llvm-project/lld/MachO/ICF.cpp

460 lines
17 KiB
C++

//===- ICF.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ICF.h"
#include "ConcatOutputSection.h"
#include "Config.h"
#include "InputSection.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "UnwindInfoSection.h"
#include "lld/Common/CommonLinkerContext.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/xxhash.h"
#include <atomic>
using namespace llvm;
using namespace lld;
using namespace lld::macho;
static constexpr bool verboseDiagnostics = false;
class ICF {
public:
ICF(std::vector<ConcatInputSection *> &inputs);
void run();
using EqualsFn = bool (ICF::*)(const ConcatInputSection *,
const ConcatInputSection *);
void segregate(size_t begin, size_t end, EqualsFn);
size_t findBoundary(size_t begin, size_t end);
void forEachClassRange(size_t begin, size_t end,
llvm::function_ref<void(size_t, size_t)> func);
void forEachClass(llvm::function_ref<void(size_t, size_t)> func);
bool equalsConstant(const ConcatInputSection *ia,
const ConcatInputSection *ib);
bool equalsVariable(const ConcatInputSection *ia,
const ConcatInputSection *ib);
// ICF needs a copy of the inputs vector because its equivalence-class
// segregation algorithm destroys the proper sequence.
std::vector<ConcatInputSection *> icfInputs;
unsigned icfPass = 0;
std::atomic<bool> icfRepeat{false};
std::atomic<uint64_t> equalsConstantCount{0};
std::atomic<uint64_t> equalsVariableCount{0};
};
ICF::ICF(std::vector<ConcatInputSection *> &inputs) {
icfInputs.assign(inputs.begin(), inputs.end());
}
// ICF = Identical Code Folding
//
// We only fold __TEXT,__text, so this is really "code" folding, and not
// "COMDAT" folding. String and scalar constant literals are deduplicated
// elsewhere.
//
// Summary of segments & sections:
//
// The __TEXT segment is readonly at the MMU. Some sections are already
// deduplicated elsewhere (__TEXT,__cstring & __TEXT,__literal*) and some are
// synthetic and inherently free of duplicates (__TEXT,__stubs &
// __TEXT,__unwind_info). Note that we don't yet run ICF on __TEXT,__const,
// because doing so induces many test failures.
//
// The __LINKEDIT segment is readonly at the MMU, yet entirely synthetic, and
// thus ineligible for ICF.
//
// The __DATA_CONST segment is read/write at the MMU, but is logically const to
// the application after dyld applies fixups to pointer data. We currently
// fold only the __DATA_CONST,__cfstring section.
//
// The __DATA segment is read/write at the MMU, and as application-writeable
// data, none of its sections are eligible for ICF.
//
// Please see the large block comment in lld/ELF/ICF.cpp for an explanation
// of the segregation algorithm.
//
// FIXME(gkm): implement keep-unique attributes
// FIXME(gkm): implement address-significance tables for MachO object files
// Compare "non-moving" parts of two ConcatInputSections, namely everything
// except references to other ConcatInputSections.
bool ICF::equalsConstant(const ConcatInputSection *ia,
const ConcatInputSection *ib) {
if (verboseDiagnostics)
++equalsConstantCount;
// We can only fold within the same OutputSection.
if (ia->parent != ib->parent)
return false;
if (ia->data.size() != ib->data.size())
return false;
if (ia->data != ib->data)
return false;
if (ia->relocs.size() != ib->relocs.size())
return false;
auto f = [](const Reloc &ra, const Reloc &rb) {
if (ra.type != rb.type)
return false;
if (ra.pcrel != rb.pcrel)
return false;
if (ra.length != rb.length)
return false;
if (ra.offset != rb.offset)
return false;
if (ra.referent.is<Symbol *>() != rb.referent.is<Symbol *>())
return false;
InputSection *isecA, *isecB;
uint64_t valueA = 0;
uint64_t valueB = 0;
if (ra.referent.is<Symbol *>()) {
const auto *sa = ra.referent.get<Symbol *>();
const auto *sb = rb.referent.get<Symbol *>();
if (sa->kind() != sb->kind())
return false;
// ICF runs before Undefineds are treated (and potentially converted into
// DylibSymbols).
