forked from OSchip/llvm-project
677 lines
25 KiB
C++
677 lines
25 KiB
C++
//===- ScopDetection.h - Detect Scops ---------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Detect the maximal Scops of a function.
|
|
//
|
|
// A static control part (Scop) is a subgraph of the control flow graph (CFG)
|
|
// that only has statically known control flow and can therefore be described
|
|
// within the polyhedral model.
|
|
//
|
|
// Every Scop fulfills these restrictions:
|
|
//
|
|
// * It is a single entry single exit region
|
|
//
|
|
// * Only affine linear bounds in the loops
|
|
//
|
|
// Every natural loop in a Scop must have a number of loop iterations that can
|
|
// be described as an affine linear function in surrounding loop iterators or
|
|
// parameters. (A parameter is a scalar that does not change its value during
|
|
// execution of the Scop).
|
|
//
|
|
// * Only comparisons of affine linear expressions in conditions
|
|
//
|
|
// * All loops and conditions perfectly nested
|
|
//
|
|
// The control flow needs to be structured such that it could be written using
|
|
// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
|
|
// 'continue'.
|
|
//
|
|
// * Side effect free functions call
|
|
//
|
|
// Only function calls and intrinsics that do not have side effects are allowed
|
|
// (readnone).
|
|
//
|
|
// The Scop detection finds the largest Scops by checking if the largest
|
|
// region is a Scop. If this is not the case, its canonical subregions are
|
|
// checked until a region is a Scop. It is now tried to extend this Scop by
|
|
// creating a larger non canonical region.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef POLLY_SCOPDETECTION_H
|
|
#define POLLY_SCOPDETECTION_H
|
|
|
|
#include "polly/ScopDetectionDiagnostic.h"
|
|
#include "polly/Support/ScopHelper.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AliasSetTracker.h"
|
|
#include "llvm/Analysis/RegionInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Pass.h"
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
|
|
class BasicBlock;
|
|
class BranchInst;
|
|
class CallInst;
|
|
class DebugLoc;
|
|
class DominatorTree;
|
|
class Function;
|
|
class Instruction;
|
|
class IntrinsicInst;
|
|
class Loop;
|
|
class LoopInfo;
|
|
class OptimizationRemarkEmitter;
|
|
class PassRegistry;
|
|
class raw_ostream;
|
|
class ScalarEvolution;
|
|
class SCEV;
|
|
class SCEVUnknown;
|
|
class SwitchInst;
|
|
class Value;
|
|
|
|
void initializeScopDetectionWrapperPassPass(PassRegistry &);
|
|
|
|
} // namespace llvm
|
|
|
|
namespace polly {
|
|
|
|
using ParamSetType = std::set<const SCEV *>;
|
|
|
|
// Description of the shape of an array.
|
|
struct ArrayShape {
|
|
// Base pointer identifying all accesses to this array.
|
|
const SCEVUnknown *BasePointer;
|
|
|
|
// Sizes of each delinearized dimension.
|
|
SmallVector<const SCEV *, 4> DelinearizedSizes;
|
|
|
|
ArrayShape(const SCEVUnknown *B) : BasePointer(B) {}
|
|
};
|
|
|
|
struct MemAcc {
|
|
const Instruction *Insn;
|
|
|
|
// A pointer to the shape description of the array.
|
|
std::shared_ptr<ArrayShape> Shape;
|
|
|
|
// Subscripts computed by delinearization.
