forked from OSchip/llvm-project
1701 lines
65 KiB
C++
1701 lines
65 KiB
C++
//===- CalledOnceCheck.cpp - Check 'called once' parameters ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/Analyses/CalledOnceCheck.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/OperationKinds.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/Analysis/AnalysisDeclContext.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/BitmaskEnum.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <memory>
|
|
|
|
using namespace clang;
|
|
|
|
namespace {
|
|
static constexpr unsigned EXPECTED_MAX_NUMBER_OF_PARAMS = 2;
|
|
template <class T>
|
|
using ParamSizedVector = llvm::SmallVector<T, EXPECTED_MAX_NUMBER_OF_PARAMS>;
|
|
static constexpr unsigned EXPECTED_NUMBER_OF_BASIC_BLOCKS = 8;
|
|
template <class T>
|
|
using CFGSizedVector = llvm::SmallVector<T, EXPECTED_NUMBER_OF_BASIC_BLOCKS>;
|
|
constexpr llvm::StringLiteral CONVENTIONAL_NAMES[] = {
|
|
"completionHandler", "completion", "withCompletionHandler",
|
|
"withCompletion", "completionBlock", "withCompletionBlock",
|
|
"replyTo", "reply", "withReplyTo"};
|
|
constexpr llvm::StringLiteral CONVENTIONAL_SUFFIXES[] = {
|
|
"WithCompletionHandler", "WithCompletion", "WithCompletionBlock",
|
|
"WithReplyTo", "WithReply"};
|
|
constexpr llvm::StringLiteral CONVENTIONAL_CONDITIONS[] = {
|
|
"error", "cancel", "shouldCall", "done", "OK", "success"};
|
|
|
|
struct KnownCalledOnceParameter {
|
|
llvm::StringLiteral FunctionName;
|
|
unsigned ParamIndex;
|
|
};
|
|
constexpr KnownCalledOnceParameter KNOWN_CALLED_ONCE_PARAMETERS[] = {
|
|
{"dispatch_async", 1},
|
|
{"dispatch_async_and_wait", 1},
|
|
{"dispatch_after", 2},
|
|
{"dispatch_sync", 1},
|
|
{"dispatch_once", 1},
|
|
{"dispatch_barrier_async", 1},
|
|
{"dispatch_barrier_async_and_wait", 1},
|
|
{"dispatch_barrier_sync", 1}};
|
|
|
|
class ParameterStatus {
|
|
public:
|
|
// Status kind is basically the main part of parameter's status.
|
|
// The kind represents our knowledge (so far) about a tracked parameter
|
|
// in the context of this analysis.
|
|
//
|
|
// Since we want to report on missing and extraneous calls, we need to
|
|
// track the fact whether paramater was called or not. This automatically
|
|
// decides two kinds: `NotCalled` and `Called`.
|
|
//
|
|
// One of the erroneous situations is the case when parameter is called only
|
|
// on some of the paths. We could've considered it `NotCalled`, but we want
|
|
// to report double call warnings even if these two calls are not guaranteed
|
|
// to happen in every execution. We also don't want to have it as `Called`
|
|
// because not calling tracked parameter on all of the paths is an error
|
|
// on its own. For these reasons, we need to have a separate kind,
|
|
// `MaybeCalled`, and change `Called` to `DefinitelyCalled` to avoid
|
|
// confusion.
|
|
//
|
|
// Two violations of calling parameter more than once and not calling it on
|
|
// every path are not, however, mutually exclusive. In situations where both
|
|
// violations take place, we prefer to report ONLY double call. It's always
|
|
// harder to pinpoint a bug that has arisen when a user neglects to take the
|
|
// right action (and therefore, no action is taken), than when a user takes
|
|
// the wrong action. And, in order to remember that we already reported
|
|
// a double call, we need another kind: `Reported`.
|
|
//
|
|
// Our analysis is intra-procedural and, while in the perfect world,
|
|
// developers only use tracked parameters to call them, in the real world,
|
|
// the picture might be different. Parameters can be stored in global
|
|
// variables or leaked into other functions that we know nothing about.
|
|
// We try to be lenient and trust users. Another kind `Escaped` reflects
|
|
// such situations. We don't know if it gets called there or not, but we
|
|
// should always think of `Escaped` as the best possible option.
|
|
//
|
|
// Some of the paths in the analyzed functions might end with a call
|
|
// to noreturn functions. Such paths are not required to have parameter
|
|
// calls and we want to track that. For the purposes of better diagnostics,
|
|
// we don't want to reuse `Escaped` and, thus, have another kind `NoReturn`.
|
|
//
|
|
// Additionally, we have `NotVisited` kind that tells us nothing about
|
|
// a tracked parameter, but is used for tracking analyzed (aka visited)
|
|
// basic blocks.
|
|
//
|
|
// If we consider `|` to be a JOIN operation of two kinds coming from
|
|
// two different paths, the following properties must hold:
|
|
//
|
|
// 1. for any Kind K: K | K == K
|
|
// Joining two identical kinds should result in the same kind.
|
|
//
|
|
// 2. for any Kind K: Reported | K == Reported
|
|
// Doesn't matter on which path it was reported, it still is.
|
|
//
|
|
// 3. for any Kind K: NoReturn | K == K
|
|
// We can totally ignore noreturn paths during merges.
|
|
//
|
|
// 4. DefinitelyCalled | NotCalled == MaybeCalled
|
|
// Called on one path, not called on another - that's simply
|
|
// a definition for MaybeCalled.
|
|
//
|
|
// 5. for any Kind K in [DefinitelyCalled, NotCalled, MaybeCalled]:
|
|
// Escaped | K == K
|
|
// Escaped mirrors other statuses after joins.
|
|
// Every situation, when we join any of the listed kinds K,
|
|
// is a violation. For this reason, in order to assume the
|
|
// best outcome for this escape, we consider it to be the
|
|
// same as the other path.
|
|
//
|
|
// 6. for any Kind K in [DefinitelyCalled, NotCalled]:
|
|
// MaybeCalled | K == MaybeCalled
|
|
// MaybeCalled should basically stay after almost every join.
|
|
enum Kind {
|
|
// No-return paths should be absolutely transparent for the analysis.
|
|
// 0x0 is the identity element for selected join operation (binary or).
|
|
NoReturn = 0x0, /* 0000 */
|
|
// Escaped marks situations when marked parameter escaped into
|
|
// another function (so we can assume that it was possibly called there).
|
|
Escaped = 0x1, /* 0001 */
|
|
// Parameter was definitely called once at this point.
|
|
DefinitelyCalled = 0x3, /* 0011 */
|
|
// Kinds less or equal to NON_ERROR_STATUS are not considered errors.
|
|
NON_ERROR_STATUS = DefinitelyCalled,
|
|
// Parameter was not yet called.
|
|
NotCalled = 0x5, /* 0101 */
|
|
// Parameter was not called at least on one path leading to this point,
|
|
// while there is also at least one path that it gets called.
|
|
MaybeCalled = 0x7, /* 0111 */
|
|
// Parameter was not yet analyzed.
|
|
NotVisited = 0x8, /* 1000 */
|
|
// We already reported a violation and stopped tracking calls for this
|
|
// parameter.
|
|
Reported = 0x15, /* 1111 */
|
|
LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue = */ Reported)
|
|
};
|
|
|
|
constexpr ParameterStatus() = default;
|
|
/* implicit */ ParameterStatus(Kind K) : StatusKind(K) {
|
|
assert(!seenAnyCalls(K) && "Can't initialize status without a call");
|
|
}
|
|
ParameterStatus(Kind K, const Expr *Call) : StatusKind(K), Call(Call) {
|
|
assert(seenAnyCalls(K) && "This kind is not supposed to have a call");
|
|
}
|
|
|
|
const Expr &getCall() const {
|
|
assert(seenAnyCalls(getKind()) && "ParameterStatus doesn't have a call");
|
|
return *Call;
|
|
}
|
|
static bool seenAnyCalls(Kind K) {
|
|
return (K & DefinitelyCalled) == DefinitelyCalled && K != Reported;
|
|
}
|
|
bool seenAnyCalls() const { return seenAnyCalls(getKind()); }
|
|
|
|
static bool isErrorStatus(Kind K) { return K > NON_ERROR_STATUS; }
|
|
bool isErrorStatus() const { return isErrorStatus(getKind()); }
|
|
|
|
Kind getKind() const { return StatusKind; }
|
|
|
|
void join(const ParameterStatus &Other) {
|
|
// If we have a pointer already, let's keep it.
|
|
// For the purposes of the analysis, it doesn't really matter
|
|
// which call we report.
|
|
//
|
|
// If we don't have a pointer, let's take whatever gets joined.
|
|
if (!Call) {
|
|
Call = Other.Call;
|
|
}
|
|
// Join kinds.