if (isa<DylibSymbol>(sa) || isa<Undefined>(sa))
return sa == sb && ra.addend == rb.addend;
assert(isa<Defined>(sa));
const auto *da = cast<Defined>(sa);
const auto *db = cast<Defined>(sb);
if (!da->isec || !db->isec) {
assert(da->isAbsolute() && db->isAbsolute());
return da->value + ra.addend == db->value + rb.addend;
}
isecA = da->isec;
valueA = da->value;
isecB = db->isec;
valueB = db->value;
} else {
isecA = ra.referent.get<InputSection *>();
isecB = rb.referent.get<InputSection *>();
}
if (isecA->parent != isecB->parent)
return false;
// Sections with identical parents should be of the same kind.
assert(isecA->kind() == isecB->kind());
// We will compare ConcatInputSection contents in equalsVariable.
if (isa<ConcatInputSection>(isecA))
return ra.addend == rb.addend;
// Else we have two literal sections. References to them are equal iff their
// offsets in the output section are equal.
if (ra.referent.is<Symbol *>())
// For symbol relocs, we compare the contents at the symbol address. We
// don't do `getOffset(value + addend)` because value + addend may not be
// a valid offset in the literal section.
return isecA->getOffset(valueA) == isecB->getOffset(valueB) &&
ra.addend == rb.addend;
else {
assert(valueA == 0 && valueB == 0);
// For section relocs, we compare the content at the section offset.
return isecA->getOffset(ra.addend) == isecB->getOffset(rb.addend);
}
};
return std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(),
f);
}
// Compare the "moving" parts of two ConcatInputSections -- i.e. everything not
// handled by equalsConstant().
bool ICF::equalsVariable(const ConcatInputSection *ia,
const ConcatInputSection *ib) {
if (verboseDiagnostics)
++equalsVariableCount;
assert(ia->relocs.size() == ib->relocs.size());
auto f = [this](const Reloc &ra, const Reloc &rb) {
// We already filtered out mismatching values/addends in equalsConstant.
if (ra.referent == rb.referent)
return true;
const ConcatInputSection *isecA, *isecB;
if (ra.referent.is<Symbol *>()) {
// Matching DylibSymbols are already filtered out by the
// identical-referent check above. Non-matching DylibSymbols were filtered
// out in equalsConstant(). So we can safely cast to Defined here.
const auto *da = cast<Defined>(ra.referent.get<Symbol *>());
const auto *db = cast<Defined>(rb.referent.get<Symbol *>());
if (da->isAbsolute())
return true;
isecA = dyn_cast<ConcatInputSection>(da->isec);
if (!isecA)
return true; // literal sections were checked in equalsConstant.
isecB = cast<ConcatInputSection>(db->isec);
} else {
const auto *sa = ra.referent.get<InputSection *>();
const auto *sb = rb.referent.get<InputSection *>();
isecA = dyn_cast<ConcatInputSection>(sa);
if (!isecA)
return true;
isecB = cast<ConcatInputSection>(sb);
}
return isecA->icfEqClass[icfPass % 2] == isecB->icfEqClass[icfPass % 2];
};
if (!std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(), f))
return false;
// If there are symbols with associated unwind info, check that the unwind
// info matches. For simplicity, we only handle the case where there are only
// symbols at offset zero within the section (which is typically the case with
// .subsections_via_symbols.)
auto hasCU = [](Defined *d) { return d->unwindEntry != nullptr; };
auto itA = std::find_if(ia->symbols.begin(), ia->symbols.end(), hasCU);
auto itB = std::find_if(ib->symbols.begin(), ib->symbols.end(), hasCU);
if (itA == ia->symbols.end())
return itB == ib->symbols.end();
if (itB == ib->symbols.end())
return false;
const Defined *da = *itA;
const Defined *db = *itB;
if (da->unwindEntry->icfEqClass[icfPass % 2] !=
db->unwindEntry->icfEqClass[icfPass % 2] ||
da->value != 0 || db->value != 0)
return false;
auto isZero = [](Defined *d) { return d->value == 0; };
return std::find_if_not(std::next(itA), ia->symbols.end(), isZero) ==
ia->symbols.end() &&
std::find_if_not(std::next(itB), ib->symbols.end(), isZero) ==
ib->symbols.end();
}
// Find the first InputSection after BEGIN whose equivalence class differs
size_t ICF::findBoundary(size_t begin, size_t end) {
uint64_t beginHash = icfInputs[begin]->icfEqClass[icfPass % 2];
for (size_t i = begin + 1; i < end; ++i)
if (beginHash != icfInputs[i]->icfEqClass[icfPass % 2])
return i;
return end;
}
// Invoke FUNC on subranges with matching equivalence class
void ICF::forEachClassRange(size_t begin, size_t end,
llvm::function_ref<void(size_t, size_t)> func) {
while (begin < end) {
size_t mid = findBoundary(begin, end);
func(begin, mid);
begin = mid;
}
}
// Split icfInputs into shards, then parallelize invocation of FUNC on subranges
// with matching equivalence class
void ICF::forEachClass(llvm::function_ref<void(size_t, size_t)> func) {
// Only use threads when the benefits outweigh the overhead.
