forked from OSchip/llvm-project
991 lines
40 KiB
C++
991 lines
40 KiB
C++
//===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass converts selects to conditional jumps when profitable.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/CodeGen/TargetSchedule.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/ScaledNumber.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Utils/SizeOpts.h"
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <queue>
|
|
#include <stack>
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "select-optimize"
|
|
|
|
STATISTIC(NumSelectOptAnalyzed,
|
|
"Number of select groups considered for conversion to branch");
|
|
STATISTIC(NumSelectConvertedExpColdOperand,
|
|
"Number of select groups converted due to expensive cold operand");
|
|
STATISTIC(NumSelectConvertedHighPred,
|
|
"Number of select groups converted due to high-predictability");
|
|
STATISTIC(NumSelectUnPred,
|
|
"Number of select groups not converted due to unpredictability");
|
|
STATISTIC(NumSelectColdBB,
|
|
"Number of select groups not converted due to cold basic block");
|
|
STATISTIC(NumSelectConvertedLoop,
|
|
"Number of select groups converted due to loop-level analysis");
|
|
STATISTIC(NumSelectsConverted, "Number of selects converted");
|
|
|
|
static cl::opt<unsigned> ColdOperandThreshold(
|
|
"cold-operand-threshold",
|
|
cl::desc("Maximum frequency of path for an operand to be considered cold."),
|
|
cl::init(20), cl::Hidden);
|
|
|
|
static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
|
|
"cold-operand-max-cost-multiplier",
|
|
cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
|
|
"slice of a cold operand to be considered inexpensive."),
|
|
cl::init(1), cl::Hidden);
|
|
|
|
static cl::opt<unsigned>
|
|
GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
|
|
cl::desc("Gradient gain threshold (%)."),
|
|
cl::init(25), cl::Hidden);
|
|
|
|
static cl::opt<unsigned>
|
|
GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
|
|
cl::desc("Minimum gain per loop (in cycles) threshold."),
|
|
cl::init(4), cl::Hidden);
|
|
|
|
static cl::opt<unsigned> GainRelativeThreshold(
|
|
"select-opti-loop-relative-gain-threshold",
|
|
cl::desc(
|
|
"Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
|
|
cl::init(8), cl::Hidden);
|
|
|
|
static cl::opt<unsigned> MispredictDefaultRate(
|
|
"mispredict-default-rate", cl::Hidden, cl::init(25),
|
|
cl::desc("Default mispredict rate (initialized to 25%)."));
|
|
|
|
static cl::opt<bool>
|
|
DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
|
|
cl::init(false),
|
|
cl::desc("Disable loop-level heuristics."));
|
|
|
|
namespace {
|
|
|
|
class SelectOptimize : public FunctionPass {
|
|
const TargetMachine *TM = nullptr;
|
|
const TargetSubtargetInfo *TSI;
|
|
const TargetLowering *TLI = nullptr;
|
|
const TargetTransformInfo *TTI = nullptr;
|
|
const LoopInfo *LI;
|
|
DominatorTree *DT;
|
|
std::unique_ptr<BlockFrequencyInfo> BFI;
|
|
std::unique_ptr<BranchProbabilityInfo> BPI;
|
|
ProfileSummaryInfo *PSI;
|
|
OptimizationRemarkEmitter *ORE;
|
|
TargetSchedModel TSchedModel;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
SelectOptimize() : FunctionPass(ID) {
|
|
initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
|
AU.addRequired<TargetPassConfig>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
|
}
|
|
|
|
private:
|
|
// Select groups consist of consecutive select instructions with the same
|
|
// condition.
|
|
using SelectGroup = SmallVector<SelectInst *, 2>;
|
|
using SelectGroups = SmallVector<SelectGroup, 2>;
|
|
|
|
using Scaled64 = ScaledNumber<uint64_t>;
|
|
|
|
struct CostInfo {
|
|
/// Predicated cost (with selects as conditional moves).
|
|
Scaled64 PredCost;
|
|
/// Non-predicated cost (with selects converted to branches).
|
|
Scaled64 NonPredCost;
|
|
};
|
|
|
|
// Converts select instructions of a function to conditional jumps when deemed
|
|
// profitable. Returns true if at least one select was converted.
|
|
bool optimizeSelects(Function &F);
|
|
|
|
// Heuristics for determining which select instructions can be profitably
|
|
// conveted to branches. Separate heuristics for selects in inner-most loops
|
|
// and the rest of code regions (base heuristics for non-inner-most loop
|
|
// regions).
|
|
void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
|
|
void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
|
|
|
|
// Converts to branches the select groups that were deemed
|
|
// profitable-to-convert.
|
|
void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
|
|
|
|
// Splits selects of a given basic block into select groups.
|
|
void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
|
|
|
|
// Determines for which select groups it is profitable converting to branches
|
|
// (base and inner-most-loop heuristics).
