forked from OSchip/llvm-project
839 lines
28 KiB
C++
839 lines
28 KiB
C++
//===-- ABIWindows_x86_64.cpp ---------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ABIWindows_x86_64.h"
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
|
|
#include "lldb/Core/Module.h"
|
|
#include "lldb/Core/PluginManager.h"
|
|
#include "lldb/Core/Value.h"
|
|
#include "lldb/Core/ValueObjectConstResult.h"
|
|
#include "lldb/Core/ValueObjectMemory.h"
|
|
#include "lldb/Core/ValueObjectRegister.h"
|
|
#include "lldb/Symbol/UnwindPlan.h"
|
|
#include "lldb/Target/Process.h"
|
|
#include "lldb/Target/RegisterContext.h"
|
|
#include "lldb/Target/StackFrame.h"
|
|
#include "lldb/Target/Target.h"
|
|
#include "lldb/Target/Thread.h"
|
|
#include "lldb/Utility/ConstString.h"
|
|
#include "lldb/Utility/DataExtractor.h"
|
|
#include "lldb/Utility/Log.h"
|
|
#include "lldb/Utility/RegisterValue.h"
|
|
#include "lldb/Utility/Status.h"
|
|
|
|
using namespace lldb;
|
|
using namespace lldb_private;
|
|
|
|
LLDB_PLUGIN_DEFINE(ABIWindows_x86_64)
|
|
|
|
enum dwarf_regnums {
|
|
dwarf_rax = 0,
|
|
dwarf_rdx,
|
|
dwarf_rcx,
|
|
dwarf_rbx,
|
|
dwarf_rsi,
|
|
dwarf_rdi,
|
|
dwarf_rbp,
|
|
dwarf_rsp,
|
|
dwarf_r8,
|
|
dwarf_r9,
|
|
dwarf_r10,
|
|
dwarf_r11,
|
|
dwarf_r12,
|
|
dwarf_r13,
|
|
dwarf_r14,
|
|
dwarf_r15,
|
|
dwarf_rip,
|
|
dwarf_xmm0,
|
|
dwarf_xmm1,
|
|
dwarf_xmm2,
|
|
dwarf_xmm3,
|
|
dwarf_xmm4,
|
|
dwarf_xmm5,
|
|
dwarf_xmm6,
|
|
dwarf_xmm7,
|
|
dwarf_xmm8,
|
|
dwarf_xmm9,
|
|
dwarf_xmm10,
|
|
dwarf_xmm11,
|
|
dwarf_xmm12,
|
|
dwarf_xmm13,
|
|
dwarf_xmm14,
|
|
dwarf_xmm15,
|
|
dwarf_stmm0,
|
|
dwarf_stmm1,
|
|
dwarf_stmm2,
|
|
dwarf_stmm3,
|
|
dwarf_stmm4,
|
|
dwarf_stmm5,
|
|
dwarf_stmm6,
|
|
dwarf_stmm7,
|
|
dwarf_ymm0,
|
|
dwarf_ymm1,
|
|
dwarf_ymm2,
|
|
dwarf_ymm3,
|
|
dwarf_ymm4,
|
|
dwarf_ymm5,
|
|
dwarf_ymm6,
|
|
dwarf_ymm7,
|
|
dwarf_ymm8,
|
|
dwarf_ymm9,
|
|
dwarf_ymm10,
|
|
dwarf_ymm11,
|
|
dwarf_ymm12,
|
|
dwarf_ymm13,
|
|
dwarf_ymm14,
|
|
dwarf_ymm15,
|
|
dwarf_bnd0 = 126,
|
|
dwarf_bnd1,
|
|
dwarf_bnd2,
|
|
dwarf_bnd3
|
|
};
|
|
|
|
bool ABIWindows_x86_64::GetPointerReturnRegister(const char *&name) {
|
|
name = "rax";
|
|
return true;
|
|
}
|
|
|
|
size_t ABIWindows_x86_64::GetRedZoneSize() const { return 0; }
|
|
|
|
//------------------------------------------------------------------
|
|
// Static Functions
|
|
//------------------------------------------------------------------
|
|
|
|
ABISP
|
|
ABIWindows_x86_64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
|
|
