forked from OSchip/llvm-project
2274 lines
83 KiB
C++
2274 lines
83 KiB
C++
//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the PowerPC implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPCInstrInfo.h"
|
|
#include "MCTargetDesc/PPCPredicates.h"
|
|
#include "PPC.h"
|
|
#include "PPCHazardRecognizers.h"
|
|
#include "PPCInstrBuilder.h"
|
|
#include "PPCMachineFunctionInfo.h"
|
|
#include "PPCTargetMachine.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "ppc-instr-info"
|
|
|
|
#define GET_INSTRMAP_INFO
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#include "PPCGenInstrInfo.inc"
|
|
|
|
static cl::
|
|
opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
|
|
cl::desc("Disable analysis for CTR loops"));
|
|
|
|
static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
|
|
cl::desc("Disable compare instruction optimization"), cl::Hidden);
|
|
|
|
static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation",
|
|
cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden);
|
|
|
|
static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
|
|
cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
|
|
cl::Hidden);
|
|
|
|
// Pin the vtable to this file.
|
|
void PPCInstrInfo::anchor() {}
|
|
|
|
PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
|
|
: PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
|
|
Subtarget(STI), RI(STI) {}
|
|
|
|
/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
|
|
/// this target when scheduling the DAG.
|
|
ScheduleHazardRecognizer *
|
|
PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
|
|
const ScheduleDAG *DAG) const {
|
|
unsigned Directive =
|
|
static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
|
|
if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
|
|
Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
|
|
const InstrItineraryData *II =
|
|
static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
|
|
return new ScoreboardHazardRecognizer(II, DAG);
|
|
}
|
|
|
|
return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
|
|
}
|
|
|
|
/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
|
|
/// to use for this target when scheduling the DAG.
|
|
ScheduleHazardRecognizer *
|
|
PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
|
|
const ScheduleDAG *DAG) const {
|
|
unsigned Directive =
|
|
DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
|
|
|
|
if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
|
|
return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
|
|
|
|
// Most subtargets use a PPC970 recognizer.
|
|
if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
|
|
Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
|
|
assert(DAG->TII && "No InstrInfo?");
|
|
|
|
return new PPCHazardRecognizer970(*DAG);
|
|
}
|
|
|
|
return new ScoreboardHazardRecognizer(II, DAG);
|
|
}
|
|
|
|
|
|
int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr *DefMI, unsigned DefIdx,
|
|
const MachineInstr *UseMI,
|
|
unsigned UseIdx) const {
|
|
int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
|
|
UseMI, UseIdx);
|
|
|
|
const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
|
|
unsigned Reg = DefMO.getReg();
|
|
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
bool IsRegCR;
|
|
if (TRI->isVirtualRegister(Reg)) {
|
|
const MachineRegisterInfo *MRI =
|
|
&DefMI->getParent()->getParent()->getRegInfo();
|
|
IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
|
|
MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
|
|
} else {
|
|
IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
|
|
PPC::CRBITRCRegClass.contains(Reg);
|
|
}
|
|
|
|
if (UseMI->isBranch() && IsRegCR) {
|
|
if (Latency < 0)
|
|
Latency = getInstrLatency(ItinData, DefMI);
|
|
|
|
// On some cores, there is an additional delay between writing to a condition
|
|
// register, and using it from a branch.
|
|
unsigned Directive = Subtarget.getDarwinDirective();
|
|
switch (Directive) {
|
|
default: break;
|
|
case PPC::DIR_7400:
|
|
case PPC::DIR_750:
|
|
case PPC::DIR_970:
|
|
case PPC::DIR_E5500:
|
|
case PPC::DIR_PWR4:
|
|
case PPC::DIR_PWR5:
|
|
case PPC::DIR_PWR5X:
|
|
case PPC::DIR_PWR6:
|
|
case PPC::DIR_PWR6X:
|
|
case PPC::DIR_PWR7:
|
|
case PPC::DIR_PWR8:
|
|
Latency += 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return Latency;
|
|
}
|
|
|
|
// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
|
|
bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
|
|
unsigned &SrcReg, unsigned &DstReg,
|
|
unsigned &SubIdx) const {
|
|
switch (MI.getOpcode()) {
|
|
default: return false;
|
|
case PPC::EXTSW:
|
|
case PPC::EXTSW_32_64:
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
DstReg = MI.getOperand(0).getReg();
|
|
SubIdx = PPC::sub_32;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
// Note: This list must be kept consistent with LoadRegFromStackSlot.
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case PPC::LD:
|
|
case PPC::LWZ:
|
|
case PPC::LFS:
|
|
case PPC::LFD:
|
|
case PPC::RESTORE_CR:
|
|
case PPC::RESTORE_CRBIT:
|
|
case PPC::LVX:
|
|
case PPC::LXVD2X:
|
|
case PPC::RESTORE_VRSAVE:
|
|
// Check for the operands added by addFrameReference (the immediate is the
|
|
// offset which defaults to 0).
|
|
if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
|
|
MI->getOperand(2).isFI()) {
|
|
FrameIndex = MI->getOperand(2).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
// Note: This list must be kept consistent with StoreRegToStackSlot.
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case PPC::STD:
|
|
case PPC::STW:
|
|
case PPC::STFS:
|
|
case PPC::STFD:
|
|
case PPC::SPILL_CR:
|
|
case PPC::SPILL_CRBIT:
|
|
case PPC::STVX:
|
|
case PPC::STXVD2X:
|
|
case PPC::SPILL_VRSAVE:
|
|
// Check for the operands added by addFrameReference (the immediate is the
|
|
// offset which defaults to 0).
|
|
if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
|
|
MI->getOperand(2).isFI()) {
|
|
FrameIndex = MI->getOperand(2).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// commuteInstruction - We can commute rlwimi instructions, but only if the
|
|
// rotate amt is zero. We also have to munge the immediates a bit.
|
|
MachineInstr *
|
|
PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
|
|
// Normal instructions can be commuted the obvious way.
|
|
if (MI->getOpcode() != PPC::RLWIMI &&
|
|
MI->getOpcode() != PPC::RLWIMIo)
|
|
return TargetInstrInfo::commuteInstruction(MI, NewMI);
|
|
// Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
|
|
// 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
|
|
// changing the relative order of the mask operands might change what happens
|
|
// to the high-bits of the mask (and, thus, the result).
|
|
|
|
// Cannot commute if it has a non-zero rotate count.
|
|
if (MI->getOperand(3).getImm() != 0)
|
|
return nullptr;
|
|
|
|
// If we have a zero rotate count, we have:
|
|
// M = mask(MB,ME)
|
|
// Op0 = (Op1 & ~M) | (Op2 & M)
|
|
// Change this to:
|
|
// M = mask((ME+1)&31, (MB-1)&31)
|
|
// Op0 = (Op2 & ~M) | (Op1 & M)
|
|
|
|
// Swap op1/op2
|
|
unsigned Reg0 = MI->getOperand(0).getReg();
|
|
unsigned Reg1 = MI->getOperand(1).getReg();
|
|
unsigned Reg2 = MI->getOperand(2).getReg();
|
|
unsigned SubReg1 = MI->getOperand(1).getSubReg();
|
|
unsigned SubReg2 = MI->getOperand(2).getSubReg();
|
|
bool Reg1IsKill = MI->getOperand(1).isKill();
|
|
bool Reg2IsKill = MI->getOperand(2).isKill();
|
|
bool ChangeReg0 = false;
|
|
// If machine instrs are no longer in two-address forms, update
|
|
// destination register as well.
|
|
if (Reg0 == Reg1) {
|
|
// Must be two address instruction!
|
|
assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
|
|
"Expecting a two-address instruction!");
|
|
assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
|
|
Reg2IsKill = false;
|
|
ChangeReg0 = true;
|
|
}
|
|
|
|
// Masks.
|
|
unsigned MB = MI->getOperand(4).getImm();
|
|
unsigned ME = MI->getOperand(5).getImm();
|
|
|
|
if (NewMI) {
|
|
// Create a new instruction.
|
|
unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
|
|
bool Reg0IsDead = MI->getOperand(0).isDead();
|
|
return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
|
|
.addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
|
|
.addReg(Reg2, getKillRegState(Reg2IsKill))
|
|
.addReg(Reg1, getKillRegState(Reg1IsKill))
|
|
.addImm((ME+1) & 31)
|
|
.addImm((MB-1) & 31);
|
|
}
|
|
|
|
if (ChangeReg0) {
|
|
MI->getOperand(0).setReg(Reg2);
|
|
MI->getOperand(0).setSubReg(SubReg2);
|
|
}
|
|
MI->getOperand(2).setReg(Reg1);
|
|
MI->getOperand(1).setReg(Reg2);
|
|
MI->getOperand(2).setSubReg(SubReg1);
|
|
MI->getOperand(1).setSubReg(SubReg2);
|
|
MI->getOperand(2).setIsKill(Reg1IsKill);
|
|
MI->getOperand(1).setIsKill(Reg2IsKill);
|
|
|
|
// Swap the mask around.