|
|
void findProfitableSIGroupsBase(SelectGroups &SIGroups,
|
|
SelectGroups &ProfSIGroups);
|
|
void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
|
|
SelectGroups &ProfSIGroups);
|
|
|
|
// Determines if a select group should be converted to a branch (base
|
|
// heuristics).
|
|
bool isConvertToBranchProfitableBase(const SmallVector<SelectInst *, 2> &ASI);
|
|
|
|
// Returns true if there are expensive instructions in the cold value
|
|
// operand's (if any) dependence slice of any of the selects of the given
|
|
// group.
|
|
bool hasExpensiveColdOperand(const SmallVector<SelectInst *, 2> &ASI);
|
|
|
|
// For a given source instruction, collect its backwards dependence slice
|
|
// consisting of instructions exclusively computed for producing the operands
|
|
// of the source instruction.
|
|
void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
|
|
bool ForSinking = false);
|
|
|
|
// Returns true if the condition of the select is highly predictable.
|
|
bool isSelectHighlyPredictable(const SelectInst *SI);
|
|
|
|
// Loop-level checks to determine if a non-predicated version (with branches)
|
|
// of the given loop is more profitable than its predicated version.
|
|
bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
|
|
|
|
// Computes instruction and loop-critical-path costs for both the predicated
|
|
// and non-predicated version of the given loop.
|
|
bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
|
|
DenseMap<const Instruction *, CostInfo> &InstCostMap,
|
|
CostInfo *LoopCost);
|
|
|
|
// Returns a set of all the select instructions in the given select groups.
|
|
SmallPtrSet<const Instruction *, 2> getSIset(const SelectGroups &SIGroups);
|
|
|
|
// Returns the latency cost of a given instruction.
|
|
Optional<uint64_t> computeInstCost(const Instruction *I);
|
|
|
|
// Returns the misprediction cost of a given select when converted to branch.
|
|
Scaled64 getMispredictionCost(const SelectInst *SI, const Scaled64 CondCost);
|
|
|
|
// Returns the cost of a branch when the prediction is correct.
|
|
Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
|
|
const SelectInst *SI);
|
|
|
|
// Returns true if the target architecture supports lowering a given select.
|
|
bool isSelectKindSupported(SelectInst *SI);
|
|
};
|
|
} // namespace
|
|
|
|
char SelectOptimize::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
|
|
INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
|
|
false)
|
|
|
|
FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
|
|
|
|
bool SelectOptimize::runOnFunction(Function &F) {
|
|
TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
|
|
TSI = TM->getSubtargetImpl(F);
|
|
TLI = TSI->getTargetLowering();
|
|
|
|
// If none of the select types is supported then skip this pass.
|
|
// This is an optimization pass. Legality issues will be handled by
|
|
// instruction selection.
|
|
if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
|
|
!TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
|
|
!TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
|
|
return false;
|
|
|
|
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
BPI.reset(new BranchProbabilityInfo(F, *LI));
|
|
BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
|
|
PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
|
|
ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
|
|
TSchedModel.init(TSI);
|
|
|
|
// When optimizing for size, selects are preferable over branches.
|
|
if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI.get()))
|
|
return false;
|
|
|
|
return optimizeSelects(F);
|
|
}
|
|
|
|
bool SelectOptimize::optimizeSelects(Function &F) {
|
|
// Determine for which select groups it is profitable converting to branches.
|
|
SelectGroups ProfSIGroups;
|
|
// Base heuristics apply only to non-loops and outer loops.
|
|
optimizeSelectsBase(F, ProfSIGroups);
|
|
// Separate heuristics for inner-most loops.
|
|
optimizeSelectsInnerLoops(F, ProfSIGroups);
|
|
|
|
// Convert to branches the select groups that were deemed
|
|
// profitable-to-convert.
|
|
convertProfitableSIGroups(ProfSIGroups);
|
|
|
|
// Code modified if at least one select group was converted.
|
|
return !ProfSIGroups.empty();
|
|
}
|
|
|
|
void SelectOptimize::optimizeSelectsBase(Function &F,
|
|
SelectGroups &ProfSIGroups) {
|
|
// Collect all the select groups.
|
|
SelectGroups SIGroups;
|
|
for (BasicBlock &BB : F) {
|
|
// Base heuristics apply only to non-loops and outer loops.
|
|
Loop *L = LI->getLoopFor(&BB);
|
|
if (L && L->isInnermost())
|
|
continue;
|
|
collectSelectGroups(BB, SIGroups);
|
|
}
|
|
|
|
// Determine for which select groups it is profitable converting to branches.
|
|
findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
|
|
}
|
|
|
|
void SelectOptimize::optimizeSelectsInnerLoops(Function &F,
|
|
SelectGroups &ProfSIGroups) {
|
|
SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
|
|
// Need to check size on each iteration as we accumulate child loops.