|
|
StatusKind |= Other.getKind();
|
|
}
|
|
|
|
bool operator==(const ParameterStatus &Other) const {
|
|
// We compare only kinds, pointers on their own is only additional
|
|
// information.
|
|
return getKind() == Other.getKind();
|
|
}
|
|
|
|
private:
|
|
// It would've been a perfect place to use llvm::PointerIntPair, but
|
|
// unfortunately NumLowBitsAvailable for clang::Expr had been reduced to 2.
|
|
Kind StatusKind = NotVisited;
|
|
const Expr *Call = nullptr;
|
|
};
|
|
|
|
/// State aggregates statuses of all tracked parameters.
|
|
class State {
|
|
public:
|
|
State(unsigned Size, ParameterStatus::Kind K = ParameterStatus::NotVisited)
|
|
: ParamData(Size, K) {}
|
|
|
|
/// Return status of a parameter with the given index.
|
|
/// \{
|
|
ParameterStatus &getStatusFor(unsigned Index) { return ParamData[Index]; }
|
|
const ParameterStatus &getStatusFor(unsigned Index) const {
|
|
return ParamData[Index];
|
|
}
|
|
/// \}
|
|
|
|
/// Return true if parameter with the given index can be called.
|
|
bool seenAnyCalls(unsigned Index) const {
|
|
return getStatusFor(Index).seenAnyCalls();
|
|
}
|
|
/// Return a reference that we consider a call.
|
|
///
|
|
/// Should only be used for parameters that can be called.
|
|
const Expr &getCallFor(unsigned Index) const {
|
|
return getStatusFor(Index).getCall();
|
|
}
|
|
/// Return status kind of parameter with the given index.
|
|
ParameterStatus::Kind getKindFor(unsigned Index) const {
|
|
return getStatusFor(Index).getKind();
|
|
}
|
|
|
|
bool isVisited() const {
|
|
return llvm::all_of(ParamData, [](const ParameterStatus &S) {
|
|
return S.getKind() != ParameterStatus::NotVisited;
|
|
});
|
|
}
|
|
|
|
// Join other state into the current state.
|
|
void join(const State &Other) {
|
|
assert(ParamData.size() == Other.ParamData.size() &&
|
|
"Couldn't join statuses with different sizes");
|
|
for (auto Pair : llvm::zip(ParamData, Other.ParamData)) {
|
|
std::get<0>(Pair).join(std::get<1>(Pair));
|
|
}
|
|
}
|
|
|
|
using iterator = ParamSizedVector<ParameterStatus>::iterator;
|
|
using const_iterator = ParamSizedVector<ParameterStatus>::const_iterator;
|
|
|
|
iterator begin() { return ParamData.begin(); }
|
|
iterator end() { return ParamData.end(); }
|
|
|
|
const_iterator begin() const { return ParamData.begin(); }
|
|
const_iterator end() const { return ParamData.end(); }
|
|
|
|
bool operator==(const State &Other) const {
|
|
return ParamData == Other.ParamData;
|
|
}
|
|
|
|
private:
|
|
ParamSizedVector<ParameterStatus> ParamData;
|
|
};
|
|
|
|
/// A simple class that finds DeclRefExpr in the given expression.
|
|
///
|
|
/// However, we don't want to find ANY nested DeclRefExpr skipping whatever
|
|
/// expressions on our way. Only certain expressions considered "no-op"
|
|
/// for our task are indeed skipped.
|
|
class DeclRefFinder
|
|
: public ConstStmtVisitor<DeclRefFinder, const DeclRefExpr *> {
|
|
public:
|
|
/// Find a DeclRefExpr in the given expression.
|
|
///
|
|
/// In its most basic form (ShouldRetrieveFromComparisons == false),
|
|
/// this function can be simply reduced to the following question:
|
|
///
|
|
/// - If expression E is used as a function argument, could we say
|
|
/// that DeclRefExpr nested in E is used as an argument?
|
|
///
|
|
/// According to this rule, we can say that parens, casts and dereferencing
|
|
/// (dereferencing only applied to function pointers, but this is our case)
|
|
/// can be skipped.
|
|
///
|
|
/// When we should look into comparisons the question changes to:
|
|
///
|
|
/// - If expression E is used as a condition, could we say that
|
|
/// DeclRefExpr is being checked?
|
|
///
|
|
/// And even though, these are two different questions, they have quite a lot
|
|
/// in common. Actually, we can say that whatever expression answers
|
|
/// positively the first question also fits the second question as well.
|
|
///
|
|
/// In addition, we skip binary operators == and !=, and unary opeartor !.
|
|
static const DeclRefExpr *find(const Expr *E,
|
|
bool ShouldRetrieveFromComparisons = false) {
|
|
return DeclRefFinder(ShouldRetrieveFromComparisons).Visit(E);
|
|
}
|
|
|
|
const DeclRefExpr *VisitDeclRefExpr(const DeclRefExpr *DR) { return DR; }
|
|
|
|
const DeclRefExpr *VisitUnaryOperator(const UnaryOperator *UO) {
|
|
switch (UO->getOpcode()) {
|
|
case UO_LNot:
|
|
// We care about logical not only if we care about comparisons.
|
|
if (!ShouldRetrieveFromComparisons)
|
|
return nullptr;
|
|
LLVM_FALLTHROUGH;
|
|
// Function pointer/references can be dereferenced before a call.
|
|
// That doesn't make it, however, any different from a regular call.
|
|
// For this reason, dereference operation is a "no-op".
|
|
case UO_Deref:
|
|
return Visit(UO->getSubExpr());
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
const DeclRefExpr *VisitBinaryOperator(const BinaryOperator *BO) {
|
|
if (!ShouldRetrieveFromComparisons)
|
|
return nullptr;
|
|
|
|
switch (BO->getOpcode()) {
|
|
case BO_EQ:
|
|
case BO_NE: {
|
|
const DeclRefExpr *LHS = Visit(BO->getLHS());
|
|
return LHS ? LHS : Visit(BO->getRHS());
|
|
}
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
const DeclRefExpr *VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
|
|
return Visit(OVE->getSourceExpr());
|
|
}
|
|
|
|
const DeclRefExpr *VisitCallExpr(const CallExpr *CE) {
|
|
if (!ShouldRetrieveFromComparisons)
|
|
return nullptr;
|
|
|
|
// We want to see through some of the boolean builtin functions
|
|
// that we are likely to see in conditions.
|
|
switch (CE->getBuiltinCallee()) {
|
|
case Builtin::BI__builtin_expect:
|
|
case Builtin::BI__builtin_expect_with_probability: {
|
|
assert(CE->getNumArgs() >= 2);
|
|
|
|
const DeclRefExpr *Candidate = Visit(CE->getArg(0));
|
|
return Candidate != nullptr ? Candidate : Visit(CE->getArg(1));
|
|
}
|
|
|
|
case Builtin::BI__builtin_unpredictable:
|
|
return Visit(CE->getArg(0));
|
|
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
const DeclRefExpr *VisitExpr(const Expr *E) {
|
|
// It is a fallback method that gets called whenever the actual type
|
|
// of the given expression is not covered.
|
|
//
|
|
// We first check if we have anything to skip. And then repeat the whole
|
|
// procedure for a nested expression instead.
|
|
const Expr *DeclutteredExpr = E->IgnoreParenCasts();
|
|
return E != DeclutteredExpr ? Visit(DeclutteredExpr) : nullptr;
|
|
}
|
|
|
|
private:
|
|
DeclRefFinder(bool ShouldRetrieveFromComparisons)
|
|
: ShouldRetrieveFromComparisons(ShouldRetrieveFromComparisons) {}
|
|
|
|
bool ShouldRetrieveFromComparisons;
|
|
};
|
|
|
|
const DeclRefExpr *findDeclRefExpr(const Expr *In,
|
|
bool ShouldRetrieveFromComparisons = false) {
|
|
return DeclRefFinder::find(In, ShouldRetrieveFromComparisons);
|
|
}
|
|
|
|
const ParmVarDecl *
|
|
findReferencedParmVarDecl(const Expr *In,
|
|
bool ShouldRetrieveFromComparisons = false) {
|
|
if (const DeclRefExpr *DR =
|
|
findDeclRefExpr(In, ShouldRetrieveFromComparisons)) {
|
|
return dyn_cast<ParmVarDecl>(DR->getDecl());
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return conditions expression of a statement if it has one.
|
|
const Expr *getCondition(const Stmt *S) {
|
|
if (!S) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (const auto *If = dyn_cast<IfStmt>(S)) {
|
|
return If->getCond();
|
|
}
|
|
if (const auto *Ternary = dyn_cast<AbstractConditionalOperator>(S)) {
|
|
return Ternary->getCond();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// A small helper class that collects all named identifiers in the given
|
|
/// expression. It traverses it recursively, so names from deeper levels
|
|
/// of the AST will end up in the results.
|
|
/// Results might have duplicate names, if this is a problem, convert to
|
|
/// string sets afterwards.