if (arch.GetTriple().getArch() == llvm::Triple::x86_64 &&
|
|
arch.GetTriple().isOSWindows()) {
|
|
return ABISP(
|
|
new ABIWindows_x86_64(std::move(process_sp), MakeMCRegisterInfo(arch)));
|
|
}
|
|
return ABISP();
|
|
}
|
|
|
|
bool ABIWindows_x86_64::PrepareTrivialCall(Thread &thread, addr_t sp,
|
|
addr_t func_addr, addr_t return_addr,
|
|
llvm::ArrayRef<addr_t> args) const {
|
|
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
if (log) {
|
|
StreamString s;
|
|
s.Printf("ABIWindows_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64
|
|
", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
|
|
", return_addr = 0x%" PRIx64,
|
|
thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
|
|
(uint64_t)return_addr);
|
|
|
|
for (size_t i = 0; i < args.size(); ++i)
|
|
s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
|
|
args[i]);
|
|
s.PutCString(")");
|
|
log->PutString(s.GetString());
|
|
}
|
|
|
|
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
|
|
if (!reg_ctx)
|
|
return false;
|
|
|
|
const RegisterInfo *reg_info = nullptr;
|
|
|
|
if (args.size() > 4) // Windows x64 only put first 4 arguments into registers
|
|
return false;
|
|
|
|
for (size_t i = 0; i < args.size(); ++i) {
|
|
reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
|
|
LLDB_REGNUM_GENERIC_ARG1 + i);
|
|
LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
|
|
static_cast<uint64_t>(i + 1), args[i], reg_info->name);
|
|
if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
|
|
return false;
|
|
}
|
|
|
|
// First, align the SP
|
|
|
|
LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
|
|
(uint64_t)sp, (uint64_t)(sp & ~0xfull));
|
|
|
|
sp &= ~(0xfull); // 16-byte alignment
|
|
|
|
sp -= 8; // return address
|
|
|
|
Status error;
|
|
const RegisterInfo *pc_reg_info =
|
|
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
|
|
const RegisterInfo *sp_reg_info =
|
|
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
|
|
ProcessSP process_sp(thread.GetProcess());
|
|
|
|
RegisterValue reg_value;
|
|
LLDB_LOGF(log,
|
|
"Pushing the return address onto the stack: 0x%" PRIx64
|
|
": 0x%" PRIx64,
|
|
(uint64_t)sp, (uint64_t)return_addr);
|
|
|
|
// Save return address onto the stack
|
|
if (!process_sp->WritePointerToMemory(sp, return_addr, error))
|
|
return false;
|
|
|
|
// %rsp is set to the actual stack value.
|
|
|
|
LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);
|
|
|
|
if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
|
|
return false;
|
|
|
|
// %rip is set to the address of the called function.