|
|
for (unsigned long i = 0; i < Loops.size(); ++i)
|
|
for (Loop *ChildL : Loops[i]->getSubLoops())
|
|
Loops.push_back(ChildL);
|
|
|
|
for (Loop *L : Loops) {
|
|
if (!L->isInnermost())
|
|
continue;
|
|
|
|
SelectGroups SIGroups;
|
|
for (BasicBlock *BB : L->getBlocks())
|
|
collectSelectGroups(*BB, SIGroups);
|
|
|
|
findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
|
|
}
|
|
}
|
|
|
|
/// If \p isTrue is true, return the true value of \p SI, otherwise return
|
|
/// false value of \p SI. If the true/false value of \p SI is defined by any
|
|
/// select instructions in \p Selects, look through the defining select
|
|
/// instruction until the true/false value is not defined in \p Selects.
|
|
static Value *
|
|
getTrueOrFalseValue(SelectInst *SI, bool isTrue,
|
|
const SmallPtrSet<const Instruction *, 2> &Selects) {
|
|
Value *V = nullptr;
|
|
for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
|
|
DefSI = dyn_cast<SelectInst>(V)) {
|
|
assert(DefSI->getCondition() == SI->getCondition() &&
|
|
"The condition of DefSI does not match with SI");
|
|
V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
|
|
}
|
|
assert(V && "Failed to get select true/false value");
|
|
return V;
|
|
}
|
|
|
|
void SelectOptimize::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
|
|
for (SelectGroup &ASI : ProfSIGroups) {
|
|
// The code transformation here is a modified version of the sinking
|
|
// transformation in CodeGenPrepare::optimizeSelectInst with a more
|
|
// aggressive strategy of which instructions to sink.
|
|
//
|
|
// TODO: eliminate the redundancy of logic transforming selects to branches
|
|
// by removing CodeGenPrepare::optimizeSelectInst and optimizing here
|
|
// selects for all cases (with and without profile information).
|
|
|
|
// Transform a sequence like this:
|
|
// start:
|
|
// %cmp = cmp uge i32 %a, %b
|
|
// %sel = select i1 %cmp, i32 %c, i32 %d
|
|
//
|
|
// Into:
|
|
// start:
|
|
// %cmp = cmp uge i32 %a, %b
|
|
// %cmp.frozen = freeze %cmp
|
|
// br i1 %cmp.frozen, label %select.true, label %select.false
|
|
// select.true:
|
|
// br label %select.end
|
|
// select.false:
|
|
// br label %select.end
|
|
// select.end:
|
|
// %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
|
|
//
|
|
// %cmp should be frozen, otherwise it may introduce undefined behavior.
|
|
// In addition, we may sink instructions that produce %c or %d into the
|
|
// destination(s) of the new branch.
|
|
// If the true or false blocks do not contain a sunken instruction, that
|
|
// block and its branch may be optimized away. In that case, one side of the
|
|
// first branch will point directly to select.end, and the corresponding PHI
|
|
// predecessor block will be the start block.
|
|
|
|
// Find all the instructions that can be soundly sunk to the true/false
|
|
// blocks. These are instructions that are computed solely for producing the
|
|
// operands of the select instructions in the group and can be sunk without
|
|
// breaking the semantics of the LLVM IR (e.g., cannot sink instructions
|
|
// with side effects).
|
|
SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
|
|
typedef std::stack<Instruction *>::size_type StackSizeType;
|
|
StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
|
|
for (SelectInst *SI : ASI) {
|
|
// For each select, compute the sinkable dependence chains of the true and
|
|
// false operands.
|
|
if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue())) {
|
|
std::stack<Instruction *> TrueSlice;
|
|
getExclBackwardsSlice(TI, TrueSlice, true);
|
|
maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
|
|
TrueSlices.push_back(TrueSlice);
|
|
}
|
|
if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue())) {
|
|
std::stack<Instruction *> FalseSlice;
|
|
getExclBackwardsSlice(FI, FalseSlice, true);
|
|
maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
|
|
FalseSlices.push_back(FalseSlice);
|
|
}
|
|
}
|
|
// In the case of multiple select instructions in the same group, the order
|
|
// of non-dependent instructions (instructions of different dependence
|
|
// slices) in the true/false blocks appears to affect performance.
|
|
// Interleaving the slices seems to experimentally be the optimal approach.
|
|
// This interleaving scheduling allows for more ILP (with a natural downside
|
|
// of increasing a bit register pressure) compared to a simple ordering of
|
|
// one whole chain after another. One would expect that this ordering would
|
|
// not matter since the scheduling in the backend of the compiler would
|
|
// take care of it, but apparently the scheduler fails to deliver optimal
|
|
// ILP with a naive ordering here.
