llvm-project/llvm/lib/ProfileData/Coverage/CoverageMappingReader.cpp

751 lines
28 KiB
C++

//===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for reading coverage mapping data for
// instrumentation based coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/Error.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;
using namespace coverage;
using namespace object;
#define DEBUG_TYPE "coverage-mapping"
void CoverageMappingIterator::increment() {
if (ReadErr != coveragemap_error::success)
return;
// Check if all the records were read or if an error occurred while reading
// the next record.
if (auto E = Reader->readNextRecord(Record))
handleAllErrors(std::move(E), [&](const CoverageMapError &CME) {
if (CME.get() == coveragemap_error::eof)
*this = CoverageMappingIterator();
else
ReadErr = CME.get();
});
}
Error RawCoverageReader::readULEB128(uint64_t &Result) {
if (Data.empty())
return make_error<CoverageMapError>(coveragemap_error::truncated);
unsigned N = 0;
Result = decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
if (N > Data.size())
return make_error<CoverageMapError>(coveragemap_error::malformed);
Data = Data.substr(N);
return Error::success();
}
Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) {
if (auto Err = readULEB128(Result))
return Err;
if (Result >= MaxPlus1)
return make_error<CoverageMapError>(coveragemap_error::malformed);
return Error::success();
}
Error RawCoverageReader::readSize(uint64_t &Result) {
if (auto Err = readULEB128(Result))
return Err;
// Sanity check the number.
if (Result > Data.size())
return make_error<CoverageMapError>(coveragemap_error::malformed);
return Error::success();
}
Error RawCoverageReader::readString(StringRef &Result) {
uint64_t Length;
if (auto Err = readSize(Length))
return Err;
Result = Data.substr(0, Length);
Data = Data.substr(Length);
return Error::success();
}
Error RawCoverageFilenamesReader::read() {
uint64_t NumFilenames;
if (auto Err = readSize(NumFilenames))
return Err;
for (size_t I = 0; I < NumFilenames; ++I) {
StringRef Filename;
if (auto Err = readString(Filename))
return Err;
Filenames.push_back(Filename);
}
return Error::success();
}
Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) {
auto Tag = Value & Counter::EncodingTagMask;
switch (Tag) {
case Counter::Zero:
C = Counter::getZero();
return Error::success();
case Counter::CounterValueReference:
C = Counter::getCounter(Value >> Counter::EncodingTagBits);
return Error::success();
default:
break;
}
Tag -= Counter::Expression;
switch (Tag) {
case CounterExpression::Subtract:
case CounterExpression::Add: {
auto ID = Value >> Counter::EncodingTagBits;
if (ID >= Expressions.size())
return make_error<CoverageMapError>(coveragemap_error::malformed);
Expressions[ID].Kind = CounterExpression::ExprKind(Tag);
C = Counter::getExpression(ID);
break;
}
default:
return make_error<CoverageMapError>(coveragemap_error::malformed);
}
return Error::success();
}
Error RawCoverageMappingReader::readCounter(Counter &C) {
uint64_t EncodedCounter;
if (auto Err =
readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = decodeCounter(EncodedCounter, C))
return Err;
return Error::success();
}
static const unsigned EncodingExpansionRegionBit = 1
<< Counter::EncodingTagBits;
/// Read the sub-array of regions for the given inferred file id.
/// \param NumFileIDs the number of file ids that are defined for this
/// function.
Error RawCoverageMappingReader::readMappingRegionsSubArray(
std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID,
size_t NumFileIDs) {
uint64_t NumRegions;
if (auto Err = readSize(NumRegions))
return Err;
unsigned LineStart = 0;
for (size_t I = 0; I < NumRegions; ++I) {
Counter C;
CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion;
// Read the combined counter + region kind.
uint64_t EncodedCounterAndRegion;
if (auto Err = readIntMax(EncodedCounterAndRegion,
std::numeric_limits<unsigned>::max()))
return Err;
unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
uint64_t ExpandedFileID = 0;
if (Tag != Counter::Zero) {
if (auto Err = decodeCounter(EncodedCounterAndRegion, C))
return Err;
} else {
// Is it an expansion region?