|
|
|
|
LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
|
|
|
|
if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
|
|
bool is_signed, Thread &thread,
|
|
uint32_t *argument_register_ids,
|
|
unsigned int ¤t_argument_register,
|
|
addr_t ¤t_stack_argument) {
|
|
if (bit_width > 64)
|
|
return false; // Scalar can't hold large integer arguments
|
|
|
|
if (current_argument_register < 4) { // Windows pass first 4 arguments to register
|
|
scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
|
|
argument_register_ids[current_argument_register], 0);
|
|
current_argument_register++;
|
|
if (is_signed)
|
|
scalar.SignExtend(bit_width);
|
|
return true;
|
|
}
|
|
uint32_t byte_size = (bit_width + (CHAR_BIT - 1)) / CHAR_BIT;
|
|
Status error;
|
|
if (thread.GetProcess()->ReadScalarIntegerFromMemory(
|
|
current_stack_argument, byte_size, is_signed, scalar, error)) {
|
|
current_stack_argument += byte_size;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ABIWindows_x86_64::GetArgumentValues(Thread &thread,
|
|
ValueList &values) const {
|
|
unsigned int num_values = values.GetSize();
|
|
unsigned int value_index;
|
|
|
|
// Extract the register context so we can read arguments from registers
|
|
|
|
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
|
|
|
|
if (!reg_ctx)
|
|
return false;
|
|
|
|
// Get the pointer to the first stack argument so we have a place to start
|
|
// when reading data
|
|
|
|
addr_t sp = reg_ctx->GetSP(0);
|
|
|
|
if (!sp)
|
|
return false;
|
|
|
|
addr_t current_stack_argument = sp + 8; // jump over return address
|
|
|
|
uint32_t argument_register_ids[4];
|
|
|
|
argument_register_ids[0] =
|
|
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)
|
|
->kinds[eRegisterKindLLDB];
|
|
argument_register_ids[1] =
|
|
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)
|
|
->kinds[eRegisterKindLLDB];
|
|
argument_register_ids[2] =
|
|
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)
|
|
->kinds[eRegisterKindLLDB];
|
|
argument_register_ids[3] =
|
|
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)
|
|
->kinds[eRegisterKindLLDB];
|
|
|
|
unsigned int current_argument_register = 0;
|
|
|
|
for (value_index = 0; value_index < num_values; ++value_index) {
|
|
Value *value = values.GetValueAtIndex(value_index);
|
|
|
|
if (!value)
|
|
return false;
|
|
|
|
CompilerType compiler_type = value->GetCompilerType();
|
|
llvm::Optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
|
|
if (!bit_size)
|
|
return false;
|
|
bool is_signed;
|
|
|
|
if (compiler_type.IsIntegerOrEnumerationType(is_signed)) {
|
|
ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread,
|
|
argument_register_ids, current_argument_register,
|
|
current_stack_argument);
|
|
} else if (compiler_type.IsPointerType()) {
|
|
ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread,
|
|
argument_register_ids, current_argument_register,
|
|
current_stack_argument);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Status ABIWindows_x86_64::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
|
|
lldb::ValueObjectSP &new_value_sp) {
|
|
Status error;
|
|
if (!new_value_sp) {
|
|
error.SetErrorString("Empty value object for return value.");
|
|
return error;
|
|
}
|
|
|
|
CompilerType compiler_type = new_value_sp->GetCompilerType();
|
|
if (!compiler_type) {
|
|
error.SetErrorString("Null clang type for return value.");
|
|
return error;
|
|
}
|
|
|
|
Thread *thread = frame_sp->GetThread().get();
|
|
|
|
bool is_signed;
|
|
uint32_t count;
|
|
bool is_complex;
|
|
|
|
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
|
|
|
|
bool set_it_simple = false;
|
|
if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
|
|
compiler_type.IsPointerType()) {
|
|
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("rax", 0);
|
|
|
|
DataExtractor data;
|
|
Status data_error;
|
|
size_t num_bytes = new_value_sp->GetData(data, data_error);
|
|
if (data_error.Fail()) {
|
|
error.SetErrorStringWithFormat(
|
|
"Couldn't convert return value to raw data: %s",
|
|
data_error.AsCString());
|
|
return error;
|
|
}
|
|
lldb::offset_t offset = 0;
|
|
if (num_bytes <= 8) {
|
|
uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
|
|
|
|
if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
|
|
set_it_simple = true;
|
|
} else {
|
|
error.SetErrorString("We don't support returning longer than 64 bit "
|
|
"integer values at present.");
|
|
}
|
|
} else if (compiler_type.IsFloatingPointType(count, is_complex)) {
|
|
if (is_complex)
|
|
error.SetErrorString(
|
|
"We don't support returning complex values at present");
|
|
else {
|
|
llvm::Optional<uint64_t> bit_width =
|
|
compiler_type.GetBitSize(frame_sp.get());
|
|
if (!bit_width) {
|
|
error.SetErrorString("can't get type size");
|
|
return error;
|
|
}
|
|
if (*bit_width <= 64) {
|
|
const RegisterInfo *xmm0_info =
|
|
reg_ctx->GetRegisterInfoByName("xmm0", 0);
|
|
RegisterValue xmm0_value;
|
|
DataExtractor data;
|
|
Status data_error;
|
|
size_t num_bytes = new_value_sp->GetData(data, data_error);
|
|
if (data_error.Fail()) {
|
|
error.SetErrorStringWithFormat(
|
|
"Couldn't convert return value to raw data: %s",
|
|
data_error.AsCString());
|
|
return error;
|
|
}
|
|
|
|
unsigned char buffer[16];
|
|
ByteOrder byte_order = data.GetByteOrder();
|
|
|
|
data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
|
|
xmm0_value.SetBytes(buffer, 16, byte_order);
|
|
reg_ctx->WriteRegister(xmm0_info, xmm0_value);
|
|
set_it_simple = true;
|
|
} else {
|
|
// Windows doesn't support 80 bit FP
|
|
error.SetErrorString(
|
|
"Windows-x86_64 doesn't allow FP larger than 64 bits.");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!set_it_simple) {
|
|
// Okay we've got a structure or something that doesn't fit in a simple
|
|
// register.