|
|
SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
|
|
for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
|
|
for (auto &S : TrueSlices) {
|
|
if (!S.empty()) {
|
|
TrueSlicesInterleaved.push_back(S.top());
|
|
S.pop();
|
|
}
|
|
}
|
|
}
|
|
for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
|
|
for (auto &S : FalseSlices) {
|
|
if (!S.empty()) {
|
|
FalseSlicesInterleaved.push_back(S.top());
|
|
S.pop();
|
|
}
|
|
}
|
|
}
|
|
|
|
// We split the block containing the select(s) into two blocks.
|
|
SelectInst *SI = ASI.front();
|
|
SelectInst *LastSI = ASI.back();
|
|
BasicBlock *StartBlock = SI->getParent();
|
|
BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
|
|
BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
|
|
BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
|
|
// Delete the unconditional branch that was just created by the split.
|
|
StartBlock->getTerminator()->eraseFromParent();
|
|
|
|
// Move any debug/pseudo instructions that were in-between the select
|
|
// group to the newly-created end block.
|
|
SmallVector<Instruction *, 2> DebugPseudoINS;
|
|
auto DIt = SI->getIterator();
|
|
while (&*DIt != LastSI) {
|
|
if (DIt->isDebugOrPseudoInst())
|
|
DebugPseudoINS.push_back(&*DIt);
|
|
DIt++;
|
|
}
|
|
for (auto DI : DebugPseudoINS) {
|
|
DI->moveBefore(&*EndBlock->getFirstInsertionPt());
|
|
}
|
|
|
|
// These are the new basic blocks for the conditional branch.
|
|
// At least one will become an actual new basic block.
|
|
BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
|
|
BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
|
|
if (!TrueSlicesInterleaved.empty()) {
|
|
TrueBlock = BasicBlock::Create(LastSI->getContext(), "select.true.sink",
|
|
EndBlock->getParent(), EndBlock);
|
|
TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
|
|
TrueBranch->setDebugLoc(LastSI->getDebugLoc());
|
|
for (Instruction *TrueInst : TrueSlicesInterleaved)
|
|
TrueInst->moveBefore(TrueBranch);
|
|
}
|
|
if (!FalseSlicesInterleaved.empty()) {
|
|
FalseBlock = BasicBlock::Create(LastSI->getContext(), "select.false.sink",
|
|
EndBlock->getParent(), EndBlock);
|
|
FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
|
|
FalseBranch->setDebugLoc(LastSI->getDebugLoc());
|
|
for (Instruction *FalseInst : FalseSlicesInterleaved)
|
|
FalseInst->moveBefore(FalseBranch);
|
|
}
|
|
// If there was nothing to sink, then arbitrarily choose the 'false' side
|
|
// for a new input value to the PHI.
|
|
if (TrueBlock == FalseBlock) {
|
|
assert(TrueBlock == nullptr &&
|
|
"Unexpected basic block transform while optimizing select");
|
|
|
|
FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
|
|
EndBlock->getParent(), EndBlock);
|
|
auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
|
|
FalseBranch->setDebugLoc(SI->getDebugLoc());
|
|
}
|
|
|
|
// Insert the real conditional branch based on the original condition.
|
|
// If we did not create a new block for one of the 'true' or 'false' paths
|
|
// of the condition, it means that side of the branch goes to the end block
|
|
// directly and the path originates from the start block from the point of
|
|
// view of the new PHI.
|
|
BasicBlock *TT, *FT;
|
|
if (TrueBlock == nullptr) {
|
|
TT = EndBlock;
|
|
FT = FalseBlock;
|
|
TrueBlock = StartBlock;
|
|
} else if (FalseBlock == nullptr) {
|
|
TT = TrueBlock;
|
|
FT = EndBlock;
|
|
FalseBlock = StartBlock;
|
|
} else {
|
|
TT = TrueBlock;
|
|
FT = FalseBlock;
|
|
}
|
|
IRBuilder<> IB(SI);
|
|
auto *CondFr =
|
|
IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
|
|
IB.CreateCondBr(CondFr, TT, FT, SI);
|
|
|
|
SmallPtrSet<const Instruction *, 2> INS;
|
|
INS.insert(ASI.begin(), ASI.end());
|
|
// Use reverse iterator because later select may use the value of the
|
|
// earlier select, and we need to propagate value through earlier select
|
|
// to get the PHI operand.
|
|
for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
|
|
SelectInst *SI = *It;
|
|
// The select itself is replaced with a PHI Node.
|
|
PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
|
|
PN->takeName(SI);
|
|
PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
|
|
PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
|
|
PN->setDebugLoc(SI->getDebugLoc());
|
|
|
|
SI->replaceAllUsesWith(PN);
|
|
SI->eraseFromParent();
|
|
INS.erase(SI);
|
|
++NumSelectsConverted;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectOptimize::collectSelectGroups(BasicBlock &BB,
|
|
SelectGroups &SIGroups) {
|
|
BasicBlock::iterator BBIt = BB.begin();
|
|
while (BBIt != BB.end()) {
|
|
Instruction *I = &*BBIt++;
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
|
|
SelectGroup SIGroup;
|
|
SIGroup.push_back(SI);
|
|
while (BBIt != BB.end()) {
|
|
Instruction *NI = &*BBIt;
|
|
SelectInst *NSI = dyn_cast<SelectInst>(NI);
|
|
if (NSI && SI->getCondition() == NSI->getCondition()) {
|
|
SIGroup.push_back(NSI);
|
|
} else if (!NI->isDebugOrPseudoInst()) {
|
|
// Debug/pseudo instructions should be skipped and not prevent the
|
|
// formation of a select group.