|
|
SmallVector<const SCEV *, 4> DelinearizedSubscripts;
|
|
|
|
MemAcc(const Instruction *I, std::shared_ptr<ArrayShape> S)
|
|
: Insn(I), Shape(S) {}
|
|
};
|
|
|
|
using MapInsnToMemAcc = std::map<const Instruction *, MemAcc>;
|
|
using PairInstSCEV = std::pair<const Instruction *, const SCEV *>;
|
|
using AFs = std::vector<PairInstSCEV>;
|
|
using BaseToAFs = std::map<const SCEVUnknown *, AFs>;
|
|
using BaseToElSize = std::map<const SCEVUnknown *, const SCEV *>;
|
|
|
|
extern bool PollyTrackFailures;
|
|
extern bool PollyDelinearize;
|
|
extern bool PollyUseRuntimeAliasChecks;
|
|
extern bool PollyProcessUnprofitable;
|
|
extern bool PollyInvariantLoadHoisting;
|
|
extern bool PollyAllowUnsignedOperations;
|
|
extern bool PollyAllowFullFunction;
|
|
|
|
/// A function attribute which will cause Polly to skip the function
|
|
extern StringRef PollySkipFnAttr;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Pass to detect the maximal static control parts (Scops) of a
|
|
/// function.
|
|
class ScopDetection {
|
|
public:
|
|
using RegionSet = SetVector<const Region *>;
|
|
|
|
// Remember the valid regions
|
|
RegionSet ValidRegions;
|
|
|
|
/// Context variables for SCoP detection.
|
|
struct DetectionContext {
|
|
Region &CurRegion; // The region to check.
|
|
AliasSetTracker AST; // The AliasSetTracker to hold the alias information.
|
|
bool Verifying; // If we are in the verification phase?
|
|
|
|
/// Container to remember rejection reasons for this region.
|
|
RejectLog Log;
|
|
|
|
/// Map a base pointer to all access functions accessing it.
|
|
///
|
|
/// This map is indexed by the base pointer. Each element of the map
|
|
/// is a list of memory accesses that reference this base pointer.
|
|
BaseToAFs Accesses;
|
|
|
|
/// The set of base pointers with non-affine accesses.
|
|
///
|
|
/// This set contains all base pointers and the locations where they are
|
|
/// used for memory accesses that can not be detected as affine accesses.
|
|
SetVector<std::pair<const SCEVUnknown *, Loop *>> NonAffineAccesses;
|
|
BaseToElSize ElementSize;
|
|
|
|
/// The region has at least one load instruction.
|
|
bool hasLoads = false;
|
|
|
|
/// The region has at least one store instruction.
|
|
bool hasStores = false;
|
|
|
|
/// Flag to indicate the region has at least one unknown access.
|
|
bool HasUnknownAccess = false;
|
|
|
|
/// The set of non-affine subregions in the region we analyze.
|
|
RegionSet NonAffineSubRegionSet;
|
|
|
|
/// The set of loops contained in non-affine regions.
|
|
BoxedLoopsSetTy BoxedLoopsSet;
|
|
|
|
/// Loads that need to be invariant during execution.
|
|
InvariantLoadsSetTy RequiredILS;
|
|
|
|
/// Map to memory access description for the corresponding LLVM
|
|
/// instructions.
|
|
MapInsnToMemAcc InsnToMemAcc;
|
|
|
|
/// Initialize a DetectionContext from scratch.
|
|
DetectionContext(Region &R, AliasAnalysis &AA, bool Verify)
|
|
: CurRegion(R), AST(AA), Verifying(Verify), Log(&R) {}
|
|
|
|
/// Initialize a DetectionContext with the data from @p DC.
|
|
DetectionContext(const DetectionContext &&DC)
|
|
: CurRegion(DC.CurRegion), AST(DC.AST.getAliasAnalysis()),
|
|
Verifying(DC.Verifying), Log(std::move(DC.Log)),
|
|
Accesses(std::move(DC.Accesses)),
|
|
NonAffineAccesses(std::move(DC.NonAffineAccesses)),
|
|
ElementSize(std::move(DC.ElementSize)), hasLoads(DC.hasLoads),
|
|
hasStores(DC.hasStores), HasUnknownAccess(DC.HasUnknownAccess),
|
|
NonAffineSubRegionSet(std::move(DC.NonAffineSubRegionSet)),
|
|
BoxedLoopsSet(std::move(DC.BoxedLoopsSet)),
|
|
RequiredILS(std::move(DC.RequiredILS)) {
|
|
AST.add(DC.AST);
|
|
}
|
|
};
|
|
|
|
/// Helper data structure to collect statistics about loop counts.