|
|
// TODO(wanyi): On Windows, if the return type is a struct:
|
|
// 1) smaller that 64 bits and return by value -> RAX
|
|
// 2) bigger than 64 bits, the caller will allocate memory for that struct
|
|
// and pass the struct pointer in RCX then return the pointer in RAX
|
|
error.SetErrorString("We only support setting simple integer and float "
|
|
"return types at present.");
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
ValueObjectSP ABIWindows_x86_64::GetReturnValueObjectSimple(
|
|
Thread &thread, CompilerType &return_compiler_type) const {
|
|
ValueObjectSP return_valobj_sp;
|
|
Value value;
|
|
|
|
if (!return_compiler_type)
|
|
return return_valobj_sp;
|
|
|
|
value.SetCompilerType(return_compiler_type);
|
|
|
|
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
|
|
if (!reg_ctx)
|
|
return return_valobj_sp;
|
|
|
|
const uint32_t type_flags = return_compiler_type.GetTypeInfo();
|
|
if (type_flags & eTypeIsScalar) {
|
|
value.SetValueType(Value::ValueType::Scalar);
|
|
|
|
bool success = false;
|
|
if (type_flags & eTypeIsInteger) {
|
|
// Extract the register context so we can read arguments from registers
|
|
llvm::Optional<uint64_t> byte_size =
|
|
return_compiler_type.GetByteSize(&thread);
|
|
if (!byte_size)
|
|
return return_valobj_sp;
|
|
uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
|
|
reg_ctx->GetRegisterInfoByName("rax", 0), 0);
|
|
const bool is_signed = (type_flags & eTypeIsSigned) != 0;
|
|
switch (*byte_size) {
|
|
default:
|
|
break;
|
|
|
|
case sizeof(uint64_t):
|
|
if (is_signed)
|
|
value.GetScalar() = (int64_t)(raw_value);
|
|
else
|
|
value.GetScalar() = (uint64_t)(raw_value);
|
|
success = true;
|
|
break;
|
|
|
|
case sizeof(uint32_t):
|
|
if (is_signed)
|
|
value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
|
|
else
|
|
value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
|
|
success = true;
|
|
break;
|
|
|
|
case sizeof(uint16_t):
|
|
if (is_signed)
|
|
value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
|
|
else
|
|
value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
|
|
success = true;
|
|
break;
|
|
|
|
case sizeof(uint8_t):
|
|
if (is_signed)
|
|
value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
|
|
else
|
|
value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
|
|
success = true;
|
|
break;
|
|
}
|
|
} else if (type_flags & eTypeIsFloat) {
|
|
if (type_flags & eTypeIsComplex) {
|
|
// Don't handle complex yet.