|
|
class NamesCollector : public RecursiveASTVisitor<NamesCollector> {
|
|
public:
|
|
static constexpr unsigned EXPECTED_NUMBER_OF_NAMES = 5;
|
|
using NameCollection =
|
|
llvm::SmallVector<llvm::StringRef, EXPECTED_NUMBER_OF_NAMES>;
|
|
|
|
static NameCollection collect(const Expr *From) {
|
|
NamesCollector Impl;
|
|
Impl.TraverseStmt(const_cast<Expr *>(From));
|
|
return Impl.Result;
|
|
}
|
|
|
|
bool VisitDeclRefExpr(const DeclRefExpr *E) {
|
|
Result.push_back(E->getDecl()->getName());
|
|
return true;
|
|
}
|
|
|
|
bool VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
|
|
llvm::StringRef Name;
|
|
|
|
if (E->isImplicitProperty()) {
|
|
ObjCMethodDecl *PropertyMethodDecl = nullptr;
|
|
if (E->isMessagingGetter()) {
|
|
PropertyMethodDecl = E->getImplicitPropertyGetter();
|
|
} else {
|
|
PropertyMethodDecl = E->getImplicitPropertySetter();
|
|
}
|
|
assert(PropertyMethodDecl &&
|
|
"Implicit property must have associated declaration");
|
|
Name = PropertyMethodDecl->getSelector().getNameForSlot(0);
|
|
} else {
|
|
assert(E->isExplicitProperty());
|
|
Name = E->getExplicitProperty()->getName();
|
|
}
|
|
|
|
Result.push_back(Name);
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
NamesCollector() = default;
|
|
NameCollection Result;
|
|
};
|
|
|
|
/// Check whether the given expression mentions any of conventional names.
|
|
bool mentionsAnyOfConventionalNames(const Expr *E) {
|
|
NamesCollector::NameCollection MentionedNames = NamesCollector::collect(E);
|
|
|
|
return llvm::any_of(MentionedNames, [](llvm::StringRef ConditionName) {
|
|
return llvm::any_of(
|
|
CONVENTIONAL_CONDITIONS,
|
|
[ConditionName](const llvm::StringLiteral &Conventional) {
|
|
return ConditionName.contains_lower(Conventional);
|
|
});
|
|
});
|
|
}
|
|
|
|
/// Clarification is a simple pair of a reason why parameter is not called
|
|
/// on every path and a statement to blame.
|
|
struct Clarification {
|
|
NeverCalledReason Reason;
|
|
const Stmt *Location;
|
|
};
|
|
|
|
/// A helper class that can produce a clarification based on the given pair
|
|
/// of basic blocks.
|
|
class NotCalledClarifier
|
|
: public ConstStmtVisitor<NotCalledClarifier,
|
|
llvm::Optional<Clarification>> {
|
|
public:
|
|
/// The main entrypoint for the class, the function that tries to find the
|
|
/// clarification of how to explain which sub-path starts with a CFG edge
|
|
/// from Conditional to SuccWithoutCall.
|
|
///
|
|
/// This means that this function has one precondition:
|
|
/// SuccWithoutCall should be a successor block for Conditional.
|
|
///
|
|
/// Because clarification is not needed for non-trivial pairs of blocks
|
|
/// (i.e. SuccWithoutCall is not the only successor), it returns meaningful
|
|
/// results only for such cases. For this very reason, the parent basic
|
|
/// block, Conditional, is named that way, so it is clear what kind of
|
|
/// block is expected.
|
|
static llvm::Optional<Clarification>
|
|
clarify(const CFGBlock *Conditional, const CFGBlock *SuccWithoutCall) {
|
|
if (const Stmt *Terminator = Conditional->getTerminatorStmt()) {
|
|
return NotCalledClarifier{Conditional, SuccWithoutCall}.Visit(Terminator);
|
|
}
|
|
return llvm::None;
|
|
}
|
|
|
|
llvm::Optional<Clarification> VisitIfStmt(const IfStmt *If) {
|
|
return VisitBranchingBlock(If, NeverCalledReason::IfThen);
|
|
}
|
|
|
|
llvm::Optional<Clarification>
|
|
VisitAbstractConditionalOperator(const AbstractConditionalOperator *Ternary) {
|
|
return VisitBranchingBlock(Ternary, NeverCalledReason::IfThen);
|
|
}
|
|
|
|
llvm::Optional<Clarification> VisitSwitchStmt(const SwitchStmt *Switch) {
|
|
const Stmt *CaseToBlame = SuccInQuestion->getLabel();
|
|
if (!CaseToBlame) {
|
|
// If interesting basic block is not labeled, it means that this
|
|
// basic block does not represent any of the cases.
|
|
return Clarification{NeverCalledReason::SwitchSkipped, Switch};
|
|
}
|
|
|
|
for (const SwitchCase *Case = Switch->getSwitchCaseList(); Case;
|
|
Case = Case->getNextSwitchCase()) {
|
|
if (Case == CaseToBlame) {
|
|
return Clarification{NeverCalledReason::Switch, Case};
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Found unexpected switch structure");
|
|
}
|
|
|
|
llvm::Optional<Clarification> VisitForStmt(const ForStmt *For) {
|
|
return VisitBranchingBlock(For, NeverCalledReason::LoopEntered);
|
|
}
|
|
|
|
llvm::Optional<Clarification> VisitWhileStmt(const WhileStmt *While) {
|
|
return VisitBranchingBlock(While, NeverCalledReason::LoopEntered);
|
|
}
|
|
|
|
llvm::Optional<Clarification>
|
|
VisitBranchingBlock(const Stmt *Terminator, NeverCalledReason DefaultReason) {
|
|
assert(Parent->succ_size() == 2 &&
|
|
"Branching block should have exactly two successors");
|
|
unsigned SuccessorIndex = getSuccessorIndex(Parent, SuccInQuestion);
|
|
NeverCalledReason ActualReason =
|
|
updateForSuccessor(DefaultReason, SuccessorIndex);
|
|
return Clarification{ActualReason, Terminator};
|
|
}
|
|
|
|
llvm::Optional<Clarification> VisitBinaryOperator(const BinaryOperator *) {
|
|
// We don't want to report on short-curcuit logical operations.
|
|
return llvm::None;
|
|
}
|
|
|
|
llvm::Optional<Clarification> VisitStmt(const Stmt *Terminator) {
|
|
// If we got here, we didn't have a visit function for more derived
|
|
// classes of statement that this terminator actually belongs to.
|
|
//
|
|
// This is not a good scenario and should not happen in practice, but
|
|
// at least we'll warn the user.
|
|
return Clarification{NeverCalledReason::FallbackReason, Terminator};
|
|
}
|
|
|
|
static unsigned getSuccessorIndex(const CFGBlock *Parent,
|
|
const CFGBlock *Child) {
|
|
CFGBlock::const_succ_iterator It = llvm::find(Parent->succs(), Child);
|
|
assert(It != Parent->succ_end() &&
|
|
"Given blocks should be in parent-child relationship");
|
|
return It - Parent->succ_begin();
|
|
}
|
|
|
|
static NeverCalledReason
|
|
updateForSuccessor(NeverCalledReason ReasonForTrueBranch,
|
|
unsigned SuccessorIndex) {
|
|
assert(SuccessorIndex <= 1);
|
|
unsigned RawReason =
|
|
static_cast<unsigned>(ReasonForTrueBranch) + SuccessorIndex;
|
|
assert(RawReason <=
|
|
static_cast<unsigned>(NeverCalledReason::LARGEST_VALUE));
|
|
return static_cast<NeverCalledReason>(RawReason);
|
|
}
|
|
|
|
private:
|
|
NotCalledClarifier(const CFGBlock *Parent, const CFGBlock *SuccInQuestion)
|
|
: Parent(Parent), SuccInQuestion(SuccInQuestion) {}
|
|
|
|
const CFGBlock *Parent, *SuccInQuestion;
|
|
};
|
|
|
|
class CalledOnceChecker : public ConstStmtVisitor<CalledOnceChecker> {
|
|
public:
|
|
static void check(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
|
|
bool CheckConventionalParameters) {
|
|
CalledOnceChecker(AC, Handler, CheckConventionalParameters).check();
|
|
}
|
|
|
|
private:
|
|
CalledOnceChecker(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
|
|
bool CheckConventionalParameters)
|
|
: FunctionCFG(*AC.getCFG()), AC(AC), Handler(Handler),
|
|
CheckConventionalParameters(CheckConventionalParameters),
|
|
CurrentState(0) {
|
|
initDataStructures();
|
|
assert((size() == 0 || !States.empty()) &&
|
|
"Data structures are inconsistent");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Initializing functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void initDataStructures() {
|
|
const Decl *AnalyzedDecl = AC.getDecl();
|
|
|
|
if (const auto *Function = dyn_cast<FunctionDecl>(AnalyzedDecl)) {
|
|
findParamsToTrack(Function);
|
|
} else if (const auto *Method = dyn_cast<ObjCMethodDecl>(AnalyzedDecl)) {
|
|
findParamsToTrack(Method);
|
|
} else if (const auto *Block = dyn_cast<BlockDecl>(AnalyzedDecl)) {
|
|
findCapturesToTrack(Block);
|
|
findParamsToTrack(Block);
|
|
}
|
|
|
|
// Have something to track, let's init states for every block from the CFG.