if (EncodedCounterAndRegion & EncodingExpansionRegionBit) {
Kind = CounterMappingRegion::ExpansionRegion;
ExpandedFileID = EncodedCounterAndRegion >>
Counter::EncodingCounterTagAndExpansionRegionTagBits;
if (ExpandedFileID >= NumFileIDs)
return make_error<CoverageMapError>(coveragemap_error::malformed);
} else {
switch (EncodedCounterAndRegion >>
Counter::EncodingCounterTagAndExpansionRegionTagBits) {
case CounterMappingRegion::CodeRegion:
// Don't do anything when we have a code region with a zero counter.
break;
case CounterMappingRegion::SkippedRegion:
Kind = CounterMappingRegion::SkippedRegion;
break;
default:
return make_error<CoverageMapError>(coveragemap_error::malformed);
}
}
}
// Read the source range.
uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd;
if (auto Err =
readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = readULEB128(ColumnStart))
return Err;
if (ColumnStart > std::numeric_limits<unsigned>::max())
return make_error<CoverageMapError>(coveragemap_error::malformed);
if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max()))
return Err;
if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max()))
return Err;
LineStart += LineStartDelta;
// If the high bit of ColumnEnd is set, this is a gap region.
if (ColumnEnd & (1U << 31)) {
Kind = CounterMappingRegion::GapRegion;
ColumnEnd &= ~(1U << 31);
}
// Adjust the column locations for the empty regions that are supposed to
// cover whole lines. Those regions should be encoded with the
// column range (1 -> std::numeric_limits<unsigned>::max()), but because
// the encoded std::numeric_limits<unsigned>::max() is several bytes long,
// we set the column range to (0 -> 0) to ensure that the column start and
// column end take up one byte each.
// The std::numeric_limits<unsigned>::max() is used to represent a column
// position at the end of the line without knowing the length of that line.
if (ColumnStart == 0 && ColumnEnd == 0) {
ColumnStart = 1;
ColumnEnd = std::numeric_limits<unsigned>::max();
}
LLVM_DEBUG({
dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":"
<< ColumnStart << " -> " << (LineStart + NumLines) << ":"
<< ColumnEnd << ", ";
if (Kind == CounterMappingRegion::ExpansionRegion)
dbgs() << "Expands to file " << ExpandedFileID;
else
CounterMappingContext(Expressions).dump(C, dbgs());
dbgs() << "\n";
});
auto CMR = CounterMappingRegion(C, InferredFileID, ExpandedFileID,
LineStart, ColumnStart,
LineStart + NumLines, ColumnEnd, Kind);
if (CMR.startLoc() > CMR.endLoc())
return make_error<CoverageMapError>(coveragemap_error::malformed);
MappingRegions.push_back(CMR);
}
return Error::success();
}
Error RawCoverageMappingReader::read() {
// Read the virtual file mapping.
SmallVector<unsigned, 8> VirtualFileMapping;
uint64_t NumFileMappings;
if (auto Err = readSize(NumFileMappings))
return Err;
for (size_t I = 0; I < NumFileMappings; ++I) {
uint64_t FilenameIndex;
if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size()))
return Err;
VirtualFileMapping.push_back(FilenameIndex);
}
// Construct the files using unique filenames and virtual file mapping.
for (auto I : VirtualFileMapping) {
Filenames.push_back(TranslationUnitFilenames[I]);
}
// Read the expressions.
uint64_t NumExpressions;
if (auto Err = readSize(NumExpressions))
return Err;
// Create an array of dummy expressions that get the proper counters
// when the expressions are read, and the proper kinds when the counters
// are decoded.
Expressions.resize(
NumExpressions,
CounterExpression(CounterExpression::Subtract, Counter(), Counter()));
for (size_t I = 0; I < NumExpressions; ++I) {
if (auto Err = readCounter(Expressions[I].LHS))
return Err;
if (auto Err = readCounter(Expressions[I].RHS))
return Err;
}
// Read the mapping regions sub-arrays.
for (unsigned InferredFileID = 0, S = VirtualFileMapping.size();
InferredFileID < S; ++InferredFileID) {
if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID,
VirtualFileMapping.size()))
return Err;
}
// Set the counters for the expansion regions.