|
|
MI->getOperand(4).setImm((ME+1) & 31);
|
|
MI->getOperand(5).setImm((MB-1) & 31);
|
|
return MI;
|
|
}
|
|
|
|
bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2) const {
|
|
// For VSX A-Type FMA instructions, it is the first two operands that can be
|
|
// commuted, however, because the non-encoded tied input operand is listed
|
|
// first, the operands to swap are actually the second and third.
|
|
|
|
int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
|
|
if (AltOpc == -1)
|
|
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
|
|
|
|
SrcOpIdx1 = 2;
|
|
SrcOpIdx2 = 3;
|
|
return true;
|
|
}
|
|
|
|
void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI) const {
|
|
// This function is used for scheduling, and the nop wanted here is the type
|
|
// that terminates dispatch groups on the POWER cores.
|
|
unsigned Directive = Subtarget.getDarwinDirective();
|
|
unsigned Opcode;
|
|
switch (Directive) {
|
|
default: Opcode = PPC::NOP; break;
|
|
case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
|
|
case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
|
|
case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
|
|
}
|
|
|
|
DebugLoc DL;
|
|
BuildMI(MBB, MI, DL, get(Opcode));
|
|
}
|
|
|
|
/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
|
|
void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
|
|
NopInst.setOpcode(PPC::NOP);
|
|
}
|
|
|
|
// Branch analysis.
|
|
// Note: If the condition register is set to CTR or CTR8 then this is a
|
|
// BDNZ (imm == 1) or BDZ (imm == 0) branch.
|
|
bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
|
|
// If the block has no terminators, it just falls into the block after it.
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
if (I == MBB.begin())
|
|
return false;
|
|
--I;
|
|
while (I->isDebugValue()) {
|
|
if (I == MBB.begin())
|
|
return false;
|
|
--I;
|
|
}
|
|
if (!isUnpredicatedTerminator(I))
|
|
return false;
|
|
|
|
// Get the last instruction in the block.
|
|
MachineInstr *LastInst = I;
|
|
|
|
// If there is only one terminator instruction, process it.
|
|
if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
|
|
if (LastInst->getOpcode() == PPC::B) {
|
|
if (!LastInst->getOperand(0).isMBB())
|
|
return true;
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
} else if (LastInst->getOpcode() == PPC::BCC) {
|
|
if (!LastInst->getOperand(2).isMBB())
|
|
return true;
|
|
// Block ends with fall-through condbranch.
|
|
TBB = LastInst->getOperand(2).getMBB();
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
Cond.push_back(LastInst->getOperand(1));
|
|
return false;
|
|
} else if (LastInst->getOpcode() == PPC::BC) {
|
|
if (!LastInst->getOperand(1).isMBB())
|
|
return true;
|
|
// Block ends with fall-through condbranch.
|
|
TBB = LastInst->getOperand(1).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
return false;
|
|
} else if (LastInst->getOpcode() == PPC::BCn) {
|
|
if (!LastInst->getOperand(1).isMBB())
|
|
return true;
|
|
// Block ends with fall-through condbranch.
|
|
TBB = LastInst->getOperand(1).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
return false;
|
|
} else if (LastInst->getOpcode() == PPC::BDNZ8 ||
|
|
LastInst->getOpcode() == PPC::BDNZ) {
|
|
if (!LastInst->getOperand(0).isMBB())
|
|
return true;
|
|
if (DisableCTRLoopAnal)
|
|
return true;
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(1));
|
|
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
|
|
true));
|
|
return false;
|
|
} else if (LastInst->getOpcode() == PPC::BDZ8 ||
|
|
LastInst->getOpcode() == PPC::BDZ) {
|
|
if (!LastInst->getOperand(0).isMBB())
|
|
return true;
|
|
if (DisableCTRLoopAnal)
|
|
return true;
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(0));
|
|
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
|
|
true));
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, don't know what this is.
|
|
return true;
|
|
}
|
|
|
|
// Get the instruction before it if it's a terminator.
|
|
MachineInstr *SecondLastInst = I;
|
|
|
|
// If there are three terminators, we don't know what sort of block this is.
|
|
if (SecondLastInst && I != MBB.begin() &&
|
|
isUnpredicatedTerminator(--I))
|
|
return true;
|
|
|
|
// If the block ends with PPC::B and PPC:BCC, handle it.
|
|
if (SecondLastInst->getOpcode() == PPC::BCC &&
|
|
LastInst->getOpcode() == PPC::B) {
|
|
if (!SecondLastInst->getOperand(2).isMBB() ||
|
|
!LastInst->getOperand(0).isMBB())
|
|
return true;
|
|
TBB = SecondLastInst->getOperand(2).getMBB();
|
|
Cond.push_back(SecondLastInst->getOperand(0));
|
|
Cond.push_back(SecondLastInst->getOperand(1));
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
} else if (SecondLastInst->getOpcode() == PPC::BC &&
|
|
LastInst->getOpcode() == PPC::B) {
|
|
if (!SecondLastInst->getOperand(1).isMBB() ||
|
|
!LastInst->getOperand(0).isMBB())
|
|
return true;
|
|
TBB = SecondLastInst->getOperand(1).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
|
|
Cond.push_back(SecondLastInst->getOperand(0));
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
} else if (SecondLastInst->getOpcode() == PPC::BCn &&
|
|
LastInst->getOpcode() == PPC::B) {
|
|
if (!SecondLastInst->getOperand(1).isMBB() ||
|
|
!LastInst->getOperand(0).isMBB())
|
|
return true;
|
|
TBB = SecondLastInst->getOperand(1).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
|
|
Cond.push_back(SecondLastInst->getOperand(0));
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
} else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
|
|
SecondLastInst->getOpcode() == PPC::BDNZ) &&
|
|
LastInst->getOpcode() == PPC::B) {
|
|
if (!SecondLastInst->getOperand(0).isMBB() ||
|
|
!LastInst->getOperand(0).isMBB())
|
|
return true;
|
|
if (DisableCTRLoopAnal)
|
|
return true;
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(1));
|
|
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
|
|
true));
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
} else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
|
|
SecondLastInst->getOpcode() == PPC::BDZ) &&
|
|
LastInst->getOpcode() == PPC::B) {
|
|
if (!SecondLastInst->getOperand(0).isMBB() ||
|
|
!LastInst->getOperand(0).isMBB())
|
|
return true;
|
|
if (DisableCTRLoopAnal)
|
|
return true;
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(0));
|
|
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
|
|
true));
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
// If the block ends with two PPC:Bs, handle it. The second one is not
|
|
// executed, so remove it.
|
|
if (SecondLastInst->getOpcode() == PPC::B &&
|
|
LastInst->getOpcode() == PPC::B) {
|
|
if (!SecondLastInst->getOperand(0).isMBB())
|
|
return true;
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
I = LastInst;
|
|
if (AllowModify)
|
|
I->eraseFromParent();
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, can't handle this.
|
|
return true;
|
|
}
|
|
|
|
unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
if (I == MBB.begin()) return 0;
|
|
--I;
|
|
while (I->isDebugValue()) {
|
|
if (I == MBB.begin())
|
|
return 0;
|
|
--I;
|
|
}
|
|
if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
|
|
I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
|
|
I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
|
|
I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
|
|
return 0;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
|
|
I = MBB.end();
|
|
|
|
if (I == MBB.begin()) return 1;
|
|
--I;
|
|
if (I->getOpcode() != PPC::BCC &&
|
|
I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
|
|
I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
|
|
I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
|
|
return 1;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
return 2;
|
|
}
|
|
|
|
unsigned
|
|
PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
const SmallVectorImpl<MachineOperand> &Cond,
|
|
DebugLoc DL) const {
|
|
// Shouldn't be a fall through.
|
|
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
|
|
assert((Cond.size() == 2 || Cond.size() == 0) &&
|
|
"PPC branch conditions have two components!");
|
|
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
|
|
// One-way branch.
|
|
if (!FBB) {
|
|
if (Cond.empty()) // Unconditional branch
|
|
BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
|
|
else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
|
|
BuildMI(&MBB, DL, get(Cond[0].getImm() ?
|
|
(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
|
|
(isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
|
|
else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
|
|
BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
|
|
else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
|
|
BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
|
|
else // Conditional branch
|
|
BuildMI(&MBB, DL, get(PPC::BCC))
|
|
.addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
|
|
return 1;
|
|
}
|
|
|
|
// Two-way Conditional Branch.
|
|
if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
|
|
BuildMI(&MBB, DL, get(Cond[0].getImm() ?
|
|
(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
|
|
(isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
|
|
else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
|
|
BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
|
|
else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
|
|
BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
|
|
else
|
|
BuildMI(&MBB, DL, get(PPC::BCC))
|
|
.addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
|
|
BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
|
|
return 2;
|
|
}
|
|
|
|
// Select analysis.