|
|
struct LoopStats {
|
|
int NumLoops;
|
|
int MaxDepth;
|
|
};
|
|
|
|
private:
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Analyses used
|
|
//@{
|
|
const DominatorTree &DT;
|
|
ScalarEvolution &SE;
|
|
LoopInfo &LI;
|
|
RegionInfo &RI;
|
|
AliasAnalysis &AA;
|
|
//@}
|
|
|
|
/// Map to remember detection contexts for all regions.
|
|
using DetectionContextMapTy = DenseMap<BBPair, DetectionContext>;
|
|
mutable DetectionContextMapTy DetectionContextMap;
|
|
|
|
/// Remove cached results for @p R.
|
|
void removeCachedResults(const Region &R);
|
|
|
|
/// Remove cached results for the children of @p R recursively.
|
|
void removeCachedResultsRecursively(const Region &R);
|
|
|
|
/// Check if @p S0 and @p S1 do contain multiple possibly aliasing pointers.
|
|
///
|
|
/// @param S0 A expression to check.
|
|
/// @param S1 Another expression to check or nullptr.
|
|
/// @param Scope The loop/scope the expressions are checked in.
|
|
///
|
|
/// @returns True, if multiple possibly aliasing pointers are used in @p S0
|
|
/// (and @p S1 if given).
|
|
bool involvesMultiplePtrs(const SCEV *S0, const SCEV *S1, Loop *Scope) const;
|
|
|
|
/// Add the region @p AR as over approximated sub-region in @p Context.
|
|
///
|
|
/// @param AR The non-affine subregion.
|
|
/// @param Context The current detection context.
|
|
///
|
|
/// @returns True if the subregion can be over approximated, false otherwise.
|
|
bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const;
|
|
|
|
/// Find for a given base pointer terms that hint towards dimension
|
|
/// sizes of a multi-dimensional array.
|
|
///
|
|
/// @param Context The current detection context.
|
|
/// @param BasePointer A base pointer indicating the virtual array we are
|
|
/// interested in.
|
|
SmallVector<const SCEV *, 4>
|
|
getDelinearizationTerms(DetectionContext &Context,
|
|
const SCEVUnknown *BasePointer) const;
|
|
|
|
/// Check if the dimension size of a delinearized array is valid.
|
|
///
|
|
/// @param Context The current detection context.
|
|
/// @param Sizes The sizes of the different array dimensions.
|
|
/// @param BasePointer The base pointer we are interested in.
|
|
/// @param Scope The location where @p BasePointer is being used.
|
|
/// @returns True if one or more array sizes could be derived - meaning: we
|
|
/// see this array as multi-dimensional.
|
|
bool hasValidArraySizes(DetectionContext &Context,
|
|
SmallVectorImpl<const SCEV *> &Sizes,
|
|
const SCEVUnknown *BasePointer, Loop *Scope) const;
|
|
|
|
/// Derive access functions for a given base pointer.
|
|
///
|
|
/// @param Context The current detection context.
|
|
/// @param Sizes The sizes of the different array dimensions.
|
|
/// @param BasePointer The base pointer of all the array for which to compute
|
|
/// access functions.
|
|
/// @param Shape The shape that describes the derived array sizes and
|
|
/// which should be filled with newly computed access
|
|
/// functions.
|
|
/// @returns True if a set of affine access functions could be derived.
|
|
bool computeAccessFunctions(DetectionContext &Context,
|
|
const SCEVUnknown *BasePointer,
|
|
std::shared_ptr<ArrayShape> Shape) const;
|
|
|
|
/// Check if all accesses to a given BasePointer are affine.
|
|
///
|
|
/// @param Context The current detection context.
|
|
/// @param BasePointer the base pointer we are interested in.
|
|
/// @param Scope The location where @p BasePointer is being used.
|
|
/// @param True if consistent (multi-dimensional) array accesses could be
|
|
/// derived for this array.