|
|
if (size() != 0) {
|
|
States =
|
|
CFGSizedVector<State>(FunctionCFG.getNumBlockIDs(), State(size()));
|
|
}
|
|
}
|
|
|
|
void findCapturesToTrack(const BlockDecl *Block) {
|
|
for (const auto &Capture : Block->captures()) {
|
|
if (const auto *P = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
|
|
// Parameter DeclContext is its owning function or method.
|
|
const DeclContext *ParamContext = P->getDeclContext();
|
|
if (shouldBeCalledOnce(ParamContext, P)) {
|
|
TrackedParams.push_back(P);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class FunctionLikeDecl>
|
|
void findParamsToTrack(const FunctionLikeDecl *Function) {
|
|
for (unsigned Index : llvm::seq<unsigned>(0u, Function->param_size())) {
|
|
if (shouldBeCalledOnce(Function, Index)) {
|
|
TrackedParams.push_back(Function->getParamDecl(Index));
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Main logic 'check' functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void check() {
|
|
// Nothing to check here: we don't have marked parameters.
|
|
if (size() == 0 || isPossiblyEmptyImpl())
|
|
return;
|
|
|
|
assert(
|
|
llvm::none_of(States, [](const State &S) { return S.isVisited(); }) &&
|
|
"None of the blocks should be 'visited' before the analysis");
|
|
|
|
// For our task, both backward and forward approaches suite well.
|
|
// However, in order to report better diagnostics, we decided to go with
|
|
// backward analysis.
|
|
//
|
|
// Let's consider the following CFG and how forward and backward analyses
|
|
// will work for it.
|
|
//
|
|
// FORWARD: | BACKWARD:
|
|
// #1 | #1
|
|
// +---------+ | +-----------+
|
|
// | if | | |MaybeCalled|
|
|
// +---------+ | +-----------+
|
|
// |NotCalled| | | if |
|
|
// +---------+ | +-----------+
|
|
// / \ | / \
|
|
// #2 / \ #3 | #2 / \ #3
|
|
// +----------------+ +---------+ | +----------------+ +---------+
|
|
// | foo() | | ... | | |DefinitelyCalled| |NotCalled|
|
|
// +----------------+ +---------+ | +----------------+ +---------+
|
|
// |DefinitelyCalled| |NotCalled| | | foo() | | ... |
|
|
// +----------------+ +---------+ | +----------------+ +---------+
|
|
// \ / | \ /
|
|
// \ #4 / | \ #4 /
|
|
// +-----------+ | +---------+
|
|
// | ... | | |NotCalled|
|
|
// +-----------+ | +---------+
|
|
// |MaybeCalled| | | ... |
|
|
// +-----------+ | +---------+
|
|
//
|
|
// The most natural way to report lacking call in the block #3 would be to
|
|
// message that the false branch of the if statement in the block #1 doesn't
|
|
// have a call. And while with the forward approach we'll need to find a
|
|
// least common ancestor or something like that to find the 'if' to blame,
|
|
// backward analysis gives it to us out of the box.
|
|
BackwardDataflowWorklist Worklist(FunctionCFG, AC);
|
|
|
|
// Let's visit EXIT.
|
|
const CFGBlock *Exit = &FunctionCFG.getExit();
|
|
assignState(Exit, State(size(), ParameterStatus::NotCalled));
|
|
Worklist.enqueuePredecessors(Exit);
|
|
|
|
while (const CFGBlock *BB = Worklist.dequeue()) {
|
|
assert(BB && "Worklist should filter out null blocks");
|
|
check(BB);
|
|
assert(CurrentState.isVisited() &&
|
|
"After the check, basic block should be visited");
|
|
|
|
// Traverse successor basic blocks if the status of this block
|
|
// has changed.
|
|
if (assignState(BB, CurrentState)) {
|
|
Worklist.enqueuePredecessors(BB);
|
|
}
|
|
}
|
|
|
|
// Check that we have all tracked parameters at the last block.
|
|
// As we are performing a backward version of the analysis,
|
|
// it should be the ENTRY block.
|
|
checkEntry(&FunctionCFG.getEntry());
|
|
}
|
|
|
|
void check(const CFGBlock *BB) {
|
|
// We start with a state 'inherited' from all the successors.
|
|
CurrentState = joinSuccessors(BB);
|
|
assert(CurrentState.isVisited() &&
|
|
"Shouldn't start with a 'not visited' state");
|
|
|
|
// This is the 'exit' situation, broken promises are probably OK
|
|
// in such scenarios.
|
|
if (BB->hasNoReturnElement()) {
|
|
markNoReturn();
|
|
// This block still can have calls (even multiple calls) and
|
|
// for this reason there is no early return here.
|
|
}
|
|
|
|
// We use a backward dataflow propagation and for this reason we
|
|
// should traverse basic blocks bottom-up.
|
|
for (const CFGElement &Element : llvm::reverse(*BB)) {
|
|
if (Optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
|
|
check(S->getStmt());
|
|
}
|
|
}
|
|
}
|
|
void check(const Stmt *S) { Visit(S); }
|
|
|
|
void checkEntry(const CFGBlock *Entry) {
|
|
// We finalize this algorithm with the ENTRY block because
|
|
// we use a backward version of the analysis. This is where
|
|
// we can judge that some of the tracked parameters are not called on
|
|
// every path from ENTRY to EXIT.
|
|
|
|
const State &EntryStatus = getState(Entry);
|
|
llvm::BitVector NotCalledOnEveryPath(size(), false);
|
|
llvm::BitVector NotUsedOnEveryPath(size(), false);
|
|
|
|
// Check if there are no calls of the marked parameter at all
|
|
for (const auto &IndexedStatus : llvm::enumerate(EntryStatus)) {
|
|
const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());
|
|
|
|
switch (IndexedStatus.value().getKind()) {
|
|
case ParameterStatus::NotCalled:
|
|
// If there were places where this parameter escapes (aka being used),
|
|
// we can provide a more useful diagnostic by pointing at the exact
|
|
// branches where it is not even mentioned.
|
|
if (!hasEverEscaped(IndexedStatus.index())) {
|
|
// This parameter is was not used at all, so we should report the
|
|
// most generic version of the warning.
|
|
if (isCaptured(Parameter)) {
|
|
// We want to specify that it was captured by the block.
|
|
Handler.handleCapturedNeverCalled(Parameter, AC.getDecl(),
|
|
!isExplicitlyMarked(Parameter));
|
|
} else {
|
|
Handler.handleNeverCalled(Parameter,
|
|
!isExplicitlyMarked(Parameter));
|
|
}
|
|
} else {
|
|
// Mark it as 'interesting' to figure out which paths don't even
|
|
// have escapes.
|
|
NotUsedOnEveryPath[IndexedStatus.index()] = true;
|
|
}
|
|
|
|
break;
|
|
case ParameterStatus::MaybeCalled:
|
|
// If we have 'maybe called' at this point, we have an error
|
|
// that there is at least one path where this parameter
|
|
// is not called.
|
|
//
|
|
// However, reporting the warning with only that information can be
|
|
// too vague for the users. For this reason, we mark such parameters
|
|
// as "interesting" for further analysis.
|
|
NotCalledOnEveryPath[IndexedStatus.index()] = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Early exit if we don't have parameters for extra analysis...
|
|
if (NotCalledOnEveryPath.none() && NotUsedOnEveryPath.none() &&
|
|
// ... or if we've seen variables with cleanup functions.
|
|
// We can't reason that we've seen every path in this case,
|
|
// and thus abandon reporting any warnings that imply that.
|
|
!FunctionHasCleanupVars)
|
|
return;
|
|
|
|
// We are looking for a pair of blocks A, B so that the following is true:
|
|
// * A is a predecessor of B
|
|
// * B is marked as NotCalled
|
|
// * A has at least one successor marked as either
|
|
// Escaped or DefinitelyCalled
|
|
//
|
|
// In that situation, it is guaranteed that B is the first block of the path
|
|
// where the user doesn't call or use parameter in question.
|
|
//
|
|
// For this reason, branch A -> B can be used for reporting.
|
|
//
|
|
// This part of the algorithm is guarded by a condition that the function
|
|
// does indeed have a violation of contract. For this reason, we can
|
|
// spend more time to find a good spot to place the warning.
|
|
//
|
|
// The following algorithm has the worst case complexity of O(V + E),
|
|
// where V is the number of basic blocks in FunctionCFG,
|
|
// E is the number of edges between blocks in FunctionCFG.