|
|
bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
|
|
const SmallVectorImpl<MachineOperand> &Cond,
|
|
unsigned TrueReg, unsigned FalseReg,
|
|
int &CondCycles, int &TrueCycles, int &FalseCycles) const {
|
|
if (!Subtarget.hasISEL())
|
|
return false;
|
|
|
|
if (Cond.size() != 2)
|
|
return false;
|
|
|
|
// If this is really a bdnz-like condition, then it cannot be turned into a
|
|
// select.
|
|
if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
|
|
return false;
|
|
|
|
// Check register classes.
|
|
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterClass *RC =
|
|
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
|
|
if (!RC)
|
|
return false;
|
|
|
|
// isel is for regular integer GPRs only.
|
|
if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
|
|
!PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
|
|
!PPC::G8RCRegClass.hasSubClassEq(RC) &&
|
|
!PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
|
|
return false;
|
|
|
|
// FIXME: These numbers are for the A2, how well they work for other cores is
|
|
// an open question. On the A2, the isel instruction has a 2-cycle latency
|
|
// but single-cycle throughput. These numbers are used in combination with
|
|
// the MispredictPenalty setting from the active SchedMachineModel.
|
|
CondCycles = 1;
|
|
TrueCycles = 1;
|
|
FalseCycles = 1;
|
|
|
|
return true;
|
|
}
|
|
|
|
void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI, DebugLoc dl,
|
|
unsigned DestReg,
|
|
const SmallVectorImpl<MachineOperand> &Cond,
|
|
unsigned TrueReg, unsigned FalseReg) const {
|
|
assert(Cond.size() == 2 &&
|
|
"PPC branch conditions have two components!");
|
|
|
|
assert(Subtarget.hasISEL() &&
|
|
"Cannot insert select on target without ISEL support");
|
|
|
|
// Get the register classes.
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterClass *RC =
|
|
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
|
|
assert(RC && "TrueReg and FalseReg must have overlapping register classes");
|
|
|
|
bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
|
|
PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
|
|
assert((Is64Bit ||
|
|
PPC::GPRCRegClass.hasSubClassEq(RC) ||
|
|
PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
|
|
"isel is for regular integer GPRs only");
|
|
|
|
unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
|
|
unsigned SelectPred = Cond[0].getImm();
|
|
|
|
unsigned SubIdx;
|
|
bool SwapOps;
|
|
switch (SelectPred) {
|
|
default: llvm_unreachable("invalid predicate for isel");
|
|
case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
|
|
case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
|
|
case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
|
|
case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
|
|
case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
|
|
case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
|
|
case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
|
|
case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
|
|
case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
|
|
case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
|
|
}
|
|
|
|
unsigned FirstReg = SwapOps ? FalseReg : TrueReg,
|
|
SecondReg = SwapOps ? TrueReg : FalseReg;
|
|
|
|
// The first input register of isel cannot be r0. If it is a member
|
|
// of a register class that can be r0, then copy it first (the
|
|
// register allocator should eliminate the copy).
|
|
if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
|
|
MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
|
|
const TargetRegisterClass *FirstRC =
|
|
MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
|
|
&PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
|
|
unsigned OldFirstReg = FirstReg;
|
|
FirstReg = MRI.createVirtualRegister(FirstRC);
|
|
BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
|
|
.addReg(OldFirstReg);
|
|
}
|
|
|
|
BuildMI(MBB, MI, dl, get(OpCode), DestReg)
|
|
.addReg(FirstReg).addReg(SecondReg)
|
|
.addReg(Cond[1].getReg(), 0, SubIdx);
|
|
}
|
|
|
|
void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, DebugLoc DL,
|
|
unsigned DestReg, unsigned SrcReg,
|
|
bool KillSrc) const {
|
|
// We can end up with self copies and similar things as a result of VSX copy
|
|
// legalization. Promote them here.
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
if (PPC::F8RCRegClass.contains(DestReg) &&
|
|
PPC::VSLRCRegClass.contains(SrcReg)) {
|
|
unsigned SuperReg =
|
|
TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
|
|
|
|
if (VSXSelfCopyCrash && SrcReg == SuperReg)
|
|
llvm_unreachable("nop VSX copy");
|
|
|
|
DestReg = SuperReg;
|
|
} else if (PPC::VRRCRegClass.contains(DestReg) &&
|
|
PPC::VSHRCRegClass.contains(SrcReg)) {
|
|
unsigned SuperReg =
|
|
TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
|
|
|
|
if (VSXSelfCopyCrash && SrcReg == SuperReg)
|
|
llvm_unreachable("nop VSX copy");
|
|
|
|
DestReg = SuperReg;
|
|
} else if (PPC::F8RCRegClass.contains(SrcReg) &&
|
|
PPC::VSLRCRegClass.contains(DestReg)) {
|
|
unsigned SuperReg =
|
|
TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
|
|
|
|
if (VSXSelfCopyCrash && DestReg == SuperReg)
|
|
llvm_unreachable("nop VSX copy");
|
|
|
|
SrcReg = SuperReg;
|
|
} else if (PPC::VRRCRegClass.contains(SrcReg) &&
|
|
PPC::VSHRCRegClass.contains(DestReg)) {
|
|
unsigned SuperReg =
|
|
TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
|
|
|
|
if (VSXSelfCopyCrash && DestReg == SuperReg)
|
|
llvm_unreachable("nop VSX copy");
|
|
|
|
SrcReg = SuperReg;
|
|
}
|
|
|
|
unsigned Opc;
|
|
if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::OR;
|
|
else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::OR8;
|
|
else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::FMR;
|
|
else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::MCRF;
|
|
else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::VOR;
|
|
else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
|
|
// There are two different ways this can be done:
|
|
// 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
|
|
// issue in VSU pipeline 0.
|
|
// 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
|
|
// can go to either pipeline.
|
|
// We'll always use xxlor here, because in practically all cases where
|
|
// copies are generated, they are close enough to some use that the
|
|
// lower-latency form is preferable.
|
|
Opc = PPC::XXLOR;
|
|
else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::XXLORf;
|
|
else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::CROR;
|
|
else
|
|
llvm_unreachable("Impossible reg-to-reg copy");
|
|
|
|
const MCInstrDesc &MCID = get(Opc);
|
|
if (MCID.getNumOperands() == 3)
|
|
BuildMI(MBB, I, DL, MCID, DestReg)
|
|
.addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
|
|
else
|
|
BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
|
|
// This function returns true if a CR spill is necessary and false otherwise.
|
|
bool
|
|
PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
|
|
unsigned SrcReg, bool isKill,
|
|
int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
SmallVectorImpl<MachineInstr*> &NewMIs,
|
|
bool &NonRI, bool &SpillsVRS) const{
|
|
// Note: If additional store instructions are added here,
|
|
// update isStoreToStackSlot.
|
|
|
|
DebugLoc DL;
|
|
if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
|
|
PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
} else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
|
|
PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
} else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
} else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
} else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
return true;
|
|
} else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
return true;
|
|
} else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
NonRI = true;
|
|
} else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
NonRI = true;
|
|
} else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
NonRI = true;
|
|
} else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.isDarwin() &&
|
|
"VRSAVE only needs spill/restore on Darwin");
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
|
|
.addReg(SrcReg,
|
|
getKillRegState(isKill)),
|
|
FrameIdx));
|
|
SpillsVRS = true;
|
|
} else {
|
|
llvm_unreachable("Unknown regclass!");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void
|
|
PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned SrcReg, bool isKill, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
SmallVector<MachineInstr*, 4> NewMIs;
|
|
|
|
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
FuncInfo->setHasSpills();
|
|
|
|
bool NonRI = false, SpillsVRS = false;
|
|
if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
|
|
NonRI, SpillsVRS))
|
|
FuncInfo->setSpillsCR();
|
|
|
|
if (SpillsVRS)
|
|
FuncInfo->setSpillsVRSAVE();
|
|
|
|
if (NonRI)
|
|
FuncInfo->setHasNonRISpills();
|
|
|
|
for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
|
|
MBB.insert(MI, NewMIs[i]);
|
|
|
|
const MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
|
|
MachineMemOperand::MOStore,
|
|
MFI.getObjectSize(FrameIdx),
|
|
MFI.getObjectAlignment(FrameIdx));
|
|
NewMIs.back()->addMemOperand(MF, MMO);
|
|
}
|
|
|
|
bool
|
|
PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
|
|
unsigned DestReg, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
SmallVectorImpl<MachineInstr*> &NewMIs,
|
|
bool &NonRI, bool &SpillsVRS) const{
|
|
// Note: If additional load instructions are added here,
|
|
// update isLoadFromStackSlot.