|
|
bool hasBaseAffineAccesses(DetectionContext &Context,
|
|
const SCEVUnknown *BasePointer, Loop *Scope) const;
|
|
|
|
// Delinearize all non affine memory accesses and return false when there
|
|
// exists a non affine memory access that cannot be delinearized. Return true
|
|
// when all array accesses are affine after delinearization.
|
|
bool hasAffineMemoryAccesses(DetectionContext &Context) const;
|
|
|
|
// Try to expand the region R. If R can be expanded return the expanded
|
|
// region, NULL otherwise.
|
|
Region *expandRegion(Region &R);
|
|
|
|
/// Find the Scops in this region tree.
|
|
///
|
|
/// @param The region tree to scan for scops.
|
|
void findScops(Region &R);
|
|
|
|
/// Check if all basic block in the region are valid.
|
|
///
|
|
/// @param Context The context of scop detection.
|
|
///
|
|
/// @return True if all blocks in R are valid, false otherwise.
|
|
bool allBlocksValid(DetectionContext &Context) const;
|
|
|
|
/// Check if a region has sufficient compute instructions.
|
|
///
|
|
/// This function checks if a region has a non-trivial number of instructions
|
|
/// in each loop. This can be used as an indicator whether a loop is worth
|
|
/// optimizing.
|
|
///
|
|
/// @param Context The context of scop detection.
|
|
/// @param NumLoops The number of loops in the region.
|
|
///
|
|
/// @return True if region is has sufficient compute instructions,
|
|
/// false otherwise.
|
|
bool hasSufficientCompute(DetectionContext &Context,
|
|
int NumAffineLoops) const;
|
|
|
|
/// Check if the unique affine loop might be amendable to distribution.
|
|
///
|
|
/// This function checks if the number of non-trivial blocks in the unique
|
|
/// affine loop in Context.CurRegion is at least two, thus if the loop might
|
|
/// be amendable to distribution.
|
|
///
|
|
/// @param Context The context of scop detection.
|
|
///
|
|
/// @return True only if the affine loop might be amendable to distributable.
|
|
bool hasPossiblyDistributableLoop(DetectionContext &Context) const;
|
|
|
|
/// Check if a region is profitable to optimize.
|
|
///
|
|
/// Regions that are unlikely to expose interesting optimization opportunities
|
|
/// are called 'unprofitable' and may be skipped during scop detection.
|
|
///
|
|
/// @param Context The context of scop detection.
|
|
///
|
|
/// @return True if region is profitable to optimize, false otherwise.
|
|
bool isProfitableRegion(DetectionContext &Context) const;
|
|
|
|
/// Check if a region is a Scop.
|
|
///
|
|
/// @param Context The context of scop detection.
|
|
///
|
|
/// @return True if R is a Scop, false otherwise.
|
|
bool isValidRegion(DetectionContext &Context) const;
|
|
|
|
/// Check if an intrinsic call can be part of a Scop.
|
|
///
|
|
/// @param II The intrinsic call instruction to check.
|
|
/// @param Context The current detection context.
|
|
///
|
|
/// @return True if the call instruction is valid, false otherwise.
|
|
bool isValidIntrinsicInst(IntrinsicInst &II, DetectionContext &Context) const;
|
|
|
|
/// Check if a call instruction can be part of a Scop.
|
|
///
|
|
/// @param CI The call instruction to check.
|
|
/// @param Context The current detection context.
|
|
///
|
|
/// @return True if the call instruction is valid, false otherwise.
|
|
bool isValidCallInst(CallInst &CI, DetectionContext &Context) const;
|
|
|
|
/// Check if the given loads could be invariant and can be hoisted.
|
|
///
|
|
/// If true is returned the loads are added to the required invariant loads
|
|
/// contained in the @p Context.
|
|
///
|
|
/// @param RequiredILS The loads to check.
|
|
/// @param Context The current detection context.
|
|
///
|
|
/// @return True if all loads can be assumed invariant.
|
|
bool onlyValidRequiredInvariantLoads(InvariantLoadsSetTy &RequiredILS,
|
|
DetectionContext &Context) const;
|
|
|
|
/// Check if a value is invariant in the region Reg.