|
|
break;
|
|
}
|
|
++BBIt;
|
|
}
|
|
|
|
// If the select type is not supported, no point optimizing it.
|
|
// Instruction selection will take care of it.
|
|
if (!isSelectKindSupported(SI))
|
|
continue;
|
|
|
|
SIGroups.push_back(SIGroup);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectOptimize::findProfitableSIGroupsBase(SelectGroups &SIGroups,
|
|
SelectGroups &ProfSIGroups) {
|
|
for (SelectGroup &ASI : SIGroups) {
|
|
++NumSelectOptAnalyzed;
|
|
if (isConvertToBranchProfitableBase(ASI))
|
|
ProfSIGroups.push_back(ASI);
|
|
}
|
|
}
|
|
|
|
void SelectOptimize::findProfitableSIGroupsInnerLoops(
|
|
const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
|
|
NumSelectOptAnalyzed += SIGroups.size();
|
|
// For each select group in an inner-most loop,
|
|
// a branch is more preferable than a select/conditional-move if:
|
|
// i) conversion to branches for all the select groups of the loop satisfies
|
|
// loop-level heuristics including reducing the loop's critical path by
|
|
// some threshold (see SelectOptimize::checkLoopHeuristics); and
|
|
// ii) the total cost of the select group is cheaper with a branch compared
|
|
// to its predicated version. The cost is in terms of latency and the cost
|
|
// of a select group is the cost of its most expensive select instruction
|
|
// (assuming infinite resources and thus fully leveraging available ILP).
|
|
|
|
DenseMap<const Instruction *, CostInfo> InstCostMap;
|
|
CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
|
|
{Scaled64::getZero(), Scaled64::getZero()}};
|
|
if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
|
|
!checkLoopHeuristics(L, LoopCost)) {
|
|
return;
|
|
}
|
|
|
|
for (SelectGroup &ASI : SIGroups) {
|
|
// Assuming infinite resources, the cost of a group of instructions is the
|
|
// cost of the most expensive instruction of the group.
|
|
Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
|
|
for (SelectInst *SI : ASI) {
|
|
SelectCost = std::max(SelectCost, InstCostMap[SI].PredCost);
|
|
BranchCost = std::max(BranchCost, InstCostMap[SI].NonPredCost);
|
|
}
|
|
if (BranchCost < SelectCost) {
|
|
OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front());
|
|
OR << "Profitable to convert to branch (loop analysis). BranchCost="
|
|
<< BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
|
|
<< ". ";
|
|
ORE->emit(OR);
|
|
++NumSelectConvertedLoop;
|
|
ProfSIGroups.push_back(ASI);
|
|
} else {
|
|
OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
|
|
ORmiss << "Select is more profitable (loop analysis). BranchCost="
|
|
<< BranchCost.toString()
|
|
<< ", SelectCost=" << SelectCost.toString() << ". ";
|
|
ORE->emit(ORmiss);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SelectOptimize::isConvertToBranchProfitableBase(
|
|
const SmallVector<SelectInst *, 2> &ASI) {
|
|
SelectInst *SI = ASI.front();
|
|
OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI);
|
|
OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI);
|
|
|
|
// Skip cold basic blocks. Better to optimize for size for cold blocks.
|
|
if (PSI->isColdBlock(SI->getParent(), BFI.get())) {
|
|
++NumSelectColdBB;
|
|
ORmiss << "Not converted to branch because of cold basic block. ";
|
|
ORE->emit(ORmiss);
|
|
return false;
|
|
}
|
|
|
|
// If unpredictable, branch form is less profitable.
|
|
if (SI->getMetadata(LLVMContext::MD_unpredictable)) {
|
|
++NumSelectUnPred;
|
|
ORmiss << "Not converted to branch because of unpredictable branch. ";
|
|
ORE->emit(ORmiss);
|
|
return false;
|
|
}
|
|
|
|
// If highly predictable, branch form is more profitable, unless a
|
|
// predictable select is inexpensive in the target architecture.
|
|
if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
|
|
++NumSelectConvertedHighPred;
|
|
OR << "Converted to branch because of highly predictable branch. ";
|
|
ORE->emit(OR);
|
|
return true;
|
|
}
|
|
|
|
// Look for expensive instructions in the cold operand's (if any) dependence
|
|
// slice of any of the selects in the group.
