBlock));
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
|
|
Region ®ion, Region &parent, Region::iterator before) {
|
|
if (region.empty())
|
|
return;
|
|
Block *laterBlock = ®ion.back();
|
|
for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
|
|
blockActions.push_back(
|
|
BlockAction::getMove(laterBlock, {®ion, &earlierBlock}));
|
|
laterBlock = &earlierBlock;
|
|
}
|
|
blockActions.push_back(BlockAction::getMove(laterBlock, {®ion, nullptr}));
|
|
}
|
|
|
|
void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
|
|
iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
|
|
for (Block &block : blocks)
|
|
blockActions.push_back(BlockAction::getCreate(&block));
|
|
|
|
// Compute the conversion set for the inlined region.
|
|
auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
|
|
|
|
// This original region has already had its conversion set computed, so there
|
|
// shouldn't be any new failures.
|
|
(void)result;
|
|
assert(succeeded(result) && "expected region to have no unreachable blocks");
|
|
}
|
|
|
|
LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
|
|
Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
|
|
LLVM_DEBUG({
|
|
Diagnostic diag(loc, DiagnosticSeverity::Remark);
|
|
reasonCallback(diag);
|
|
logger.startLine() << "** Failure : " << diag.str() << "\n";
|
|
if (notifyCallback)
|
|
notifyCallback(diag);
|
|
});
|
|
return failure();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPatternRewriter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
|
|
: PatternRewriter(ctx),
|
|
impl(new detail::ConversionPatternRewriterImpl(*this)) {}
|
|
ConversionPatternRewriter::~ConversionPatternRewriter() = default;
|
|
|
|
void ConversionPatternRewriter::replaceOpWithIf(
|
|
Operation *op, ValueRange newValues, bool *allUsesReplaced,
|
|
llvm::unique_function<bool(OpOperand &) const> functor) {
|
|
// TODO: To support this we will need to rework a bit of how replacements are
|
|
// tracked, given that this isn't guranteed to replace all of the uses of an
|
|
// operation. The main change is that now an operation can be replaced
|
|
// multiple times, in parts. The current "set" based tracking is mainly useful
|
|
// for tracking if a replaced operation should be ignored, i.e. if all of the
|
|
// uses will be replaced.
|
|
llvm_unreachable(
|
|
"replaceOpWithIf is currently not supported by DialectConversion");
|
|
}
|
|
|
|
void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
|
|
LLVM_DEBUG({
|
|
impl->logger.startLine()
|
|
<< "** Replace : '" << op->getName() << "'(" << op << ")\n";
|
|
});
|
|
impl->notifyOpReplaced(op, newValues);
|
|
}
|
|
|
|
void ConversionPatternRewriter::eraseOp(Operation *op) {
|
|
LLVM_DEBUG({
|
|
impl->logger.startLine()
|
|
<< "** Erase : '" << op->getName() << "'(" << op << ")\n";
|
|
});
|
|
SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
|
|
impl->notifyOpReplaced(op, nullRepls);
|
|
}
|
|
|
|
void ConversionPatternRewriter::eraseBlock(Block *block) {
|
|
impl->notifyBlockIsBeingErased(block);
|
|
|
|
// Mark all ops for erasure.
|
|
for (Operation &op : *block)
|
|
eraseOp(&op);
|
|
|
|
// Unlink the block from its parent region. The block is kept in the block
|
|
// action and will be actually destroyed when rewrites are applied. This
|
|
// allows us to keep the operations in the block live and undo the removal by
|
|
// re-inserting the block.
|
|
block->getParent()->getBlocks().remove(block);
|
|
}
|
|
|
|
Block *ConversionPatternRewriter::applySignatureConversion(
|
|
Region *region, TypeConverter::SignatureConversion &conversion,
|
|
TypeConverter *converter) {
|
|
return impl->applySignatureConversion(region, conversion, converter);
|
|
}
|
|
|
|
FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
|
|
Region *region, TypeConverter &converter,
|
|
TypeConverter::SignatureConversion *entryConversion) {
|
|
return impl->convertRegionTypes(region, converter, entryConversion);
|
|
}
|
|
|
|
LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
|
|
Region *region, TypeConverter &converter,
|
|
ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
|
|
return impl->convertNonEntryRegionTypes(region, converter, blockConversions);
|
|
}
|
|
|
|
void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
|
|
Value to) {
|
|
LLVM_DEBUG({
|
|
Operation *parentOp = from.getOwner()->getParentOp();
|
|
impl->logger.startLine() << "** Replace Argument : '" << from
|
|
<< "'(in region of '" << parentOp->getName()
|
|
<< "'(" << from.getOwner()->getParentOp() << ")\n";
|
|
});
|
|
impl->argReplacements.push_back(from);
|
|
impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
|
|
}
|
|
|
|
Value ConversionPatternRewriter::getRemappedValue(Value key) {
|
|
SmallVector<Value> remappedValues;
|
|
if (failed(impl->remapValues("value", /*inputLoc=*/llvm::None, *this, key,
|
|
remappedValues)))
|
|
return nullptr;
|
|
return remappedValues.front();
|
|
}
|
|
|
|
LogicalResult
|
|
ConversionPatternRewriter::getRemappedValues(ValueRange keys,
|
|
SmallVectorImpl<Value> &results) {
|
|
if (keys.empty())
|
|
return success();
|
|
return impl->remapValues("value", /*inputLoc=*/llvm::None, *this, keys,
|
|
results);
|
|
}
|
|
|
|
void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
|
|
impl->notifyCreatedBlock(block);
|
|
}
|
|
|
|
Block *ConversionPatternRewriter::splitBlock(Block *block,
|
|
Block::iterator before) {
|
|
auto *continuation = PatternRewriter::splitBlock(block, before);
|
|
impl->notifySplitBlock(block, continuation);
|
|
return continuation;
|
|
}
|
|
|
|
void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
|
|
ValueRange argValues) {
|
|
impl->notifyBlocksBeingMerged(dest, source);
|
|
assert(llvm::all_of(source->getPredecessors(),
|
|
[dest](Block *succ) { return succ == dest; }) &&
|
|
"expected 'source' to have no predecessors or only 'dest'");
|
|
assert(argValues.size() == source->getNumArguments() &&
|
|
"incorrect # of argument replacement values");
|
|
for (auto it : llvm::zip(source->getArguments(), argValues))
|
|
replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
|
|
dest->getOperations().splice(dest->end(), source->getOperations());
|
|
eraseBlock(source);
|
|
}
|
|
|
|
void ConversionPatternRewriter::inlineRegionBefore(Region ®ion,
|
|
Region &parent,
|
|
Region::iterator before) {
|
|
impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
|
|
PatternRewriter::inlineRegionBefore(region, parent, before);
|
|
}
|
|
|
|
void ConversionPatternRewriter::cloneRegionBefore(
|
|
Region ®ion, Region &parent, Region::iterator before,
|
|
BlockAndValueMapping &mapping) {
|
|
if (region.empty())
|
|
return;
|
|
PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
|
|
|
|
// Collect the range of the cloned blocks.
|
|
auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator();
|
|
auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
|
|
impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
|
|
}
|
|
|
|
void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
|
|
LLVM_DEBUG({
|
|
impl->logger.startLine()
|
|
<< "** Insert : '" << op->getName() << "'(" << op << ")\n";
|
|
});
|
|
impl->createdOps.push_back(op);
|
|
}
|
|
|
|
void ConversionPatternRewriter::startRootUpdate(Operation *op) {
|
|
#ifndef NDEBUG
|
|
impl->pendingRootUpdates.insert(op);
|
|
#endif
|
|
impl->rootUpdates.emplace_back(op);
|
|
}
|
|
|
|
void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
|
|
// There is nothing to do here, we only need to track the operation at the
|
|
// start of the update.
|
|
#ifndef NDEBUG
|
|
assert(impl->pendingRootUpdates.erase(op) &&
|
|
"operation did not have a pending in-place update");
|
|
#endif
|
|
}
|
|
|
|
void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
|
|
#ifndef NDEBUG
|
|
assert(impl->pendingRootUpdates.erase(op) &&
|
|
"operation did not have a pending in-place update");
|
|
#endif
|
|
// Erase the last update for this operation.