|
|
|
|
if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
|
|
PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
|
|
DestReg), FrameIdx));
|
|
} else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
|
|
PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
|
|
FrameIdx));
|
|
} else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
|
|
FrameIdx));
|
|
} else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
|
|
FrameIdx));
|
|
} else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
|
|
get(PPC::RESTORE_CR), DestReg),
|
|
FrameIdx));
|
|
return true;
|
|
} else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
|
|
get(PPC::RESTORE_CRBIT), DestReg),
|
|
FrameIdx));
|
|
return true;
|
|
} else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
|
|
FrameIdx));
|
|
NonRI = true;
|
|
} else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
|
|
FrameIdx));
|
|
NonRI = true;
|
|
} else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
|
|
FrameIdx));
|
|
NonRI = true;
|
|
} else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.isDarwin() &&
|
|
"VRSAVE only needs spill/restore on Darwin");
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
|
|
get(PPC::RESTORE_VRSAVE),
|
|
DestReg),
|
|
FrameIdx));
|
|
SpillsVRS = true;
|
|
} else {
|
|
llvm_unreachable("Unknown regclass!");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void
|
|
PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned DestReg, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
SmallVector<MachineInstr*, 4> NewMIs;
|
|
DebugLoc DL;
|
|
if (MI != MBB.end()) DL = MI->getDebugLoc();
|
|
|
|
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
FuncInfo->setHasSpills();
|
|
|
|
bool NonRI = false, SpillsVRS = false;
|
|
if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
|
|
NonRI, SpillsVRS))
|
|
FuncInfo->setSpillsCR();
|
|
|
|
if (SpillsVRS)
|
|
FuncInfo->setSpillsVRSAVE();
|
|
|
|
if (NonRI)
|
|
FuncInfo->setHasNonRISpills();
|
|
|
|
for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
|
|
MBB.insert(MI, NewMIs[i]);
|
|
|
|
const MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
|
|
MachineMemOperand::MOLoad,
|
|
MFI.getObjectSize(FrameIdx),
|
|
MFI.getObjectAlignment(FrameIdx));
|
|
NewMIs.back()->addMemOperand(MF, MMO);
|
|
}
|
|
|
|
bool PPCInstrInfo::
|
|
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
|
|
assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
|
|
if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
|
|
Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
|
|
else
|
|
// Leave the CR# the same, but invert the condition.
|
|
Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
|
|
return false;
|
|
}
|
|
|
|
bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
|
|
unsigned Reg, MachineRegisterInfo *MRI) const {
|
|
// For some instructions, it is legal to fold ZERO into the RA register field.
|
|
// A zero immediate should always be loaded with a single li.
|
|
unsigned DefOpc = DefMI->getOpcode();
|
|
if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
|
|
return false;
|
|
if (!DefMI->getOperand(1).isImm())
|
|
return false;
|
|
if (DefMI->getOperand(1).getImm() != 0)
|
|
return false;
|
|
|
|
// Note that we cannot here invert the arguments of an isel in order to fold
|
|
// a ZERO into what is presented as the second argument. All we have here
|
|
// is the condition bit, and that might come from a CR-logical bit operation.
|
|
|
|
const MCInstrDesc &UseMCID = UseMI->getDesc();
|
|
|
|
// Only fold into real machine instructions.
|
|
if (UseMCID.isPseudo())
|
|
return false;
|
|
|
|
unsigned UseIdx;
|
|
for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
|
|
if (UseMI->getOperand(UseIdx).isReg() &&
|
|
UseMI->getOperand(UseIdx).getReg() == Reg)
|
|
break;
|
|
|
|
assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
|
|
assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
|
|
|
|
const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
|
|
|
|
// We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
|
|
// register (which might also be specified as a pointer class kind).
|
|
if (UseInfo->isLookupPtrRegClass()) {
|
|
if (UseInfo->RegClass /* Kind */ != 1)
|
|
return false;
|
|
} else {
|
|
if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
|
|
UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
|
|
return false;
|
|
}
|
|
|
|
// Make sure this is not tied to an output register (or otherwise
|
|
// constrained). This is true for ST?UX registers, for example, which
|
|
// are tied to their output registers.
|
|
if (UseInfo->Constraints != 0)
|
|
return false;
|
|
|
|
unsigned ZeroReg;
|
|
if (UseInfo->isLookupPtrRegClass()) {
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
|
|
} else {
|
|
ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
|
|
PPC::ZERO8 : PPC::ZERO;
|
|
}
|
|
|
|
bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
|
|
UseMI->getOperand(UseIdx).setReg(ZeroReg);
|
|
|
|
if (DeleteDef)
|
|
DefMI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
|
|
I != IE; ++I)
|
|
if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// We should make sure that, if we're going to predicate both sides of a
|
|
// condition (a diamond), that both sides don't define the counter register. We
|
|
// can predicate counter-decrement-based branches, but while that predicates
|
|
// the branching, it does not predicate the counter decrement. If we tried to
|
|
// merge the triangle into one predicated block, we'd decrement the counter
|
|
// twice.
|
|
bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
|
|
unsigned NumT, unsigned ExtraT,
|
|
MachineBasicBlock &FMBB,
|
|
unsigned NumF, unsigned ExtraF,
|
|
const BranchProbability &Probability) const {
|
|
return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
|
|
}
|
|
|
|
|
|
bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
|
|
// The predicated branches are identified by their type, not really by the
|
|
// explicit presence of a predicate. Furthermore, some of them can be
|
|
// predicated more than once. Because if conversion won't try to predicate
|
|
// any instruction which already claims to be predicated (by returning true
|
|
// here), always return false. In doing so, we let isPredicable() be the
|
|
// final word on whether not the instruction can be (further) predicated.
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
|
|
if (!MI->isTerminator())
|
|
return false;
|
|
|
|
// Conditional branch is a special case.
|
|
if (MI->isBranch() && !MI->isBarrier())
|
|
return true;
|
|
|
|
return !isPredicated(MI);
|
|
}
|
|
|
|
bool PPCInstrInfo::PredicateInstruction(
|
|
MachineInstr *MI,
|
|
const SmallVectorImpl<MachineOperand> &Pred) const {
|
|
unsigned OpC = MI->getOpcode();
|
|
if (OpC == PPC::BLR || OpC == PPC::BLR8) {
|
|
if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
MI->setDesc(get(Pred[0].getImm() ?
|
|
(isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
|
|
(isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
|
|
} else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
|
|
MI->setDesc(get(PPC::BCLR));
|
|
MachineInstrBuilder(*MI->getParent()->getParent(), MI)
|
|
.addReg(Pred[1].getReg());
|
|
} else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
|
|
MI->setDesc(get(PPC::BCLRn));
|
|
MachineInstrBuilder(*MI->getParent()->getParent(), MI)
|
|
.addReg(Pred[1].getReg());
|
|
} else {
|
|
MI->setDesc(get(PPC::BCCLR));
|
|
MachineInstrBuilder(*MI->getParent()->getParent(), MI)
|
|
.addImm(Pred[0].getImm())
|
|
.addReg(Pred[1].getReg());
|
|
}
|
|
|
|
return true;
|
|
} else if (OpC == PPC::B) {
|
|
if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
MI->setDesc(get(Pred[0].getImm() ?
|
|
(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
|
|
(isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
|
|
} else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
|
|
MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
|
|
MI->RemoveOperand(0);
|
|
|
|
MI->setDesc(get(PPC::BC));
|
|
MachineInstrBuilder(*MI->getParent()->getParent(), MI)
|
|
.addReg(Pred[1].getReg())
|
|
.addMBB(MBB);
|
|
} else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
|
|
MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
|
|
MI->RemoveOperand(0);
|
|
|
|
MI->setDesc(get(PPC::BCn));
|
|
MachineInstrBuilder(*MI->getParent()->getParent(), MI)
|
|
.addReg(Pred[1].getReg())
|
|
.addMBB(MBB);
|
|
} else {
|
|
MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
|
|
MI->RemoveOperand(0);
|
|
|
|
MI->setDesc(get(PPC::BCC));
|
|
MachineInstrBuilder(*MI->getParent()->getParent(), MI)
|
|
.addImm(Pred[0].getImm())
|
|
.addReg(Pred[1].getReg())
|
|
.addMBB(MBB);
|
|
}
|
|
|
|
return true;
|
|
} else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 ||
|
|
OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
|
|
if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
|
|
llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
|
|
|
|
bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
|
|
if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
|
|
MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
|
|
(setLR ? PPC::BCCTRL : PPC::BCCTR)));
|
|
MachineInstrBuilder(*MI->getParent()->getParent(), MI)
|
|
.addReg(Pred[1].getReg());
|
|
return true;
|
|
} else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
|
|
MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) :
|
|
(setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
|
|
MachineInstrBuilder(*MI->getParent()->getParent(), MI)
|
|
.addReg(Pred[1].getReg());
|
|
return true;
|
|
}
|
|
|
|
MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) :
|
|
(setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
|
|
MachineInstrBuilder(*MI->getParent()->getParent(), MI)
|
|
.addImm(Pred[0].getImm())
|
|
.addReg(Pred[1].getReg());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PPCInstrInfo::SubsumesPredicate(
|
|
const SmallVectorImpl<MachineOperand> &Pred1,
|
|
const SmallVectorImpl<MachineOperand> &Pred2) const {
|
|
assert(Pred1.size() == 2 && "Invalid PPC first predicate");
|
|
assert(Pred2.size() == 2 && "Invalid PPC second predicate");
|
|
|
|
if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
|
|
return false;
|
|
if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
|
|
return false;
|
|
|
|
// P1 can only subsume P2 if they test the same condition register.