|
|
if (hasExpensiveColdOperand(ASI)) {
|
|
++NumSelectConvertedExpColdOperand;
|
|
OR << "Converted to branch because of expensive cold operand.";
|
|
ORE->emit(OR);
|
|
return true;
|
|
}
|
|
|
|
ORmiss << "Not profitable to convert to branch (base heuristic).";
|
|
ORE->emit(ORmiss);
|
|
return false;
|
|
}
|
|
|
|
static InstructionCost divideNearest(InstructionCost Numerator,
|
|
uint64_t Denominator) {
|
|
return (Numerator + (Denominator / 2)) / Denominator;
|
|
}
|
|
|
|
bool SelectOptimize::hasExpensiveColdOperand(
|
|
const SmallVector<SelectInst *, 2> &ASI) {
|
|
bool ColdOperand = false;
|
|
uint64_t TrueWeight, FalseWeight, TotalWeight;
|
|
if (ASI.front()->extractProfMetadata(TrueWeight, FalseWeight)) {
|
|
uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
|
|
TotalWeight = TrueWeight + FalseWeight;
|
|
// Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
|
|
ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
|
|
} else if (PSI->hasProfileSummary()) {
|
|
OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
|
|
ORmiss << "Profile data available but missing branch-weights metadata for "
|
|
"select instruction. ";
|
|
ORE->emit(ORmiss);
|
|
}
|
|
if (!ColdOperand)
|
|
return false;
|
|
// Check if the cold path's dependence slice is expensive for any of the
|
|
// selects of the group.
|
|
for (SelectInst *SI : ASI) {
|
|
Instruction *ColdI = nullptr;
|
|
uint64_t HotWeight;
|
|
if (TrueWeight < FalseWeight) {
|
|
ColdI = dyn_cast<Instruction>(SI->getTrueValue());
|
|
HotWeight = FalseWeight;
|
|
} else {
|
|
ColdI = dyn_cast<Instruction>(SI->getFalseValue());
|
|
HotWeight = TrueWeight;
|
|
}
|
|
if (ColdI) {
|
|
std::stack<Instruction *> ColdSlice;
|
|
getExclBackwardsSlice(ColdI, ColdSlice);
|
|
InstructionCost SliceCost = 0;
|
|
while (!ColdSlice.empty()) {
|
|
SliceCost += TTI->getInstructionCost(ColdSlice.top(),
|
|
TargetTransformInfo::TCK_Latency);
|
|
ColdSlice.pop();
|
|
}
|
|
// The colder the cold value operand of the select is the more expensive
|
|
// the cmov becomes for computing the cold value operand every time. Thus,
|
|
// the colder the cold operand is the more its cost counts.
|
|
// Get nearest integer cost adjusted for coldness.
|
|
InstructionCost AdjSliceCost =
|
|
divideNearest(SliceCost * HotWeight, TotalWeight);
|
|
if (AdjSliceCost >=
|
|
ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// For a given source instruction, collect its backwards dependence slice
|
|
// consisting of instructions exclusively computed for the purpose of producing
|
|
// the operands of the source instruction. As an approximation
|
|
// (sufficiently-accurate in practice), we populate this set with the
|
|
// instructions of the backwards dependence slice that only have one-use and
|
|
// form an one-use chain that leads to the source instruction.
|
|
void SelectOptimize::getExclBackwardsSlice(Instruction *I,
|
|
std::stack<Instruction *> &Slice,
|
|
bool ForSinking) {
|
|
SmallPtrSet<Instruction *, 2> Visited;
|
|
std::queue<Instruction *> Worklist;
|
|
Worklist.push(I);
|
|
while (!Worklist.empty()) {
|
|
Instruction *II = Worklist.front();
|
|
Worklist.pop();
|
|
|
|
// Avoid cycles.
|
|
if (Visited.count(II))
|
|
continue;
|
|
Visited.insert(II);
|
|
|
|
if (!II->hasOneUse())
|
|
continue;
|
|
|
|
// Cannot soundly sink instructions with side-effects.
|
|
// Terminator or phi instructions cannot be sunk.
|
|
// Avoid sinking other select instructions (should be handled separetely).
|
|
if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
|
|
isa<SelectInst>(II) || isa<PHINode>(II)))
|
|
continue;
|
|
|
|
// Avoid considering instructions with less frequency than the source
|
|
// instruction (i.e., avoid colder code regions of the dependence slice).
|
|
if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
|
|
continue;
|
|
|
|
// Eligible one-use instruction added to the dependence slice.
|
|
Slice.push(II);
|
|
|
|
// Explore all the operands of the current instruction to expand the slice.