// i.e. Counter of expansion region = counter of the first region
// from the expanded file.
// Perform multiple passes to correctly propagate the counters through
// all the nested expansion regions.
SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping;
FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr);
for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) {
for (auto &R : MappingRegions) {
if (R.Kind != CounterMappingRegion::ExpansionRegion)
continue;
assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]);
FileIDExpansionRegionMapping[R.ExpandedFileID] = &R;
}
for (auto &R : MappingRegions) {
if (FileIDExpansionRegionMapping[R.FileID]) {
FileIDExpansionRegionMapping[R.FileID]->Count = R.Count;
FileIDExpansionRegionMapping[R.FileID] = nullptr;
}
}
}
return Error::success();
}
Expected<bool> RawCoverageMappingDummyChecker::isDummy() {
// A dummy coverage mapping data consists of just one region with zero count.
uint64_t NumFileMappings;
if (Error Err = readSize(NumFileMappings))
return std::move(Err);
if (NumFileMappings != 1)
return false;
// We don't expect any specific value for the filename index, just skip it.
uint64_t FilenameIndex;
if (Error Err =
readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max()))
return std::move(Err);
uint64_t NumExpressions;
if (Error Err = readSize(NumExpressions))
return std::move(Err);
if (NumExpressions != 0)
return false;
uint64_t NumRegions;
if (Error Err = readSize(NumRegions))
return std::move(Err);
if (NumRegions != 1)
return false;
uint64_t EncodedCounterAndRegion;
if (Error Err = readIntMax(EncodedCounterAndRegion,
std::numeric_limits<unsigned>::max()))
return std::move(Err);
unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask;
return Tag == Counter::Zero;
}
Error InstrProfSymtab::create(SectionRef &Section) {
if (auto EC = Section.getContents(Data))
return errorCodeToError(EC);
Address = Section.getAddress();
return Error::success();
}
StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) {
if (Pointer < Address)
return StringRef();
auto Offset = Pointer - Address;
if (Offset + Size > Data.size())
return StringRef();
return Data.substr(Pointer - Address, Size);
}
// Check if the mapping data is a dummy, i.e. is emitted for an unused function.
static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) {
// The hash value of dummy mapping records is always zero.
if (Hash)
return false;
return RawCoverageMappingDummyChecker(Mapping).isDummy();
}
namespace {
struct CovMapFuncRecordReader {
virtual ~CovMapFuncRecordReader() = default;
// The interface to read coverage mapping function records for a module.
//
// \p Buf points to the buffer containing the \c CovHeader of the coverage
// mapping data associated with the module.
//
// Returns a pointer to the next \c CovHeader if it exists, or a pointer
// greater than \p End if not.
virtual Expected<const char *> readFunctionRecords(const char *Buf,
const char *End) = 0;
template <class IntPtrT, support::endianness Endian>
static Expected<std::unique_ptr<CovMapFuncRecordReader>>
get(CovMapVersion Version, InstrProfSymtab &P,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
std::vector<StringRef> &F);
};
// A class for reading coverage mapping function records for a module.
template <CovMapVersion Version, class IntPtrT, support::endianness Endian>
class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader {
using FuncRecordType =
typename CovMapTraits<Version, IntPtrT>::CovMapFuncRecordType;
using NameRefType = typename CovMapTraits<Version, IntPtrT>::NameRefType;
// Maps function's name references to the indexes of their records
// in \c Records.
DenseMap<NameRefType, size_t> FunctionRecords;
InstrProfSymtab &ProfileNames;
std::vector<StringRef> &Filenames;
std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records;
// Add the record to the collection if we don't already have a record that
// points to the same function name. This is useful to ignore the redundant
// records for the functions with ODR linkage.
// In addition, prefer records with real coverage mapping data to dummy
// records, which were emitted for inline functions which were seen but
// not used in the corresponding translation unit.
Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR,
StringRef Mapping, size_t FilenamesBegin) {
uint64_t FuncHash = CFR->template getFuncHash<Endian>();
NameRefType NameRef = CFR->template getFuncNameRef<Endian>();
auto InsertResult =
FunctionRecords.insert(std::make_pair(NameRef, Records.size()));
if (InsertResult.second) {
StringRef FuncName;
if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName))
return Err;
if (FuncName.empty())
return make_error<InstrProfError>(instrprof_error::malformed);
Records.emplace_back(Version, FuncName, FuncHash, Mapping, FilenamesBegin,
Filenames.size() - FilenamesBegin);
return Error::success();
}
// Update the existing record if it's a dummy and the new record is real.
size_t OldRecordIndex = InsertResult.first->second;
BinaryCoverageReader::ProfileMappingRecord &OldRecord =
Records[OldRecordIndex];
Expected<bool> OldIsDummyExpected = isCoverageMappingDummy(
OldRecord.FunctionHash, OldRecord.CoverageMapping);
if (Error Err = OldIsDummyExpected.takeError())
return Err;
if (!*OldIsDummyExpected)
return Error::success();
Expected<bool> NewIsDummyExpected =
isCoverageMappingDummy(FuncHash, Mapping);
if (Error Err = NewIsDummyExpected.takeError())
return Err;
if (*NewIsDummyExpected)
return Error::success();
OldRecord.FunctionHash = FuncHash;
OldRecord.CoverageMapping = Mapping;
OldRecord.FilenamesBegin = FilenamesBegin;
OldRecord.FilenamesSize = Filenames.size() - FilenamesBegin;
return Error::success();
}
public:
VersionedCovMapFuncRecordReader(
InstrProfSymtab &P,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
std::vector<StringRef> &F)
: ProfileNames(P), Filenames(F), Records(R) {}
~VersionedCovMapFuncRecordReader() override = default;
Expected<const char *> readFunctionRecords(const char *Buf,
const char *End) override {
using namespace support;
if (Buf + sizeof(CovMapHeader) > End)
return make_error<CoverageMapError>(coveragemap_error::malformed);
auto CovHeader = reinterpret_cast<const CovMapHeader *>(Buf);
uint32_t NRecords = CovHeader->getNRecords<Endian>();
uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>();
uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>();
assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version);
Buf = reinterpret_cast<const char *>(CovHeader + 1);
// Skip past the function records, saving the start and end for later.
const char *FunBuf = Buf;
Buf += NRecords * sizeof(FuncRecordType);
const char *FunEnd = Buf;
// Get the filenames.
if (Buf + FilenamesSize > End)
return make_error<CoverageMapError>(coveragemap_error::malformed);
size_t FilenamesBegin = Filenames.size();
RawCoverageFilenamesReader Reader(StringRef(Buf, FilenamesSize), Filenames);
if (auto Err = Reader.read())
return std::move(Err);
Buf += FilenamesSize;
// We'll read the coverage mapping records in the loop below.
const char *CovBuf = Buf;
Buf += CoverageSize;
const char *CovEnd = Buf;
if (Buf > End)
return make_error<CoverageMapError>(coveragemap_error::malformed);
// Each coverage map has an alignment of 8, so we need to adjust alignment
// before reading the next map.
Buf += alignmentAdjustment(Buf, 8);
auto CFR = reinterpret_cast<const FuncRecordType *>(FunBuf);
while ((const char *)CFR < FunEnd) {
// Read the function information
uint32_t DataSize = CFR->template getDataSize<Endian>();
// Now use that to read the coverage data.
if (CovBuf + DataSize > CovEnd)
return make_error<CoverageMapError>(coveragemap_error::malformed);
auto Mapping = StringRef(CovBuf, DataSize);
CovBuf += DataSize;
if (Error Err =
insertFunctionRecordIfNeeded(CFR, Mapping, FilenamesBegin))
return std::move(Err);
CFR++;
}
return Buf;
}
};
} // end anonymous namespace
template <class IntPtrT, support::endianness Endian>
Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get(
CovMapVersion Version, InstrProfSymtab &P,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &R,
std::vector<StringRef> &F) {
using namespace coverage;
switch (Version) {
case CovMapVersion::Version1:
return llvm::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version1, IntPtrT, Endian>>(P, R, F);
case CovMapVersion::Version2:
case CovMapVersion::Version3:
// Decompress the name data.