|
|
///
|
|
/// @param Val Value to check for invariance.
|
|
/// @param Reg The region to consider for the invariance of Val.
|
|
/// @param Ctx The current detection context.
|
|
///
|
|
/// @return True if the value represented by Val is invariant in the region
|
|
/// identified by Reg.
|
|
bool isInvariant(Value &Val, const Region &Reg, DetectionContext &Ctx) const;
|
|
|
|
/// Check if the memory access caused by @p Inst is valid.
|
|
///
|
|
/// @param Inst The access instruction.
|
|
/// @param AF The access function.
|
|
/// @param BP The access base pointer.
|
|
/// @param Context The current detection context.
|
|
bool isValidAccess(Instruction *Inst, const SCEV *AF, const SCEVUnknown *BP,
|
|
DetectionContext &Context) const;
|
|
|
|
/// Check if a memory access can be part of a Scop.
|
|
///
|
|
/// @param Inst The instruction accessing the memory.
|
|
/// @param Context The context of scop detection.
|
|
///
|
|
/// @return True if the memory access is valid, false otherwise.
|
|
bool isValidMemoryAccess(MemAccInst Inst, DetectionContext &Context) const;
|
|
|
|
/// Check if an instruction has any non trivial scalar dependencies as part of
|
|
/// a Scop.
|
|
///
|
|
/// @param Inst The instruction to check.
|
|
/// @param RefRegion The region in respect to which we check the access
|
|
/// function.
|
|
///
|
|
/// @return True if the instruction has scalar dependences, false otherwise.
|
|
bool hasScalarDependency(Instruction &Inst, Region &RefRegion) const;
|
|
|
|
/// Check if an instruction can be part of a Scop.
|
|
///
|
|
/// @param Inst The instruction to check.
|
|
/// @param Context The context of scop detection.
|
|
///
|
|
/// @return True if the instruction is valid, false otherwise.
|
|
bool isValidInstruction(Instruction &Inst, DetectionContext &Context) const;
|
|
|
|
/// Check if the switch @p SI with condition @p Condition is valid.
|
|
///
|
|
/// @param BB The block to check.
|
|
/// @param SI The switch to check.
|
|
/// @param Condition The switch condition.
|
|
/// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
|
|
/// @param Context The context of scop detection.
|
|
///
|
|
/// @return True if the branch @p BI is valid.
|
|
bool isValidSwitch(BasicBlock &BB, SwitchInst *SI, Value *Condition,
|
|
bool IsLoopBranch, DetectionContext &Context) const;
|
|
|
|
/// Check if the branch @p BI with condition @p Condition is valid.
|
|
///
|
|
/// @param BB The block to check.
|
|
/// @param BI The branch to check.
|
|
/// @param Condition The branch condition.
|
|
/// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
|
|
/// @param Context The context of scop detection.
|
|
///
|
|
/// @return True if the branch @p BI is valid.
|
|
bool isValidBranch(BasicBlock &BB, BranchInst *BI, Value *Condition,
|
|
bool IsLoopBranch, DetectionContext &Context) const;
|
|
|
|
/// Check if the SCEV @p S is affine in the current @p Context.
|
|
///
|
|
/// This will also use a heuristic to decide if we want to require loads to be
|
|
/// invariant to make the expression affine or if we want to treat is as
|
|
/// non-affine.
|
|
///
|
|
/// @param S The expression to be checked.
|
|
/// @param Scope The loop nest in which @p S is used.
|
|
/// @param Context The context of scop detection.
|
|
bool isAffine(const SCEV *S, Loop *Scope, DetectionContext &Context) const;
|
|
|
|
/// Check if the control flow in a basic block is valid.
|
|
///
|
|
/// This function checks if a certain basic block is terminated by a
|
|
/// Terminator instruction we can handle or, if this is not the case,
|
|
/// registers this basic block as the start of a non-affine region.
|
|
///
|
|
/// This function optionally allows unreachable statements.