|
|
for (unsigned k = 0; k < II->getNumOperands(); ++k)
|
|
if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k)))
|
|
Worklist.push(OpI);
|
|
}
|
|
}
|
|
|
|
bool SelectOptimize::isSelectHighlyPredictable(const SelectInst *SI) {
|
|
uint64_t TrueWeight, FalseWeight;
|
|
if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
|
|
uint64_t Max = std::max(TrueWeight, FalseWeight);
|
|
uint64_t Sum = TrueWeight + FalseWeight;
|
|
if (Sum != 0) {
|
|
auto Probability = BranchProbability::getBranchProbability(Max, Sum);
|
|
if (Probability > TTI->getPredictableBranchThreshold())
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SelectOptimize::checkLoopHeuristics(const Loop *L,
|
|
const CostInfo LoopCost[2]) {
|
|
// Loop-level checks to determine if a non-predicated version (with branches)
|
|
// of the loop is more profitable than its predicated version.
|
|
|
|
if (DisableLoopLevelHeuristics)
|
|
return true;
|
|
|
|
OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
|
|
L->getHeader()->getFirstNonPHI());
|
|
|
|
if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
|
|
LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
|
|
ORmissL << "No select conversion in the loop due to no reduction of loop's "
|
|
"critical path. ";
|
|
ORE->emit(ORmissL);
|
|
return false;
|
|
}
|
|
|
|
Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
|
|
LoopCost[1].PredCost - LoopCost[1].NonPredCost};
|
|
|
|
// Profitably converting to branches need to reduce the loop's critical path
|
|
// by at least some threshold (absolute gain of GainCycleThreshold cycles and
|
|
// relative gain of 12.5%).
|
|
if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
|
|
Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
|
|
Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
|
|
ORmissL << "No select conversion in the loop due to small reduction of "
|
|
"loop's critical path. Gain="
|
|
<< Gain[1].toString()
|
|
<< ", RelativeGain=" << RelativeGain.toString() << "%. ";
|
|
ORE->emit(ORmissL);
|
|
return false;
|
|
}
|
|
|
|
// If the loop's critical path involves loop-carried dependences, the gradient
|
|
// of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
|
|
// This check ensures that the latency reduction for the loop's critical path
|
|
// keeps decreasing with sufficient rate beyond the two analyzed loop
|
|
// iterations.
|
|
if (Gain[1] > Gain[0]) {
|
|
Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
|
|
(LoopCost[1].PredCost - LoopCost[0].PredCost);
|
|
if (GradientGain < Scaled64::get(GainGradientThreshold)) {
|
|
ORmissL << "No select conversion in the loop due to small gradient gain. "
|
|
"GradientGain="
|
|
<< GradientGain.toString() << "%. ";
|
|
ORE->emit(ORmissL);
|
|
return false;
|
|
}
|
|
}
|
|
// If the gain decreases it is not profitable to convert.
|
|
else if (Gain[1] < Gain[0]) {
|
|
ORmissL
|
|
<< "No select conversion in the loop due to negative gradient gain. ";
|
|
ORE->emit(ORmissL);
|
|
return false;
|
|
}
|
|
|
|
// Non-predicated version of the loop is more profitable than its
|
|
// predicated version.
|
|
return true;
|
|
}
|
|
|
|
// Computes instruction and loop-critical-path costs for both the predicated
|
|
// and non-predicated version of the given loop.
|
|
// Returns false if unable to compute these costs due to invalid cost of loop
|
|
// instruction(s).
|
|
bool SelectOptimize::computeLoopCosts(
|
|
const Loop *L, const SelectGroups &SIGroups,
|
|
DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
|
|
const auto &SIset = getSIset(SIGroups);
|
|
// Compute instruction and loop-critical-path costs across two iterations for
|
|
// both predicated and non-predicated version.
|
|
const unsigned Iterations = 2;
|
|
for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
|
|
// Cost of the loop's critical path.
|
|
CostInfo &MaxCost = LoopCost[Iter];
|
|
for (BasicBlock *BB : L->getBlocks()) {
|
|
for (const Instruction &I : *BB) {
|
|
if (I.isDebugOrPseudoInst())
|
|
continue;
|
|
// Compute the predicated and non-predicated cost of the instruction.
|
|
Scaled64 IPredCost = Scaled64::getZero(),
|
|
INonPredCost = Scaled64::getZero();
|
|
|
|
// Assume infinite resources that allow to fully exploit the available
|
|
// instruction-level parallelism.
|
|
// InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
|
|
for (const Use &U : I.operands()) {
|
|
auto UI = dyn_cast<Instruction>(U.get());
|
|
if (!UI)
|
|
continue;
|
|
if (InstCostMap.count(UI)) {
|
|
IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost);
|
|
INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost);
|
|
}
|
|
}
|
|
auto ILatency = computeInstCost(&I);
|
|
if (!ILatency.hasValue()) {
|
|
OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
|
|
ORmissL << "Invalid instruction cost preventing analysis and "
|
|
"optimization of the inner-most loop containing this "
|
|
"instruction. ";
|
|
ORE->emit(ORmissL);
|
|
return false;
|
|
}
|
|
IPredCost += Scaled64::get(ILatency.getValue());
|
|
INonPredCost += Scaled64::get(ILatency.getValue());
|
|
|
|
// For a select that can be converted to branch,
|
|
// compute its cost as a branch (non-predicated cost).
