llvm-project/lldb/source/Plugins/ABI/X86/ABIWindows_x86_64.cpp

839 lines
28 KiB
C++

//===-- ABIWindows_x86_64.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIWindows_x86_64.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"
using namespace lldb;
using namespace lldb_private;
LLDB_PLUGIN_DEFINE(ABIWindows_x86_64)
enum dwarf_regnums {
dwarf_rax = 0,
dwarf_rdx,
dwarf_rcx,
dwarf_rbx,
dwarf_rsi,
dwarf_rdi,
dwarf_rbp,
dwarf_rsp,
dwarf_r8,
dwarf_r9,
dwarf_r10,
dwarf_r11,
dwarf_r12,
dwarf_r13,
dwarf_r14,
dwarf_r15,
dwarf_rip,
dwarf_xmm0,
dwarf_xmm1,
dwarf_xmm2,
dwarf_xmm3,
dwarf_xmm4,
dwarf_xmm5,
dwarf_xmm6,
dwarf_xmm7,
dwarf_xmm8,
dwarf_xmm9,
dwarf_xmm10,
dwarf_xmm11,
dwarf_xmm12,
dwarf_xmm13,
dwarf_xmm14,
dwarf_xmm15,
dwarf_stmm0,
dwarf_stmm1,
dwarf_stmm2,
dwarf_stmm3,
dwarf_stmm4,
dwarf_stmm5,
dwarf_stmm6,
dwarf_stmm7,
dwarf_ymm0,
dwarf_ymm1,
dwarf_ymm2,
dwarf_ymm3,
dwarf_ymm4,
dwarf_ymm5,
dwarf_ymm6,
dwarf_ymm7,
dwarf_ymm8,
dwarf_ymm9,
dwarf_ymm10,
dwarf_ymm11,
dwarf_ymm12,
dwarf_ymm13,
dwarf_ymm14,
dwarf_ymm15,
dwarf_bnd0 = 126,
dwarf_bnd1,
dwarf_bnd2,
dwarf_bnd3
};
bool ABIWindows_x86_64::GetPointerReturnRegister(const char *&name) {
name = "rax";
return true;
}
size_t ABIWindows_x86_64::GetRedZoneSize() const { return 0; }
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
ABISP
ABIWindows_x86_64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
if (arch.GetTriple().getArch() == llvm::Triple::x86_64 &&
arch.GetTriple().isOSWindows()) {
return ABISP(
new ABIWindows_x86_64(std::move(process_sp), MakeMCRegisterInfo(arch)));
}
return ABISP();
}
bool ABIWindows_x86_64::PrepareTrivialCall(Thread &thread, addr_t sp,
addr_t func_addr, addr_t return_addr,
llvm::ArrayRef<addr_t> args) const {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
if (log) {
StreamString s;
s.Printf("ABIWindows_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64
", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
", return_addr = 0x%" PRIx64,
thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
(uint64_t)return_addr);
for (size_t i = 0; i < args.size(); ++i)
s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
args[i]);
s.PutCString(")");
log->PutString(s.GetString());
}
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
const RegisterInfo *reg_info = nullptr;
if (args.size() > 4) // Windows x64 only put first 4 arguments into registers
return false;
for (size_t i = 0; i < args.size(); ++i) {
reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_ARG1 + i);
LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
static_cast<uint64_t>(i + 1), args[i], reg_info->name);
if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
return false;
}
// First, align the SP
LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
(uint64_t)sp, (uint64_t)(sp & ~0xfull));
sp &= ~(0xfull); // 16-byte alignment
sp -= 8; // return address
Status error;
const RegisterInfo *pc_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
const RegisterInfo *sp_reg_info =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
ProcessSP process_sp(thread.GetProcess());
RegisterValue reg_value;
LLDB_LOGF(log,
"Pushing the return address onto the stack: 0x%" PRIx64
": 0x%" PRIx64,
(uint64_t)sp, (uint64_t)return_addr);
// Save return address onto the stack
if (!process_sp->WritePointerToMemory(sp, return_addr, error))
return false;
// %rsp is set to the actual stack value.
LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);
if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
return false;
// %rip is set to the address of the called function.
LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
return false;
return true;
}
static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
bool is_signed, Thread &thread,
uint32_t *argument_register_ids,
unsigned int &current_argument_register,
addr_t &current_stack_argument) {
if (bit_width > 64)
return false; // Scalar can't hold large integer arguments
if (current_argument_register < 4) { // Windows pass first 4 arguments to register
scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
argument_register_ids[current_argument_register], 0);
current_argument_register++;
if (is_signed)
scalar.SignExtend(bit_width);
return true;
}
uint32_t byte_size = (bit_width + (CHAR_BIT - 1)) / CHAR_BIT;
Status error;
if (thread.GetProcess()->ReadScalarIntegerFromMemory(
current_stack_argument, byte_size, is_signed, scalar, error)) {
current_stack_argument += byte_size;
return true;
}
return false;
}
bool ABIWindows_x86_64::GetArgumentValues(Thread &thread,
ValueList &values) const {
unsigned int num_values = values.GetSize();
unsigned int value_index;
// Extract the register context so we can read arguments from registers
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return false;
// Get the pointer to the first stack argument so we have a place to start
// when reading data
addr_t sp = reg_ctx->GetSP(0);
if (!sp)
return false;
addr_t current_stack_argument = sp + 8; // jump over return address
uint32_t argument_register_ids[4];
argument_register_ids[0] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)
->kinds[eRegisterKindLLDB];
argument_register_ids[1] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)
->kinds[eRegisterKindLLDB];
argument_register_ids[2] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)
->kinds[eRegisterKindLLDB];
argument_register_ids[3] =
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)
->kinds[eRegisterKindLLDB];
unsigned int current_argument_register = 0;
for (value_index = 0; value_index < num_values; ++value_index) {
Value *value = values.GetValueAtIndex(value_index);
if (!value)
return false;
CompilerType compiler_type = value->GetCompilerType();
llvm::Optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
if (!bit_size)
return false;
bool is_signed;
if (compiler_type.IsIntegerOrEnumerationType(is_signed)) {
ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread,
argument_register_ids, current_argument_register,
current_stack_argument);
} else if (compiler_type.IsPointerType()) {
ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread,
argument_register_ids, current_argument_register,
current_stack_argument);
}
}
return true;
}
Status ABIWindows_x86_64::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
lldb::ValueObjectSP &new_value_sp) {
Status error;
if (!new_value_sp) {
error.SetErrorString("Empty value object for return value.");
return error;
}
CompilerType compiler_type = new_value_sp->GetCompilerType();
if (!compiler_type) {
error.SetErrorString("Null clang type for return value.");
return error;
}
Thread *thread = frame_sp->GetThread().get();
bool is_signed;
uint32_t count;
bool is_complex;
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
bool set_it_simple = false;
if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
compiler_type.IsPointerType()) {
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("rax", 0);
DataExtractor data;
Status data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail()) {
error.SetErrorStringWithFormat(
"Couldn't convert return value to raw data: %s",
data_error.AsCString());
return error;
}
lldb::offset_t offset = 0;
if (num_bytes <= 8) {
uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
set_it_simple = true;
} else {
error.SetErrorString("We don't support returning longer than 64 bit "
"integer values at present.");
}
} else if (compiler_type.IsFloatingPointType(count, is_complex)) {
if (is_complex)
error.SetErrorString(
"We don't support returning complex values at present");
else {
llvm::Optional<uint64_t> bit_width =
compiler_type.GetBitSize(frame_sp.get());
if (!bit_width) {
error.SetErrorString("can't get type size");
return error;
}
if (*bit_width <= 64) {
const RegisterInfo *xmm0_info =
reg_ctx->GetRegisterInfoByName("xmm0", 0);
RegisterValue xmm0_value;
DataExtractor data;
Status data_error;
size_t num_bytes = new_value_sp->GetData(data, data_error);
if (data_error.Fail()) {
error.SetErrorStringWithFormat(
"Couldn't convert return value to raw data: %s",
data_error.AsCString());
return error;
}
unsigned char buffer[16];
ByteOrder byte_order = data.GetByteOrder();
data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
xmm0_value.SetBytes(buffer, 16, byte_order);
reg_ctx->WriteRegister(xmm0_info, xmm0_value);
set_it_simple = true;
} else {
// Windows doesn't support 80 bit FP
error.SetErrorString(
"Windows-x86_64 doesn't allow FP larger than 64 bits.");
}
}
}
if (!set_it_simple) {
// Okay we've got a structure or something that doesn't fit in a simple
// register.