|
|
auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
|
|
auto &rootUpdates = impl->rootUpdates;
|
|
auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
|
|
assert(it != rootUpdates.rend() && "no root update started on op");
|
|
(*it).resetOperation();
|
|
int updateIdx = std::prev(rootUpdates.rend()) - it;
|
|
rootUpdates.erase(rootUpdates.begin() + updateIdx);
|
|
}
|
|
|
|
LogicalResult ConversionPatternRewriter::notifyMatchFailure(
|
|
Operation *op, function_ref<void(Diagnostic &)> reasonCallback) {
|
|
return impl->notifyMatchFailure(op->getLoc(), reasonCallback);
|
|
}
|
|
|
|
detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
|
|
return *impl;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionPattern
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult
|
|
ConversionPattern::matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const {
|
|
auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
|
|
auto &rewriterImpl = dialectRewriter.getImpl();
|
|
|
|
// Track the current conversion pattern type converter in the rewriter.
|
|
llvm::SaveAndRestore<TypeConverter *> currentConverterGuard(
|
|
rewriterImpl.currentTypeConverter, getTypeConverter());
|
|
|
|
// Remap the operands of the operation.
|
|
SmallVector<Value, 4> operands;
|
|
if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
|
|
op->getOperands(), operands))) {
|
|
return failure();
|
|
}
|
|
return matchAndRewrite(op, operands, dialectRewriter);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationLegalizer
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// A set of rewrite patterns that can be used to legalize a given operation.
|
|
using LegalizationPatterns = SmallVector<const Pattern *, 1>;
|
|
|
|
/// This class defines a recursive operation legalizer.
|
|
class OperationLegalizer {
|
|
public:
|
|
using LegalizationAction = ConversionTarget::LegalizationAction;
|
|
|
|
OperationLegalizer(ConversionTarget &targetInfo,
|
|
const FrozenRewritePatternSet &patterns);
|
|
|
|
/// Returns true if the given operation is known to be illegal on the target.
|
|
bool isIllegal(Operation *op) const;
|
|
|
|
/// Attempt to legalize the given operation. Returns success if the operation
|
|
/// was legalized, failure otherwise.
|
|
LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
|
|
|
|
/// Returns the conversion target in use by the legalizer.
|
|
ConversionTarget &getTarget() { return target; }
|
|
|
|
private:
|
|
/// Attempt to legalize the given operation by folding it.
|
|
LogicalResult legalizeWithFold(Operation *op,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Attempt to legalize the given operation by applying a pattern. Returns
|
|
/// success if the operation was legalized, failure otherwise.
|
|
LogicalResult legalizeWithPattern(Operation *op,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Return true if the given pattern may be applied to the given operation,
|
|
/// false otherwise.
|
|
bool canApplyPattern(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter);
|
|
|
|
/// Legalize the resultant IR after successfully applying the given pattern.
|
|
LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter,
|
|
RewriterState &curState);
|
|
|
|
/// Legalizes the actions registered during the execution of a pattern.
|
|
LogicalResult legalizePatternBlockActions(Operation *op,
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state,
|
|
RewriterState &newState);
|
|
LogicalResult legalizePatternCreatedOperations(
|
|
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState);
|
|
LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state,
|
|
RewriterState &newState);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Cost Model
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Build an optimistic legalization graph given the provided patterns. This
|
|
/// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
|
|
/// patterns for operations that are not directly legal, but may be
|
|
/// transitively legal for the current target given the provided patterns.
|
|
void buildLegalizationGraph(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// Compute the benefit of each node within the computed legalization graph.
|
|
/// This orders the patterns within 'legalizerPatterns' based upon two
|
|
/// criteria:
|
|
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
|
|
/// represent the more direct mapping to the target.
|
|
/// 2) When comparing patterns with the same legalization depth, prefer the
|
|
/// pattern with the highest PatternBenefit. This allows for users to
|
|
/// prefer specific legalizations over others.
|
|
void computeLegalizationGraphBenefit(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// Compute the legalization depth when legalizing an operation of the given
|
|
/// type.
|
|
unsigned computeOpLegalizationDepth(
|
|
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// Apply the conversion cost model to the given set of patterns, and return
|
|
/// the smallest legalization depth of any of the patterns. See
|
|
/// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
|
|
unsigned applyCostModelToPatterns(
|
|
LegalizationPatterns &patterns,
|
|
DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
|
|
|
|
/// The current set of patterns that have been applied.
|
|
SmallPtrSet<const Pattern *, 8> appliedPatterns;
|
|
|
|
/// The legalization information provided by the target.
|
|
ConversionTarget ⌖
|
|
|
|
/// The pattern applicator to use for conversions.
|
|
PatternApplicator applicator;
|
|
};
|
|
} // namespace
|
|
|
|
OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
|
|
const FrozenRewritePatternSet &patterns)
|
|
: target(targetInfo), applicator(patterns) {
|
|
// The set of patterns that can be applied to illegal operations to transform
|
|
// them into legal ones.
|
|
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
|
|
LegalizationPatterns anyOpLegalizerPatterns;
|
|
|
|
buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
|
|
computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
|
|
}
|
|
|
|
bool OperationLegalizer::isIllegal(Operation *op) const {
|
|
return target.isIllegal(op);
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalize(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
#ifndef NDEBUG
|
|
const char *logLineComment =
|
|
"//===-------------------------------------------===//\n";
|
|
|
|
auto &logger = rewriter.getImpl().logger;
|
|
#endif
|
|
LLVM_DEBUG({
|
|
logger.getOStream() << "\n";
|
|
logger.startLine() << logLineComment;
|
|
logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
|
|
<< op << ") {\n";
|
|
logger.indent();
|
|
|
|
// If the operation has no regions, just print it here.
|
|
if (op->getNumRegions() == 0) {
|
|
op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
|
|
logger.getOStream() << "\n\n";
|
|
}
|
|
});
|
|
|
|
// Check if this operation is legal on the target.
|
|
if (auto legalityInfo = target.isLegal(op)) {
|
|
LLVM_DEBUG({
|
|
logSuccess(
|
|
logger, "operation marked legal by the target{0}",
|
|
legalityInfo->isRecursivelyLegal
|
|
? "; NOTE: operation is recursively legal; skipping internals"
|
|
: "");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
|
|
// If this operation is recursively legal, mark its children as ignored so
|
|
// that we don't consider them for legalization.
|
|
if (legalityInfo->isRecursivelyLegal)
|
|
rewriter.getImpl().markNestedOpsIgnored(op);
|
|
return success();
|
|
}
|
|
|
|
// Check to see if the operation is ignored and doesn't need to be converted.
|
|
if (rewriter.getImpl().isOpIgnored(op)) {
|
|
LLVM_DEBUG({
|
|
logSuccess(logger, "operation marked 'ignored' during conversion");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
return success();
|
|
}
|
|
|
|
// If the operation isn't legal, try to fold it in-place.
|
|
// TODO: Should we always try to do this, even if the op is
|
|
// already legal?
|
|
if (succeeded(legalizeWithFold(op, rewriter))) {
|
|
LLVM_DEBUG({
|
|
logSuccess(logger, "operation was folded");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
return success();
|
|
}
|
|
|
|
// Otherwise, we need to apply a legalization pattern to this operation.
|
|
if (succeeded(legalizeWithPattern(op, rewriter))) {
|
|
LLVM_DEBUG({
|
|
logSuccess(logger, "");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
return success();
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
logFailure(logger, "no matched legalization pattern");
|
|
logger.startLine() << logLineComment;
|
|
});
|
|
return failure();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizeWithFold(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
auto &rewriterImpl = rewriter.getImpl();
|
|
RewriterState curState = rewriterImpl.getCurrentState();
|
|
|
|
LLVM_DEBUG({
|
|
rewriterImpl.logger.startLine() << "* Fold {\n";
|
|
rewriterImpl.logger.indent();
|
|
});
|
|
|
|
// Try to fold the operation.
|
|
SmallVector<Value, 2> replacementValues;
|
|
rewriter.setInsertionPoint(op);
|
|
if (failed(rewriter.tryFold(op, replacementValues))) {
|
|
LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
|
|
return failure();
|
|
}
|
|
|
|
// Insert a replacement for 'op' with the folded replacement values.
|
|
rewriter.replaceOp(op, replacementValues);
|
|
|
|
// Recursively legalize any new constant operations.