|
|
if (Pred1[1].getReg() != Pred2[1].getReg())
|
|
return false;
|
|
|
|
PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
|
|
PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
|
|
|
|
if (P1 == P2)
|
|
return true;
|
|
|
|
// Does P1 subsume P2, e.g. GE subsumes GT.
|
|
if (P1 == PPC::PRED_LE &&
|
|
(P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
|
|
return true;
|
|
if (P1 == PPC::PRED_GE &&
|
|
(P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
|
|
std::vector<MachineOperand> &Pred) const {
|
|
// Note: At the present time, the contents of Pred from this function is
|
|
// unused by IfConversion. This implementation follows ARM by pushing the
|
|
// CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
|
|
// predicate, instructions defining CTR or CTR8 are also included as
|
|
// predicate-defining instructions.
|
|
|
|
const TargetRegisterClass *RCs[] =
|
|
{ &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
|
|
&PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
|
|
|
|
bool Found = false;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
|
|
const TargetRegisterClass *RC = RCs[c];
|
|
if (MO.isReg()) {
|
|
if (MO.isDef() && RC->contains(MO.getReg())) {
|
|
Pred.push_back(MO);
|
|
Found = true;
|
|
}
|
|
} else if (MO.isRegMask()) {
|
|
for (TargetRegisterClass::iterator I = RC->begin(),
|
|
IE = RC->end(); I != IE; ++I)
|
|
if (MO.clobbersPhysReg(*I)) {
|
|
Pred.push_back(MO);
|
|
Found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Found;
|
|
}
|
|
|
|
bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
|
|
unsigned OpC = MI->getOpcode();
|
|
switch (OpC) {
|
|
default:
|
|
return false;
|
|
case PPC::B:
|
|
case PPC::BLR:
|
|
case PPC::BLR8:
|
|
case PPC::BCTR:
|
|
case PPC::BCTR8:
|
|
case PPC::BCTRL:
|
|
case PPC::BCTRL8:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
|
|
unsigned &SrcReg, unsigned &SrcReg2,
|
|
int &Mask, int &Value) const {
|
|
unsigned Opc = MI->getOpcode();
|
|
|
|
switch (Opc) {
|
|
default: return false;
|
|
case PPC::CMPWI:
|
|
case PPC::CMPLWI:
|
|
case PPC::CMPDI:
|
|
case PPC::CMPLDI:
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
SrcReg2 = 0;
|
|
Value = MI->getOperand(2).getImm();
|
|
Mask = 0xFFFF;
|
|
return true;
|
|
case PPC::CMPW:
|
|
case PPC::CMPLW:
|
|
case PPC::CMPD:
|
|
case PPC::CMPLD:
|
|
case PPC::FCMPUS:
|
|
case PPC::FCMPUD:
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
SrcReg2 = MI->getOperand(2).getReg();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
|
|
unsigned SrcReg, unsigned SrcReg2,
|
|
int Mask, int Value,
|
|
const MachineRegisterInfo *MRI) const {
|
|
if (DisableCmpOpt)
|
|
return false;
|
|
|
|
int OpC = CmpInstr->getOpcode();
|
|
unsigned CRReg = CmpInstr->getOperand(0).getReg();
|
|
|
|
// FP record forms set CR1 based on the execption status bits, not a
|
|
// comparison with zero.
|
|
if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
|
|
return false;
|
|
|
|
// The record forms set the condition register based on a signed comparison
|
|
// with zero (so says the ISA manual). This is not as straightforward as it
|
|
// seems, however, because this is always a 64-bit comparison on PPC64, even
|
|
// for instructions that are 32-bit in nature (like slw for example).
|
|
// So, on PPC32, for unsigned comparisons, we can use the record forms only
|
|
// for equality checks (as those don't depend on the sign). On PPC64,
|
|
// we are restricted to equality for unsigned 64-bit comparisons and for
|
|
// signed 32-bit comparisons the applicability is more restricted.
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
|
|
bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
|
|
bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
|
|
|
|
// Get the unique definition of SrcReg.
|
|
MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
|
|
if (!MI) return false;
|
|
int MIOpC = MI->getOpcode();
|
|
|
|
bool equalityOnly = false;
|
|
bool noSub = false;
|
|
if (isPPC64) {
|
|
if (is32BitSignedCompare) {
|
|
// We can perform this optimization only if MI is sign-extending.
|
|
if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo ||
|
|
MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
|
|
MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
|
|
MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
|
|
MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
|
|
noSub = true;
|
|
} else
|
|
return false;
|
|
} else if (is32BitUnsignedCompare) {
|
|
// We can perform this optimization, equality only, if MI is
|
|
// zero-extending.
|
|
if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
|
|
MIOpC == PPC::SLW || MIOpC == PPC::SLWo ||
|
|
MIOpC == PPC::SRW || MIOpC == PPC::SRWo) {
|
|
noSub = true;
|
|
equalityOnly = true;
|
|
} else
|
|
return false;
|
|
} else
|
|
equalityOnly = is64BitUnsignedCompare;
|
|
} else
|
|
equalityOnly = is32BitUnsignedCompare;
|
|
|
|
if (equalityOnly) {
|
|
// We need to check the uses of the condition register in order to reject
|
|
// non-equality comparisons.
|
|
for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
|
|
IE = MRI->use_instr_end(); I != IE; ++I) {
|
|
MachineInstr *UseMI = &*I;
|
|
if (UseMI->getOpcode() == PPC::BCC) {
|
|
unsigned Pred = UseMI->getOperand(0).getImm();
|
|
if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
|
|
return false;
|
|
} else if (UseMI->getOpcode() == PPC::ISEL ||
|
|
UseMI->getOpcode() == PPC::ISEL8) {
|
|
unsigned SubIdx = UseMI->getOperand(3).getSubReg();
|
|
if (SubIdx != PPC::sub_eq)
|
|
return false;
|
|
} else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock::iterator I = CmpInstr;
|
|
|
|
// Scan forward to find the first use of the compare.
|
|
for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
|
|
I != EL; ++I) {
|
|
bool FoundUse = false;
|
|
for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
|
|
JE = MRI->use_instr_end(); J != JE; ++J)
|
|
if (&*J == &*I) {
|
|
FoundUse = true;
|
|
break;
|
|
}
|
|
|
|
if (FoundUse)
|
|
break;
|
|
}
|
|
|
|
// There are two possible candidates which can be changed to set CR[01].
|
|
// One is MI, the other is a SUB instruction.
|
|
// For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
|
|
MachineInstr *Sub = nullptr;
|
|
if (SrcReg2 != 0)
|
|
// MI is not a candidate for CMPrr.
|
|
MI = nullptr;
|
|
// FIXME: Conservatively refuse to convert an instruction which isn't in the
|
|
// same BB as the comparison. This is to allow the check below to avoid calls
|
|
// (and other explicit clobbers); instead we should really check for these
|
|
// more explicitly (in at least a few predecessors).
|
|
else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
|
|
// PPC does not have a record-form SUBri.
|
|
return false;
|
|
}
|
|
|
|
// Search for Sub.
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
--I;
|
|
|
|
// Get ready to iterate backward from CmpInstr.
|
|
MachineBasicBlock::iterator E = MI,
|
|
B = CmpInstr->getParent()->begin();
|
|
|
|
for (; I != E && !noSub; --I) {
|
|
const MachineInstr &Instr = *I;
|
|
unsigned IOpC = Instr.getOpcode();
|
|
|
|
if (&*I != CmpInstr && (
|
|
Instr.modifiesRegister(PPC::CR0, TRI) ||
|
|
Instr.readsRegister(PPC::CR0, TRI)))
|
|
// This instruction modifies or uses the record condition register after
|
|
// the one we want to change. While we could do this transformation, it
|
|
// would likely not be profitable. This transformation removes one
|
|
// instruction, and so even forcing RA to generate one move probably
|
|
// makes it unprofitable.
|
|
return false;
|
|
|
|
// Check whether CmpInstr can be made redundant by the current instruction.
|
|
if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
|
|
OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
|
|
(IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
|
|
((Instr.getOperand(1).getReg() == SrcReg &&
|
|
Instr.getOperand(2).getReg() == SrcReg2) ||
|
|
(Instr.getOperand(1).getReg() == SrcReg2 &&
|
|
Instr.getOperand(2).getReg() == SrcReg))) {
|
|
Sub = &*I;
|
|
break;
|
|
}
|
|
|
|
if (I == B)
|
|
// The 'and' is below the comparison instruction.