|
|
} else {
|
|
llvm::Optional<uint64_t> byte_size =
|
|
return_compiler_type.GetByteSize(&thread);
|
|
if (byte_size && *byte_size <= sizeof(long double)) {
|
|
const RegisterInfo *xmm0_info =
|
|
reg_ctx->GetRegisterInfoByName("xmm0", 0);
|
|
RegisterValue xmm0_value;
|
|
if (reg_ctx->ReadRegister(xmm0_info, xmm0_value)) {
|
|
DataExtractor data;
|
|
if (xmm0_value.GetData(data)) {
|
|
lldb::offset_t offset = 0;
|
|
if (*byte_size == sizeof(float)) {
|
|
value.GetScalar() = (float)data.GetFloat(&offset);
|
|
success = true;
|
|
} else if (*byte_size == sizeof(double)) {
|
|
// double and long double are the same on windows
|
|
value.GetScalar() = (double)data.GetDouble(&offset);
|
|
success = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (success)
|
|
return_valobj_sp = ValueObjectConstResult::Create(
|
|
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
|
|
} else if ((type_flags & eTypeIsPointer) ||
|
|
(type_flags & eTypeInstanceIsPointer)) {
|
|
unsigned rax_id =
|
|
reg_ctx->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
|
|
value.GetScalar() =
|
|
(uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id,
|
|
0);
|
|
value.SetValueType(Value::ValueType::Scalar);
|
|
return_valobj_sp = ValueObjectConstResult::Create(
|
|
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
|
|
} else if (type_flags & eTypeIsVector) {
|
|
llvm::Optional<uint64_t> byte_size =
|
|
return_compiler_type.GetByteSize(&thread);
|
|
if (byte_size && *byte_size > 0) {
|
|
const RegisterInfo *xmm_reg =
|
|
reg_ctx->GetRegisterInfoByName("xmm0", 0);
|
|
if (xmm_reg == nullptr)
|
|
xmm_reg = reg_ctx->GetRegisterInfoByName("mm0", 0);
|
|
|
|
if (xmm_reg) {
|
|
if (*byte_size <= xmm_reg->byte_size) {
|
|
ProcessSP process_sp(thread.GetProcess());
|
|
if (process_sp) {
|
|
std::unique_ptr<DataBufferHeap> heap_data_up(
|
|
new DataBufferHeap(*byte_size, 0));
|
|
const ByteOrder byte_order = process_sp->GetByteOrder();
|
|
RegisterValue reg_value;
|
|
if (reg_ctx->ReadRegister(xmm_reg, reg_value)) {
|
|
Status error;
|
|
if (reg_value.GetAsMemoryData(
|
|
xmm_reg, heap_data_up->GetBytes(),
|
|
heap_data_up->GetByteSize(), byte_order, error)) {
|
|
DataExtractor data(DataBufferSP(heap_data_up.release()),
|
|
byte_order,
|
|
process_sp->GetTarget()
|
|
.GetArchitecture()
|
|
.GetAddressByteSize());
|
|
return_valobj_sp = ValueObjectConstResult::Create(
|
|
&thread, return_compiler_type, ConstString(""), data);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return return_valobj_sp;
|
|
}
|
|
|
|
// The compiler will flatten the nested aggregate type into single
|
|
// layer and push the value to stack
|
|
// This helper function will flatten an aggregate type
|
|
// and return true if it can be returned in register(s) by value
|
|
// return false if the aggregate is in memory
|
|
static bool FlattenAggregateType(
|
|
Thread &thread, ExecutionContext &exe_ctx,
|
|
CompilerType &return_compiler_type,
|
|
uint32_t data_byte_offset,
|
|
std::vector<uint32_t> &aggregate_field_offsets,
|
|
std::vector<CompilerType> &aggregate_compiler_types) {
|
|
|
|
const uint32_t num_children = return_compiler_type.GetNumFields();
|
|
for (uint32_t idx = 0; idx < num_children; ++idx) {
|
|
std::string name;
|
|
bool is_signed;
|
|
uint32_t count;
|
|
bool is_complex;
|
|
|
|
uint64_t field_bit_offset = 0;
|
|
CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
|
|
idx, name, &field_bit_offset, nullptr, nullptr);
|
|
llvm::Optional<uint64_t> field_bit_width =
|
|
field_compiler_type.GetBitSize(&thread);
|
|
|
|
// if we don't know the size of the field (e.g. invalid type), exit
|
|
if (!field_bit_width || *field_bit_width == 0) {
|
|
return false;
|
|
}
|
|
// If there are any unaligned fields, this is stored in memory.