|
|
for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
|
|
i != e; ++i) {
|
|
Operation *cstOp = rewriterImpl.createdOps[i];
|
|
if (failed(legalize(cstOp, rewriter))) {
|
|
LLVM_DEBUG(logFailure(rewriterImpl.logger,
|
|
"failed to legalize generated constant '{0}'",
|
|
cstOp->getName()));
|
|
rewriterImpl.resetState(curState);
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizeWithPattern(Operation *op,
|
|
ConversionPatternRewriter &rewriter) {
|
|
auto &rewriterImpl = rewriter.getImpl();
|
|
|
|
// Functor that returns if the given pattern may be applied.
|
|
auto canApply = [&](const Pattern &pattern) {
|
|
return canApplyPattern(op, pattern, rewriter);
|
|
};
|
|
|
|
// Functor that cleans up the rewriter state after a pattern failed to match.
|
|
RewriterState curState = rewriterImpl.getCurrentState();
|
|
auto onFailure = [&](const Pattern &pattern) {
|
|
LLVM_DEBUG({
|
|
logFailure(rewriterImpl.logger, "pattern failed to match");
|
|
if (rewriterImpl.notifyCallback) {
|
|
Diagnostic diag(op->getLoc(), DiagnosticSeverity::Remark);
|
|
diag << "Failed to apply pattern \"" << pattern.getDebugName()
|
|
<< "\" on op:\n"
|
|
<< *op;
|
|
rewriterImpl.notifyCallback(diag);
|
|
}
|
|
});
|
|
rewriterImpl.resetState(curState);
|
|
appliedPatterns.erase(&pattern);
|
|
};
|
|
|
|
// Functor that performs additional legalization when a pattern is
|
|
// successfully applied.
|
|
auto onSuccess = [&](const Pattern &pattern) {
|
|
auto result = legalizePatternResult(op, pattern, rewriter, curState);
|
|
appliedPatterns.erase(&pattern);
|
|
if (failed(result))
|
|
rewriterImpl.resetState(curState);
|
|
return result;
|
|
};
|
|
|
|
// Try to match and rewrite a pattern on this operation.
|
|
return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
|
|
onSuccess);
|
|
}
|
|
|
|
bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter) {
|
|
LLVM_DEBUG({
|
|
auto &os = rewriter.getImpl().logger;
|
|
os.getOStream() << "\n";
|
|
os.startLine() << "* Pattern : '" << op->getName() << " -> (";
|
|
llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
|
|
os.getOStream() << ")' {\n";
|
|
os.indent();
|
|
});
|
|
|
|
// Ensure that we don't cycle by not allowing the same pattern to be
|
|
// applied twice in the same recursion stack if it is not known to be safe.
|
|
if (!pattern.hasBoundedRewriteRecursion() &&
|
|
!appliedPatterns.insert(&pattern).second) {
|
|
LLVM_DEBUG(
|
|
logFailure(rewriter.getImpl().logger, "pattern was already applied"));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
LogicalResult
|
|
OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
|
|
ConversionPatternRewriter &rewriter,
|
|
RewriterState &curState) {
|
|
auto &impl = rewriter.getImpl();
|
|
|
|
#ifndef NDEBUG
|
|
assert(impl.pendingRootUpdates.empty() && "dangling root updates");
|
|
#endif
|
|
|
|
// Check that the root was either replaced or updated in place.
|
|
auto replacedRoot = [&] {
|
|
return llvm::any_of(
|
|
llvm::drop_begin(impl.replacements, curState.numReplacements),
|
|
[op](auto &it) { return it.first == op; });
|
|
};
|
|
auto updatedRootInPlace = [&] {
|
|
return llvm::any_of(
|
|
llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
|
|
[op](auto &state) { return state.getOperation() == op; });
|
|
};
|
|
(void)replacedRoot;
|
|
(void)updatedRootInPlace;
|
|
assert((replacedRoot() || updatedRootInPlace()) &&
|
|
"expected pattern to replace the root operation");
|
|
|
|
// Legalize each of the actions registered during application.
|
|
RewriterState newState = impl.getCurrentState();
|
|
if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
|
|
newState)) ||
|
|
failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
|
|
failed(legalizePatternCreatedOperations(rewriter, impl, curState,
|
|
newState))) {
|
|
return failure();
|
|
}
|
|
|
|
LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationLegalizer::legalizePatternBlockActions(
|
|
Operation *op, ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &impl, RewriterState &state,
|
|
RewriterState &newState) {
|
|
SmallPtrSet<Operation *, 16> operationsToIgnore;
|
|
|
|
// If the pattern moved or created any blocks, make sure the types of block
|
|
// arguments get legalized.
|
|
for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
|
|
++i) {
|
|
auto &action = impl.blockActions[i];
|
|
if (action.kind == BlockActionKind::TypeConversion ||
|
|
action.kind == BlockActionKind::Erase)
|
|
continue;
|
|
// Only check blocks outside of the current operation.
|
|
Operation *parentOp = action.block->getParentOp();
|
|
if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
|
|
continue;
|
|
|
|
// If the region of the block has a type converter, try to convert the block
|
|
// directly.
|
|
if (auto *converter =
|
|
impl.argConverter.getConverter(action.block->getParent())) {
|
|
if (failed(impl.convertBlockSignature(action.block, converter))) {
|
|
LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
|
|
"block"));
|
|
return failure();
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, check that this operation isn't one generated by this pattern.
|
|
// This is because we will attempt to legalize the parent operation, and
|
|
// blocks in regions created by this pattern will already be legalized later
|
|
// on. If we haven't built the set yet, build it now.
|
|
if (operationsToIgnore.empty()) {
|
|
auto createdOps = ArrayRef<Operation *>(impl.createdOps)
|
|
.drop_front(state.numCreatedOps);
|
|
operationsToIgnore.insert(createdOps.begin(), createdOps.end());
|
|
}
|
|
|
|
// If this operation should be considered for re-legalization, try it.
|
|
if (operationsToIgnore.insert(parentOp).second &&
|
|
failed(legalize(parentOp, rewriter))) {
|
|
LLVM_DEBUG(logFailure(
|
|
impl.logger, "operation '{0}'({1}) became illegal after block action",
|
|
parentOp->getName(), parentOp));
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
|
|
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState) {
|
|
for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
|
|
Operation *op = impl.createdOps[i];
|
|
if (failed(legalize(op, rewriter))) {
|
|
LLVM_DEBUG(logFailure(impl.logger,
|
|
"failed to legalize generated operation '{0}'({1})",
|
|
op->getName(), op));
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationLegalizer::legalizePatternRootUpdates(
|
|
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
|
|
RewriterState &state, RewriterState &newState) {
|
|
for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
|
|
Operation *op = impl.rootUpdates[i].getOperation();
|
|
if (failed(legalize(op, rewriter))) {
|
|
LLVM_DEBUG(logFailure(
|
|
impl.logger, "failed to legalize operation updated in-place '{0}'",
|
|
op->getName()));
|
|
return failure();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Cost Model
|
|
|
|
void OperationLegalizer::buildLegalizationGraph(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
// A mapping between an operation and a set of operations that can be used to
|
|
// generate it.
|
|
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
|
|
// A mapping between an operation and any currently invalid patterns it has.
|
|
DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
|
|
// A worklist of patterns to consider for legality.
|
|
SetVector<const Pattern *> patternWorklist;
|
|
|
|
// Build the mapping from operations to the parent ops that may generate them.
|
|
applicator.walkAllPatterns([&](const Pattern &pattern) {
|
|
Optional<OperationName> root = pattern.getRootKind();
|
|
|
|
// If the pattern has no specific root, we can't analyze the relationship
|
|
// between the root op and generated operations. Given that, add all such
|
|
// patterns to the legalization set.
|
|
if (!root) {
|
|
anyOpLegalizerPatterns.push_back(&pattern);
|
|
return;
|
|
}
|
|
|
|
// Skip operations that are always known to be legal.
|
|
if (target.getOpAction(*root) == LegalizationAction::Legal)
|
|
return;
|
|
|
|
// Add this pattern to the invalid set for the root op and record this root
|
|
// as a parent for any generated operations.
|
|
invalidPatterns[*root].insert(&pattern);
|
|
for (auto op : pattern.getGeneratedOps())
|
|
parentOps[op].insert(*root);
|
|
|
|
// Add this pattern to the worklist.
|
|
patternWorklist.insert(&pattern);
|
|
});
|
|
|
|
// If there are any patterns that don't have a specific root kind, we can't
|
|
// make direct assumptions about what operations will never be legalized.