|
|
return false;
|
|
}
|
|
|
|
// Return false if no candidates exist.
|
|
if (!MI && !Sub)
|
|
return false;
|
|
|
|
// The single candidate is called MI.
|
|
if (!MI) MI = Sub;
|
|
|
|
int NewOpC = -1;
|
|
MIOpC = MI->getOpcode();
|
|
if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
|
|
NewOpC = MIOpC;
|
|
else {
|
|
NewOpC = PPC::getRecordFormOpcode(MIOpC);
|
|
if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
|
|
NewOpC = MIOpC;
|
|
}
|
|
|
|
// FIXME: On the non-embedded POWER architectures, only some of the record
|
|
// forms are fast, and we should use only the fast ones.
|
|
|
|
// The defining instruction has a record form (or is already a record
|
|
// form). It is possible, however, that we'll need to reverse the condition
|
|
// code of the users.
|
|
if (NewOpC == -1)
|
|
return false;
|
|
|
|
SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
|
|
SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
|
|
|
|
// If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
|
|
// needs to be updated to be based on SUB. Push the condition code
|
|
// operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
|
|
// condition code of these operands will be modified.
|
|
bool ShouldSwap = false;
|
|
if (Sub) {
|
|
ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
|
|
Sub->getOperand(2).getReg() == SrcReg;
|
|
|
|
// The operands to subf are the opposite of sub, so only in the fixed-point
|
|
// case, invert the order.
|
|
ShouldSwap = !ShouldSwap;
|
|
}
|
|
|
|
if (ShouldSwap)
|
|
for (MachineRegisterInfo::use_instr_iterator
|
|
I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
|
|
I != IE; ++I) {
|
|
MachineInstr *UseMI = &*I;
|
|
if (UseMI->getOpcode() == PPC::BCC) {
|
|
PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
|
|
assert((!equalityOnly ||
|
|
Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
|
|
"Invalid predicate for equality-only optimization");
|
|
PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
|
|
PPC::getSwappedPredicate(Pred)));
|
|
} else if (UseMI->getOpcode() == PPC::ISEL ||
|
|
UseMI->getOpcode() == PPC::ISEL8) {
|
|
unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
|
|
assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
|
|
"Invalid CR bit for equality-only optimization");
|
|
|
|
if (NewSubReg == PPC::sub_lt)
|
|
NewSubReg = PPC::sub_gt;
|
|
else if (NewSubReg == PPC::sub_gt)
|
|
NewSubReg = PPC::sub_lt;
|
|
|
|
SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
|
|
NewSubReg));
|
|
} else // We need to abort on a user we don't understand.
|
|
return false;
|
|
}
|
|
|
|
// Create a new virtual register to hold the value of the CR set by the
|
|
// record-form instruction. If the instruction was not previously in
|
|
// record form, then set the kill flag on the CR.
|
|
CmpInstr->eraseFromParent();
|
|
|
|
MachineBasicBlock::iterator MII = MI;
|
|
BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
|
|
get(TargetOpcode::COPY), CRReg)
|
|
.addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
|
|
|
|
if (MIOpC != NewOpC) {
|
|
// We need to be careful here: we're replacing one instruction with
|
|
// another, and we need to make sure that we get all of the right
|
|
// implicit uses and defs. On the other hand, the caller may be holding
|
|
// an iterator to this instruction, and so we can't delete it (this is
|
|
// specifically the case if this is the instruction directly after the
|
|
// compare).
|
|
|
|
const MCInstrDesc &NewDesc = get(NewOpC);
|
|
MI->setDesc(NewDesc);
|
|
|
|
if (NewDesc.ImplicitDefs)
|
|
for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs();
|
|
*ImpDefs; ++ImpDefs)
|
|
if (!MI->definesRegister(*ImpDefs))
|
|
MI->addOperand(*MI->getParent()->getParent(),
|
|
MachineOperand::CreateReg(*ImpDefs, true, true));
|
|
if (NewDesc.ImplicitUses)
|
|
for (const uint16_t *ImpUses = NewDesc.getImplicitUses();
|
|
*ImpUses; ++ImpUses)
|
|
if (!MI->readsRegister(*ImpUses))
|
|
MI->addOperand(*MI->getParent()->getParent(),
|
|
MachineOperand::CreateReg(*ImpUses, false, true));
|
|
}
|
|
|
|
// Modify the condition code of operands in OperandsToUpdate.
|
|
// Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
|
|
// be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
|
|
for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
|
|
PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
|
|
|
|
for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
|
|
SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// GetInstSize - Return the number of bytes of code the specified
|
|
/// instruction may be. This returns the maximum number of bytes.
|
|
///
|
|
unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
|
|
unsigned Opcode = MI->getOpcode();
|
|
|
|
if (Opcode == PPC::INLINEASM) {
|
|
const MachineFunction *MF = MI->getParent()->getParent();
|
|
const char *AsmStr = MI->getOperand(0).getSymbolName();
|
|
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
|
|
} else if (Opcode == TargetOpcode::STACKMAP) {
|
|
return MI->getOperand(1).getImm();
|
|
} else if (Opcode == TargetOpcode::PATCHPOINT) {
|
|
PatchPointOpers Opers(MI);
|
|
return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
|
|
} else {
|
|
const MCInstrDesc &Desc = get(Opcode);
|
|
return Desc.getSize();
|
|
}
|
|
}
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "ppc-vsx-fma-mutate"
|
|
|
|
namespace {
|
|
// PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
|
|
// (Altivec and scalar floating-point registers), we need to transform the
|
|
// copies into subregister copies with other restrictions.
|
|
struct PPCVSXFMAMutate : public MachineFunctionPass {
|
|
static char ID;
|
|
PPCVSXFMAMutate() : MachineFunctionPass(ID) {
|
|
initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
LiveIntervals *LIS;
|
|
const PPCInstrInfo *TII;
|
|
|
|
protected:
|
|
bool processBlock(MachineBasicBlock &MBB) {
|
|
bool Changed = false;
|
|
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
|
|
I != IE; ++I) {
|
|
MachineInstr *MI = I;
|
|
|
|
// The default (A-type) VSX FMA form kills the addend (it is taken from
|
|
// the target register, which is then updated to reflect the result of
|
|
// the FMA). If the instruction, however, kills one of the registers
|
|
// used for the product, then we can use the M-form instruction (which
|
|
// will take that value from the to-be-defined register).
|
|
|
|
int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
|
|
if (AltOpc == -1)
|
|
continue;
|
|
|
|
// This pass is run after register coalescing, and so we're looking for
|
|
// a situation like this:
|
|
// ...
|
|
// %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
|
|
// %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
|
|
// %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
|
|
// ...
|
|
// %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19,
|
|
// %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19
|
|
// ...
|
|
// Where we can eliminate the copy by changing from the A-type to the
|
|
// M-type instruction. Specifically, for this example, this means:
|
|
// %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
|
|
// %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
|
|
// is replaced by:
|
|
// %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9,
|
|
// %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9
|
|
// and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
|
|
|
|
SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
|
|
|
|
VNInfo *AddendValNo =
|
|
LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn();
|
|
MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
|
|
|
|
// The addend and this instruction must be in the same block.
|
|
|
|
if (!AddendMI || AddendMI->getParent() != MI->getParent())
|
|
continue;
|
|
|
|
// The addend must be a full copy within the same register class.
|
|
|
|
if (!AddendMI->isFullCopy())
|
|
continue;
|
|
|
|
unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
|
|
if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
|
|
MRI.getRegClass(AddendSrcReg))
|
|
continue;
|
|
} else {
|
|
// If AddendSrcReg is a physical register, make sure the destination
|
|
// register class contains it.
|
|
if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
|
|
->contains(AddendSrcReg))
|
|
continue;
|
|
}
|
|
|
|
// In theory, there could be other uses of the addend copy before this
|
|
// fma. We could deal with this, but that would require additional
|
|
// logic below and I suspect it will not occur in any relevant
|
|
// situations. Additionally, check whether the copy source is killed
|
|
// prior to the fma. In order to replace the addend here with the
|
|
// source of the copy, it must still be live here. We can't use
|
|
// interval testing for a physical register, so as long as we're
|
|
// walking the MIs we may as well test liveness here.
|
|
bool OtherUsers = false, KillsAddendSrc = false;
|
|
for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
|
|
J != JE; --J) {
|
|
if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
|
|
OtherUsers = true;
|
|
break;
|
|
}
|
|
if (J->modifiesRegister(AddendSrcReg, TRI) ||
|
|
J->killsRegister(AddendSrcReg, TRI)) {
|
|
KillsAddendSrc = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (OtherUsers || KillsAddendSrc)
|
|
continue;
|
|
|
|
// Find one of the product operands that is killed by this instruction.