// TODO(wanyi): On Windows, if the return type is a struct:
// 1) smaller that 64 bits and return by value -> RAX
// 2) bigger than 64 bits, the caller will allocate memory for that struct
// and pass the struct pointer in RCX then return the pointer in RAX
error.SetErrorString("We only support setting simple integer and float "
"return types at present.");
}
return error;
}
ValueObjectSP ABIWindows_x86_64::GetReturnValueObjectSimple(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
Value value;
if (!return_compiler_type)
return return_valobj_sp;
value.SetCompilerType(return_compiler_type);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return return_valobj_sp;
const uint32_t type_flags = return_compiler_type.GetTypeInfo();
if (type_flags & eTypeIsScalar) {
value.SetValueType(Value::ValueType::Scalar);
bool success = false;
if (type_flags & eTypeIsInteger) {
// Extract the register context so we can read arguments from registers
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(&thread);
if (!byte_size)
return return_valobj_sp;
uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
reg_ctx->GetRegisterInfoByName("rax", 0), 0);
const bool is_signed = (type_flags & eTypeIsSigned) != 0;
switch (*byte_size) {
default:
break;
case sizeof(uint64_t):
if (is_signed)
value.GetScalar() = (int64_t)(raw_value);
else
value.GetScalar() = (uint64_t)(raw_value);
success = true;
break;
case sizeof(uint32_t):
if (is_signed)
value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
else
value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
success = true;
break;
case sizeof(uint16_t):
if (is_signed)
value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
else
value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
success = true;
break;
case sizeof(uint8_t):
if (is_signed)
value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
else
value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
success = true;
break;
}
} else if (type_flags & eTypeIsFloat) {
if (type_flags & eTypeIsComplex) {
// Don't handle complex yet.
} else {
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(&thread);
if (byte_size && *byte_size <= sizeof(long double)) {
const RegisterInfo *xmm0_info =
reg_ctx->GetRegisterInfoByName("xmm0", 0);
RegisterValue xmm0_value;
if (reg_ctx->ReadRegister(xmm0_info, xmm0_value)) {
DataExtractor data;
if (xmm0_value.GetData(data)) {
lldb::offset_t offset = 0;
if (*byte_size == sizeof(float)) {
value.GetScalar() = (float)data.GetFloat(&offset);
success = true;
} else if (*byte_size == sizeof(double)) {
// double and long double are the same on windows
value.GetScalar() = (double)data.GetDouble(&offset);
success = true;
}
}
}
}
}
}
if (success)
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
} else if ((type_flags & eTypeIsPointer) ||
(type_flags & eTypeInstanceIsPointer)) {
unsigned rax_id =
reg_ctx->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
value.GetScalar() =
(uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id,
0);
value.SetValueType(Value::ValueType::Scalar);
return_valobj_sp = ValueObjectConstResult::Create(
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
} else if (type_flags & eTypeIsVector) {
llvm::Optional<uint64_t> byte_size =
return_compiler_type.GetByteSize(&thread);
if (byte_size && *byte_size > 0) {
const RegisterInfo *xmm_reg =
reg_ctx->GetRegisterInfoByName("xmm0", 0);
if (xmm_reg == nullptr)
xmm_reg = reg_ctx->GetRegisterInfoByName("mm0", 0);
if (xmm_reg) {
if (*byte_size <= xmm_reg->byte_size) {
ProcessSP process_sp(thread.GetProcess());
if (process_sp) {
std::unique_ptr<DataBufferHeap> heap_data_up(
new DataBufferHeap(*byte_size, 0));
const ByteOrder byte_order = process_sp->GetByteOrder();
RegisterValue reg_value;
if (reg_ctx->ReadRegister(xmm_reg, reg_value)) {
Status error;
if (reg_value.GetAsMemoryData(
xmm_reg, heap_data_up->GetBytes(),
heap_data_up->GetByteSize(), byte_order, error)) {
DataExtractor data(DataBufferSP(heap_data_up.release()),
byte_order,
process_sp->GetTarget()
.GetArchitecture()
.GetAddressByteSize());
return_valobj_sp = ValueObjectConstResult::Create(
&thread, return_compiler_type, ConstString(""), data);
}
}
}
}
}
}
}
return return_valobj_sp;
}
// The compiler will flatten the nested aggregate type into single
// layer and push the value to stack
// This helper function will flatten an aggregate type
// and return true if it can be returned in register(s) by value
// return false if the aggregate is in memory
static bool FlattenAggregateType(
Thread &thread, ExecutionContext &exe_ctx,
CompilerType &return_compiler_type,
uint32_t data_byte_offset,
std::vector<uint32_t> &aggregate_field_offsets,
std::vector<CompilerType> &aggregate_compiler_types) {
const uint32_t num_children = return_compiler_type.GetNumFields();
for (uint32_t idx = 0; idx < num_children; ++idx) {
std::string name;
bool is_signed;
uint32_t count;
bool is_complex;
uint64_t field_bit_offset = 0;
CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
idx, name, &field_bit_offset, nullptr, nullptr);
llvm::Optional<uint64_t> field_bit_width =
field_compiler_type.GetBitSize(&thread);
// if we don't know the size of the field (e.g. invalid type), exit
if (!field_bit_width || *field_bit_width == 0) {
return false;
}
// If there are any unaligned fields, this is stored in memory.