|
|
// Note: Technically we could, but it would require an analysis that may
|
|
// recurse into itself. It would be better to perform this kind of filtering
|
|
// at a higher level than here anyways.
|
|
if (!anyOpLegalizerPatterns.empty()) {
|
|
for (const Pattern *pattern : patternWorklist)
|
|
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
|
|
return;
|
|
}
|
|
|
|
while (!patternWorklist.empty()) {
|
|
auto *pattern = patternWorklist.pop_back_val();
|
|
|
|
// Check to see if any of the generated operations are invalid.
|
|
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
|
|
Optional<LegalizationAction> action = target.getOpAction(op);
|
|
return !legalizerPatterns.count(op) &&
|
|
(!action || action == LegalizationAction::Illegal);
|
|
}))
|
|
continue;
|
|
|
|
// Otherwise, if all of the generated operation are valid, this op is now
|
|
// legal so add all of the child patterns to the worklist.
|
|
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
|
|
invalidPatterns[*pattern->getRootKind()].erase(pattern);
|
|
|
|
// Add any invalid patterns of the parent operations to see if they have now
|
|
// become legal.
|
|
for (auto op : parentOps[*pattern->getRootKind()])
|
|
patternWorklist.set_union(invalidPatterns[op]);
|
|
}
|
|
}
|
|
|
|
void OperationLegalizer::computeLegalizationGraphBenefit(
|
|
LegalizationPatterns &anyOpLegalizerPatterns,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
// The smallest pattern depth, when legalizing an operation.
|
|
DenseMap<OperationName, unsigned> minOpPatternDepth;
|
|
|
|
// For each operation that is transitively legal, compute a cost for it.
|
|
for (auto &opIt : legalizerPatterns)
|
|
if (!minOpPatternDepth.count(opIt.first))
|
|
computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
|
|
legalizerPatterns);
|
|
|
|
// Apply the cost model to the patterns that can match any operation. Those
|
|
// with a specific operation type are already resolved when computing the op
|
|
// legalization depth.
|
|
if (!anyOpLegalizerPatterns.empty())
|
|
applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
|
|
legalizerPatterns);
|
|
|
|
// Apply a cost model to the pattern applicator. We order patterns first by
|
|
// depth then benefit. `legalizerPatterns` contains per-op patterns by
|
|
// decreasing benefit.
|
|
applicator.applyCostModel([&](const Pattern &pattern) {
|
|
ArrayRef<const Pattern *> orderedPatternList;
|
|
if (Optional<OperationName> rootName = pattern.getRootKind())
|
|
orderedPatternList = legalizerPatterns[*rootName];
|
|
else
|
|
orderedPatternList = anyOpLegalizerPatterns;
|
|
|
|
// If the pattern is not found, then it was removed and cannot be matched.
|
|
auto *it = llvm::find(orderedPatternList, &pattern);
|
|
if (it == orderedPatternList.end())
|
|
return PatternBenefit::impossibleToMatch();
|
|
|
|
// Patterns found earlier in the list have higher benefit.
|
|
return PatternBenefit(std::distance(it, orderedPatternList.end()));
|
|
});
|
|
}
|
|
|
|
unsigned OperationLegalizer::computeOpLegalizationDepth(
|
|
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
// Check for existing depth.
|
|
auto depthIt = minOpPatternDepth.find(op);
|
|
if (depthIt != minOpPatternDepth.end())
|
|
return depthIt->second;
|
|
|
|
// If a mapping for this operation does not exist, then this operation
|
|
// is always legal. Return 0 as the depth for a directly legal operation.
|
|
auto opPatternsIt = legalizerPatterns.find(op);
|
|
if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
|
|
return 0u;
|
|
|
|
// Record this initial depth in case we encounter this op again when
|
|
// recursively computing the depth.
|
|
minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
|
|
|
|
// Apply the cost model to the operation patterns, and update the minimum
|
|
// depth.
|
|
unsigned minDepth = applyCostModelToPatterns(
|
|
opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
|
|
minOpPatternDepth[op] = minDepth;
|
|
return minDepth;
|
|
}
|
|
|
|
unsigned OperationLegalizer::applyCostModelToPatterns(
|
|
LegalizationPatterns &patterns,
|
|
DenseMap<OperationName, unsigned> &minOpPatternDepth,
|
|
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
|
|
unsigned minDepth = std::numeric_limits<unsigned>::max();
|
|
|
|
// Compute the depth for each pattern within the set.
|
|
SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
|
|
patternsByDepth.reserve(patterns.size());
|
|
for (const Pattern *pattern : patterns) {
|
|
unsigned depth = 1;
|
|
for (auto generatedOp : pattern->getGeneratedOps()) {
|
|
unsigned generatedOpDepth = computeOpLegalizationDepth(
|
|
generatedOp, minOpPatternDepth, legalizerPatterns);
|
|
depth = std::max(depth, generatedOpDepth + 1);
|
|
}
|
|
patternsByDepth.emplace_back(pattern, depth);
|
|
|
|
// Update the minimum depth of the pattern list.
|
|
minDepth = std::min(minDepth, depth);
|
|
}
|
|
|
|
// If the operation only has one legalization pattern, there is no need to
|
|
// sort them.
|
|
if (patternsByDepth.size() == 1)
|
|
return minDepth;
|
|
|
|
// Sort the patterns by those likely to be the most beneficial.
|
|
llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(),
|
|
[](const std::pair<const Pattern *, unsigned> *lhs,
|
|
const std::pair<const Pattern *, unsigned> *rhs) {
|
|
// First sort by the smaller pattern legalization
|
|
// depth.
|
|
if (lhs->second != rhs->second)
|
|
return llvm::array_pod_sort_comparator<unsigned>(
|
|
&lhs->second, &rhs->second);
|
|
|
|
// Then sort by the larger pattern benefit.
|
|
auto lhsBenefit = lhs->first->getBenefit();
|
|
auto rhsBenefit = rhs->first->getBenefit();
|
|
return llvm::array_pod_sort_comparator<PatternBenefit>(
|
|
&rhsBenefit, &lhsBenefit);
|
|
});
|
|
|
|
// Update the legalization pattern to use the new sorted list.
|
|
patterns.clear();
|
|
for (auto &patternIt : patternsByDepth)
|
|
patterns.push_back(patternIt.first);
|
|
return minDepth;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationConverter
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
enum OpConversionMode {
|
|
/// In this mode, the conversion will ignore failed conversions to allow
|
|
/// illegal operations to co-exist in the IR.
|
|
Partial,
|
|
|
|
/// In this mode, all operations must be legal for the given target for the
|
|
/// conversion to succeed.
|
|
Full,
|
|
|
|
/// In this mode, operations are analyzed for legality. No actual rewrites are
|
|
/// applied to the operations on success.
|
|
Analysis,
|
|
};
|
|
|
|
// This class converts operations to a given conversion target via a set of
|
|
// rewrite patterns. The conversion behaves differently depending on the
|
|
// conversion mode.
|
|
struct OperationConverter {
|
|
explicit OperationConverter(ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
OpConversionMode mode,
|
|
DenseSet<Operation *> *trackedOps = nullptr)
|
|
: opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
|
|
|
|
/// Converts the given operations to the conversion target.
|
|
LogicalResult
|
|
convertOperations(ArrayRef<Operation *> ops,
|
|
function_ref<void(Diagnostic &)> notifyCallback = nullptr);
|
|
|
|
private:
|
|
/// Converts an operation with the given rewriter.
|
|
LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
|
|
|
|
/// This method is called after the conversion process to legalize any
|
|
/// remaining artifacts and complete the conversion.
|
|
LogicalResult finalize(ConversionPatternRewriter &rewriter);
|
|
|
|
/// Legalize the types of converted block arguments.
|
|
LogicalResult
|
|
legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl);
|
|
|
|
/// Legalize any unresolved type materializations.
|
|
LogicalResult legalizeUnresolvedMaterializations(
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping);
|
|
|
|
/// Legalize an operation result that was marked as "erased".
|
|
LogicalResult
|
|
legalizeErasedResult(Operation *op, OpResult result,
|
|
ConversionPatternRewriterImpl &rewriterImpl);
|
|
|
|
/// Legalize an operation result that was replaced with a value of a different
|
|
/// type.
|
|
LogicalResult legalizeChangedResultType(
|
|
Operation *op, OpResult result, Value newValue,
|
|
TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
const DenseMap<Value, SmallVector<Value>> &inverseMapping);
|
|
|
|
/// The legalizer to use when converting operations.