|
|
if (field_bit_offset % *field_bit_width != 0) {
|
|
return false;
|
|
}
|
|
|
|
// add overall offset
|
|
uint32_t field_byte_offset = field_bit_offset / 8 + data_byte_offset;
|
|
|
|
const uint32_t field_type_flags = field_compiler_type.GetTypeInfo();
|
|
if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
|
|
field_compiler_type.IsPointerType() ||
|
|
field_compiler_type.IsFloatingPointType(count, is_complex)) {
|
|
aggregate_field_offsets.push_back(field_byte_offset);
|
|
aggregate_compiler_types.push_back(field_compiler_type);
|
|
} else if (field_type_flags & eTypeHasChildren) {
|
|
if (!FlattenAggregateType(thread, exe_ctx, field_compiler_type,
|
|
field_byte_offset, aggregate_field_offsets,
|
|
aggregate_compiler_types)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ValueObjectSP ABIWindows_x86_64::GetReturnValueObjectImpl(
|
|
Thread &thread, CompilerType &return_compiler_type) const {
|
|
ValueObjectSP return_valobj_sp;
|
|
|
|
if (!return_compiler_type) {
|
|
return return_valobj_sp;
|
|
}
|
|
|
|
// try extract value as if it's a simple type
|
|
return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
|
|
if (return_valobj_sp) {
|
|
return return_valobj_sp;
|
|
}
|
|
|
|
RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
|
|
if (!reg_ctx_sp) {
|
|
return return_valobj_sp;
|
|
}
|
|
|
|
llvm::Optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
|
|
if (!bit_width) {
|
|
return return_valobj_sp;
|
|
}
|
|
|
|
// if it's not simple or aggregate type, then we don't know how to handle it
|
|
if (!return_compiler_type.IsAggregateType()) {
|
|
return return_valobj_sp;
|
|
}
|
|
|
|
ExecutionContext exe_ctx(thread.shared_from_this());
|
|
Target *target = exe_ctx.GetTargetPtr();
|
|
uint32_t max_register_value_bit_width = 64;
|
|
|
|
// The scenario here is to have a struct/class which is POD
|
|
// if the return struct/class size is larger than 64 bits,
|
|
// the caller will allocate memory for it and pass the return addr in RCX
|
|
// then return the address in RAX
|
|
|
|
// if the struct is returned by value in register (RAX)
|
|
// its size has to be: 1, 2, 4, 8, 16, 32, or 64 bits (aligned)
|
|
// for floating point, the return value will be copied over to RAX
|
|
bool is_memory = *bit_width > max_register_value_bit_width ||
|
|
*bit_width & (*bit_width - 1);
|
|
std::vector<uint32_t> aggregate_field_offsets;
|
|
std::vector<CompilerType> aggregate_compiler_types;
|
|
if (!is_memory &&
|
|
FlattenAggregateType(thread, exe_ctx, return_compiler_type,
|
|
0, aggregate_field_offsets,
|
|
aggregate_compiler_types)) {
|
|
ByteOrder byte_order = target->GetArchitecture().GetByteOrder();
|
|
DataBufferSP data_sp(
|
|
new DataBufferHeap(max_register_value_bit_width / 8, 0));
|
|
DataExtractor return_ext(data_sp, byte_order,
|
|
target->GetArchitecture().GetAddressByteSize());
|
|
|
|
// The only register used to return struct/class by value
|
|
const RegisterInfo *rax_info =
|
|
reg_ctx_sp->GetRegisterInfoByName("rax", 0);
|
|
RegisterValue rax_value;
|
|
reg_ctx_sp->ReadRegister(rax_info, rax_value);
|
|
DataExtractor rax_data;
|
|
rax_value.GetData(rax_data);
|
|
|
|
uint32_t used_bytes =
|
|
0; // Tracks how much of the rax registers we've consumed so far
|
|
|
|
// in case of the returned type is a subclass of non-abstract-base class
|
|
// it will have a padding to skip the base content
|
|
if (aggregate_field_offsets.size())
|
|
used_bytes = aggregate_field_offsets[0];
|
|
|
|
const uint32_t num_children = aggregate_compiler_types.size();
|
|
for (uint32_t idx = 0; idx < num_children; idx++) {
|
|
bool is_signed;
|
|
bool is_complex;
|
|
uint32_t count;
|
|
|
|
CompilerType field_compiler_type = aggregate_compiler_types[idx];
|
|
uint32_t field_byte_width = (uint32_t) (*field_compiler_type.GetByteSize(&thread));
|
|
uint32_t field_byte_offset = aggregate_field_offsets[idx];
|
|
|
|
// this is unlikely w/o the overall size being greater than 8 bytes
|
|
// For now, return a nullptr return value object.