if (field_bit_offset % *field_bit_width != 0) {
return false;
}
// add overall offset
uint32_t field_byte_offset = field_bit_offset / 8 + data_byte_offset;
const uint32_t field_type_flags = field_compiler_type.GetTypeInfo();
if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
field_compiler_type.IsPointerType() ||
field_compiler_type.IsFloatingPointType(count, is_complex)) {
aggregate_field_offsets.push_back(field_byte_offset);
aggregate_compiler_types.push_back(field_compiler_type);
} else if (field_type_flags & eTypeHasChildren) {
if (!FlattenAggregateType(thread, exe_ctx, field_compiler_type,
field_byte_offset, aggregate_field_offsets,
aggregate_compiler_types)) {
return false;
}
}
}
return true;
}
ValueObjectSP ABIWindows_x86_64::GetReturnValueObjectImpl(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
if (!return_compiler_type) {
return return_valobj_sp;
}
// try extract value as if it's a simple type
return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
if (return_valobj_sp) {
return return_valobj_sp;
}
RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
if (!reg_ctx_sp) {
return return_valobj_sp;
}
llvm::Optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
if (!bit_width) {
return return_valobj_sp;
}
// if it's not simple or aggregate type, then we don't know how to handle it
if (!return_compiler_type.IsAggregateType()) {
return return_valobj_sp;
}
ExecutionContext exe_ctx(thread.shared_from_this());
Target *target = exe_ctx.GetTargetPtr();
uint32_t max_register_value_bit_width = 64;
// The scenario here is to have a struct/class which is POD
// if the return struct/class size is larger than 64 bits,
// the caller will allocate memory for it and pass the return addr in RCX
// then return the address in RAX
// if the struct is returned by value in register (RAX)
// its size has to be: 1, 2, 4, 8, 16, 32, or 64 bits (aligned)
// for floating point, the return value will be copied over to RAX
bool is_memory = *bit_width > max_register_value_bit_width ||
*bit_width & (*bit_width - 1);
std::vector<uint32_t> aggregate_field_offsets;
std::vector<CompilerType> aggregate_compiler_types;
if (!is_memory &&
FlattenAggregateType(thread, exe_ctx, return_compiler_type,
0, aggregate_field_offsets,
aggregate_compiler_types)) {
ByteOrder byte_order = target->GetArchitecture().GetByteOrder();
DataBufferSP data_sp(
new DataBufferHeap(max_register_value_bit_width / 8, 0));
DataExtractor return_ext(data_sp, byte_order,
target->GetArchitecture().GetAddressByteSize());
// The only register used to return struct/class by value
const RegisterInfo *rax_info =
reg_ctx_sp->GetRegisterInfoByName("rax", 0);
RegisterValue rax_value;
reg_ctx_sp->ReadRegister(rax_info, rax_value);
DataExtractor rax_data;
rax_value.GetData(rax_data);
uint32_t used_bytes =
0; // Tracks how much of the rax registers we've consumed so far
// in case of the returned type is a subclass of non-abstract-base class
// it will have a padding to skip the base content
if (aggregate_field_offsets.size())
used_bytes = aggregate_field_offsets[0];
const uint32_t num_children = aggregate_compiler_types.size();
for (uint32_t idx = 0; idx < num_children; idx++) {
bool is_signed;
bool is_complex;
uint32_t count;
CompilerType field_compiler_type = aggregate_compiler_types[idx];
uint32_t field_byte_width = (uint32_t) (*field_compiler_type.GetByteSize(&thread));
uint32_t field_byte_offset = aggregate_field_offsets[idx];
// this is unlikely w/o the overall size being greater than 8 bytes
// For now, return a nullptr return value object.
if (used_bytes >= 8 || used_bytes + field_byte_width > 8) {
return return_valobj_sp;
}
DataExtractor *copy_from_extractor = nullptr;
uint32_t copy_from_offset = 0;
if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
field_compiler_type.IsPointerType() ||
field_compiler_type.IsFloatingPointType(count, is_complex)) {
copy_from_extractor = &rax_data;
copy_from_offset = used_bytes;
used_bytes += field_byte_width;
}
// These two tests are just sanity checks. If I somehow get the type
// calculation wrong above it is better to just return nothing than to
// assert or crash.
if (!copy_from_extractor) {
return return_valobj_sp;
}
if (copy_from_offset + field_byte_width >
copy_from_extractor->GetByteSize()) {
return return_valobj_sp;
}
copy_from_extractor->CopyByteOrderedData(copy_from_offset,
field_byte_width, data_sp->GetBytes() + field_byte_offset,
field_byte_width, byte_order);
}
if (!is_memory) {
// The result is in our data buffer. Let's make a variable object out
// of it:
return_valobj_sp = ValueObjectConstResult::Create(
&thread, return_compiler_type, ConstString(""), return_ext);
}
}
// The Windows x86_64 ABI specifies that the return address for MEMORY
// objects be placed in rax on exit from the function.