if (Error E = P.create(P.getNameData()))
return std::move(E);
if (Version == CovMapVersion::Version2)
return llvm::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version2, IntPtrT, Endian>>(P, R, F);
else
return llvm::make_unique<VersionedCovMapFuncRecordReader<
CovMapVersion::Version3, IntPtrT, Endian>>(P, R, F);
}
llvm_unreachable("Unsupported version");
}
template <typename T, support::endianness Endian>
static Error readCoverageMappingData(
InstrProfSymtab &ProfileNames, StringRef Data,
std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records,
std::vector<StringRef> &Filenames) {
using namespace coverage;
// Read the records in the coverage data section.
auto CovHeader =
reinterpret_cast<const CovMapHeader *>(Data.data());
CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>();
if (Version > CovMapVersion::CurrentVersion)
return make_error<CoverageMapError>(coveragemap_error::unsupported_version);
Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected =
CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records,
Filenames);
if (Error E = ReaderExpected.takeError())
return E;
auto Reader = std::move(ReaderExpected.get());
for (const char *Buf = Data.data(), *End = Buf + Data.size(); Buf < End;) {
auto NextHeaderOrErr = Reader->readFunctionRecords(Buf, End);
if (auto E = NextHeaderOrErr.takeError())
return E;
Buf = NextHeaderOrErr.get();
}
return Error::success();
}
static const char *TestingFormatMagic = "llvmcovmtestdata";
static Error loadTestingFormat(StringRef Data, InstrProfSymtab &ProfileNames,
StringRef &CoverageMapping,
uint8_t &BytesInAddress,
support::endianness &Endian) {
BytesInAddress = 8;
Endian = support::endianness::little;
Data = Data.substr(StringRef(TestingFormatMagic).size());
if (Data.empty())
return make_error<CoverageMapError>(coveragemap_error::truncated);
unsigned N = 0;
auto ProfileNamesSize =
decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
if (N > Data.size())
return make_error<CoverageMapError>(coveragemap_error::malformed);
Data = Data.substr(N);
if (Data.empty())
return make_error<CoverageMapError>(coveragemap_error::truncated);
N = 0;
uint64_t Address =
decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N);
if (N > Data.size())
return make_error<CoverageMapError>(coveragemap_error::malformed);
Data = Data.substr(N);
if (Data.size() < ProfileNamesSize)
return make_error<CoverageMapError>(coveragemap_error::malformed);
if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address))
return E;
CoverageMapping = Data.substr(ProfileNamesSize);
// Skip the padding bytes because coverage map data has an alignment of 8.
if (CoverageMapping.empty())
return make_error<CoverageMapError>(coveragemap_error::truncated);
size_t Pad = alignmentAdjustment(CoverageMapping.data(), 8);
if (CoverageMapping.size() < Pad)
return make_error<CoverageMapError>(coveragemap_error::malformed);
CoverageMapping = CoverageMapping.substr(Pad);
return Error::success();
}
static Expected<SectionRef> lookupSection(ObjectFile &OF, StringRef Name) {
StringRef FoundName;
for (const auto &Section : OF.sections()) {
if (auto EC = Section.getName(FoundName))
return errorCodeToError(EC);
if (FoundName == Name)
return Section;
}
return make_error<CoverageMapError>(coveragemap_error::no_data_found);
}
static Error loadBinaryFormat(MemoryBufferRef ObjectBuffer,
InstrProfSymtab &ProfileNames,
StringRef &CoverageMapping,
uint8_t &BytesInAddress,
support::endianness &Endian, StringRef Arch) {
auto BinOrErr = createBinary(ObjectBuffer);
if (!BinOrErr)
return BinOrErr.takeError();
auto Bin = std::move(BinOrErr.get());
std::unique_ptr<ObjectFile> OF;
if (auto *Universal = dyn_cast<MachOUniversalBinary>(Bin.get())) {
// If we have a universal binary, try to look up the object for the
// appropriate architecture.
auto ObjectFileOrErr = Universal->getObjectForArch(Arch);
if (!ObjectFileOrErr)
return ObjectFileOrErr.takeError();
OF = std::move(ObjectFileOrErr.get());
} else if (isa<ObjectFile>(Bin.get())) {
// For any other object file, upcast and take ownership.