|
|
if (used_bytes >= 8 || used_bytes + field_byte_width > 8) {
|
|
return return_valobj_sp;
|
|
}
|
|
|
|
DataExtractor *copy_from_extractor = nullptr;
|
|
uint32_t copy_from_offset = 0;
|
|
if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
|
|
field_compiler_type.IsPointerType() ||
|
|
field_compiler_type.IsFloatingPointType(count, is_complex)) {
|
|
copy_from_extractor = &rax_data;
|
|
copy_from_offset = used_bytes;
|
|
used_bytes += field_byte_width;
|
|
}
|
|
// These two tests are just sanity checks. If I somehow get the type
|
|
// calculation wrong above it is better to just return nothing than to
|
|
// assert or crash.
|
|
if (!copy_from_extractor) {
|
|
return return_valobj_sp;
|
|
}
|
|
if (copy_from_offset + field_byte_width >
|
|
copy_from_extractor->GetByteSize()) {
|
|
return return_valobj_sp;
|
|
}
|
|
copy_from_extractor->CopyByteOrderedData(copy_from_offset,
|
|
field_byte_width, data_sp->GetBytes() + field_byte_offset,
|
|
field_byte_width, byte_order);
|
|
}
|
|
if (!is_memory) {
|
|
// The result is in our data buffer. Let's make a variable object out
|
|
// of it:
|
|
return_valobj_sp = ValueObjectConstResult::Create(
|
|
&thread, return_compiler_type, ConstString(""), return_ext);
|
|
}
|
|
}
|
|
|
|
// The Windows x86_64 ABI specifies that the return address for MEMORY
|
|
// objects be placed in rax on exit from the function.
|
|
|
|
// FIXME: This is just taking a guess, rax may very well no longer hold the
|
|
// return storage location.
|
|
// If we are going to do this right, when we make a new frame we should
|
|
// check to see if it uses a memory return, and if we are at the first
|
|
// instruction and if so stash away the return location. Then we would
|
|
// only return the memory return value if we know it is valid.