|
|
OperationLegalizer opLegalizer;
|
|
|
|
/// The conversion mode to use when legalizing operations.
|
|
OpConversionMode mode;
|
|
|
|
/// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
|
|
/// this is populated with ops found to be legalizable to the target.
|
|
/// When mode == OpConversionMode::Partial, this is populated with ops found
|
|
/// *not* to be legalizable to the target.
|
|
DenseSet<Operation *> *trackedOps;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
|
|
Operation *op) {
|
|
// Legalize the given operation.
|
|
if (failed(opLegalizer.legalize(op, rewriter))) {
|
|
// Handle the case of a failed conversion for each of the different modes.
|
|
// Full conversions expect all operations to be converted.
|
|
if (mode == OpConversionMode::Full)
|
|
return op->emitError()
|
|
<< "failed to legalize operation '" << op->getName() << "'";
|
|
// Partial conversions allow conversions to fail iff the operation was not
|
|
// explicitly marked as illegal. If the user provided a nonlegalizableOps
|
|
// set, non-legalizable ops are included.
|
|
if (mode == OpConversionMode::Partial) {
|
|
if (opLegalizer.isIllegal(op))
|
|
return op->emitError()
|
|
<< "failed to legalize operation '" << op->getName()
|
|
<< "' that was explicitly marked illegal";
|
|
if (trackedOps)
|
|
trackedOps->insert(op);
|
|
}
|
|
} else if (mode == OpConversionMode::Analysis) {
|
|
// Analysis conversions don't fail if any operations fail to legalize,
|
|
// they are only interested in the operations that were successfully
|
|
// legalized.
|
|
trackedOps->insert(op);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationConverter::convertOperations(
|
|
ArrayRef<Operation *> ops,
|
|
function_ref<void(Diagnostic &)> notifyCallback) {
|
|
if (ops.empty())
|
|
return success();
|
|
ConversionTarget &target = opLegalizer.getTarget();
|
|
|
|
// Compute the set of operations and blocks to convert.
|
|
SmallVector<Operation *> toConvert;
|
|
for (auto *op : ops) {
|
|
toConvert.emplace_back(op);
|
|
for (auto ®ion : op->getRegions())
|
|
if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
|
|
toConvert, &target)))
|
|
return failure();
|
|
}
|
|
|
|
// Convert each operation and discard rewrites on failure.
|
|
ConversionPatternRewriter rewriter(ops.front()->getContext());
|
|
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
|
|
rewriterImpl.notifyCallback = notifyCallback;
|
|
|
|
for (auto *op : toConvert)
|
|
if (failed(convert(rewriter, op)))
|
|
return rewriterImpl.discardRewrites(), failure();
|
|
|
|
// Now that all of the operations have been converted, finalize the conversion
|
|
// process to ensure any lingering conversion artifacts are cleaned up and
|
|
// legalized.
|
|
if (failed(finalize(rewriter)))
|
|
return rewriterImpl.discardRewrites(), failure();
|
|
|
|
// After a successful conversion, apply rewrites if this is not an analysis
|
|
// conversion.
|
|
if (mode == OpConversionMode::Analysis) {
|
|
rewriterImpl.discardRewrites();
|
|
} else {
|
|
rewriterImpl.applyRewrites();
|
|
|
|
// It is possible for a later pattern to erase an op that was originally
|
|
// identified as illegal and added to the trackedOps, remove it now after
|
|
// replacements have been computed.
|
|
if (trackedOps)
|
|
for (auto &repl : rewriterImpl.replacements)
|
|
trackedOps->erase(repl.first);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
|
|
Optional<DenseMap<Value, SmallVector<Value>>> inverseMapping;
|
|
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
|
|
if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl,
|
|
inverseMapping)) ||
|
|
failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
|
|
return failure();
|
|
|
|
if (rewriterImpl.operationsWithChangedResults.empty())
|
|
return success();
|
|
|
|
// Process requested operation replacements.
|
|
for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
|
|
i != e; ++i) {
|
|
unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
|
|
auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
|
|
for (OpResult result : repl.first->getResults()) {
|
|
Value newValue = rewriterImpl.mapping.lookupOrNull(result);
|
|
|
|
// If the operation result was replaced with null, all of the uses of this
|
|
// value should be replaced.
|
|
if (!newValue) {
|
|
if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
|
|
return failure();
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, check to see if the type of the result changed.
|
|
if (result.getType() == newValue.getType())
|
|
continue;
|
|
|
|
// Compute the inverse mapping only if it is really needed.
|
|
if (!inverseMapping)
|
|
inverseMapping = rewriterImpl.mapping.getInverse();
|
|
|
|
// Legalize this result.
|
|
rewriter.setInsertionPoint(repl.first);
|
|
if (failed(legalizeChangedResultType(repl.first, result, newValue,
|
|
repl.second.converter, rewriter,
|
|
rewriterImpl, *inverseMapping)))
|
|
return failure();
|
|
|
|
// Update the end iterator for this loop in the case it was updated
|
|
// when legalizing generated conversion operations.
|
|
e = rewriterImpl.operationsWithChangedResults.size();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl) {
|
|
// Functor used to check if all users of a value will be dead after
|
|
// conversion.
|
|
auto findLiveUser = [&](Value val) {
|
|
auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
|
|
return rewriterImpl.isOpIgnored(user);
|
|
});
|
|
return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
|
|
};
|
|
return rewriterImpl.argConverter.materializeLiveConversions(
|
|
rewriterImpl.mapping, rewriter, findLiveUser);
|
|
}
|
|
|
|
/// Replace the results of a materialization operation with the given values.
|
|
static void
|
|
replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl,
|
|
ResultRange matResults, ValueRange values,
|
|
DenseMap<Value, SmallVector<Value>> &inverseMapping) {
|
|
matResults.replaceAllUsesWith(values);
|
|
|
|
// For each of the materialization results, update the inverse mappings to
|
|
// point to the replacement values.
|
|
for (auto it : llvm::zip(matResults, values)) {
|
|
Value matResult, newValue;
|
|
std::tie(matResult, newValue) = it;
|
|
auto inverseMapIt = inverseMapping.find(matResult);
|
|
if (inverseMapIt == inverseMapping.end())
|
|
continue;
|
|
|
|
// Update the reverse mapping, or remove the mapping if we couldn't update
|
|
// it. Not being able to update signals that the mapping would have become
|
|
// circular (i.e. %foo -> newValue -> %foo), which may occur as values are
|
|
// propagated through temporary materializations. We simply drop the
|
|
// mapping, and let the post-conversion replacement logic handle updating
|
|
// uses.
|
|
for (Value inverseMapVal : inverseMapIt->second)
|
|
if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue))
|
|
rewriterImpl.mapping.erase(inverseMapVal);
|
|
}
|
|
}
|
|
|
|
/// Compute all of the unresolved materializations that will persist beyond the
|
|
/// conversion process, and require inserting a proper user materialization for.
|
|
static void computeNecessaryMaterializations(
|
|
DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
DenseMap<Value, SmallVector<Value>> &inverseMapping,
|
|
SetVector<UnresolvedMaterialization *> &necessaryMaterializations) {
|
|
auto isLive = [&](Value value) {
|
|
auto findFn = [&](Operation *user) {
|
|
auto matIt = materializationOps.find(user);
|
|
if (matIt != materializationOps.end())
|
|
return !necessaryMaterializations.count(matIt->second);
|
|
return rewriterImpl.isOpIgnored(user);
|
|
};
|
|
return llvm::find_if_not(value.getUsers(), findFn) != value.user_end();
|
|
};
|
|
|
|
llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue =
|
|
[&](Value invalidRoot, Value value, Type type) {
|
|
// Check to see if the input operation was remapped to a variant of the
|
|
// output.
|
|
Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
|
|
if (remappedValue.getType() == type && remappedValue != invalidRoot)
|
|
return remappedValue;
|
|
|
|
// Check to see if the input is a materialization operation that
|
|
// provides an inverse conversion. We just check blindly for
|
|
// UnrealizedConversionCastOp here, but it has no effect on correctness.