|
|
|
|
unsigned KilledProdOp = 0, OtherProdOp = 0;
|
|
if (LIS->getInterval(MI->getOperand(2).getReg())
|
|
.Query(FMAIdx).isKill()) {
|
|
KilledProdOp = 2;
|
|
OtherProdOp = 3;
|
|
} else if (LIS->getInterval(MI->getOperand(3).getReg())
|
|
.Query(FMAIdx).isKill()) {
|
|
KilledProdOp = 3;
|
|
OtherProdOp = 2;
|
|
}
|
|
|
|
// If there are no killed product operands, then this transformation is
|
|
// likely not profitable.
|
|
if (!KilledProdOp)
|
|
continue;
|
|
|
|
// For virtual registers, verify that the addend source register
|
|
// is live here (as should have been assured above).
|
|
assert((!TargetRegisterInfo::isVirtualRegister(AddendSrcReg) ||
|
|
LIS->getInterval(AddendSrcReg).liveAt(FMAIdx)) &&
|
|
"Addend source register is not live!");
|
|
|
|
// Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
|
|
|
|
unsigned AddReg = AddendMI->getOperand(1).getReg();
|
|
unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg();
|
|
unsigned OtherProdReg = MI->getOperand(OtherProdOp).getReg();
|
|
|
|
unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
|
|
unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg();
|
|
unsigned OtherProdSubReg = MI->getOperand(OtherProdOp).getSubReg();
|
|
|
|
bool AddRegKill = AddendMI->getOperand(1).isKill();
|
|
bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill();
|
|
bool OtherProdRegKill = MI->getOperand(OtherProdOp).isKill();
|
|
|
|
bool AddRegUndef = AddendMI->getOperand(1).isUndef();
|
|
bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef();
|
|
bool OtherProdRegUndef = MI->getOperand(OtherProdOp).isUndef();
|
|
|
|
unsigned OldFMAReg = MI->getOperand(0).getReg();
|
|
|
|
// The transformation doesn't work well with things like:
|
|
// %vreg5 = A-form-op %vreg5, %vreg11, %vreg5;
|
|
// so leave such things alone.
|
|
if (OldFMAReg == KilledProdReg)
|
|
continue;
|
|
|
|
assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
|
|
"Addend copy not tied to old FMA output!");
|
|
|
|
DEBUG(dbgs() << "VSX FMA Mutation:\n " << *MI;);
|
|
|
|
MI->getOperand(0).setReg(KilledProdReg);
|
|
MI->getOperand(1).setReg(KilledProdReg);
|
|
MI->getOperand(3).setReg(AddReg);
|
|
MI->getOperand(2).setReg(OtherProdReg);
|
|
|
|
MI->getOperand(0).setSubReg(KilledProdSubReg);
|
|
MI->getOperand(1).setSubReg(KilledProdSubReg);
|
|
MI->getOperand(3).setSubReg(AddSubReg);
|
|
MI->getOperand(2).setSubReg(OtherProdSubReg);
|
|
|
|
MI->getOperand(1).setIsKill(KilledProdRegKill);
|
|
MI->getOperand(3).setIsKill(AddRegKill);
|
|
MI->getOperand(2).setIsKill(OtherProdRegKill);
|
|
|
|
MI->getOperand(1).setIsUndef(KilledProdRegUndef);
|
|
MI->getOperand(3).setIsUndef(AddRegUndef);
|
|
MI->getOperand(2).setIsUndef(OtherProdRegUndef);
|
|
|
|
MI->setDesc(TII->get(AltOpc));
|
|
|
|
DEBUG(dbgs() << " -> " << *MI);
|
|
|
|
// The killed product operand was killed here, so we can reuse it now
|
|
// for the result of the fma.
|
|
|
|
LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
|
|
VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
|
|
for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
|
|
UI != UE;) {
|
|
MachineOperand &UseMO = *UI;
|
|
MachineInstr *UseMI = UseMO.getParent();
|
|
++UI;
|
|
|
|
// Don't replace the result register of the copy we're about to erase.
|
|
if (UseMI == AddendMI)
|
|
continue;
|
|
|
|
UseMO.setReg(KilledProdReg);
|
|
UseMO.setSubReg(KilledProdSubReg);
|
|
}
|
|
|
|
// Extend the live intervals of the killed product operand to hold the
|
|
// fma result.
|
|
|
|
LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
|
|
for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
|
|
AI != AE; ++AI) {
|
|
// Don't add the segment that corresponds to the original copy.
|
|
if (AI->valno == AddendValNo)
|
|
continue;
|
|
|
|
VNInfo *NewFMAValNo =
|
|
NewFMAInt.getNextValue(AI->start,
|
|
LIS->getVNInfoAllocator());
|
|
|
|
NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
|
|
NewFMAValNo));
|
|
}
|
|
DEBUG(dbgs() << " extended: " << NewFMAInt << '\n');
|
|
|
|
FMAInt.removeValNo(FMAValNo);
|
|
DEBUG(dbgs() << " trimmed: " << FMAInt << '\n');
|
|
|
|
// Remove the (now unused) copy.
|
|
|
|
DEBUG(dbgs() << " removing: " << *AddendMI << '\n');
|
|
LIS->RemoveMachineInstrFromMaps(AddendMI);
|
|
AddendMI->eraseFromParent();
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
public:
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
// If we don't have VSX then go ahead and return without doing
|
|
// anything.
|
|
const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
|
|
if (!STI.hasVSX())
|
|
return false;
|
|
|
|
LIS = &getAnalysis<LiveIntervals>();
|
|
|
|
TII = STI.getInstrInfo();
|
|
|
|
bool Changed = false;
|
|
|
|
if (DisableVSXFMAMutate)
|
|
return Changed;
|
|
|
|
for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
|
|
MachineBasicBlock &B = *I++;
|
|
if (processBlock(B))
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<LiveIntervals>();
|
|
AU.addPreserved<LiveIntervals>();
|
|
AU.addRequired<SlotIndexes>();
|
|
AU.addPreserved<SlotIndexes>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
|
|
"PowerPC VSX FMA Mutation", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
|
|
INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
|
|
"PowerPC VSX FMA Mutation", false, false)
|
|
|
|
char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
|
|
|
|
char PPCVSXFMAMutate::ID = 0;
|
|
FunctionPass*
|
|
llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); }
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "ppc-vsx-copy"
|
|
|
|
namespace llvm {
|
|
void initializePPCVSXCopyPass(PassRegistry&);
|
|
}
|
|
|
|
namespace {
|
|
// PPCVSXCopy pass - For copies between VSX registers and non-VSX registers
|
|
// (Altivec and scalar floating-point registers), we need to transform the
|
|
// copies into subregister copies with other restrictions.
|
|
struct PPCVSXCopy : public MachineFunctionPass {
|
|
static char ID;
|
|
PPCVSXCopy() : MachineFunctionPass(ID) {
|
|
initializePPCVSXCopyPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
const TargetInstrInfo *TII;
|
|
|
|
bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC,
|
|
MachineRegisterInfo &MRI) {
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
return RC->hasSubClassEq(MRI.getRegClass(Reg));
|
|
} else if (RC->contains(Reg)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) {
|
|
return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI);
|
|
}
|
|
|
|
bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) {
|
|
return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI);
|
|
}
|
|
|
|
bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) {
|
|
return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI);
|
|
}
|
|
|
|
protected:
|
|
bool processBlock(MachineBasicBlock &MBB) {
|
|
bool Changed = false;
|
|
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
|
|
I != IE; ++I) {
|
|
MachineInstr *MI = I;
|
|
if (!MI->isFullCopy())
|
|
continue;
|
|
|
|
MachineOperand &DstMO = MI->getOperand(0);
|
|
MachineOperand &SrcMO = MI->getOperand(1);
|
|
|
|
if ( IsVSReg(DstMO.getReg(), MRI) &&
|
|
!IsVSReg(SrcMO.getReg(), MRI)) {
|
|
// This is a copy *to* a VSX register from a non-VSX register.
|
|
Changed = true;
|
|
|
|
const TargetRegisterClass *SrcRC =
|
|
IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
|
|
&PPC::VSLRCRegClass;
|
|
assert((IsF8Reg(SrcMO.getReg(), MRI) ||
|
|
IsVRReg(SrcMO.getReg(), MRI)) &&
|
|
"Unknown source for a VSX copy");
|
|
|
|
unsigned NewVReg = MRI.createVirtualRegister(SrcRC);
|
|
BuildMI(MBB, MI, MI->getDebugLoc(),
|
|
TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg)
|
|
.addImm(1) // add 1, not 0, because there is no implicit clearing
|
|
// of the high bits.
|
|
.addOperand(SrcMO)
|
|
.addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 :
|
|
PPC::sub_64);
|
|
|
|
// The source of the original copy is now the new virtual register.
|
|
SrcMO.setReg(NewVReg);
|
|
} else if (!IsVSReg(DstMO.getReg(), MRI) &&
|
|
IsVSReg(SrcMO.getReg(), MRI)) {
|
|
// This is a copy *from* a VSX register to a non-VSX register.