|
|
for (const CFGBlock *BB : FunctionCFG) {
|
|
if (!BB)
|
|
continue;
|
|
|
|
const State &BlockState = getState(BB);
|
|
|
|
for (unsigned Index : llvm::seq(0u, size())) {
|
|
// We don't want to use 'isLosingCall' here because we want to report
|
|
// the following situation as well:
|
|
//
|
|
// MaybeCalled
|
|
// | ... |
|
|
// MaybeCalled NotCalled
|
|
//
|
|
// Even though successor is not 'DefinitelyCalled', it is still useful
|
|
// to report it, it is still a path without a call.
|
|
if (NotCalledOnEveryPath[Index] &&
|
|
BlockState.getKindFor(Index) == ParameterStatus::MaybeCalled) {
|
|
|
|
findAndReportNotCalledBranches(BB, Index);
|
|
} else if (NotUsedOnEveryPath[Index] &&
|
|
isLosingEscape(BlockState, BB, Index)) {
|
|
|
|
findAndReportNotCalledBranches(BB, Index, /* IsEscape = */ true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check potential call of a tracked parameter.
|
|
void checkDirectCall(const CallExpr *Call) {
|
|
if (auto Index = getIndexOfCallee(Call)) {
|
|
processCallFor(*Index, Call);
|
|
}
|
|
}
|
|
|
|
/// Check the call expression for being an indirect call of one of the tracked
|
|
/// parameters. It is indirect in the sense that this particular call is not
|
|
/// calling the parameter itself, but rather uses it as the argument.
|
|
template <class CallLikeExpr>
|
|
void checkIndirectCall(const CallLikeExpr *CallOrMessage) {
|
|
// CallExpr::arguments does not interact nicely with llvm::enumerate.
|
|
llvm::ArrayRef<const Expr *> Arguments = llvm::makeArrayRef(
|
|
CallOrMessage->getArgs(), CallOrMessage->getNumArgs());
|
|
|
|
// Let's check if any of the call arguments is a point of interest.
|
|
for (const auto &Argument : llvm::enumerate(Arguments)) {
|
|
if (auto Index = getIndexOfExpression(Argument.value())) {
|
|
if (shouldBeCalledOnce(CallOrMessage, Argument.index())) {
|
|
// If the corresponding parameter is marked as 'called_once' we should
|
|
// consider it as a call.
|
|
processCallFor(*Index, CallOrMessage);
|
|
} else {
|
|
// Otherwise, we mark this parameter as escaped, which can be
|
|
// interpreted both as called or not called depending on the context.
|
|
processEscapeFor(*Index);
|
|
}
|
|
// Otherwise, let's keep the state as it is.
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Process call of the parameter with the given index
|
|
void processCallFor(unsigned Index, const Expr *Call) {
|
|
ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index);
|
|
|
|
if (CurrentParamStatus.seenAnyCalls()) {
|
|
|
|
// At this point, this parameter was called, so this is a second call.
|
|
const ParmVarDecl *Parameter = getParameter(Index);
|
|
Handler.handleDoubleCall(
|
|
Parameter, &CurrentState.getCallFor(Index), Call,
|
|
!isExplicitlyMarked(Parameter),
|
|
// We are sure that the second call is definitely
|
|
// going to happen if the status is 'DefinitelyCalled'.
|
|
CurrentParamStatus.getKind() == ParameterStatus::DefinitelyCalled);
|
|
|
|
// Mark this parameter as already reported on, so we don't repeat
|
|
// warnings.
|
|
CurrentParamStatus = ParameterStatus::Reported;
|
|
|
|
} else if (CurrentParamStatus.getKind() != ParameterStatus::Reported) {
|
|
// If we didn't report anything yet, let's mark this parameter
|
|
// as called.
|
|
ParameterStatus Called(ParameterStatus::DefinitelyCalled, Call);
|
|
CurrentParamStatus = Called;
|
|
}
|
|
}
|
|
|
|
/// Process escape of the parameter with the given index
|
|
void processEscapeFor(unsigned Index) {
|
|
ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index);
|
|
|
|
// Escape overrides whatever error we think happened.
|
|
if (CurrentParamStatus.isErrorStatus()) {
|
|
CurrentParamStatus = ParameterStatus::Escaped;
|
|
}
|
|
}
|
|
|
|
void findAndReportNotCalledBranches(const CFGBlock *Parent, unsigned Index,
|
|
bool IsEscape = false) {
|
|
for (const CFGBlock *Succ : Parent->succs()) {
|
|
if (!Succ)
|
|
continue;
|
|
|
|
if (getState(Succ).getKindFor(Index) == ParameterStatus::NotCalled) {
|
|
assert(Parent->succ_size() >= 2 &&
|
|
"Block should have at least two successors at this point");
|
|
if (auto Clarification = NotCalledClarifier::clarify(Parent, Succ)) {
|
|
const ParmVarDecl *Parameter = getParameter(Index);
|
|
Handler.handleNeverCalled(
|
|
Parameter, AC.getDecl(), Clarification->Location,
|
|
Clarification->Reason, !IsEscape, !isExplicitlyMarked(Parameter));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Predicate functions to check parameters
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return true if parameter is explicitly marked as 'called_once'.
|
|
static bool isExplicitlyMarked(const ParmVarDecl *Parameter) {
|
|
return Parameter->hasAttr<CalledOnceAttr>();
|
|
}
|
|
|
|
/// Return true if the given name matches conventional pattens.
|
|
static bool isConventional(llvm::StringRef Name) {
|
|
return llvm::count(CONVENTIONAL_NAMES, Name) != 0;
|
|
}
|
|
|
|
/// Return true if the given name has conventional suffixes.
|
|
static bool hasConventionalSuffix(llvm::StringRef Name) {
|
|
return llvm::any_of(CONVENTIONAL_SUFFIXES, [Name](llvm::StringRef Suffix) {
|
|
return Name.endswith(Suffix);
|
|
});
|
|
}
|
|
|
|
/// Return true if the given type can be used for conventional parameters.
|
|
static bool isConventional(QualType Ty) {
|
|
if (!Ty->isBlockPointerType()) {
|
|
return false;
|
|
}
|
|
|
|
QualType BlockType = Ty->getAs<BlockPointerType>()->getPointeeType();
|
|
// Completion handlers should have a block type with void return type.
|
|
return BlockType->getAs<FunctionType>()->getReturnType()->isVoidType();
|
|
}
|
|
|
|
/// Return true if the only parameter of the function is conventional.
|
|
static bool isOnlyParameterConventional(const FunctionDecl *Function) {
|
|
IdentifierInfo *II = Function->getIdentifier();
|
|
return Function->getNumParams() == 1 && II &&
|
|
hasConventionalSuffix(II->getName());
|
|
}
|
|
|
|
/// Return true/false if 'swift_async' attribute states that the given
|
|
/// parameter is conventionally called once.
|
|
/// Return llvm::None if the given declaration doesn't have 'swift_async'
|
|
/// attribute.
|
|
static llvm::Optional<bool> isConventionalSwiftAsync(const Decl *D,
|
|
unsigned ParamIndex) {
|
|
if (const SwiftAsyncAttr *A = D->getAttr<SwiftAsyncAttr>()) {
|
|
if (A->getKind() == SwiftAsyncAttr::None) {
|
|
return false;
|
|
}
|
|
|
|
return A->getCompletionHandlerIndex().getASTIndex() == ParamIndex;
|
|
}
|
|
return llvm::None;
|
|
}
|
|
|
|
/// Return true if the specified selector piece matches conventions.
|
|
static bool isConventionalSelectorPiece(Selector MethodSelector,
|
|
unsigned PieceIndex,
|
|
QualType PieceType) {
|
|
if (!isConventional(PieceType)) {
|
|
return false;
|
|
}
|
|
|
|
if (MethodSelector.getNumArgs() == 1) {
|
|
assert(PieceIndex == 0);
|
|
return hasConventionalSuffix(MethodSelector.getNameForSlot(0));
|
|
}
|
|
|
|
llvm::StringRef PieceName = MethodSelector.getNameForSlot(PieceIndex);
|
|
return isConventional(PieceName) || hasConventionalSuffix(PieceName);
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const ParmVarDecl *Parameter) const {
|
|
return isExplicitlyMarked(Parameter) ||
|
|
(CheckConventionalParameters &&
|
|
(isConventional(Parameter->getName()) ||
|
|
hasConventionalSuffix(Parameter->getName())) &&
|
|
isConventional(Parameter->getType()));
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const DeclContext *ParamContext,
|
|
const ParmVarDecl *Param) {
|
|
unsigned ParamIndex = Param->getFunctionScopeIndex();
|
|
if (const auto *Function = dyn_cast<FunctionDecl>(ParamContext)) {
|
|
return shouldBeCalledOnce(Function, ParamIndex);
|
|
}
|
|
if (const auto *Method = dyn_cast<ObjCMethodDecl>(ParamContext)) {
|
|
return shouldBeCalledOnce(Method, ParamIndex);
|
|
}
|
|
return shouldBeCalledOnce(Param);
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const BlockDecl *Block, unsigned ParamIndex) const {
|
|
return shouldBeCalledOnce(Block->getParamDecl(ParamIndex));
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const FunctionDecl *Function,
|
|
unsigned ParamIndex) const {
|
|
if (ParamIndex >= Function->getNumParams()) {
|
|
return false;
|
|
}
|
|
// 'swift_async' goes first and overrides anything else.