|
|
auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>();
|
|
if (inputCastOp && inputCastOp->getNumOperands() == 1)
|
|
return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0),
|
|
type);
|
|
|
|
return Value();
|
|
};
|
|
|
|
SetVector<UnresolvedMaterialization *> worklist;
|
|
for (auto &mat : rewriterImpl.unresolvedMaterializations) {
|
|
materializationOps.try_emplace(mat.getOp(), &mat);
|
|
worklist.insert(&mat);
|
|
}
|
|
while (!worklist.empty()) {
|
|
UnresolvedMaterialization *mat = worklist.pop_back_val();
|
|
UnrealizedConversionCastOp op = mat->getOp();
|
|
|
|
// We currently only handle target materializations here.
|
|
assert(op->getNumResults() == 1 && "unexpected materialization type");
|
|
OpResult opResult = op->getOpResult(0);
|
|
Type outputType = opResult.getType();
|
|
Operation::operand_range inputOperands = op.getOperands();
|
|
|
|
// Try to forward propagate operands for user conversion casts that result
|
|
// in the input types of the current cast.
|
|
for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) {
|
|
auto castOp = dyn_cast<UnrealizedConversionCastOp>(user);
|
|
if (!castOp)
|
|
continue;
|
|
if (castOp->getResultTypes() == inputOperands.getTypes()) {
|
|
replaceMaterialization(rewriterImpl, opResult, inputOperands,
|
|
inverseMapping);
|
|
necessaryMaterializations.remove(materializationOps.lookup(user));
|
|
}
|
|
}
|
|
|
|
// Try to avoid materializing a resolved materialization if possible.
|
|
// Handle the case of a 1-1 materialization.
|
|
if (inputOperands.size() == 1) {
|
|
// Check to see if the input operation was remapped to a variant of the
|
|
// output.
|
|
Value remappedValue =
|
|
lookupRemappedValue(opResult, inputOperands[0], outputType);
|
|
if (remappedValue && remappedValue != opResult) {
|
|
replaceMaterialization(rewriterImpl, opResult, remappedValue,
|
|
inverseMapping);
|
|
necessaryMaterializations.remove(mat);
|
|
continue;
|
|
}
|
|
} else {
|
|
// TODO: Avoid materializing other types of conversions here.
|
|
}
|
|
|
|
// Check to see if this is an argument materialization.
|
|
auto isBlockArg = [](Value v) { return v.isa<BlockArgument>(); };
|
|
if (llvm::any_of(op->getOperands(), isBlockArg) ||
|
|
llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) {
|
|
mat->setKind(UnresolvedMaterialization::Argument);
|
|
}
|
|
|
|
// If the materialization does not have any live users, we don't need to
|
|
// generate a user materialization for it.
|
|
// FIXME: For argument materializations, we currently need to check if any
|
|
// of the inverse mapped values are used because some patterns expect blind
|
|
// value replacement even if the types differ in some cases. When those
|
|
// patterns are fixed, we can drop the argument special case here.
|
|
bool isMaterializationLive = isLive(opResult);
|
|
if (mat->getKind() == UnresolvedMaterialization::Argument)
|
|
isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive);
|
|
if (!isMaterializationLive)
|
|
continue;
|
|
if (!necessaryMaterializations.insert(mat))
|
|
continue;
|
|
|
|
// Reprocess input materializations to see if they have an updated status.
|
|
for (Value input : inputOperands) {
|
|
if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) {
|
|
if (auto *mat = materializationOps.lookup(parentOp))
|
|
worklist.insert(mat);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Legalize the given unresolved materialization. Returns success if the
|
|
/// materialization was legalized, failure otherise.
|
|
static LogicalResult legalizeUnresolvedMaterialization(
|
|
UnresolvedMaterialization &mat,
|
|
DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
DenseMap<Value, SmallVector<Value>> &inverseMapping) {
|
|
auto findLiveUser = [&](auto &&users) {
|
|
auto liveUserIt = llvm::find_if_not(
|
|
users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); });
|
|
return liveUserIt == users.end() ? nullptr : *liveUserIt;
|
|
};
|
|
|
|
llvm::unique_function<Value(Value, Type)> lookupRemappedValue =
|
|
[&](Value value, Type type) {
|
|
// Check to see if the input operation was remapped to a variant of the
|
|
// output.
|
|
Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
|
|
if (remappedValue.getType() == type)
|
|
return remappedValue;
|
|
return Value();
|
|
};
|
|
|
|
UnrealizedConversionCastOp op = mat.getOp();
|
|
if (!rewriterImpl.ignoredOps.insert(op))
|
|
return success();
|
|
|
|
// We currently only handle target materializations here.
|
|
OpResult opResult = op->getOpResult(0);
|
|
Operation::operand_range inputOperands = op.getOperands();
|
|
Type outputType = opResult.getType();
|
|
|
|
// If any input to this materialization is another materialization, resolve
|
|
// the input first.
|
|
for (Value value : op->getOperands()) {
|
|
auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>();
|
|
if (!valueCast)
|
|
continue;
|
|
|
|
auto matIt = materializationOps.find(valueCast);
|
|
if (matIt != materializationOps.end())
|
|
if (failed(legalizeUnresolvedMaterialization(
|
|
*matIt->second, materializationOps, rewriter, rewriterImpl,
|
|
inverseMapping)))
|
|
return failure();
|
|
}
|
|
|
|
// Perform a last ditch attempt to avoid materializing a resolved
|
|
// materialization if possible.
|
|
// Handle the case of a 1-1 materialization.
|
|
if (inputOperands.size() == 1) {
|
|
// Check to see if the input operation was remapped to a variant of the
|
|
// output.
|
|
Value remappedValue = lookupRemappedValue(inputOperands[0], outputType);
|
|
if (remappedValue && remappedValue != opResult) {
|
|
replaceMaterialization(rewriterImpl, opResult, remappedValue,
|
|
inverseMapping);
|
|
return success();
|
|
}
|
|
} else {
|
|
// TODO: Avoid materializing other types of conversions here.
|
|
}
|
|
|
|
// Try to materialize the conversion.
|
|
if (TypeConverter *converter = mat.getConverter()) {
|
|
// FIXME: Determine a suitable insertion location when there are multiple
|
|
// inputs.
|
|
if (inputOperands.size() == 1)
|
|
rewriter.setInsertionPointAfterValue(inputOperands.front());
|
|
else
|
|
rewriter.setInsertionPoint(op);
|
|
|
|
Value newMaterialization;
|
|
switch (mat.getKind()) {
|
|
case UnresolvedMaterialization::Argument:
|
|
// Try to materialize an argument conversion.
|
|
// FIXME: The current argument materialization hook expects the original
|
|
// output type, even though it doesn't use that as the actual output type
|
|
// of the generated IR. The output type is just used as an indicator of
|
|
// the type of materialization to do. This behavior is really awkward in
|
|
// that it diverges from the behavior of the other hooks, and can be
|
|
// easily misunderstood. We should clean up the argument hooks to better
|
|
// represent the desired invariants we actually care about.
|
|
newMaterialization = converter->materializeArgumentConversion(
|
|
rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands);
|
|
if (newMaterialization)
|
|
break;
|
|
|
|
// If an argument materialization failed, fallback to trying a target
|
|
// materialization.
|
|
LLVM_FALLTHROUGH;
|
|
case UnresolvedMaterialization::Target:
|
|
newMaterialization = converter->materializeTargetConversion(
|
|
rewriter, op->getLoc(), outputType, inputOperands);
|
|
break;
|
|
}
|
|
if (newMaterialization) {
|
|
replaceMaterialization(rewriterImpl, opResult, newMaterialization,
|
|
inverseMapping);
|
|
return success();
|
|
}
|
|
}
|
|
|
|
InFlightDiagnostic diag = op->emitError()
|
|
<< "failed to legalize unresolved materialization "
|
|
"from "
|
|
<< inputOperands.getTypes() << " to " << outputType
|
|
<< " that remained live after conversion";
|
|
if (Operation *liveUser = findLiveUser(op->getUsers())) {
|
|
diag.attachNote(liveUser->getLoc())
|
|
<< "see existing live user here: " << *liveUser;
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
LogicalResult OperationConverter::legalizeUnresolvedMaterializations(
|
|
ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) {
|
|
if (rewriterImpl.unresolvedMaterializations.empty())
|
|
return success();
|
|
inverseMapping = rewriterImpl.mapping.getInverse();
|
|
|
|
// As an initial step, compute all of the inserted materializations that we
|
|
// expect to persist beyond the conversion process.