|
|
//
|
|
// BranchCost = PredictedPathCost + MispredictCost
|
|
// PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
|
|
// MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
|
|
if (SIset.contains(&I)) {
|
|
auto SI = dyn_cast<SelectInst>(&I);
|
|
|
|
Scaled64 TrueOpCost = Scaled64::getZero(),
|
|
FalseOpCost = Scaled64::getZero();
|
|
if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue()))
|
|
if (InstCostMap.count(TI))
|
|
TrueOpCost = InstCostMap[TI].NonPredCost;
|
|
if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue()))
|
|
if (InstCostMap.count(FI))
|
|
FalseOpCost = InstCostMap[FI].NonPredCost;
|
|
Scaled64 PredictedPathCost =
|
|
getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
|
|
|
|
Scaled64 CondCost = Scaled64::getZero();
|
|
if (auto *CI = dyn_cast<Instruction>(SI->getCondition()))
|
|
if (InstCostMap.count(CI))
|
|
CondCost = InstCostMap[CI].NonPredCost;
|
|
Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
|
|
|
|
INonPredCost = PredictedPathCost + MispredictCost;
|
|
}
|
|
|
|
InstCostMap[&I] = {IPredCost, INonPredCost};
|
|
MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
|
|
MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
SmallPtrSet<const Instruction *, 2>
|
|
SelectOptimize::getSIset(const SelectGroups &SIGroups) {
|
|
SmallPtrSet<const Instruction *, 2> SIset;
|
|
for (const SelectGroup &ASI : SIGroups)
|
|
for (const SelectInst *SI : ASI)
|
|
SIset.insert(SI);
|
|
return SIset;
|
|
}
|
|
|
|
Optional<uint64_t> SelectOptimize::computeInstCost(const Instruction *I) {
|
|
InstructionCost ICost =
|
|
TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
|
|
if (auto OC = ICost.getValue())
|
|
return Optional<uint64_t>(OC.getValue());
|
|
return Optional<uint64_t>(None);
|
|
}
|
|
|
|
ScaledNumber<uint64_t>
|
|
SelectOptimize::getMispredictionCost(const SelectInst *SI,
|
|
const Scaled64 CondCost) {
|
|
uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
|
|
|
|
// Account for the default misprediction rate when using a branch
|
|
// (conservatively set to 25% by default).
|
|
uint64_t MispredictRate = MispredictDefaultRate;
|
|
// If the select condition is obviously predictable, then the misprediction
|
|
// rate is zero.
|
|
if (isSelectHighlyPredictable(SI))
|
|
MispredictRate = 0;
|
|
|
|
// CondCost is included to account for cases where the computation of the
|
|
// condition is part of a long dependence chain (potentially loop-carried)
|
|
// that would delay detection of a misprediction and increase its cost.
|
|
Scaled64 MispredictCost =
|
|
std::max(Scaled64::get(MispredictPenalty), CondCost) *
|
|
Scaled64::get(MispredictRate);
|
|
MispredictCost /= Scaled64::get(100);
|
|
|
|
return MispredictCost;
|
|
}
|
|
|
|
// Returns the cost of a branch when the prediction is correct.
|
|
// TrueCost * TrueProbability + FalseCost * FalseProbability.
|
|
ScaledNumber<uint64_t>
|
|
SelectOptimize::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
|
|
const SelectInst *SI) {
|
|
Scaled64 PredPathCost;
|
|
uint64_t TrueWeight, FalseWeight;
|
|
if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
|
|
uint64_t SumWeight = TrueWeight + FalseWeight;
|
|
if (SumWeight != 0) {
|
|
PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
|
|
FalseCost * Scaled64::get(FalseWeight);
|
|
PredPathCost /= Scaled64::get(SumWeight);
|
|
return PredPathCost;
|
|
}
|
|
}
|
|
// Without branch weight metadata, we assume 75% for the one path and 25% for
|
|
// the other, and pick the result with the biggest cost.
|
|
PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
|
|
FalseCost * Scaled64::get(3) + TrueCost);
|
|
PredPathCost /= Scaled64::get(4);
|
|
return PredPathCost;
|
|
}
|
|
|
|
bool SelectOptimize::isSelectKindSupported(SelectInst *SI) {
|
|
bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
|
|
if (VectorCond)
|
|
return false;
|
|
TargetLowering::SelectSupportKind SelectKind;
|
|
if (SI->getType()->isVectorTy())
|
|
SelectKind = TargetLowering::ScalarCondVectorVal;
|
|
else
|
|
SelectKind = TargetLowering::ScalarValSelect;
|
|
return TLI->isSelectSupported(SelectKind);
|
|
}
|