|
|
if (auto ConventionalAsync =
|
|
isConventionalSwiftAsync(Function, ParamIndex)) {
|
|
return ConventionalAsync.getValue();
|
|
}
|
|
|
|
return shouldBeCalledOnce(Function->getParamDecl(ParamIndex)) ||
|
|
(CheckConventionalParameters &&
|
|
isOnlyParameterConventional(Function));
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const ObjCMethodDecl *Method,
|
|
unsigned ParamIndex) const {
|
|
Selector MethodSelector = Method->getSelector();
|
|
if (ParamIndex >= MethodSelector.getNumArgs()) {
|
|
return false;
|
|
}
|
|
|
|
// 'swift_async' goes first and overrides anything else.
|
|
if (auto ConventionalAsync = isConventionalSwiftAsync(Method, ParamIndex)) {
|
|
return ConventionalAsync.getValue();
|
|
}
|
|
|
|
const ParmVarDecl *Parameter = Method->getParamDecl(ParamIndex);
|
|
return shouldBeCalledOnce(Parameter) ||
|
|
(CheckConventionalParameters &&
|
|
isConventionalSelectorPiece(MethodSelector, ParamIndex,
|
|
Parameter->getType()));
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const CallExpr *Call, unsigned ParamIndex) const {
|
|
const FunctionDecl *Function = Call->getDirectCallee();
|
|
return Function && shouldBeCalledOnce(Function, ParamIndex);
|
|
}
|
|
|
|
bool shouldBeCalledOnce(const ObjCMessageExpr *Message,
|
|
unsigned ParamIndex) const {
|
|
const ObjCMethodDecl *Method = Message->getMethodDecl();
|
|
return Method && ParamIndex < Method->param_size() &&
|
|
shouldBeCalledOnce(Method, ParamIndex);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool isCaptured(const ParmVarDecl *Parameter) const {
|
|
if (const BlockDecl *Block = dyn_cast<BlockDecl>(AC.getDecl())) {
|
|
return Block->capturesVariable(Parameter);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return a call site where the block is called exactly once or null otherwise
|
|
const Expr *getBlockGuaraneedCallSite(const BlockExpr *Block) const {
|
|
ParentMap &PM = AC.getParentMap();
|
|
|
|
// We don't want to track the block through assignments and so on, instead
|
|
// we simply see how the block used and if it's used directly in a call,
|
|
// we decide based on call to what it is.
|
|
//
|
|
// In order to do this, we go up the parents of the block looking for
|
|
// a call or a message expressions. These might not be immediate parents
|
|
// of the actual block expression due to casts and parens, so we skip them.
|
|
for (const Stmt *Prev = Block, *Current = PM.getParent(Block);
|
|
Current != nullptr; Prev = Current, Current = PM.getParent(Current)) {
|
|
// Skip no-op (for our case) operations.
|
|
if (isa<CastExpr>(Current) || isa<ParenExpr>(Current))
|
|
continue;
|
|
|
|
// At this point, Prev represents our block as an immediate child of the
|
|
// call.
|
|
if (const auto *Call = dyn_cast<CallExpr>(Current)) {
|
|
// It might be the call of the Block itself...
|
|
if (Call->getCallee() == Prev)
|
|
return Call;
|
|
|
|
// ...or it can be an indirect call of the block.
|
|
return shouldBlockArgumentBeCalledOnce(Call, Prev) ? Call : nullptr;
|
|
}
|
|
if (const auto *Message = dyn_cast<ObjCMessageExpr>(Current)) {
|
|
return shouldBlockArgumentBeCalledOnce(Message, Prev) ? Message
|
|
: nullptr;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
template <class CallLikeExpr>
|
|
bool shouldBlockArgumentBeCalledOnce(const CallLikeExpr *CallOrMessage,
|
|
const Stmt *BlockArgument) const {
|
|
// CallExpr::arguments does not interact nicely with llvm::enumerate.
|
|
llvm::ArrayRef<const Expr *> Arguments = llvm::makeArrayRef(
|
|
CallOrMessage->getArgs(), CallOrMessage->getNumArgs());
|
|
|
|
for (const auto &Argument : llvm::enumerate(Arguments)) {
|
|
if (Argument.value() == BlockArgument) {
|
|
return shouldBlockArgumentBeCalledOnce(CallOrMessage, Argument.index());
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool shouldBlockArgumentBeCalledOnce(const CallExpr *Call,
|
|
unsigned ParamIndex) const {
|
|
const FunctionDecl *Function = Call->getDirectCallee();
|
|
return shouldBlockArgumentBeCalledOnce(Function, ParamIndex) ||
|
|
shouldBeCalledOnce(Call, ParamIndex);
|
|
}
|
|
|
|
bool shouldBlockArgumentBeCalledOnce(const ObjCMessageExpr *Message,
|
|
unsigned ParamIndex) const {
|
|
// At the moment, we don't have any Obj-C methods we want to specifically
|
|
// check in here.
|
|
return shouldBeCalledOnce(Message, ParamIndex);
|
|
}
|
|
|
|
static bool shouldBlockArgumentBeCalledOnce(const FunctionDecl *Function,
|
|
unsigned ParamIndex) {
|
|
// There is a list of important API functions that while not following
|
|
// conventions nor being directly annotated, still guarantee that the
|
|
// callback parameter will be called exactly once.
|
|
//
|
|
// Here we check if this is the case.
|
|
return Function &&
|
|
llvm::any_of(KNOWN_CALLED_ONCE_PARAMETERS,
|
|
[Function, ParamIndex](
|
|
const KnownCalledOnceParameter &Reference) {
|
|
return Reference.FunctionName ==
|
|
Function->getName() &&
|
|
Reference.ParamIndex == ParamIndex;
|
|
});
|
|
}
|
|
|
|
/// Return true if the analyzed function is actually a default implementation
|
|
/// of the method that has to be overriden.
|
|
///
|
|
/// These functions can have tracked parameters, but wouldn't call them
|
|
/// because they are not designed to perform any meaningful actions.
|
|
///
|
|
/// There are a couple of flavors of such default implementations:
|
|
/// 1. Empty methods or methods with a single return statement
|
|
/// 2. Methods that have one block with a call to no return function
|
|
/// 3. Methods with only assertion-like operations
|
|
bool isPossiblyEmptyImpl() const {
|
|
if (!isa<ObjCMethodDecl>(AC.getDecl())) {
|
|
// We care only about functions that are not supposed to be called.
|
|
// Only methods can be overriden.
|
|
return false;
|
|
}
|
|
|
|
// Case #1 (without return statements)
|
|
if (FunctionCFG.size() == 2) {
|
|
// Method has only two blocks: ENTRY and EXIT.
|
|
// This is equivalent to empty function.
|
|
return true;
|
|
}
|
|
|
|
// Case #2
|
|
if (FunctionCFG.size() == 3) {
|
|
const CFGBlock &Entry = FunctionCFG.getEntry();
|
|
if (Entry.succ_empty()) {
|
|
return false;
|
|
}
|
|
|
|
const CFGBlock *OnlyBlock = *Entry.succ_begin();
|
|
// Method has only one block, let's see if it has a no-return
|
|
// element.
|
|
if (OnlyBlock && OnlyBlock->hasNoReturnElement()) {
|
|
return true;
|
|
}
|
|
// Fallthrough, CFGs with only one block can fall into #1 and #3 as well.
|
|
}
|
|
|
|
// Cases #1 (return statements) and #3.
|
|
//
|
|
// It is hard to detect that something is an assertion or came
|
|
// from assertion. Here we use a simple heuristic:
|
|
//
|
|
// - If it came from a macro, it can be an assertion.
|
|
//
|
|
// Additionally, we can't assume a number of basic blocks or the CFG's
|
|
// structure because assertions might include loops and conditions.
|
|
return llvm::all_of(FunctionCFG, [](const CFGBlock *BB) {
|
|
if (!BB) {
|
|
// Unreachable blocks are totally fine.
|
|
return true;
|
|
}
|
|
|
|
// Return statements can have sub-expressions that are represented as
|
|
// separate statements of a basic block. We should allow this.
|
|
// This parent map will be initialized with a parent tree for all
|
|
// subexpressions of the block's return statement (if it has one).