|
|
///
|
|
/// @param BB The BB to check the control flow.
|
|
/// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
|
|
// @param AllowUnreachable Allow unreachable statements.
|
|
/// @param Context The context of scop detection.
|
|
///
|
|
/// @return True if the BB contains only valid control flow.
|
|
bool isValidCFG(BasicBlock &BB, bool IsLoopBranch, bool AllowUnreachable,
|
|
DetectionContext &Context) const;
|
|
|
|
/// Is a loop valid with respect to a given region.
|
|
///
|
|
/// @param L The loop to check.
|
|
/// @param Context The context of scop detection.
|
|
///
|
|
/// @return True if the loop is valid in the region.
|
|
bool isValidLoop(Loop *L, DetectionContext &Context) const;
|
|
|
|
/// Count the number of loops and the maximal loop depth in @p L.
|
|
///
|
|
/// @param L The loop to check.
|
|
/// @param SE The scalar evolution analysis.
|
|
/// @param MinProfitableTrips The minimum number of trip counts from which
|
|
/// a loop is assumed to be profitable and
|
|
/// consequently is counted.
|
|
/// returns A tuple of number of loops and their maximal depth.
|
|
static ScopDetection::LoopStats
|
|
countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
|
|
unsigned MinProfitableTrips);
|
|
|
|
/// Check if the function @p F is marked as invalid.
|
|
///
|
|
/// @note An OpenMP subfunction will be marked as invalid.
|
|
bool isValidFunction(Function &F);
|
|
|
|
/// Can ISL compute the trip count of a loop.
|
|
///
|
|
/// @param L The loop to check.
|
|
/// @param Context The context of scop detection.
|
|
///
|
|
/// @return True if ISL can compute the trip count of the loop.
|
|
bool canUseISLTripCount(Loop *L, DetectionContext &Context) const;
|
|
|
|
/// Print the locations of all detected scops.
|
|
void printLocations(Function &F);
|
|
|
|
/// Check if a region is reducible or not.
|
|
///
|
|
/// @param Region The region to check.
|
|
/// @param DbgLoc Parameter to save the location of instruction that
|
|
/// causes irregular control flow if the region is irreducible.
|
|
///
|
|
/// @return True if R is reducible, false otherwise.
|
|
bool isReducibleRegion(Region &R, DebugLoc &DbgLoc) const;
|
|
|
|
/// Track diagnostics for invalid scops.
|
|
///
|
|
/// @param Context The context of scop detection.
|
|
/// @param Assert Throw an assert in verify mode or not.
|
|
/// @param Args Argument list that gets passed to the constructor of RR.
|
|
template <class RR, typename... Args>
|
|
inline bool invalid(DetectionContext &Context, bool Assert,
|
|
Args &&... Arguments) const;
|
|
|
|
public:
|
|
ScopDetection(Function &F, const DominatorTree &DT, ScalarEvolution &SE,
|
|
LoopInfo &LI, RegionInfo &RI, AliasAnalysis &AA,
|
|
OptimizationRemarkEmitter &ORE);
|
|
|
|
/// Get the RegionInfo stored in this pass.
|
|
///
|
|
/// This was added to give the DOT printer easy access to this information.
|
|
RegionInfo *getRI() const { return &RI; }
|
|
|
|
/// Get the LoopInfo stored in this pass.
|
|
LoopInfo *getLI() const { return &LI; }
|
|
|
|
/// Is the region is the maximum region of a Scop?
|
|
///
|
|
/// @param R The Region to test if it is maximum.
|
|
/// @param Verify Rerun the scop detection to verify SCoP was not invalidated
|
|
/// meanwhile.
|
|
///
|
|
/// @return Return true if R is the maximum Region in a Scop, false otherwise.
|
|
bool isMaxRegionInScop(const Region &R, bool Verify = true) const;
|
|
|
|
/// Return the detection context for @p R, nullptr if @p R was invalid.
|
|
DetectionContext *getDetectionContext(const Region *R) const;
|
|
|
|
/// Return the set of rejection causes for @p R.