|
|
DenseMap<Operation *, UnresolvedMaterialization *> materializationOps;
|
|
SetVector<UnresolvedMaterialization *> necessaryMaterializations;
|
|
computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl,
|
|
*inverseMapping, necessaryMaterializations);
|
|
|
|
// Once computed, legalize any necessary materializations.
|
|
for (auto *mat : necessaryMaterializations) {
|
|
if (failed(legalizeUnresolvedMaterialization(
|
|
*mat, materializationOps, rewriter, rewriterImpl, *inverseMapping)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OperationConverter::legalizeErasedResult(
|
|
Operation *op, OpResult result,
|
|
ConversionPatternRewriterImpl &rewriterImpl) {
|
|
// If the operation result was replaced with null, all of the uses of this
|
|
// value should be replaced.
|
|
auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
|
|
return rewriterImpl.isOpIgnored(user);
|
|
});
|
|
if (liveUserIt != result.user_end()) {
|
|
InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
|
|
<< op->getName() << "' marked as erased";
|
|
diag.attachNote(liveUserIt->getLoc())
|
|
<< "found live user of result #" << result.getResultNumber() << ": "
|
|
<< *liveUserIt;
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Finds a user of the given value, or of any other value that the given value
|
|
/// replaced, that was not replaced in the conversion process.
|
|
static Operation *findLiveUserOfReplaced(
|
|
Value initialValue, ConversionPatternRewriterImpl &rewriterImpl,
|
|
const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
|
|
SmallVector<Value> worklist(1, initialValue);
|
|
while (!worklist.empty()) {
|
|
Value value = worklist.pop_back_val();
|
|
|
|
// Walk the users of this value to see if there are any live users that
|
|
// weren't replaced during conversion.
|
|
auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
|
|
return rewriterImpl.isOpIgnored(user);
|
|
});
|
|
if (liveUserIt != value.user_end())
|
|
return *liveUserIt;
|
|
auto mapIt = inverseMapping.find(value);
|
|
if (mapIt != inverseMapping.end())
|
|
worklist.append(mapIt->second);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
LogicalResult OperationConverter::legalizeChangedResultType(
|
|
Operation *op, OpResult result, Value newValue,
|
|
TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
|
|
ConversionPatternRewriterImpl &rewriterImpl,
|
|
const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
|
|
Operation *liveUser =
|
|
findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
|
|
if (!liveUser)
|
|
return success();
|
|
|
|
// Functor used to emit a conversion error for a failed materialization.
|
|
auto emitConversionError = [&] {
|
|
InFlightDiagnostic diag = op->emitError()
|
|
<< "failed to materialize conversion for result #"
|
|
<< result.getResultNumber() << " of operation '"
|
|
<< op->getName()
|
|
<< "' that remained live after conversion";
|
|
diag.attachNote(liveUser->getLoc())
|
|
<< "see existing live user here: " << *liveUser;
|
|
return failure();
|
|
};
|
|
|
|
// If the replacement has a type converter, attempt to materialize a
|
|
// conversion back to the original type.
|
|
if (!replConverter)
|
|
return emitConversionError();
|
|
|
|
// Materialize a conversion for this live result value.
|
|
Type resultType = result.getType();
|
|
Value convertedValue = replConverter->materializeSourceConversion(
|
|
rewriter, op->getLoc(), resultType, newValue);
|
|
if (!convertedValue)
|
|
return emitConversionError();
|
|
|
|
rewriterImpl.mapping.map(result, convertedValue);
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Conversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
|
|
ArrayRef<Type> types) {
|
|
assert(!types.empty() && "expected valid types");
|
|
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
|
|
addInputs(types);
|
|
}
|
|
|
|
void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
|
|
assert(!types.empty() &&
|
|
"1->0 type remappings don't need to be added explicitly");
|
|
argTypes.append(types.begin(), types.end());
|
|
}
|
|
|
|
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
|
|
unsigned newInputNo,
|
|
unsigned newInputCount) {
|
|
assert(!remappedInputs[origInputNo] && "input has already been remapped");
|
|
assert(newInputCount != 0 && "expected valid input count");
|
|
remappedInputs[origInputNo] =
|
|
InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
|
|
}
|
|
|
|
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
|
|
Value replacementValue) {
|
|
assert(!remappedInputs[origInputNo] && "input has already been remapped");
|
|
remappedInputs[origInputNo] =
|
|
InputMapping{origInputNo, /*size=*/0, replacementValue};
|
|
}
|
|
|
|
LogicalResult TypeConverter::convertType(Type t,
|
|
SmallVectorImpl<Type> &results) {
|
|
auto existingIt = cachedDirectConversions.find(t);
|
|
if (existingIt != cachedDirectConversions.end()) {
|
|
if (existingIt->second)
|
|
results.push_back(existingIt->second);
|
|
return success(existingIt->second != nullptr);
|
|
}
|
|
auto multiIt = cachedMultiConversions.find(t);
|
|
if (multiIt != cachedMultiConversions.end()) {
|
|
results.append(multiIt->second.begin(), multiIt->second.end());
|
|
return success();
|
|
}
|
|
|
|
// Walk the added converters in reverse order to apply the most recently
|
|
// registered first.
|
|
size_t currentCount = results.size();
|
|
conversionCallStack.push_back(t);
|
|
auto popConversionCallStack =
|
|
llvm::make_scope_exit([this]() { conversionCallStack.pop_back(); });
|
|
for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
|
|
if (Optional<LogicalResult> result =
|
|
converter(t, results, conversionCallStack)) {
|
|
if (!succeeded(*result)) {
|
|
cachedDirectConversions.try_emplace(t, nullptr);
|
|
return failure();
|
|
}
|
|
auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
|
|
if (newTypes.size() == 1)
|
|
cachedDirectConversions.try_emplace(t, newTypes.front());
|
|
else
|
|
cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
|
|
return success();
|
|
}
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
Type TypeConverter::convertType(Type t) {
|
|
// Use the multi-type result version to convert the type.
|
|
SmallVector<Type, 1> results;
|
|
if (failed(convertType(t, results)))
|
|
return nullptr;
|
|
|
|
// Check to ensure that only one type was produced.
|
|
return results.size() == 1 ? results.front() : nullptr;
|
|
}
|
|
|
|
LogicalResult TypeConverter::convertTypes(TypeRange types,
|
|
SmallVectorImpl<Type> &results) {
|
|
for (Type type : types)
|
|
if (failed(convertType(type, results)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
|
|
bool TypeConverter::isLegal(Operation *op) {
|
|
return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
|
|
}
|
|
|
|
bool TypeConverter::isLegal(Region *region) {
|
|
return llvm::all_of(*region, [this](Block &block) {
|
|
return isLegal(block.getArgumentTypes());
|
|
});
|
|
}
|
|
|
|
bool TypeConverter::isSignatureLegal(FunctionType ty) {
|
|
return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
|
|
}
|
|
|
|
LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
|
|
SignatureConversion &result) {
|
|
// Try to convert the given input type.
|
|
SmallVector<Type, 1> convertedTypes;
|
|
if (failed(convertType(type, convertedTypes)))
|
|
return failure();
|
|
|
|
// If this argument is being dropped, there is nothing left to do.
|
|
if (convertedTypes.empty())
|
|
return success();
|
|
|
|
// Otherwise, add the new inputs.
|
|
result.addInputs(inputNo, convertedTypes);
|
|
return success();
|
|
}
|
|
LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
|
|
SignatureConversion &result,
|
|
unsigned origInputOffset) {
|
|
for (unsigned i = 0, e = types.size(); i != e; ++i)
|
|
if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
Value TypeConverter::materializeConversion(
|
|
MutableArrayRef<MaterializationCallbackFn> materializations,
|
|
OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
|
|
for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
|
|
if (Optional<Value> result = fn(builder, resultType, inputs, loc))
|
|
return result.getValue();
|
|
return nullptr;
|
|
}
|
|
|
|
auto TypeConverter::convertBlockSignature(Block *block)
|
|
-> Optional<SignatureConversion> {
|
|
SignatureConversion conversion(block->getNumArguments());
|
|
if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
|
|
return llvm::None;
|
|
return conversion;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FunctionOpInterfaceSignatureConversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a default conversion pattern that rewrites the type signature of a
|
|
/// FunctionOpInterface op. This only supports ops which use FunctionType to
|
|
/// represent their type.