|
|
Changed = true;
|
|
|
|
const TargetRegisterClass *DstRC =
|
|
IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
|
|
&PPC::VSLRCRegClass;
|
|
assert((IsF8Reg(DstMO.getReg(), MRI) ||
|
|
IsVRReg(DstMO.getReg(), MRI)) &&
|
|
"Unknown destination for a VSX copy");
|
|
|
|
// Copy the VSX value into a new VSX register of the correct subclass.
|
|
unsigned NewVReg = MRI.createVirtualRegister(DstRC);
|
|
BuildMI(MBB, MI, MI->getDebugLoc(),
|
|
TII->get(TargetOpcode::COPY), NewVReg)
|
|
.addOperand(SrcMO);
|
|
|
|
// Transform the original copy into a subregister extraction copy.
|
|
SrcMO.setReg(NewVReg);
|
|
SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 :
|
|
PPC::sub_64);
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
public:
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
// If we don't have VSX on the subtarget, don't do anything.
|
|
const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
|
|
if (!STI.hasVSX())
|
|
return false;
|
|
TII = STI.getInstrInfo();
|
|
|
|
bool Changed = false;
|
|
|
|
for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
|
|
MachineBasicBlock &B = *I++;
|
|
if (processBlock(B))
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
}
|
|
|
|
INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE,
|
|
"PowerPC VSX Copy Legalization", false, false)
|
|
|
|
char PPCVSXCopy::ID = 0;
|
|
FunctionPass*
|
|
llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); }
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "ppc-vsx-copy-cleanup"
|
|
|
|
namespace llvm {
|
|
void initializePPCVSXCopyCleanupPass(PassRegistry&);
|
|
}
|
|
|
|
namespace {
|
|
// PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX
|
|
// registers (mostly because the ABI code still places all values into the
|
|
// "traditional" floating-point and vector registers). Remove them here.
|
|
struct PPCVSXCopyCleanup : public MachineFunctionPass {
|
|
static char ID;
|
|
PPCVSXCopyCleanup() : MachineFunctionPass(ID) {
|
|
initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
const TargetInstrInfo *TII;
|
|
|
|
protected:
|
|
bool processBlock(MachineBasicBlock &MBB) {
|
|
bool Changed = false;
|
|
|
|
SmallVector<MachineInstr *, 4> ToDelete;
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
|
|
I != IE; ++I) {
|
|
MachineInstr *MI = I;
|
|
if (MI->getOpcode() == PPC::XXLOR &&
|
|
MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
|
|
MI->getOperand(0).getReg() == MI->getOperand(2).getReg())
|
|
ToDelete.push_back(MI);
|
|
}
|
|
|
|
if (!ToDelete.empty())
|
|
Changed = true;
|
|
|
|
for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) {
|
|
DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]);
|
|
ToDelete[i]->eraseFromParent();
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
public:
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
// If we don't have VSX don't bother doing anything here.
|
|
const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
|
|
if (!STI.hasVSX())
|
|
return false;
|
|
TII = STI.getInstrInfo();
|
|
|
|
bool Changed = false;
|
|
|
|
for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
|
|
MachineBasicBlock &B = *I++;
|
|
if (processBlock(B))
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
}
|
|
|
|
INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE,
|
|
"PowerPC VSX Copy Cleanup", false, false)
|
|
|
|
char PPCVSXCopyCleanup::ID = 0;
|
|
FunctionPass*
|
|
llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); }
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "ppc-early-ret"
|
|
STATISTIC(NumBCLR, "Number of early conditional returns");
|
|
STATISTIC(NumBLR, "Number of early returns");
|
|
|
|
namespace llvm {
|
|
void initializePPCEarlyReturnPass(PassRegistry&);
|
|
}
|
|
|
|
namespace {
|
|
// PPCEarlyReturn pass - For simple functions without epilogue code, move
|
|
// returns up, and create conditional returns, to avoid unnecessary
|
|
// branch-to-blr sequences.
|
|
struct PPCEarlyReturn : public MachineFunctionPass {
|
|
static char ID;
|
|
PPCEarlyReturn() : MachineFunctionPass(ID) {
|
|
initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
const TargetInstrInfo *TII;
|
|
|
|
protected:
|
|
bool processBlock(MachineBasicBlock &ReturnMBB) {
|
|
bool Changed = false;
|
|
|
|
MachineBasicBlock::iterator I = ReturnMBB.begin();
|
|
I = ReturnMBB.SkipPHIsAndLabels(I);
|
|
|
|
// The block must be essentially empty except for the blr.
|
|
if (I == ReturnMBB.end() ||
|
|
(I->getOpcode() != PPC::BLR && I->getOpcode() != PPC::BLR8) ||
|
|
I != ReturnMBB.getLastNonDebugInstr())
|
|
return Changed;
|
|
|
|
SmallVector<MachineBasicBlock*, 8> PredToRemove;
|
|
for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(),
|
|
PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) {
|
|
bool OtherReference = false, BlockChanged = false;
|
|
for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) {
|
|
if (J->getOpcode() == PPC::B) {
|
|
if (J->getOperand(0).getMBB() == &ReturnMBB) {
|
|
// This is an unconditional branch to the return. Replace the
|
|
// branch with a blr.
|
|
BuildMI(**PI, J, J->getDebugLoc(), TII->get(I->getOpcode()));
|
|
MachineBasicBlock::iterator K = J--;
|
|
K->eraseFromParent();
|
|
BlockChanged = true;
|
|
++NumBLR;
|
|
continue;
|
|
}
|
|
} else if (J->getOpcode() == PPC::BCC) {
|
|
if (J->getOperand(2).getMBB() == &ReturnMBB) {
|
|
// This is a conditional branch to the return. Replace the branch
|
|
// with a bclr.
|
|
BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR))
|
|
.addImm(J->getOperand(0).getImm())
|
|
.addReg(J->getOperand(1).getReg());
|
|
MachineBasicBlock::iterator K = J--;
|
|
K->eraseFromParent();
|
|
BlockChanged = true;
|
|
++NumBCLR;
|
|
continue;
|
|
}
|
|
} else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) {
|
|
if (J->getOperand(1).getMBB() == &ReturnMBB) {
|
|
// This is a conditional branch to the return. Replace the branch
|
|
// with a bclr.
|
|
BuildMI(**PI, J, J->getDebugLoc(),
|
|
TII->get(J->getOpcode() == PPC::BC ?
|
|
PPC::BCLR : PPC::BCLRn))
|
|
.addReg(J->getOperand(0).getReg());
|
|
MachineBasicBlock::iterator K = J--;
|
|
K->eraseFromParent();
|
|
BlockChanged = true;
|
|
++NumBCLR;
|
|
continue;
|
|
}
|
|
} else if (J->isBranch()) {
|
|
if (J->isIndirectBranch()) {
|
|
if (ReturnMBB.hasAddressTaken())
|
|
OtherReference = true;
|
|
} else
|
|
for (unsigned i = 0; i < J->getNumOperands(); ++i)
|
|
if (J->getOperand(i).isMBB() &&
|
|
J->getOperand(i).getMBB() == &ReturnMBB)
|
|
OtherReference = true;
|
|
} else if (!J->isTerminator() && !J->isDebugValue())
|
|
break;
|
|
|
|
if (J == (*PI)->begin())
|
|
break;
|
|
|
|
--J;
|
|
}
|
|
|
|
if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB))
|
|
OtherReference = true;
|
|
|
|
// Predecessors are stored in a vector and can't be removed here.
|
|
if (!OtherReference && BlockChanged) {
|
|
PredToRemove.push_back(*PI);
|
|
}
|
|
|
|
if (BlockChanged)
|
|
Changed = true;
|
|
}
|
|
|
|
for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i)
|
|
PredToRemove[i]->removeSuccessor(&ReturnMBB);
|
|
|
|
if (Changed && !ReturnMBB.hasAddressTaken()) {
|
|
// We now might be able to merge this blr-only block into its
|
|
// by-layout predecessor.
|
|
if (ReturnMBB.pred_size() == 1 &&
|
|
(*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) {
|
|
// Move the blr into the preceding block.
|
|
MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin();
|
|
PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I);
|
|
PrevMBB.removeSuccessor(&ReturnMBB);
|
|
}
|
|
|
|
if (ReturnMBB.pred_empty())
|
|
ReturnMBB.eraseFromParent();
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
public:
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
TII = MF.getSubtarget().getInstrInfo();
|
|
|
|
bool Changed = false;
|
|
|
|
// If the function does not have at least two blocks, then there is
|
|
// nothing to do.
|
|
if (MF.size() < 2)
|
|
return Changed;
|
|
|
|
for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
|
|
MachineBasicBlock &B = *I++;
|
|
if (processBlock(B))
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
}
|
|
|
|
INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE,
|
|
"PowerPC Early-Return Creation", false, false)
|
|
|
|
char PPCEarlyReturn::ID = 0;
|
|
FunctionPass*
|
|
llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); }
|