|
|
if (is_memory) {
|
|
unsigned rax_id =
|
|
reg_ctx_sp->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
|
|
lldb::addr_t storage_addr =
|
|
(uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id,
|
|
0);
|
|
return_valobj_sp = ValueObjectMemory::Create(
|
|
&thread, "", Address(storage_addr, nullptr), return_compiler_type);
|
|
}
|
|
return return_valobj_sp;
|
|
}
|
|
|
|
// This defines the CFA as rsp+8
|
|
// the saved pc is at CFA-8 (i.e. rsp+0)
|
|
// The saved rsp is CFA+0
|
|
|
|
bool ABIWindows_x86_64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
|
|
unwind_plan.Clear();
|
|
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
|
|
|
|
uint32_t sp_reg_num = dwarf_rsp;
|
|
uint32_t pc_reg_num = dwarf_rip;
|
|
|
|
UnwindPlan::RowSP row(new UnwindPlan::Row);
|
|
row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 8);
|
|
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -8, false);
|
|
row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
|
|
unwind_plan.AppendRow(row);
|
|
unwind_plan.SetSourceName("x86_64 at-func-entry default");
|
|
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
|
|
return true;
|
|
}
|
|
|
|
// Windows-x86_64 doesn't use %rbp
|
|
// No available Unwind information for Windows-x86_64 (section .pdata)
|
|
// Let's use SysV-x86_64 one for now
|
|
bool ABIWindows_x86_64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
|
|
unwind_plan.Clear();
|
|
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
|
|
|
|
uint32_t fp_reg_num = dwarf_rbp;
|
|
uint32_t sp_reg_num = dwarf_rsp;
|
|
uint32_t pc_reg_num = dwarf_rip;
|
|
|
|
UnwindPlan::RowSP row(new UnwindPlan::Row);
|
|
|
|
const int32_t ptr_size = 8;
|
|
row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_rbp, 2 * ptr_size);
|
|
row->SetOffset(0);
|
|
row->SetUnspecifiedRegistersAreUndefined(true);
|
|
|
|
row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
|
|
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
|
|
row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
|
|
|
|
unwind_plan.AppendRow(row);
|
|
unwind_plan.SetSourceName("x86_64 default unwind plan");
|
|
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
|
|
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ABIWindows_x86_64::RegisterIsVolatile(const RegisterInfo *reg_info) {
|
|
return !RegisterIsCalleeSaved(reg_info);
|
|
}
|
|
|
|
bool ABIWindows_x86_64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
|
|
if (!reg_info)
|
|
return false;
|
|
assert(reg_info->name != nullptr && "unnamed register?");
|
|
std::string Name = std::string(reg_info->name);
|
|
bool IsCalleeSaved =
|
|
llvm::StringSwitch<bool>(Name)
|
|
.Cases("rbx", "ebx", "rbp", "ebp", "rdi", "edi", "rsi", "esi", true)
|
|
.Cases("rsp", "esp", "r12", "r13", "r14", "r15", "sp", "fp", true)
|
|
.Cases("xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12",
|
|
"xmm13", "xmm14", "xmm15", true)
|
|
.Default(false);
|
|
return IsCalleeSaved;
|
|
}
|
|
|
|
uint32_t ABIWindows_x86_64::GetGenericNum(llvm::StringRef reg) {
|
|
return llvm::StringSwitch<uint32_t>(reg)
|
|
.Case("rip", LLDB_REGNUM_GENERIC_PC)
|
|
.Case("rsp", LLDB_REGNUM_GENERIC_SP)
|
|
.Case("rbp", LLDB_REGNUM_GENERIC_FP)
|
|
.Case("rflags", LLDB_REGNUM_GENERIC_FLAGS)
|
|
.Case("rcx", LLDB_REGNUM_GENERIC_ARG1)
|
|
.Case("rdx", LLDB_REGNUM_GENERIC_ARG2)
|
|
.Case("r8", LLDB_REGNUM_GENERIC_ARG3)
|
|
.Case("r9", LLDB_REGNUM_GENERIC_ARG4)
|
|
.Default(LLDB_INVALID_REGNUM);
|
|
}
|
|
|
|
void ABIWindows_x86_64::Initialize() {
|
|
PluginManager::RegisterPlugin(
|
|
GetPluginNameStatic(), "Windows ABI for x86_64 targets", CreateInstance);
|
|
}
|
|
|
|
void ABIWindows_x86_64::Terminate() {
|
|
PluginManager::UnregisterPlugin(CreateInstance);
|
|
}
|
|
|
|
lldb_private::ConstString ABIWindows_x86_64::GetPluginNameStatic() {
|
|
static ConstString g_name("windows-x86_64");
|
|
return g_name;
|
|
}
|
|
|
|
//------------------------------------------------------------------
|
|
// PluginInterface protocol
|
|
//------------------------------------------------------------------
|
|
|
|
lldb_private::ConstString ABIWindows_x86_64::GetPluginName() {
|
|
return GetPluginNameStatic();
|
|
}
|
|
|
|
uint32_t ABIWindows_x86_64::GetPluginVersion() { return 1; }
|