|
|
namespace {
|
|
struct FunctionOpInterfaceSignatureConversion : public ConversionPattern {
|
|
FunctionOpInterfaceSignatureConversion(StringRef functionLikeOpName,
|
|
MLIRContext *ctx,
|
|
TypeConverter &converter)
|
|
: ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
FunctionOpInterface funcOp = cast<FunctionOpInterface>(op);
|
|
FunctionType type = funcOp.getType().cast<FunctionType>();
|
|
|
|
// Convert the original function types.
|
|
TypeConverter::SignatureConversion result(type.getNumInputs());
|
|
SmallVector<Type, 1> newResults;
|
|
if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
|
|
failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
|
|
failed(rewriter.convertRegionTypes(&funcOp.getBody(), *typeConverter,
|
|
&result)))
|
|
return failure();
|
|
|
|
// Update the function signature in-place.
|
|
auto newType = FunctionType::get(rewriter.getContext(),
|
|
result.getConvertedTypes(), newResults);
|
|
|
|
rewriter.updateRootInPlace(op, [&] { funcOp.setType(newType); });
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::populateFunctionOpInterfaceTypeConversionPattern(
|
|
StringRef functionLikeOpName, RewritePatternSet &patterns,
|
|
TypeConverter &converter) {
|
|
patterns.add<FunctionOpInterfaceSignatureConversion>(
|
|
functionLikeOpName, patterns.getContext(), converter);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConversionTarget
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ConversionTarget::setOpAction(OperationName op,
|
|
LegalizationAction action) {
|
|
legalOperations[op].action = action;
|
|
}
|
|
|
|
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
|
|
LegalizationAction action) {
|
|
for (StringRef dialect : dialectNames)
|
|
legalDialects[dialect] = action;
|
|
}
|
|
|
|
auto ConversionTarget::getOpAction(OperationName op) const
|
|
-> Optional<LegalizationAction> {
|
|
Optional<LegalizationInfo> info = getOpInfo(op);
|
|
return info ? info->action : Optional<LegalizationAction>();
|
|
}
|
|
|
|
auto ConversionTarget::isLegal(Operation *op) const
|
|
-> Optional<LegalOpDetails> {
|
|
Optional<LegalizationInfo> info = getOpInfo(op->getName());
|
|
if (!info)
|
|
return llvm::None;
|
|
|
|
// Returns true if this operation instance is known to be legal.
|
|
auto isOpLegal = [&] {
|
|
// Handle dynamic legality either with the provided legality function.
|
|
if (info->action == LegalizationAction::Dynamic) {
|
|
Optional<bool> result = info->legalityFn(op);
|
|
if (result)
|
|
return *result;
|
|
}
|
|
|
|
// Otherwise, the operation is only legal if it was marked 'Legal'.
|
|
return info->action == LegalizationAction::Legal;
|
|
};
|
|
if (!isOpLegal())
|
|
return llvm::None;
|
|
|
|
// This operation is legal, compute any additional legality information.
|
|
LegalOpDetails legalityDetails;
|
|
if (info->isRecursivelyLegal) {
|
|
auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
|
|
if (legalityFnIt != opRecursiveLegalityFns.end()) {
|
|
legalityDetails.isRecursivelyLegal =
|
|
legalityFnIt->second(op).getValueOr(true);
|
|
} else {
|
|
legalityDetails.isRecursivelyLegal = true;
|
|
}
|
|
}
|
|
return legalityDetails;
|
|
}
|
|
|
|
bool ConversionTarget::isIllegal(Operation *op) const {
|
|
Optional<LegalizationInfo> info = getOpInfo(op->getName());
|
|
if (!info)
|
|
return false;
|
|
|
|
if (info->action == LegalizationAction::Dynamic) {
|
|
Optional<bool> result = info->legalityFn(op);
|
|
if (!result)
|
|
return false;
|
|
|
|
return !(*result);
|
|
}
|
|
|
|
return info->action == LegalizationAction::Illegal;
|
|
}
|
|
|
|
static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
|
|
ConversionTarget::DynamicLegalityCallbackFn oldCallback,
|
|
ConversionTarget::DynamicLegalityCallbackFn newCallback) {
|
|
if (!oldCallback)
|
|
return newCallback;
|
|
|
|
auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
|
|
Operation *op) -> Optional<bool> {
|
|
if (Optional<bool> result = newCl(op))
|
|
return *result;
|
|
|
|
return oldCl(op);
|
|
};
|
|
return chain;
|
|
}
|
|
|
|
void ConversionTarget::setLegalityCallback(
|
|
OperationName name, const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
auto infoIt = legalOperations.find(name);
|
|
assert(infoIt != legalOperations.end() &&
|
|
infoIt->second.action == LegalizationAction::Dynamic &&
|
|
"expected operation to already be marked as dynamically legal");
|
|
infoIt->second.legalityFn =
|
|
composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
|
|
}
|
|
|
|
void ConversionTarget::markOpRecursivelyLegal(
|
|
OperationName name, const DynamicLegalityCallbackFn &callback) {
|
|
auto infoIt = legalOperations.find(name);
|
|
assert(infoIt != legalOperations.end() &&
|
|
infoIt->second.action != LegalizationAction::Illegal &&
|
|
"expected operation to already be marked as legal");
|
|
infoIt->second.isRecursivelyLegal = true;
|
|
if (callback)
|
|
opRecursiveLegalityFns[name] = composeLegalityCallbacks(
|
|
std::move(opRecursiveLegalityFns[name]), callback);
|
|
else
|
|
opRecursiveLegalityFns.erase(name);
|
|
}
|
|
|
|
void ConversionTarget::setLegalityCallback(
|
|
ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
for (StringRef dialect : dialects)
|
|
dialectLegalityFns[dialect] = composeLegalityCallbacks(
|
|
std::move(dialectLegalityFns[dialect]), callback);
|
|
}
|
|
|
|
void ConversionTarget::setLegalityCallback(
|
|
const DynamicLegalityCallbackFn &callback) {
|
|
assert(callback && "expected valid legality callback");
|
|
unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
|
|
}
|
|
|
|
auto ConversionTarget::getOpInfo(OperationName op) const
|
|
-> Optional<LegalizationInfo> {
|
|
// Check for info for this specific operation.
|
|
auto it = legalOperations.find(op);
|
|
if (it != legalOperations.end())
|
|
return it->second;
|
|
// Check for info for the parent dialect.
|
|
auto dialectIt = legalDialects.find(op.getDialectNamespace());
|
|
if (dialectIt != legalDialects.end()) {
|
|
DynamicLegalityCallbackFn callback;
|
|
auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
|
|
if (dialectFn != dialectLegalityFns.end())
|
|
callback = dialectFn->second;
|
|
return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
|
|
callback};
|
|
}
|
|
// Otherwise, check if we mark unknown operations as dynamic.
|
|
if (unknownLegalityFn)
|
|
return LegalizationInfo{LegalizationAction::Dynamic,
|
|
/*isRecursivelyLegal=*/false, unknownLegalityFn};
|
|
return llvm::None;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Op Conversion Entry Points
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Partial Conversion
|
|
|
|
LogicalResult
|
|
mlir::applyPartialConversion(ArrayRef<Operation *> ops,
|
|
ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
DenseSet<Operation *> *unconvertedOps) {
|
|
OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
|
|
unconvertedOps);
|
|
return opConverter.convertOperations(ops);
|
|
}
|
|
LogicalResult
|
|
mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
DenseSet<Operation *> *unconvertedOps) {
|
|
return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
|
|
unconvertedOps);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Full Conversion
|
|
|
|
LogicalResult
|
|
mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns) {
|
|
OperationConverter opConverter(target, patterns, OpConversionMode::Full);
|
|
return opConverter.convertOperations(ops);
|
|
}
|
|
LogicalResult
|
|
mlir::applyFullConversion(Operation *op, ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns) {
|
|
return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Analysis Conversion
|
|
|
|
LogicalResult
|
|
mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
|
|
ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
DenseSet<Operation *> &convertedOps,
|
|
function_ref<void(Diagnostic &)> notifyCallback) {
|
|
OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
|
|
&convertedOps);
|
|
return opConverter.convertOperations(ops, notifyCallback);
|
|
}
|
|
LogicalResult
|
|
mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
|
|
const FrozenRewritePatternSet &patterns,
|
|
DenseSet<Operation *> &convertedOps,
|
|
function_ref<void(Diagnostic &)> notifyCallback) {
|
|
return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
|
|
convertedOps, notifyCallback);
|
|
}
|