OF.reset(cast<ObjectFile>(Bin.release()));
// If we've asked for a particular arch, make sure they match.
if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch())
return errorCodeToError(object_error::arch_not_found);
} else
// We can only handle object files.
return make_error<CoverageMapError>(coveragemap_error::malformed);
// The coverage uses native pointer sizes for the object it's written in.
BytesInAddress = OF->getBytesInAddress();
Endian = OF->isLittleEndian() ? support::endianness::little
: support::endianness::big;
// Look for the sections that we are interested in.
auto ObjFormat = OF->getTripleObjectFormat();
auto NamesSection =
lookupSection(*OF, getInstrProfSectionName(IPSK_name, ObjFormat,
/*AddSegmentInfo=*/false));
if (auto E = NamesSection.takeError())
return E;
auto CoverageSection =
lookupSection(*OF, getInstrProfSectionName(IPSK_covmap, ObjFormat,
/*AddSegmentInfo=*/false));
if (auto E = CoverageSection.takeError())
return E;
// Get the contents of the given sections.
if (auto EC = CoverageSection->getContents(CoverageMapping))
return errorCodeToError(EC);
if (Error E = ProfileNames.create(*NamesSection))
return E;
return Error::success();
}
Expected<std::unique_ptr<BinaryCoverageReader>>
BinaryCoverageReader::create(std::unique_ptr<MemoryBuffer> &ObjectBuffer,
StringRef Arch) {
std::unique_ptr<BinaryCoverageReader> Reader(new BinaryCoverageReader());
StringRef Coverage;
uint8_t BytesInAddress;
support::endianness Endian;
Error E = Error::success();
consumeError(std::move(E));
if (ObjectBuffer->getBuffer().startswith(TestingFormatMagic))
// This is a special format used for testing.
E = loadTestingFormat(ObjectBuffer->getBuffer(), Reader->ProfileNames,
Coverage, BytesInAddress, Endian);
else
E = loadBinaryFormat(ObjectBuffer->getMemBufferRef(), Reader->ProfileNames,
Coverage, BytesInAddress, Endian, Arch);
if (E)
return std::move(E);
if (BytesInAddress == 4 && Endian == support::endianness::little)
E = readCoverageMappingData<uint32_t, support::endianness::little>(
Reader->ProfileNames, Coverage, Reader->MappingRecords,
Reader->Filenames);
else if (BytesInAddress == 4 && Endian == support::endianness::big)
E = readCoverageMappingData<uint32_t, support::endianness::big>(
Reader->ProfileNames, Coverage, Reader->MappingRecords,
Reader->Filenames);
else if (BytesInAddress == 8 && Endian == support::endianness::little)
E = readCoverageMappingData<uint64_t, support::endianness::little>(
Reader->ProfileNames, Coverage, Reader->MappingRecords,
Reader->Filenames);
else if (BytesInAddress == 8 && Endian == support::endianness::big)
E = readCoverageMappingData<uint64_t, support::endianness::big>(
Reader->ProfileNames, Coverage, Reader->MappingRecords,
Reader->Filenames);
else
return make_error<CoverageMapError>(coveragemap_error::malformed);
if (E)
return std::move(E);
return std::move(Reader);
}
Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) {
if (CurrentRecord >= MappingRecords.size())
return make_error<CoverageMapError>(coveragemap_error::eof);
FunctionsFilenames.clear();
Expressions.clear();
MappingRegions.clear();
auto &R = MappingRecords[CurrentRecord];
RawCoverageMappingReader Reader(
R.CoverageMapping,
makeArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize),
FunctionsFilenames, Expressions, MappingRegions);
if (auto Err = Reader.read())
return Err;
Record.FunctionName = R.FunctionName;
Record.FunctionHash = R.FunctionHash;
Record.Filenames = FunctionsFilenames;
Record.Expressions = Expressions;
Record.MappingRegions = MappingRegions;
++CurrentRecord;
return Error::success();
}