const size_t threadingThreshold = 1024;
if (icfInputs.size() < threadingThreshold) {
forEachClassRange(0, icfInputs.size(), func);
++icfPass;
return;
}
// Shard into non-overlapping intervals, and call FUNC in parallel. The
// sharding must be completed before any calls to FUNC are made so that FUNC
// can modify the InputSection in its shard without causing data races.
const size_t shards = 256;
size_t step = icfInputs.size() / shards;
size_t boundaries[shards + 1];
boundaries[0] = 0;
boundaries[shards] = icfInputs.size();
parallelForEachN(1, shards, [&](size_t i) {
boundaries[i] = findBoundary((i - 1) * step, icfInputs.size());
});
parallelForEachN(1, shards + 1, [&](size_t i) {
if (boundaries[i - 1] < boundaries[i]) {
forEachClassRange(boundaries[i - 1], boundaries[i], func);
}
});
++icfPass;
}
void ICF::run() {
// Into each origin-section hash, combine all reloc referent section hashes.
for (icfPass = 0; icfPass < 2; ++icfPass) {
parallelForEach(icfInputs, [&](ConcatInputSection *isec) {
uint32_t hash = isec->icfEqClass[icfPass % 2];
for (const Reloc &r : isec->relocs) {
if (auto *sym = r.referent.dyn_cast<Symbol *>()) {
if (auto *defined = dyn_cast<Defined>(sym)) {
if (defined->isec) {
if (auto referentIsec =
dyn_cast<ConcatInputSection>(defined->isec))
hash += defined->value + referentIsec->icfEqClass[icfPass % 2];
else
hash += defined->isec->kind() +
defined->isec->getOffset(defined->value);
} else {
hash += defined->value;
}
} else {
// ICF runs before Undefined diags
assert(isa<Undefined>(sym) || isa<DylibSymbol>(sym));
}
}
}
// Set MSB to 1 to avoid collisions with non-hashed classes.
isec->icfEqClass[(icfPass + 1) % 2] = hash | (1ull << 31);
});
}
llvm::stable_sort(
icfInputs, [](const ConcatInputSection *a, const ConcatInputSection *b) {
return a->icfEqClass[0] < b->icfEqClass[0];
});
forEachClass([&](size_t begin, size_t end) {
segregate(begin, end, &ICF::equalsConstant);
});
// Split equivalence groups by comparing relocations until convergence
do {
icfRepeat = false;
forEachClass([&](size_t begin, size_t end) {
segregate(begin, end, &ICF::equalsVariable);
});
} while (icfRepeat);
log("ICF needed " + Twine(icfPass) + " iterations");
if (verboseDiagnostics) {
log("equalsConstant() called " + Twine(equalsConstantCount) + " times");
log("equalsVariable() called " + Twine(equalsVariableCount) + " times");
}
// Fold sections within equivalence classes
forEachClass([&](size_t begin, size_t end) {
if (end - begin < 2)
return;
ConcatInputSection *beginIsec = icfInputs[begin];
for (size_t i = begin + 1; i < end; ++i)
beginIsec->foldIdentical(icfInputs[i]);
});
}
// Split an equivalence class into smaller classes.
void ICF::segregate(size_t begin, size_t end, EqualsFn equals) {
while (begin < end) {
// Divide [begin, end) into two. Let mid be the start index of the
// second group.