|
|
std::unique_ptr<ParentMap> ReturnChildren;
|
|
|
|
return llvm::all_of(
|
|
llvm::reverse(*BB), // we should start with return statements, if we
|
|
// have any, i.e. from the bottom of the block
|
|
[&ReturnChildren](const CFGElement &Element) {
|
|
if (Optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
|
|
const Stmt *SuspiciousStmt = S->getStmt();
|
|
|
|
if (isa<ReturnStmt>(SuspiciousStmt)) {
|
|
// Let's initialize this structure to test whether
|
|
// some further statement is a part of this return.
|
|
ReturnChildren = std::make_unique<ParentMap>(
|
|
const_cast<Stmt *>(SuspiciousStmt));
|
|
// Return statements are allowed as part of #1.
|
|
return true;
|
|
}
|
|
|
|
return SuspiciousStmt->getBeginLoc().isMacroID() ||
|
|
(ReturnChildren &&
|
|
ReturnChildren->hasParent(SuspiciousStmt));
|
|
}
|
|
return true;
|
|
});
|
|
});
|
|
}
|
|
|
|
/// Check if parameter with the given index has ever escaped.
|
|
bool hasEverEscaped(unsigned Index) const {
|
|
return llvm::any_of(States, [Index](const State &StateForOneBB) {
|
|
return StateForOneBB.getKindFor(Index) == ParameterStatus::Escaped;
|
|
});
|
|
}
|
|
|
|
/// Return status stored for the given basic block.
|
|
/// \{
|
|
State &getState(const CFGBlock *BB) {
|
|
assert(BB);
|
|
return States[BB->getBlockID()];
|
|
}
|
|
const State &getState(const CFGBlock *BB) const {
|
|
assert(BB);
|
|
return States[BB->getBlockID()];
|
|
}
|
|
/// \}
|
|
|
|
/// Assign status to the given basic block.
|
|
///
|
|
/// Returns true when the stored status changed.
|
|
bool assignState(const CFGBlock *BB, const State &ToAssign) {
|
|
State &Current = getState(BB);
|
|
if (Current == ToAssign) {
|
|
return false;
|
|
}
|
|
|
|
Current = ToAssign;
|
|
return true;
|
|
}
|
|
|
|
/// Join all incoming statuses for the given basic block.
|
|
State joinSuccessors(const CFGBlock *BB) const {
|
|
auto Succs =
|
|
llvm::make_filter_range(BB->succs(), [this](const CFGBlock *Succ) {
|
|
return Succ && this->getState(Succ).isVisited();
|
|
});
|
|
// We came to this block from somewhere after all.
|
|
assert(!Succs.empty() &&
|
|
"Basic block should have at least one visited successor");
|
|
|
|
State Result = getState(*Succs.begin());
|
|
|
|
for (const CFGBlock *Succ : llvm::drop_begin(Succs, 1)) {
|
|
Result.join(getState(Succ));
|
|
}
|
|
|
|
if (const Expr *Condition = getCondition(BB->getTerminatorStmt())) {
|
|
handleConditional(BB, Condition, Result);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
void handleConditional(const CFGBlock *BB, const Expr *Condition,
|
|
State &ToAlter) const {
|
|
handleParameterCheck(BB, Condition, ToAlter);
|
|
if (SuppressOnConventionalErrorPaths) {
|
|
handleConventionalCheck(BB, Condition, ToAlter);
|
|
}
|
|
}
|
|
|
|
void handleParameterCheck(const CFGBlock *BB, const Expr *Condition,
|
|
State &ToAlter) const {
|
|
// In this function, we try to deal with the following pattern:
|
|
//
|
|
// if (parameter)
|
|
// parameter(...);
|
|
//
|
|
// It's not good to show a warning here because clearly 'parameter'
|
|
// couldn't and shouldn't be called on the 'else' path.
|
|
//
|
|
// Let's check if this if statement has a check involving one of
|
|
// the tracked parameters.
|
|
if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(
|
|
Condition,
|
|
/* ShouldRetrieveFromComparisons = */ true)) {
|
|
if (const auto Index = getIndex(*Parameter)) {
|
|
ParameterStatus &CurrentStatus = ToAlter.getStatusFor(*Index);
|
|
|
|
// We don't want to deep dive into semantics of the check and
|
|
// figure out if that check was for null or something else.
|
|
// We simply trust the user that they know what they are doing.
|
|
//
|
|
// For this reason, in the following loop we look for the
|
|
// best-looking option.
|
|
for (const CFGBlock *Succ : BB->succs()) {
|
|
if (!Succ)
|
|
continue;
|
|
|
|
const ParameterStatus &StatusInSucc =
|
|
getState(Succ).getStatusFor(*Index);
|
|
|
|
if (StatusInSucc.isErrorStatus()) {
|
|
continue;
|
|
}
|
|
|
|
// Let's use this status instead.
|
|
CurrentStatus = StatusInSucc;
|
|
|
|
if (StatusInSucc.getKind() == ParameterStatus::DefinitelyCalled) {
|
|
// This is the best option to have and we already found it.
|
|
break;
|
|
}
|
|
|
|
// If we found 'Escaped' first, we still might find 'DefinitelyCalled'
|
|
// on the other branch. And we prefer the latter.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void handleConventionalCheck(const CFGBlock *BB, const Expr *Condition,
|
|
State &ToAlter) const {
|
|
// Even when the analysis is technically correct, it is a widespread pattern
|
|
// not to call completion handlers in some scenarios. These usually have
|
|
// typical conditional names, such as 'error' or 'cancel'.
|
|
if (!mentionsAnyOfConventionalNames(Condition)) {
|
|
return;
|
|
}
|
|
|
|
for (const auto &IndexedStatus : llvm::enumerate(ToAlter)) {
|
|
const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());
|
|
// Conventions do not apply to explicitly marked parameters.
|
|
if (isExplicitlyMarked(Parameter)) {
|
|
continue;
|
|
}
|
|
|
|
ParameterStatus &CurrentStatus = IndexedStatus.value();
|
|
// If we did find that on one of the branches the user uses the callback
|
|
// and doesn't on the other path, we believe that they know what they are
|
|
// doing and trust them.
|
|
//
|
|
// There are two possible scenarios for that:
|
|
// 1. Current status is 'MaybeCalled' and one of the branches is
|
|
// 'DefinitelyCalled'
|
|
// 2. Current status is 'NotCalled' and one of the branches is 'Escaped'
|
|
if (isLosingCall(ToAlter, BB, IndexedStatus.index()) ||
|
|
isLosingEscape(ToAlter, BB, IndexedStatus.index())) {
|
|
CurrentStatus = ParameterStatus::Escaped;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isLosingCall(const State &StateAfterJoin, const CFGBlock *JoinBlock,
|
|
unsigned ParameterIndex) const {
|
|
// Let's check if the block represents DefinitelyCalled -> MaybeCalled
|
|
// transition.
|
|
return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
|
|
ParameterStatus::MaybeCalled,
|
|
ParameterStatus::DefinitelyCalled);
|
|
}
|
|
|
|
bool isLosingEscape(const State &StateAfterJoin, const CFGBlock *JoinBlock,
|
|
unsigned ParameterIndex) const {
|
|
// Let's check if the block represents Escaped -> NotCalled transition.
|
|
return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
|
|
ParameterStatus::NotCalled, ParameterStatus::Escaped);
|
|
}
|
|
|
|
bool isLosingJoin(const State &StateAfterJoin, const CFGBlock *JoinBlock,
|
|
unsigned ParameterIndex, ParameterStatus::Kind AfterJoin,
|
|
ParameterStatus::Kind BeforeJoin) const {
|
|
assert(!ParameterStatus::isErrorStatus(BeforeJoin) &&
|
|
ParameterStatus::isErrorStatus(AfterJoin) &&
|
|
"It's not a losing join if statuses do not represent "
|
|
"correct-to-error transition");
|
|
|
|
const ParameterStatus &CurrentStatus =
|
|
StateAfterJoin.getStatusFor(ParameterIndex);
|
|
|
|
return CurrentStatus.getKind() == AfterJoin &&
|
|
anySuccessorHasStatus(JoinBlock, ParameterIndex, BeforeJoin);
|
|
}
|
|
|
|
/// Return true if any of the successors of the given basic block has
|
|
/// a specified status for the given parameter.
|
|
bool anySuccessorHasStatus(const CFGBlock *Parent, unsigned ParameterIndex,
|
|
ParameterStatus::Kind ToFind) const {
|
|
return llvm::any_of(
|
|
Parent->succs(), [this, ParameterIndex, ToFind](const CFGBlock *Succ) {
|
|
return Succ && getState(Succ).getKindFor(ParameterIndex) == ToFind;
|
|
});
|
|
}
|
|
|
|
/// Check given expression that was discovered to escape.
|
|
void checkEscapee(const Expr *E) {
|
|
if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
|
|
checkEscapee(*Parameter);
|
|
}
|
|
}
|
|
|
|
/// Check given parameter that was discovered to escape.