// FIXME: This is just taking a guess, rax may very well no longer hold the
// return storage location.
// If we are going to do this right, when we make a new frame we should
// check to see if it uses a memory return, and if we are at the first
// instruction and if so stash away the return location. Then we would
// only return the memory return value if we know it is valid.
if (is_memory) {
unsigned rax_id =
reg_ctx_sp->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
lldb::addr_t storage_addr =
(uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id,
0);
return_valobj_sp = ValueObjectMemory::Create(
&thread, "", Address(storage_addr, nullptr), return_compiler_type);
}
return return_valobj_sp;
}
// This defines the CFA as rsp+8
// the saved pc is at CFA-8 (i.e. rsp+0)
// The saved rsp is CFA+0
bool ABIWindows_x86_64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t sp_reg_num = dwarf_rsp;
uint32_t pc_reg_num = dwarf_rip;
UnwindPlan::RowSP row(new UnwindPlan::Row);
row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 8);
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -8, false);
row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
unwind_plan.AppendRow(row);
unwind_plan.SetSourceName("x86_64 at-func-entry default");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
return true;
}
// Windows-x86_64 doesn't use %rbp
// No available Unwind information for Windows-x86_64 (section .pdata)
// Let's use SysV-x86_64 one for now
bool ABIWindows_x86_64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
unwind_plan.Clear();
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
uint32_t fp_reg_num = dwarf_rbp;
uint32_t sp_reg_num = dwarf_rsp;
uint32_t pc_reg_num = dwarf_rip;
UnwindPlan::RowSP row(new UnwindPlan::Row);
const int32_t ptr_size = 8;
row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_rbp, 2 * ptr_size);
row->SetOffset(0);
row->SetUnspecifiedRegistersAreUndefined(true);
row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
unwind_plan.AppendRow(row);
unwind_plan.SetSourceName("x86_64 default unwind plan");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
return true;
}
bool ABIWindows_x86_64::RegisterIsVolatile(const RegisterInfo *reg_info) {
return !RegisterIsCalleeSaved(reg_info);
}
bool ABIWindows_x86_64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
if (!reg_info)
return false;
assert(reg_info->name != nullptr && "unnamed register?");
std::string Name = std::string(reg_info->name);
bool IsCalleeSaved =
llvm::StringSwitch<bool>(Name)
.Cases("rbx", "ebx", "rbp", "ebp", "rdi", "edi", "rsi", "esi", true)
.Cases("rsp", "esp", "r12", "r13", "r14", "r15", "sp", "fp", true)
.Cases("xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12",
"xmm13", "xmm14", "xmm15", true)
.Default(false);
return IsCalleeSaved;
}
uint32_t ABIWindows_x86_64::GetGenericNum(llvm::StringRef reg) {
return llvm::StringSwitch<uint32_t>(reg)
.Case("rip", LLDB_REGNUM_GENERIC_PC)
.Case("rsp", LLDB_REGNUM_GENERIC_SP)
.Case("rbp", LLDB_REGNUM_GENERIC_FP)
.Case("rflags", LLDB_REGNUM_GENERIC_FLAGS)
.Case("rcx", LLDB_REGNUM_GENERIC_ARG1)
.Case("rdx", LLDB_REGNUM_GENERIC_ARG2)
.Case("r8", LLDB_REGNUM_GENERIC_ARG3)
.Case("r9", LLDB_REGNUM_GENERIC_ARG4)
.Default(LLDB_INVALID_REGNUM);
}
void ABIWindows_x86_64::Initialize() {
PluginManager::RegisterPlugin(
GetPluginNameStatic(), "Windows ABI for x86_64 targets", CreateInstance);
}
void ABIWindows_x86_64::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::ConstString ABIWindows_x86_64::GetPluginNameStatic() {
static ConstString g_name("windows-x86_64");
return g_name;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
lldb_private::ConstString ABIWindows_x86_64::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t ABIWindows_x86_64::GetPluginVersion() { return 1; }