|
|
const RejectLog *lookupRejectionLog(const Region *R) const;
|
|
|
|
/// Return true if @p SubR is a non-affine subregion in @p ScopR.
|
|
bool isNonAffineSubRegion(const Region *SubR, const Region *ScopR) const;
|
|
|
|
/// Get a message why a region is invalid
|
|
///
|
|
/// @param R The region for which we get the error message
|
|
///
|
|
/// @return The error or "" if no error appeared.
|
|
std::string regionIsInvalidBecause(const Region *R) const;
|
|
|
|
/// @name Maximum Region In Scops Iterators
|
|
///
|
|
/// These iterators iterator over all maximum region in Scops of this
|
|
/// function.
|
|
//@{
|
|
using iterator = RegionSet::iterator;
|
|
using const_iterator = RegionSet::const_iterator;
|
|
|
|
iterator begin() { return ValidRegions.begin(); }
|
|
iterator end() { return ValidRegions.end(); }
|
|
|
|
const_iterator begin() const { return ValidRegions.begin(); }
|
|
const_iterator end() const { return ValidRegions.end(); }
|
|
//@}
|
|
|
|
/// Emit rejection remarks for all rejected regions.
|
|
///
|
|
/// @param F The function to emit remarks for.
|
|
void emitMissedRemarks(const Function &F);
|
|
|
|
/// Mark the function as invalid so we will not extract any scop from
|
|
/// the function.
|
|
///
|
|
/// @param F The function to mark as invalid.
|
|
static void markFunctionAsInvalid(Function *F);
|
|
|
|
/// Verify if all valid Regions in this Function are still valid
|
|
/// after some transformations.
|
|
void verifyAnalysis() const;
|
|
|
|
/// Verify if R is still a valid part of Scop after some transformations.
|
|
///
|
|
/// @param R The Region to verify.
|
|
void verifyRegion(const Region &R) const;
|
|
|
|
/// Count the number of loops and the maximal loop depth in @p R.
|
|
///
|
|
/// @param R The region to check
|
|
/// @param SE The scalar evolution analysis.
|
|
/// @param MinProfitableTrips The minimum number of trip counts from which
|
|
/// a loop is assumed to be profitable and
|
|
/// consequently is counted.
|
|
/// returns A tuple of number of loops and their maximal depth.
|
|
static ScopDetection::LoopStats
|
|
countBeneficialLoops(Region *R, ScalarEvolution &SE, LoopInfo &LI,
|
|
unsigned MinProfitableTrips);
|
|
|
|
private:
|
|
/// OptimizationRemarkEmitter object used to emit diagnostic remarks
|
|
OptimizationRemarkEmitter &ORE;
|
|
};
|
|
|
|
struct ScopAnalysis : public AnalysisInfoMixin<ScopAnalysis> {
|
|
static AnalysisKey Key;
|
|
|
|
using Result = ScopDetection;
|
|
|
|
ScopAnalysis();
|
|
|
|
Result run(Function &F, FunctionAnalysisManager &FAM);
|
|
};
|
|
|
|
struct ScopAnalysisPrinterPass : public PassInfoMixin<ScopAnalysisPrinterPass> {
|
|
ScopAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
|
|
|
|
PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
|
|
|
|
raw_ostream &OS;
|
|
};
|
|
|
|
struct ScopDetectionWrapperPass : public FunctionPass {
|
|
static char ID;
|
|
std::unique_ptr<ScopDetection> Result;
|
|
|
|
ScopDetectionWrapperPass();
|
|
|
|
/// @name FunctionPass interface
|
|
//@{
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
void releaseMemory() override;
|
|
bool runOnFunction(Function &F) override;
|
|
void print(raw_ostream &OS, const Module *) const override;
|
|
//@}
|
|
|
|
ScopDetection &getSD() { return *Result; }
|
|
const ScopDetection &getSD() const { return *Result; }
|
|
};
|
|
|
|
} // namespace polly
|
|
|
|
#endif // POLLY_SCOPDETECTION_H
|