|
|
void checkEscapee(const ParmVarDecl &Parameter) {
|
|
if (auto Index = getIndex(Parameter)) {
|
|
processEscapeFor(*Index);
|
|
}
|
|
}
|
|
|
|
/// Mark all parameters in the current state as 'no-return'.
|
|
void markNoReturn() {
|
|
for (ParameterStatus &PS : CurrentState) {
|
|
PS = ParameterStatus::NoReturn;
|
|
}
|
|
}
|
|
|
|
/// Check if the given assignment represents suppression and act on it.
|
|
void checkSuppression(const BinaryOperator *Assignment) {
|
|
// Suppression has the following form:
|
|
// parameter = 0;
|
|
// 0 can be of any form (NULL, nil, etc.)
|
|
if (auto Index = getIndexOfExpression(Assignment->getLHS())) {
|
|
|
|
// We don't care what is written in the RHS, it could be whatever
|
|
// we can interpret as 0.
|
|
if (auto Constant =
|
|
Assignment->getRHS()->IgnoreParenCasts()->getIntegerConstantExpr(
|
|
AC.getASTContext())) {
|
|
|
|
ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(*Index);
|
|
|
|
if (0 == *Constant && CurrentParamStatus.seenAnyCalls()) {
|
|
// Even though this suppression mechanism is introduced to tackle
|
|
// false positives for multiple calls, the fact that the user has
|
|
// to use suppression can also tell us that we couldn't figure out
|
|
// how different paths cancel each other out. And if that is true,
|
|
// we will most certainly have false positives about parameters not
|
|
// being called on certain paths.
|
|
//
|
|
// For this reason, we abandon tracking this parameter altogether.
|
|
CurrentParamStatus = ParameterStatus::Reported;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
//===----------------------------------------------------------------------===//
|
|
// Tree traversal methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void VisitCallExpr(const CallExpr *Call) {
|
|
// This call might be a direct call, i.e. a parameter call...
|
|
checkDirectCall(Call);
|
|
// ... or an indirect call, i.e. when parameter is an argument.
|
|
checkIndirectCall(Call);
|
|
}
|
|
|
|
void VisitObjCMessageExpr(const ObjCMessageExpr *Message) {
|
|
// The most common situation that we are defending against here is
|
|
// copying a tracked parameter.
|
|
if (const Expr *Receiver = Message->getInstanceReceiver()) {
|
|
checkEscapee(Receiver);
|
|
}
|
|
// Message expressions unlike calls, could not be direct.
|
|
checkIndirectCall(Message);
|
|
}
|
|
|
|
void VisitBlockExpr(const BlockExpr *Block) {
|
|
// Block expressions are tricky. It is a very common practice to capture
|
|
// completion handlers by blocks and use them there.
|
|
// For this reason, it is important to analyze blocks and report warnings
|
|
// for completion handler misuse in blocks.
|
|
//
|
|
// However, it can be quite difficult to track how the block itself is being
|
|
// used. The full precise anlysis of that will be similar to alias analysis
|
|
// for completion handlers and can be too heavyweight for a compile-time
|
|
// diagnostic. Instead, we judge about the immediate use of the block.
|
|
//
|
|
// Here, we try to find a call expression where we know due to conventions,
|
|
// annotations, or other reasons that the block is called once and only
|
|
// once.
|
|
const Expr *CalledOnceCallSite = getBlockGuaraneedCallSite(Block);
|
|
|
|
// We need to report this information to the handler because in the
|
|
// situation when we know that the block is called exactly once, we can be
|
|
// stricter in terms of reported diagnostics.
|
|
if (CalledOnceCallSite) {
|
|
Handler.handleBlockThatIsGuaranteedToBeCalledOnce(Block->getBlockDecl());
|
|
} else {
|
|
Handler.handleBlockWithNoGuarantees(Block->getBlockDecl());
|
|
}
|
|
|
|
for (const auto &Capture : Block->getBlockDecl()->captures()) {
|
|
if (const auto *Param = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
|
|
if (auto Index = getIndex(*Param)) {
|
|
if (CalledOnceCallSite) {
|
|
// The call site of a block can be considered a call site of the
|
|
// captured parameter we track.
|
|
processCallFor(*Index, CalledOnceCallSite);
|
|
} else {
|
|
// We still should consider this block as an escape for parameter,
|
|
// if we don't know about its call site or the number of time it
|
|
// can be invoked.
|
|
processEscapeFor(*Index);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VisitBinaryOperator(const BinaryOperator *Op) {
|
|
if (Op->getOpcode() == clang::BO_Assign) {
|
|
// Let's check if one of the tracked parameters is assigned into
|
|
// something, and if it is we don't want to track extra variables, so we
|
|
// consider it as an escapee.
|
|
checkEscapee(Op->getRHS());
|
|
|
|
// Let's check whether this assignment is a suppression.
|
|
checkSuppression(Op);
|
|
}
|
|
}
|
|
|
|
void VisitDeclStmt(const DeclStmt *DS) {
|
|
// Variable initialization is not assignment and should be handled
|
|
// separately.
|
|
//
|
|
// Multiple declarations can be a part of declaration statement.
|
|
for (const auto *Declaration : DS->getDeclGroup()) {
|
|
if (const auto *Var = dyn_cast<VarDecl>(Declaration)) {
|
|
if (Var->getInit()) {
|
|
checkEscapee(Var->getInit());
|
|
}
|
|
|
|
if (Var->hasAttr<CleanupAttr>()) {
|
|
FunctionHasCleanupVars = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VisitCStyleCastExpr(const CStyleCastExpr *Cast) {
|
|
// We consider '(void)parameter' as a manual no-op escape.
|
|
// It should be used to explicitly tell the analysis that this parameter
|
|
// is intentionally not called on this path.
|
|
if (Cast->getType().getCanonicalType()->isVoidType()) {
|
|
checkEscapee(Cast->getSubExpr());
|
|
}
|
|
}
|
|
|
|
void VisitObjCAtThrowStmt(const ObjCAtThrowStmt *) {
|
|
// It is OK not to call marked parameters on exceptional paths.
|
|
markNoReturn();
|
|
}
|
|
|
|
private:
|
|
unsigned size() const { return TrackedParams.size(); }
|
|
|
|
llvm::Optional<unsigned> getIndexOfCallee(const CallExpr *Call) const {
|
|
return getIndexOfExpression(Call->getCallee());
|
|
}
|
|
|
|
llvm::Optional<unsigned> getIndexOfExpression(const Expr *E) const {
|
|
if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
|
|
return getIndex(*Parameter);
|
|
}
|
|
|
|
return llvm::None;
|
|
}
|
|
|
|
llvm::Optional<unsigned> getIndex(const ParmVarDecl &Parameter) const {
|
|
// Expected number of parameters that we actually track is 1.
|
|
//
|
|
// Also, the maximum number of declared parameters could not be on a scale
|
|
// of hundreds of thousands.
|
|
//
|
|
// In this setting, linear search seems reasonable and even performs better
|
|
// than bisection.
|
|
ParamSizedVector<const ParmVarDecl *>::const_iterator It =
|
|
llvm::find(TrackedParams, &Parameter);
|
|
|
|
if (It != TrackedParams.end()) {
|
|
return It - TrackedParams.begin();
|
|
}
|
|
|
|
return llvm::None;
|
|
}
|
|
|
|
const ParmVarDecl *getParameter(unsigned Index) const {
|
|
assert(Index < TrackedParams.size());
|
|
return TrackedParams[Index];
|
|
}
|
|
|
|
const CFG &FunctionCFG;
|
|
AnalysisDeclContext &AC;
|
|
CalledOnceCheckHandler &Handler;
|
|
bool CheckConventionalParameters;
|
|
// As of now, we turn this behavior off. So, we still are going to report
|
|
// missing calls on paths that look like it was intentional.
|
|
// Technically such reports are true positives, but they can make some users
|
|
// grumpy because of the sheer number of warnings.
|
|
// It can be turned back on if we decide that we want to have the other way
|
|
// around.
|
|
bool SuppressOnConventionalErrorPaths = false;
|
|
|
|
// The user can annotate variable declarations with cleanup functions, which
|
|
// essentially imposes a custom destructor logic on that variable.
|
|
// It is possible to use it, however, to call tracked parameters on all exits
|
|
// from the function. For this reason, we track the fact that the function
|
|
// actually has these.
|
|
bool FunctionHasCleanupVars = false;
|
|
|
|
State CurrentState;
|
|
ParamSizedVector<const ParmVarDecl *> TrackedParams;
|
|
CFGSizedVector<State> States;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
namespace clang {
|
|
void checkCalledOnceParameters(AnalysisDeclContext &AC,
|
|
CalledOnceCheckHandler &Handler,
|
|
bool CheckConventionalParameters) {
|
|
CalledOnceChecker::check(AC, Handler, CheckConventionalParameters);
|
|
}
|
|
} // end namespace clang
|