auto bound = std::stable_partition(
icfInputs.begin() + begin + 1, icfInputs.begin() + end,
[&](ConcatInputSection *isec) {
return (this->*equals)(icfInputs[begin], isec);
});
size_t mid = bound - icfInputs.begin();
// Split [begin, end) into [begin, mid) and [mid, end). We use mid as an
// equivalence class ID because every group ends with a unique index.
for (size_t i = begin; i < mid; ++i)
icfInputs[i]->icfEqClass[(icfPass + 1) % 2] = mid;
// If we created a group, we need to iterate the main loop again.
if (mid != end)
icfRepeat = true;
begin = mid;
}
}
void macho::markSymAsAddrSig(Symbol *s) {
if (auto *d = dyn_cast_or_null<Defined>(s))
if (d->isec)
d->isec->keepUnique = true;
}
void macho::markAddrSigSymbols() {
for (InputFile *file : inputFiles) {
ObjFile *obj = dyn_cast<ObjFile>(file);
if (!obj)
continue;
Section *addrSigSection = obj->addrSigSection;
if (!addrSigSection)
continue;
assert(addrSigSection->subsections.size() == 1);
Subsection *subSection = &addrSigSection->subsections[0];
ArrayRef<unsigned char> &contents = subSection->isec->data;
const uint8_t *pData = contents.begin();
while (pData != contents.end()) {
unsigned size;
const char *err;
uint32_t symIndex = decodeULEB128(pData, &size, contents.end(), &err);
if (err)
fatal(toString(file) + ": could not decode addrsig section: " + err);
markSymAsAddrSig(obj->symbols[symIndex]);
pData += size;
}
}
}
void macho::foldIdenticalSections() {
TimeTraceScope timeScope("Fold Identical Code Sections");
// The ICF equivalence-class segregation algorithm relies on pre-computed
// hashes of InputSection::data for the ConcatOutputSection::inputs and all
// sections referenced by their relocs. We could recursively traverse the
// relocs to find every referenced InputSection, but that precludes easy
// parallelization. Therefore, we hash every InputSection here where we have
// them all accessible as simple vectors.
// If an InputSection is ineligible for ICF, we give it a unique ID to force
// it into an unfoldable singleton equivalence class. Begin the unique-ID
// space at inputSections.size(), so that it will never intersect with
// equivalence-class IDs which begin at 0. Since hashes & unique IDs never
// coexist with equivalence-class IDs, this is not necessary, but might help
// someone keep the numbers straight in case we ever need to debug the
// ICF::segregate()
std::vector<ConcatInputSection *> hashable;
uint64_t icfUniqueID = inputSections.size();
for (ConcatInputSection *isec : inputSections) {
// FIXME: consider non-code __text sections as hashable?
bool isHashable = (isCodeSection(isec) || isCfStringSection(isec) ||
isClassRefsSection(isec)) &&
!isec->keepUnique && !isec->shouldOmitFromOutput() &&
sectionType(isec->getFlags()) == MachO::S_REGULAR;
if (isHashable) {
hashable.push_back(isec);
for (Defined *d : isec->symbols)
if (d->unwindEntry)
hashable.push_back(d->unwindEntry);
// __cfstring has embedded addends that foil ICF's hashing / equality
// checks. (We can ignore embedded addends when doing ICF because the same
// information gets recorded in our Reloc structs.) We therefore create a
// mutable copy of the CFString and zero out the embedded addends before
// performing any hashing / equality checks.
if (isCfStringSection(isec) || isClassRefsSection(isec)) {
// We have to do this copying serially as the BumpPtrAllocator is not
// thread-safe. FIXME: Make a thread-safe allocator.
MutableArrayRef<uint8_t> copy = isec->data.copy(bAlloc());
for (const Reloc &r : isec->relocs)
target->relocateOne(copy.data() + r.offset, r, /*va=*/0,
/*relocVA=*/0);
isec->data = copy;
}
} else {
isec->icfEqClass[0] = ++icfUniqueID;
}
}
parallelForEach(hashable, [](ConcatInputSection *isec) {
assert(isec->icfEqClass[0] == 0); // don't overwrite a unique ID!
// Turn-on the top bit to guarantee that valid hashes have no collisions
// with the small-integer unique IDs for ICF-ineligible sections
isec->icfEqClass[0] = xxHash64(isec->data) | (1ull << 31);
});
// Now that every input section is either hashed or marked as unique, run the
// segregation algorithm to detect foldable subsections.
ICF(hashable).run();
}